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A flexible systems analysis
pipeline for elucidating spatial
relationships in the tumor
microenvironment linked
with cellular phenotypes and
patient-level features
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Introduction: Quantitative investigation of how the spatial organization of cells

within the tumor microenvironment associates with disease progression, patient

outcomes, and that cell’s phenotypic state remains a key challenge in cancer

biology. High-dimensional multiplexed imaging offers an opportunity to explore

these relationships at single-cell resolution.

Methods: We developed a computational pipeline to quantify and analyze the

neighborhood profiles of individual cells in multiplexed immunofluorescence

images. The pipeline characterizes spatial co-localization patterns within the

tumor microenvironment and applies interpretable supervised machine learning

models, specifically orthogonal partial least squares analysis (OPLS), to identify

spatial relationships predictive of cell states and clinical phenotypes.

Results:We applied this framework to a previously published non-small cell lung

cancer (NSCLC) cohort across four applications. At the cellular level, we

identified neighborhood features associated with lymphocyte activation states.

At the tumor-immune interface, we demonstrated that the immune cell

composition surrounding major histocompatibility complex class I-expressing

(MHC I+) tumor cells could distinguish adenocarcinoma from squamous cell

carcinoma. At the patient level, spatial features predicted tumor grade.

Discussion: By integrating cell-segmented imaging datawith interpretablemodeling,

our pipeline reveals key spatial determinants of tumor biology. These findings

generate testable mechanistic hypotheses about intercellular interactions and

support the development of spatially informed prognostic and therapeutic strategies.
KEYWORDS

spatial biology, spatial proteomics, supervised machine learning, T cell, NK cell, immune
interactions, tumor-immune cell interactions, systems immunology
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GRAPHICAL ABSTRACT
Introduction

The tumor microenvironment (TME) encompasses the cellular

landscape surrounding a tumor, including malignant cells, immune

cells, stromal cells, extracellular matrix, vasculature and lymphatics,

and signaling molecules whose interplay shapes tumor progression,

therapeutic response, and patient outcomes. Recent advancements

in imaging and transcriptomic sequencing have revealed the

heterogeneity of the TME, both in composition and spatial

arrangement (1). However, further methodological development
Frontiers in Immunology 02
is needed to effectively integrate and interpret these complex, high

dimensional spatial data. This gap limits our ability to extract

mechanistic insights and identify predictive biomarkers from

emerging spatial multi-omics data, motivating the framework we

introduce here.

Direct tumor-immune interactions depend on the spatial

proximity of immune cells to the tumor cells and to each other.

Immune cells play diverse and sometimes opposing roles in the

TME, depending on their type, activation state, and context. Certain

immune cells, such as cytotoxic T cells and natural killer (NK) cells
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can directly attack and kill malignant cells. Others, including

regulatory T cells and some macrophage subsets, may instead

support tumor growth by suppressing anti-tumor immunity or

promoting tissue remodeling. In addition to interacting with tumor

cells, immune cells also engage with one another to coordinate

immune responses. These immune-immune interactions can

activate effector functions, shape pathways, and influence the

local cytokine milieu (2–4). Depending on the nature of the

signals exchanged, these interactions can either enhance anti-

tumor activity or contribute to immunosuppressive environments.

Interactions between cells of the TME occur by way of both cell

surface receptor interactions and secreted signaling molecules,

necessitating the proximity of interacting cells at distances

relevant for juxtracrine and paracrine signaling, respectively (5).

Observing cell neighbors within a radius corresponding to the

diameter of a typical cell (between 5-20 μm) may reveal the

potential for cell surface receptor interactions and expanding

analysis to 200-250 μm reveals cells within paracrine signaling

limits (6).

Advancements in multiplex imaging techniques such as

multiplexed ion beam imaging (MIBI) (7, 8), co-detection by

indexing (CODEX) (9, 10), imaging mass cytometry (IMC) (11,

12), and multiplexed immunofluorescence (mIF) imaging or

multiplexed immunohistochemistry (mIHC) (13–15) enable

simultaneous protein phenotyping of cells within tumor regions

while preserving spatial architecture. In this study, we explored

spatial co-localizations using mIF, though this systems framework

may be applied to data gathered from other spatial proteomic and

transcriptomic techniques.

Recent studies highlight the efficacy of spatial molecular data in

predicting response to immunotherapy, especially colocalization

analysis (16, 17). A wide range of analytical tools have emerged in

response to these advances in spatial profiling technologies,

including ecological packages like Spatstat (18), vegan (19), and

ecoCopula (20), as well as domain-specific frameworks such as

Spatial TIME (21), MonkeyBread (22), CELESTA (23), Crescendo

(24), and SPIAT (25). These tools have collectively expanded the

analytical landscape by introducing novel conceptual frameworks

and demonstrating proof-of concept strategies for quantifying

intercellular spatial relationships within the TME cells. This

growing toolkit has enabled a more precise characterization of the

spatial organization of the TME – referred to as the colocatome (26)-

and has deepened our understanding of intratumoral cellular

interactions (27). More recently, frameworks such as CellLENS

(28), MONTAGE (29), and MicroCart (30) have further advanced

the field by integrating multiple spatial domains including

expression, neighborhood context, and tissue localization to

uncover clinically relevant immune populations, functional

ce l lu l ar communi t i e s , and hos t–microb iome spat ia l

dynamics, respectively.

Spatial analysis has proven effective for elucidating anti-tumor

immune mechanisms, predicting treatment responses, and

evaluating prognostic outcomes. For instance, Sudmeier et al.

synthesized spatial localization data about CD8+ T cells with

phenotypic and transcriptomic data in glioblastoma to investigate
Frontiers in Immunology 03
signaling pathways at the tumor-immune interface (31). In

metastatic melanoma, the spatial proximity of PD-1+ and PD-L1+

was associated with improved response to immunotherapy (32). In

non-small cell lung cancer (NSCLC), anti-PD1 treatment was

shown to induce localized “multicellular immunity hubs” with

favorable clinical outcomes (17), and spatial profiling was recently

used to reveal that TIM-3 expression is enriched in precancerous

lesions and lost during LUAD progression, suggesting a role for

TIM-3 in early immune evasion and as a target for interception

strategies (33).

Despite these successes, the high dimensionality of modern

spatial data presents new analytical challenges. As spatial profiling

technologies improve and increasingly complex data is produced,

multivariate methods have become essential tools for interpreting

the spatial heterogeneity in the TME. Many of these methods

leverage machine learning, to deconvolute complex data and to

create clinically relevant predictions (34). While deep learning

approaches have grown in popularity for these tasks, their black-

box nature often limits biological interpretability. In contrast,

supervised statistical learning approaches (e.g., partial least

squares discriminant analysis, PLS) offer transparent,

interpretable models that remain valuable for hypothesis

generation and mechanistic insight. However, machine learning

applications in spatial multi-omics remain underdeveloped, in part

because analytical frameworks have not kept pace with rapid

advances in spatial technologies. As a result, it is unclear how to

best structure spatial data for analysis, which spatial features are

most biologically meaningful or predictive, and what types of

questions can be rigorously addressed using these tools.

To address this gap, we designed a systems analysis framework

to identify and characterize neighborhood colocalization profiles

across multiple scales, from single cells to patient-level features. Our

approach responds to the need for interpretable, multivariate

models that can integrate spatial complexity into testable

biological and clinical hypotheses. This framework builds on

existing neighborhood quantification methods by incorporating

rigorous statistical pipelines and emphasizing biological

interpretability. By leveraging single cell-resolved neighborhood

profiles and multivariate analysis, we enhance the ability to

accurately classify cell and tumor states from the micrometer

scale up to patient characteristics. Here, we introduce this novel

analysis framework, offer recommendations for data handling and

quality control, and demonstrate its applicability with examples

from a previously published mIF dataset of NSCLC biopsies (35).
Methods

Tissue specimens and data summary

As described before (35), this study included a cohort of 36

NSCLC patients with resected tissue, including 4 who received

immune checkpoint immunotherapy (ICI) at the University of

Virginia between 2014 and 2018 (Table 1). Multispectral

fluorescence imaging using the PerkinElmer Vectra 3.0 imaging
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system was performed on these tissue samples. Quality control

measures were first performed including inspection of fluorescence

intensity distributions and verification of marker positivity

thresholds, exclusion of ROIs with low cell counts, and

confirmation that all ROIs and cells are uniquely identified (see

below for more details). Additionally, four patients were excluded

from downstream analysis due to either missing metadata or

aberrant CD56 expression on malignant cells, which confounded

our use of CD56 as a marker for NK cells. This resulted in a final

cohort of 32 NSCLC patients for analysis and characterization.
mIF imaging and geospatial analysis

NSCLC patient tissues were analyzed as described in (35).

Briefly, they were stained with antibodies against pan-cytokeratin

(PanCK), the HC10 monoclonal antibody which is a pan- major

histocompatibility complex class I (MHC I) antibody, staining the

MHC class I (MHC I) alleles HLA-A, -B, and -C, CD3, CD8, CD56,

interferon gamma (IFNg), and DAPI. HALO (Quantitative Image

Analysis for Pathology by Indica Labs) was used to segment

individual cells and assign stain positivity. Combinatorial marker

expression was used to classify cellular phenotypes (Table 2), and a
Frontiers in Immunology 04
classifier was trained to identify tumor and stroma regions based on

PanCK positivity. Each cell was then assigned a specific phenotype

and regional annotation for downstream analysis.
Cellular neighborhood scoring

Cell neighborhood vector quantification
An in-house custom algorithm, as described and employed by

us previously (35) was used to construct neighborhood profiles.

Briefly, intercellular spatial colocalizations in NSCLC tumors were

determined in Python using 2-dimensional coordinates of

individual segmented cells obtained from HALO. The Euclidian

distance between each cell and every other cell on the slide was

computed; r-neighbors were defined as cells with a center-to-center

Euclidian distance of less than the user-specified radius r from the

center cell. The r-neighbors of each phenotype were enumerated to

yield the neighborhood profile for every individual cell. We refer to

the individual count of neighboring cells of a specific phenotype

(e.g. CD8 neighbors around a tumor cell) as the neighborhood

score. The complete set of scores across all phenotypes forms the

neighborhood vector for that cell, representing its spatial context in

a structured interpretable format. The mathematical formulation is

described below:
Let: P = p1, p2,…, pmf g denote a set of user-defined

phenotypic labels.

Let: C = c1, c2,…, cnf g be the set of all cells, where each cell

c ∈  C has:

Spatial coordinates Xc ∈ R2,

A phenotype label l(c) ∈ P.

Let R = r1, r2,…, rKf g be a set of radii of interest.
For each queried phenotype pi ∈ P, Equation 1 defines the

subset of queried cells:

Cpi = c  ∈  C : ‘(c) = pif g (1)

In Equation 2 we define the neighborhood score, a

transformation Tr
P(c) :  C →  Nm that maps a center cell c   ∈ C to

a count of neighboring cells of each phenotype pi ∈ P within a

fixed radius r, which makes an m-dimensional vector, Nm where N
is defined here as the set of non-negative integers:

Tr
pi  (c) =  o c0 ∈  C

c0 ≠ c

1( ∥Xc0 − Xc ∥ ≤ r)*1(‘(c
0) = pi) (2)

Where:

c' is a neighboring cell

Xc and Xc' are the spatial coordinates of the center and neighbor

cells respectively

1(…) is an indicator function that maps the elements of a subset

to one, and all other elements to zero.

Thus, we define the neighborhood vector for each cell in

Equation 3:
TABLE 1 NSCLC cohort characteristics *mean ± SD (minimum-
maximum).

NSCLC cohort
(n=32)

Adenocarcinoma
(LUAD) (n=26)

Squamous cell
carcinoma
(LUSC) (n=6)

Dead/Alive (% alive) 5/21 (80.7%) 2/4 (66.7%)

Recurrence 9 2

Female/Male 17/9 3/3

Age* 67.7 ± 9.9 61.8 ± 9.1

Cancer Grade
(G1/G1-G2/G2/G2-G3/

G3/G4)
5/1/9/1/10/0 0/0/1/4/0/1

Largest Tumor
Dimension* in cm

(Range)
3.41 (<2 – 6.3) 3.43 (1.8-5.5)

Treated with
Immunotherapy

4 0
TABLE 2 Cell classification markers.

Cell phenotype Phenotypic markers

Tumor Cell PanCK+ MHC I+

Tumor Cell with MHC I Loss PanCK+ MHC I-

Cytotoxic T Cell PanCK- CD3+ CD8+

CD8- T Cell PanCK- CD3+ CD8-

Natural Killer (NK) Cell PanCK- CD3- CD56+

Immune Cell Activation Marker IFNg
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Tr =  ½Tr
p1 (c),T

r
p2 (c)  ,  …,Tr

pm (c)  � (3)

Throughout this manuscript, this neighborhood vector was

calculated for R = r1, r2f g = 30 ½um�,  200 ½um�f g for cell contact

and paracrine signaling, respectively. These radii can be adjusted to

accommodate cell size and based on specific known intercellular

signaling ranges. These neighborhood vectors were inputted to

downstream supervised multivariate analysis.

Intercellular K-function analyses
Ripley’s K function is a spatial statistics tool used to evaluate

whether the spatial distribution of points – here, cells and their

phenotypic subsets – deviates from complete spatial randomness. It

assesses whether cells tend to cluster, repel, or distribute

independently, which can provide insight into underlying

mechanisms of coordination. The cross K-function extends this

analysis to two distinct phenotypic subsets, quantifying their degree

of spatial colocalization or segregation in a pairwise manner. Here

spatial colocalization patterns in NSCLC tumors were further

analyzed using the Spatstat package (18) in R version 4.2.1 to

yield the cross K-function traces to describe the colocalization

patterns of pairs of cell types of interest at a continuous range of

radii up to 200mm and compare it with a completely random

placement of cells (homogeneous Poisson) process as the null

model. This continuous range analysis complements the

previously described neighborhood vector calculations. The codes

for this analysis are available at Dolatshahi-lab GitHub (https://

github.com/Dolatshahi-Lab/NSCLC_SpatialMethods) and data are

available on LibraData: (https://doi.org/10.18130/V3/VQFO1J).
Quality control and pre-processing

Distances were first converted from pixels to micrometers using

HALO informed conversion ratios. Staining positivity thresholds were

verified by plotting histograms of cell staining intensities along with

cutoffs for positivity, consistent across tissue samples. Phenotypic

labels were defined by biologically informed protein marker

combinations (Table 2). After labeling and phenotypic enumeration,

cell densities within 3 mm2 regions of interest (ROIs) were

summarized by percent composition. Quality control was performed

by removing ROIs where more than 90% of cells were unlabeled as

well as ROIs with less than 500 cells. Additionally, three patients had

tumors that stained positive for PanCK as well as CD56, our marker

for NK cells. These patients were also removed. After this quality

control and filtering we were left with 414 ROIs composed of 5307540

cells belonging to 33 patients. One of these patients lacked histological

metadata and was included in cell level analysis but removed in patient

level analysis. For grade analysis, patients were further filtered to just

those with a histological classification of Adenocarcinoma.
Normalization

After computing neighborhood scores for each cell of interest,

the resulting neighborhood scores were log-transformed using log(1
Frontiers in Immunology 05
+ p) scaling to reduce the impact of extreme values. These

neighborhood scores were then z-scored across each phenotypic

neighborhood label. The normalized matrix of neighborhood scores

was subsequently used as input for building partial least squares

discriminant analysis (PLSDA) models.

In cases where cells are being compared between different

tumors or ROIs, which often have different overall immune cell

densities, cell relationships may be inflated by the density of each

cell type which may not represent differences in interactions and

“intentional” cellular colocalization. Normalization might be

necessary if enrichment of interactions is being assessed. As such,

for tumor- or ROI-level analysis such as those in Application 4, an

additional level of normalization was performed. These

neighborhood vectors were first calculated as described before

(see cellular neighborhood scoring) and then were further

normalized by dividing by the total number of center cells (Nc) of

a certain phenotypic label (pi) in each ROI as well as by the square

root of the number of neighbors (Nn) of a certain phenotypic label

in that ROI (pj) (Equation 4). The division by Nc calculates the

average per ROI or patient. The division by
ffiffiffiffiffiffi

Nn
p

accounts for the

cell type-specific density bias. This was repeated for each

phenotypic pair, resulting in neighborhood scores for each

pairwise combination of center and neighbor cells. The resulting

matrix of normalized neighborhood scores by ROI was then z-

scored and used as the input to the PLSDA models.

Normalized  Neighborhood Score 

=  
1
Nc

1
ffiffiffiffiffiffi

Nn
p oc∈pi

Tr
pj  (c) (4)
Multivariate discriminate analysis and
sampling techniques

Partial Least Squares (PLS) is a powerful supervised linear

machine learning approach that has been widely used to identify

the top contributors to a continuous outcome of choice or group

differences, called PLS regression (PLS-R) and PLS discriminant

analysis (PLS-DA), respectively. Orthogonalized PLS (OPLS) builds

upon this framework by orthogonalizing the model such that

variation in Y is captured on a single latent variable (LV) and

other latent variables described variance orthogonal (not

contributing) to Y for ease of interpretation. Here, OPLS models

were generated in Python using a combination of the pyopls package

for orthogonalization and PLSRegression function in the scikit-learn

package (36). For OPLS-DA models, the 5-fold cross validation

(CV) accuracy was reported, and significance was calculated by

comparing the CV accuracy of the constructed model against the 5-

fold CV accuracy of 1000 OPLS-DA models based on data with

randomly shuffled labels to compute an empirical permutation

testing p-value. For OPLS-R models, significance was calculated

empirically by comparing the constructed model’s mean squared

error (MSE) and CV Q2 to 1000 OPLS-R models based on data with

randomly permuted continuous labels (37, 38). Variable

importance in projection (VIP) scores were used to rank the
frontiersin.org
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predictors in their contribution to the response variable. A VIP

score quantifies the contribution of each variable to the PLS-DA or

PLS-R model, summarizing how influential each predictor is in

explaining the variance of the response variable. Variables with

higher VIP scores are considered more relevant for group

separation (PLS-DA) or response prediction (PLSR), and VIP

scores are commonly used to guide feature selection. In practice,

variables with a VIP score greater than 1 are typically regarded as

contributing more than average to the response variable (39).

For patient level analysis where a large number of predictor

variables (here after called features) are involved, we applied the

least absolute shrinkage and selection operator (LASSO) (40) for

feature selection, followed by classification using only the features

selected by LASSO. We used the LassoCV function from sklearn

with 10-fold cross validation to determine the optimal

regularization parameter (alpha). A correlation network was then

constructed to identify and visualize additional variables that were

highly correlated (|r| > 0.75) with those selected by LASSO.

Model performance was additionally evaluated using F1 scores

and area under the receiver operating characteristic curve

(AUROC) values. The F1 scores provide a comprehensive metric

encompassing both precision and recall, thereby accounting for

class imbalance. AUROC quantifies the model’s ability to

distinguish between classes across all classification thresholds.
Downsampling and bootstrapping for
balanced and robust modeling

When discriminant analysis is performed on imbalanced

datasets, where the distribution of the target variable is skewed

toward one class (e.g. Application 2), the resulting model may be

biased toward the majority class. This is a common issue in cell-

level analysis. To address this, we employed stratified

downsampling combined with bootstrapping to ensure balanced

representation of the classes and quantify variability in

model performance.

Specifically, for cell level analysis, the overrepresented center

cell phenotype was downsampled prior to modeling, matching the

minority group in sample size (defaulting to 50% of the smaller

group). This resampling was repeated across multiple bootstrap

iterations (approximately 10 iterations per sample), generating a

distribution of model accuracies and VIP scores. This bootstrapped

distribution enabled us to calculate variability metrics (e.g. standard

deviation, confidence intervals), providing a more reliable measure

of model robustness. Across applications, permutation testing p-

values, precision, and F1 scores improved, indicating a better overall

fit to the data.

For regression tasks, we similarly applied bootstrapping; a fixed

number of samples were randomly drawn with replacement in each

iteration to fit the OPLS models. Model performance was assessed

using 5-fold cross validation to compute mean squared error (MSE)

and Q2 scores.

To determine the optimal bootstrapping parameters, we

conducted sensitivity analysis varying sample size and number of
Frontiers in Immunology 06
iterations while holding the dataset coverage constant (10x). This

analysis revealed that model stability, defined as convergence of

performance metrics (e.g. cross-validation accuracy, MSE) and low

variance in feature importance rankings (VIP scores) depends on

dataset size and heterogeneity. By this analysis we selected sample

sizes of 3705, and a bootstrap iteration number of 2001 for the

regression model and 50% of the smaller group size for classification

models to ensure reliability and reproducible estimates.

We also applied down-sampling in region-level analyses and

spatial statistics to address non-independence among observations.

For patient-level comparisons, we matched the number of ROIs

sampled per patient to 50% of the minimum number across the

cohort, repeatedly subsampling to incorporate more data while

maintaining class balance. For cell-dense phenotypes, center cells

were down-sampled to mitigate the statistical challenges that arise

when neighboring cells share microenvironmental features and thus

cannot be treated as independent. The number of sampled cells per

ROI was thus matched to the number of approximately non-

overlapping neighborhoods that could fit within the 3mm by 3mm

ROI. This corresponds to roughly 500–700 cells for a 30mm radius

and 15–20 center cells per ROI for a 200mm to minimize spatial

overlap and ensure improved independence among observations.

For groups comparisons, Mann-Whitney U tests were

employed as a non-parametric method, offering a robust

alternative to parametric tests when data do not meet normality

assumptions. However, recognizing that traditional statistical

methods may still be influenced by spatial dependencies,

permutation testing was also be implemented as an alternative

approach. In permutation testing, the true neighborhood score is

compared to a null distribution of neighborhood scores generated

from randomized cell labels. This method provides a flexible, data-

driven framework that accounts for underlying spatial structures

and reduces the risk of false positive findings.
Recommendations for spatial
colocalization analysis

We compiled a table of best practices based on our experiences

with spatial single cell-resolved multiplexed data such as multiplex

immunofluorescence imaging (Table 3), which can be applied to

other spatial proteomics and transcriptomics data. For each step,

the table outlines specific recommendations, provides the rationale

behind them, and lists implementable tools and packages. We hope

this resource will serve as a resource for effectively managing and

analyzing similar data and building upon.
Results

Our pipeline is a two-step process that takes single-cell spatial

data as input, first quantifying the local cellular neighborhoods

around each cell, and then applying multivariate statistical analysis

to uncover spatial patterns and associations (Figure 1). Using a

previously published mIF dataset of NSCLC tumors (35)
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multivariate statistical models were built to link quantified cell-cell

colocalizations to cellular and clinical metrics across scales

spanning cell state (Application 1 and 2) to tissue- and patient-

level characteristics such as histological subtype or tumor grade

(Applications 3 and 4). We provide strategies for data pe-processing

and normalization, choice of quantitative spatial metrics and radii

around each cell, as well as suggestions for rigorous data analysis

practices and goodness of fit criteria (Table 3 – Best practices).
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Cell-segmented multiplexed immunofluorescence (mIF) data

enables single-cell resolution analyses, allowing each cell to be

assigned a phenotype and be counted per slide (Figure 2A). A

defined spatial circle of influence that reflects potential contact-

based and paracrine interactions can then be used to quantify each

cell’s level of exposure to other cell types within its local

neighborhood (Figure 2B). This framework enables the systematic

quantification of pairwise spatial relationships between cell types,
TABLE 3 Pipeline summary and recommendations.

Stage Recommendations Rationale Tools

A. Data Collection
Use single cell-segmented data with spatial coordinates and
multiplexed measurements (proteins or transcripts).

Enables spatial mapping of
diverse cell types and
quantification of interactions.

Segmentation algorithms:
Cellpose (41), CellProfiler (42),
HALO by Indica labs

B. Preprocessing Apply log normalization to neighborhood scores.

Improves distributional
properties and downstream
model assumptions (e.g.,
Gaussianness,
homoscedasticity).

Q-Q plots, KS tests

C. Radius selection

Choose biologically relevant radii (e.g., r = 30 um for direct
contact; 200 um for cytokine-mediated paracrine signaling) based
on the sizes of cell types and suspected modes of
communications. Perform sensitivity analysis to the choice of r.

Captures communication at
relevant scales and ensures
robustness to the choice of
radius, while enabling
biological interpretability.

Euclidean distance for spatial
proximity, for neighborhood
scoring.

D. Cross K-function
Use cross K-function (or G-function or others from the theory of
point processes) across a range of radii in addition to discrete
metrics.

Summarizes interactions at
multiple scales; enables
comparison to null, e.g.
Poisson, models.

Ripley’s K-function via Spatstat
and SPIAT (18, 25, 43)

E. Phenotype selection
Use biologically relevant cell types; separate tumor/stroma (or
additional tissue context) when possible.

Prevents misclassification;
improves interpretability and
biological relevance.

Morphological classifiers

F. Density Normalization
For tissue or patient-level characteristics, normalize neighbor
counts by overall density.

Controls for sample-to-sample
variation in cell abundance and
density.

Equation 4. (Normalized
neighborhood score)

G. Down sampling/
Bootstrapping

Balance group sizes by subsampling with replacement (bootstrap)
and calculate accuracy and VIP scores across iterations. Use
sensitivity analysis to guide sample size and iteration count based
on dataset size and heterogeneity. Sampling half the smaller class
(classification) or a fixed fraction of the dataset (regression), with
~10× total sample coverage, yields stable performance- defined as
convergence of accuracy estimates and low variance in feature
rankings (VIP scores) across iterations.

Prevents class imbalance
effects; supports robust model
evaluation, allows model and
feature importance errors to be
estimated.

Python scikit-learn (36),
imbalanced-learn

H. Feature
Selection

Use LASSO or Elastic Net to select inputs; recover correlated
features via correlation networks.

Reduces overfitting in high-
dimensional settings, e.g., when
comparing pairwise
relationships across multiple
cell types for tissue-level
comparisons; recovers
correlated features excluded by
regularization.

Python scikit-learn (LASSO/
Ridge/
Elastic Net),
Cytoscape (44) for network
visualization

I. Supervised Modeling
Use interpretable linear model (e.g., OPLS-DA) or nonlinear
classifiers as appropriate.

Balances performance with
interpretability; handles
multicollinearity; ranks features
based on their contribution to
effect.

Python scikit-learn
(PLSRegression),
R (MixOmics package) (45)

J. Validation
Use cross-validation (e.g., 5-fold); validate on external cohort if
possible.

Improves generalizability and
guards against overfitting.

Python scikit-learn (CV
module)

K. Univariate Testing
Use univariate statistics on top features identified by the
multivariate models with caution to spatial dependence between
single cell samplings of neighborhood scores.

Complements multivariate
models but requires careful
statistical handling.

See Wilson et al. (46) for
spatial testing considerations
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forming the basis for downstream spatial statistical and machine

learning analysis.

To assess the added value of this spatial context, we first asked

whether neighborhood colocalization metrics offer insights beyond

those provided by traditional cell count data – that is, the number of

cells of a given phenotype per slide (hereafter referred to as

“counts”). To this end, we trained an OPLS model to classify

regions of interest (ROIs) based on whether the percentage of

PanCK+ cells expressing MHC class I in tumor regions was above

or below 20%. This threshold was chosen as a biologically relevant

round number near the middle of the distribution (median = 13%,

mean = 25%) to facilitate interpretability (Supplementary Figure

S1A). We then compared CV classification performance across

models trained on counts alone, neighborhood features alone, or the

combination of both (Figure 2C). This analysis revealed that models

trained using neighborhood features alone outperformed those

trained using only counts. Including both sets yielded similar,

slightly improved accuracy which incorporated both counts and

neighborhood features amongst VIPs. Furthermore, the variable

importance in projection (VIP) scores from the combined model

demonstrated that both count-based and neighborhood-derived

features contributed meaningfully to classification with
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neighborhood scores ranking higher on the list, underscoring the

added value of spatial context (Figure 2D).

Neighborhood colocalization data from point pattern

transformations exhibit a piecewise distribution heavily skewed

toward zero, reflecting the abundance of cells that lack neighbors of

a given phenotype –whether common or rare (Supplementary Figure

S1B). To assess distributional properties, focusing on nonzero values,

we compared their empirical cumulative distribution function (CDF)

to that of a normal distribution (Supplementary Figure S1C).

Kolmogorov–Smirnov (KS) tests confirmed that log transformation

improves the normality of the nonzero portions of the data across all

phenotypes (Supplementary Figure S1D).

To evaluate the impact of transformation on model performance,

we trained an OPLS model to classify a test cellular phenotype – i.e.

IFNg+ T cells – based on neighborhood colocalization features.

We then compared models trained on raw versus log-transformed

data, which revealed improved accuracy for the latter (Supplementary

Figures S2A, B). Residual analysis – a statistical measure of prediction

error – further supported this improvement (Supplementary Figure

S2C). While the raw data produced bimodal residual distributions, log-

transformed data yielded unimodal, centered residuals, indicatingmore

consistent and unbiased model predictions. These findings support the
FIGURE 1

Pipeline overview - Cell ecological feature extraction from mIF data combined with supervised multivariate analysis predicts cellular- and cohort-
level phenotypes. Cell segmentation is performed on mIF images and staining positivity is assigned, digitizing the images. Neighborhood profiles are
calculated for each cell by quantifying the number of cells of each phenotype at distances relevant for juxtacrine and paracrine signaling.
Combinations of immunofluorescent stains are used to assign phenotypes to cells across the images. Bootstrapped Partial least squares analysis
identifies spatial relationships between cell types that predict cellular characteristics (e.g., activation) and cohort-level outcomes (e.g., survival,
histological type) based on neighborhood profiles. These relationships are validated using univariate approaches. This method is based on the
hypothesis that multiplexed spatial proteomic data contain granular, pairwise spatial relationships that, when systematically analyzed, can reveal
meaningful patterns of cellular colocalization and function. We analyze spatial data at single-cell resolution by quantifying, for each “center” cell, the
number of “neighbor” cells of each phenotype within a defined radius. This process yields a local neighborhood profile for every cell in the tissue,
analogous to applying a moving average filter across the spatial domain. Radii are selected to reflect biologically relevant distances for contact-
dependent and paracrine signaling.
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application of log transformation to neighborhood data for

downstream multivariate analyses that assume approximate normality.

These log-transformed neighborhood profiles serve as inputs

for downstream multivariate modeling to uncover spatial patterns

associated with cellular or tissue-level phenotypes. Although the

framework is compatible with various modeling approaches, we

selected OPLS methods for their balance of predictive performance

and interpretability. In benchmarking experiments, OPLS-DA

outperformed logistic regression and achieved comparable

accuracy to random forest classifiers, which may better capture

nonlinear relationships. Given the small performance difference

and the advantage of interpretability, we selected OPLS-DA in the

subsequent applications.
Application 1: lymphocyte clustering
predicts IFNg expression at its focal point

We applied this framework to interrogate several biological

questions. In our first application, we focused on the relationship
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between a cell’s phenotypic or functional state and its local

neighborhood profile, i.e. the quantity of cells of various

phenotypes in its vicinity. Cytotoxicity and immune coordination

first require activation of immune cells. One marker of such

activation is the production of IFNg, an inflammatory cytokine

primarily produced by lymphocytes (47). The activation of T and

NK cells and their subsequent IFNg production is linked in part

with their microenvironment (Figure 3A). IFNg expression can be

triggered by antigen recognition (48) or interactions with cognate

receptors on neighboring cells, and in turn, can promote the

recruitment and activation of additional immune cells. We

assumed that IFNg intensity of a cell in the images can be used as

a proxy for IFNg expression by that cell. Since we observed a broad

distribution IFNg intensity across lymphocytes (Figures 3B, C), we

hypothesized that IFNg intensity in T and NK cells correlates with

the composition of their surrounding local neighborhood. To test

this, we centered the analysis on all T cells and NK cells and

quantified each individual cell’s neighbors within 30 μm and 200

μm. We then built an OPLS-Regression (OPLSR) model to predict

the intensity of IFNg staining based on these spatial features.
FIGURE 2

Neighborhood colocalization transformation creates single cell data with predictive power. (A) Non-transformed count data highlighted in red. (B) Spatial
point data is transformed by counting neighbors of a given cellular phenotype within a given radius. This results in a transformation quantifying the pairwise
relationships between phenotypes within a radius on a cell-by-cell basis. Transformed neighbor data highlighted in blue. (C) Cross-validation accuracy of
predictive models trained to identify which patients had high MHC class I expression on tumor cells based on 3 sets of different input features: non-
transformed cell counts data (red), neighborhood-transformed data (blue), or a combination of both (purple). Bars represent one standard deviation around
the mean accuracy across bootstraps. (D) Variable importance in projection (VIP) scores from the model that contains a mixture of counts features and
neighbor relationships, underscoring the added value of including cellular colocalization, which appear on top of the list. Throughout the manuscript VIP
scores are artificially assigned the sign of the loading of that feature on LV1 to visually highlight the group they are higher in. Error bars indicate variability,
representing ±1 standard deviation (SD) of model performance across bootstrap iterations, providing a measure of robustness.
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The top predictors of IFNg expression included the local presence
of other IFNg+ lymphocytes in both tumor and stromal

compartments, at distances consistent with both juxtacrine and

paracrine signaling (Figures 3D, E, Supplementary Figures S3A, B).

Associations within the 200 um radius – where direct cell-cell contact

is less likely – had slightly stronger associations, suggesting that

colocalization of activated lymphocytes may occur independently of

direct contact, which is more probably within 30 um. No features

were significantly negatively associated with IFNg intensity. This

pattern was visually confirmed in the images where IFNg expressing
cells formed spatial pockets (Supplementary Figure S3C).

These findings support a model-driven hypothesis: IFNg
expression in one lymphocyte promotes the activation and IFNg
production in other lymphocytes through a combination of direct

signaling, recruitment of additional immune cells, and enhanced

antigen presentation. This likely reflects a coordinated positive

feedback loop that amplifies immune responses, a well-described

feature of IFNg signaling networks (49, 50), rather than direct cell-

to-cell induction. Such loops are tightly regulated to prevent

excessive inflammation (51).
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Application 2: IFNg intensity in CD8- CD3+

T cells is associated with T cell clustering

In a second application, we investigated whether the activation

status of CD8- CD3+ T cells (i.e., CD4 T cells) could be predicted by

their neighborhood profile. While CD8+ T lymphocytes can

recognize and kill MHC class I-bearing tumor cells displaying

tumor-derived antigens, CD4+ T cells respond with cytokine

release when they detect tumor antigens displayed by MHC class

II molecules on antigen-presenting cells (APCs) to coordinately

regulate antitumoral immunity (52). Given their critical role in

immune regulation, we hypothesized that activated (IFNg+) CD4+ T
cells exhibit distinct interaction patterns within the TME compared

to IFNg- CD4+ T cells. Although anti-CD4 antibody was not used to

identify CD4 T cells in this study, we approximated that most CD8-

T cells are indeed CD4+ T cells since T cells lacking both CD4 and

CD8 comprise less than 5% of mature T cells (53). The spatial

nature of these interactions was explored by examining

colocalization patterns in neighborhoods extending 30-200

mm (Figure 4A).
FIGURE 3

Activated T cells within paracrine-relevant distances best predict IFNg expression in neighboring immune cells. (A) IFNg intensity in immune cells
(CD3+, CD3-CD56+) serves as a marker of lymphocyte activation. (B) A subset of immune cells was classified as activated based on IFNg expression.
(C) A histogram of IFNg staining intensity in immune cells reveals the distribution of intensity values. Neighborhood colocalization profiles were
calculated for each immune cell, and an OPLS-R model was used to predict IFNg staining intensity based on these profiles. (D) Scatter plots of X
scores show each immune cell as a point in the model. The model achieved a mean squared error of 0.027, a Q² of 0.31, and outperformed all
1,000 models trained on randomly permuted data. (E) Bar plots display VIP scores oriented by their loadings on LV1. All of the top neighborhood
score features are associated with higher IFNg intensity and are colored blue as such. Error bars show ±1 SD around mean across bootstrap
iterations. Variables with VIP scores > 1 are shown, indicating above-average influence on group separation.
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FIGURE 4

The IFNg expression of CD8- T cells are closely associated with their paracrine-range neighborhood profile. (A) CD8- T cells were classified based on
their IFNg expression, and an OPLS-DA model was constructed using neighborhood profiles to distinguish between IFNg+ and IFNg- cells. Only 1.0%
of the CD8- T cell population was IFN-y+ cells. The low proportion of activated CD8- T cells necessitates the application of down-sampling
techniques to balance the data in univariate and multivariate analysis. (B) Univariate comparisons revealed significant differences in neighborhood
profiles of activated versus inactive CD8- T cells, assessed by a two-sided Mann-Whitney test with Bonferroni correction. * p <0.05, ** p < 0.01, ***
p< 1E-6, (- indicates IFNg-CD8-CD3+ is the larger group, + indicates IFNg+CD8-CD3+ is larger). (C) OPLS-DA models successfully discriminated
CD8- T cells based on IFNg expression, achieving 88.0% cross-validation (CV) accuracy and outperforming 1,000 random permutations. Scatter plots
show X scores, where each point represents a CD8- T cell projected onto latent variables 1 and 2 (LV1 and LV2). (D) Bar plots of VIP scores illustrate
key features associated with CD8- T cells of different IFNg expression statuses. Error bars represent ±1 standard deviation of mean across bootstrap
iterations. Variables with VIP score > 1 were identified as having above-average influence on group separation. (E) Iterative down-sampling of center
cells resulted in an average model accuracy of 0.88. (F) The model predicted IFNg expression with an area under the receiver operating curve
(AUROC) of 0.97, with a threshold of 0.54 used for classification. (G) The confusion matrix, accumulated over 5-fold CV, demonstrated a model F1
score of 0.90 and precision of 0.91. (E–G) Cross K-function correlation plots illustrate spatial relationships between IFNg+ CD8- T cells and (E) other
IFNg+ CD8- T cells, (F) IFNg+ cytotoxic T cells, and (G) IFNg+ NK cells, across a range of radii. Dashed lines represent 95% confidence intervals, and
the black line indicates the Poisson (null) distribution.
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To test this hypothesis, we quantified the neighborhood profiles

of all CD8- T cells and performed univariate comparisons between

the neighborhood profiles of IFNg+ and IFNg- CD8- T cells

(Figure 4B). We then constructed an OPLS-DA model with CD8-

T cells as center cells, IFNg expression as the binary classifier, and

neighborhood profiles as model features. The imbalance between

the number of IFNg+ and IFNg- CD8- T cells necessitated the use of

random down-sampling to address the disparity in group sizes (see

Methods). Iterative down-sampling was applied to ensure all data

were utilized while maintaining balanced group representation.

This approach improved model precision and overall

performance. Model evaluation using X scores plots demonstrated

robust performance, including high accuracy and strong results in

permutation testing (Figure 4C).

VIP scores highlighted IFNg+ lymphocytes, including CD8+ T

cells, CD8- T cells, and NK cells (CD56+) at 200 um signaling

distances as the strongest contributors to the separation between

activated and inactive CD8- T cell neighborhoods (Figure 4D,

Supplementary Figure S4A). To address the imbalance in group

sizes, we applied iterative random down-sampling, which ensured

equal representation of IFNg± CD8- T cells in the model. The

stability of this down-sampling approach was validated through

1,000 permutations, which consistently showed stable model

performance (Supplementary Figure S4B). The model ’s

performance was evaluated using standard machine learning

metrics, including a precision-recall curve (Supplementary Figure

S3C), which demonstrated the model’s robustness in distinguishing

between the two groups.

These results reinforce the importance of IFNg+ lymphocytes in

shaping the immune landscape of the TME. Further analysis of key

features using Ripley’s cross K-function identified by VIP scores

revealed strong spatial relationships between activated CD8- T cells

and other IFNg+ lymphocytes, including CD8 T cells and NK cells,

across a range of radii (Figures 4E–G). The significant and

consistent separation observed in cross K-function plots supports

the hypothesis that IFNg+ CD8- T cells have distinct neighborhood

profiles that implicate their active role in the regulation and

coordination of antitumoral immune responses within the TME.

Using this data and building upon existing literature, we can

hypothesize mechanistic interactions at the tumor-immune

interface. In NSCLC patients, IFNg-mediated crosstalk by T cells

and NK cells likely play a key role in the immune response. CD8- T

cells are major producers of IFNg which activates other immune

cells, including antigen presenting cells. The observed spatial

relationships between CD8- T cells and other lymphocytes

suggest that IFNg secretion, especially from CD8- T, cells may

enhance lymphocyte clustering, thus leading to enhanced secretion

of cytokines and chemokines, additional immune cell recruitment

and activation which together facilitate a robust local immune

response in the TME. While the current study does not directly

asses IFNg production or functional outcomes, these findings

generate testable hypotheses that should be validated in future

work using spatial transcriptomic analyses or functional T cell

assays to assess cytokine signaling and pathway activation in situ.
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Application 3: tumor histologic subtype
shapes MHC class I spatial relationships

Tumor histology is a critical determinant of immune landscape in

NSCLC, influencing not only infiltration levels but also the spatial

organization around malignant cells. Although lung adenocarcinoma

(LUAD) and squamous cell carcinoma (LUSC) are both classified as

NSCLC, they differ markedly in morphology, mutational burden,

immunogenicity, and clinical outcomes all of which shape the tumor

microenvironment in distinct ways (54, 55). Here we investigated

whether these subtype specific features extend to the spatial

neighborhoods of MHC class I expressing tumor cells (Figure 5A).

Neighborhood profiles were generated for all MHC I+ PanCK+

cancer cells residing within 30-200 μm signaling distances.

Univariate analyses revealed significant differences in the

composition of tumor and immune cell neighbors between LUAD

and LUSC subtypes (Figure 5B). To quantify these differences, we

developed an OPLS-DA model to predict histologic classification,

LUAD or LUSC, based on the neighborhood profile of each cancer

cell. The model achieved a cross-validation accuracy of 83%,

outperforming 1,000 models generated with shuffled labels

(Figure 5C). VIP scores highlighted enhanced colocalization with

T lymphocytes as a distinguishing feature of LUSC-resident MHC

I+ PanCK+ cells, whereas LUAD-resident cells exhibited greater

colocalization with other MHC I+ PanCK+ tumor cells (Figure 5D,

Supplementary Figure S5A). Due to the imbalance in sample size

favoring LUAD, random down-sampling was applied to balance

group sizes over 1,000 permutations, which consistently showed

stable model performance (Supplementary Figure S5B). Precision-

recall curves demonstrated consistent model performance across

metrics, confirming the robustness of the analysis (Supplementary

Figure S5C).

To further validate these findings, we used cross K-function

analysis to asses spatial relationships between MHC I+ PanCK+ cells

and key immune populations (IFNg- CD8 T cells, CD8- T cells, and

NK cells) across a continuous range of radii (Figures 5E–G) which

revealed significant colocalization surrounding LUSC-residing

MHC I+ tumor cells, corroborating OPLS-DA findings and

validating them across radii of interest. LUSC’s increased

mutational burden and tumor-associated antigen expression likely

underlie its greater immunogenicity (56). However, increased

immune tolerance or suppression may limit the role of activated

immune cells, contributing to poorer prognoses (55, 57). Regulatory

CD4 T cells (Tregs), present in the CD8-CD3+ population, may also

modulate the local immune response in LUSC tumors. Conversely,

the complex morphology of LUAD may limit immune cell

infiltration, but may foster more robust T cell activation,

enhancing immune cell interactions within the microenvironment

of MHC I+ cancer cells (56). However, increased immune tolerance

or suppression may limit the role of activated immune cells,

contributing to poorer prognoses (55, 57). Conversely, LUAD

may foster more robust T lymphocyte activation, enhancing

immune cell interactions within the microenvironment of MHC

I+ tumor cells.
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FIGURE 5

The neighborhood profile of MHC I+ PanCK+ cells distinguish their residence within LUAD or LUSC NSCLC tumors. (A) MHC I+PanCK+ cells were identified
in LUAD and LUSC tumor regions. Group imbalance motivated the use of down-sampling techniques. (B) Univariate comparisons of neighborhood profiles
showed significant differences between LUAD and LUSC patients, determined using a two-sided Mann-Whitney test with Bonferroni correction. * < 0.05,
** < 0.01, *** < 1E-6, (- indicates LUSC is the larger group, + indicates LUAD is larger) (C) An OPLS-DA model discriminated MHC I+ tumor cells based on
their neighborhood profiles, achieving 83% cross-validation accuracy and outperforming 1,000 random permutation models (p< 0.001). Scatter plots display
X scores, with each point representing a tumor cell projected onto latent variables 1 and 2 (LV1 and LV2). (D) Bar plots of VIP scores highlight features
associated with tumor histology. Error bars represent ±1 standard deviation of mean across bootstrap iterations. Variables with |VIP score| > 1 were deemed
significant contributors to class separation. (E–G) Cross K-function correlation plots illustrate spatial relationships between IFNg⁺ CD8⁻ T cells and (E) other
IFNg⁺ CD8⁻ T cells, (F) IFNg⁺ cytotoxic T cells, and (G) IFNg⁺ NK cells, across a range of radii. Dashed lines represent 95% confidence intervals, and the black
line indicates the Poisson (null) distribution.
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Together, these findings demonstrate that histologic subtype is

associated with not only the molecular characteristics of tumors but

also the spatial organization of immune cells within the tumor

microenvironment. These patterns suggest that tumor subtype may

influence or reflect immune context, motivating further

investigation into the links between tumor-intrinsic features and

spatial immune architecture. Such insights could eventually inform

the development of more tailored therapeutic approaches, although

additional and functional validation will be necessary to support

subtype-specific strategies.
Application 4: high-grade LUAD tumors are
enriched for CD8+ T cell infiltration and
MHC class I expression

Intercellular interactions in the TME are thought to influence

immune regulation and thus patient outcomes. To investigate this

connection, we next asked whether patterns of cellular colocalization in

tumors are associated with clinical characteristics, specifically tumor

grade. To this end, we compared pairwise colocalization patterns

between tumors classified as high-grade and low-grade. A cancer’s

grade reflects how abnormal malignant cells appear compared to

healthy cells under microscopic examination. Low-grade cancer cells

resemble non-malignant normal cells, are less aggressive, and are

generally associated with better prognoses. In contrast, high-grade

cancer cells exhibit greater deviations in appearance and

organization, correlating with increased aggressiveness and

worse outcomes.

To test whether higher-grade cancers exhibit distinct immune

cell colocalization patterns compared to lower-grade cancers

(Figure 6A), patient’s tumor samples were divided into two

groups based on the clinical grade of their cancer as described in

(35). Only LUAD patients were used to control for the differences

between tumors of different histological status. Patient images were

analyzed based on regions of interest (ROIs), defined as the 3mm2

images output by the HALO software. ROIs were labeled based on

whether they originated from high- or low-grade tumors. The low-

grade group contains patients labeled as G1, G1-G2, and G2 based

on the American Joint Committee on Cancer (AJCC) seventh

edition and was composed of 17 patients represented by 177

ROIs and 1,729,555 individual cells while the high-grade group

consisted of 11 patients labeled as G2-G3, G3, and G4 represented

by 129 ROIs and 1,267,714 cells. Because group sizes were

comparable, no down-sampling was required.

Samples from patients in each group were characterized

according to the colocalization patterns of the various cell types

on an ROI-by-ROI basis. This is in contrast with the cell-by-cell

basis analysis pipeline of the previous applications. Here, single cell-

resolved neighborhood counts are averaged across the center cells of

the same type within an ROI to result in ROI-averaged

neighborhood counts as input to the downstream supervised

analysis. For each ROI, cells were classified based on cell type
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specific stains and whether they were in the tumor or stroma, as

determined by the Halo classifier. For each cell, neighborhoods were

characterized according to the method described. Then for each

ROI, pairwise relationships were summarized for each cell type/

location as well as ROI level summaries (e.g. tumor CD8 IFNg+ %,
number of CD8+T cells in tumor regions, etc), which resulted in 528

features. To reduce model complexity and prevent overfitting, we

applied LASSO regression (40) to select the most important spatial

features. An OPLS-DA model was then built on these LASSO

selected features to classify whether a given ROI belonged to a

high- or low-grade tumor (Figures 6B, C, Supplementary Figure S6).

We assessed model stability by performing permutation testing,

comparing the accuracy of the true-label model to a distribution of

1,000 models trained on randomly shuffled labels to yield an

empirical p-value. This model outperformed all randomly

permuted models (p<0.001) and achieved a cross-validation

accuracy of 0.76. This model identified seven LASSO selected

features with above-average discriminatory power VIP scores > 1

between high- and low-grade tumors, marking them as significant

contributors to classification performance. Because LASSO removes

features that are linearly dependent on other predictors, it may

exclude features that are highly correlated with those deemed

significant by downstream analysis. To ensure these correlated

but excluded features are not overlooked, we used correlation

networks to identify LASSO-removed features that showed strong

correlations (r > 0.75) with significant features (Figures 6D, E).

These results indicate that high-grade tumors are characterized

by CD8+ T cell infiltration and increased heterogeneity of tumor cell

MHC class I expression. Correlation analysis between significant VIP

features and non-selected features from the LASSO model revealed

that, although CD8+ T cells were the dominant distinguishing feature,

other immune populations also correlated with CD8+ T cell presence.

We interpret these findings to suggest that high-grade tumors,

characterized by greater abnormal differentiation and

immunogenicity, are more likely to elicit robust T cell responses,

resulting in increased infiltration by CD8+ T cells.
Discussion

In this study, we present a framework for analyzing and

interpreting spatially resolved single-cell data of the TME. This

approach integrates an algorithm for neighborhood characterization

with a robust multivariate machine learning pipeline to identify spatial

relationships between cell types that are predictive of cellular state,

tissue architecture, or patient outcomes. Although demonstrated here

using mIF data, the framework is broadly applicable to other single-cell

resolved spatial platforms, offering a flexible and interpretable approach

for studying tissue organization in health and disease.

While our framework links spatial patterns to biological

outcomes, findings vary in certainty. For example, the conclusion

of Application 1 aligns with well-established paracrine cytokine

signaling (e.g., IFNg-mediated immune activation), as supported by
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FIGURE 6

High-grade LUAD tumors are enriched for CD8+ T cell infiltration and MHC I expression. (A) ROIs were classified as low-grade or high-grade based on
pathologist-defined cancer grades. (B, C) An OPLS-DA model was constructed to distinguish between ROIs from high- or low-grade tumors. The model
achieved 76% classification accuracy in 5-fold cross-validation and outperformed all 1,000 randomly permuted models (p< 0.001). (B) Scatter plots of X
scores depict each tumor ROI projected onto latent variables. (C) Bar plots of VIP scores highlight features with VIP scores > 1, indicating above-average
influence on group separation. Features are artificially oriented by loadings on LV1 and colored based on association with high- or low-grade regions. Grey
shading indicates stromal regions, and black shading indicates tumor regions, as defined by a random forest classifier. (D) Boxplots of features with |VIP
score| > 1 show significant differences between groups (Mann-Whitney U test, * = p< 0.05). Error bars represent ±1 standard deviation of mean across
bootstrap iterations. (E) Correlation networks depict non-LASSO-selected neighborhood features that were significantly correlated (Spearman r > 0.75, p<
0.05) with LASSO-selected features. Connections indicate correlation strength, and circle fill colors denote group enrichment. White outlines indicate
LASSO-removed features. LV, latent variable; VIP, variable importance in projection.
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recent literature. Notably, the observed distance-dependent

association provides in situ evidence of paracrine cytokine activity.

Although most prior studies of cytokine propagation have largely

relied on in vitro or computational systems, our spatial analysis of

histology data offers complementary insights. Recent experimental

and modeling work has further elucidated the spatiotemporal

dynamics of IL-2 and type I/II interferons – highlighting distance

thresholds for effective signaling and the influence of tissue

architecture – thus providing a mechanistic foundation for our

findings (58–63). In contrast, the conclusions from Applications 2

and 3 are more exploratory, suggesting potential molecular

characteristics and subtype-specific therapeutic strategies that

warrant further experimental or multi-modal validation.

We showcase the utility of the framework in four applications:

first by identifying spatial features associated with immune

activation, inferred by IFNg expression (Application 1) or

positivity (Application 2); distinguishing cell-type colocalization

patterns across histological subtypes (Application 3); and

uncovering immune spatial features predictive of tumor grade

(Application 4). In each case, the pipeline accurately distinguishes

between groups and identifies the most informative cell-cell

colocalizations driving these distinctions. A central strength of

this approach lies in its ability to operate across spatial scales,

from single cells to cell neighborhoods to whole tissue regions,

enabling diverse biological questions to be addressed within a

unified analytical structure.

By leveraging spatial features as inputs to supervised OPLS-DA

models, we uncover mechanistic insights into how cellular

interactions in the TME relate to cell state and tumor

microenvironment, which could be tested experimentally. This

systems-level strategy supports hypothesis generation, particularly

in contexts where mechanistic evidence is sparse. As spatial

proteomics and transcriptomics platforms continue to evolve, this

framework may serve as a foundation for exploring pathway-level

drivers of immune activation or therapeutic response. To support

broader adop t ion , we a l so prov ide methodo log i ca l

recommendations and implementation guidelines.

Despite its strengths, the approach has several limitations. First,

spatial imaging captures a single time point and cannot resolve

dynamic cellular processes, limiting interpretations to correlative

rather than causative relationships. As such, mechanistic

conclusions should be validated through perturbation

experiments. Furthermore, imaging was performed on sliced

tissue and consequently our methods focused on two-dimensional

(2D) neighborhoods of cells. While this simplification does not

capture the full three-dimensional (3D) architecture of the tumor

microenvironment, previous studies have demonstrated that 2D

spatial metrics can provide biologically meaningful insights into

cellular organization when consistently applied across all samples

(7–9). Future advancement in 3D image analysis can provide a

more comprehensive representation of the local neighborhoods of

cells and their interaction patterns. Image-based segmentation also

introduces classification errors, especially in dense or multilayered
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tissues, where neighboring cells may be merged or misidentified.

For example, closely apposed cells may be misidentified as a single

cell expressing markers of multiple lineages, and cells located at

different tissue depths may be difficult to resolve accurately,

especially in specimens that are not uniformly one cell thick.

These issues can propagate through the modeling process, making

rigorous quality control and expert annotation essential.

From a computational standpoint, multivariate modeling is

sensitive to input variability and may be influenced by systematic

biases introduced by mislabeling, imperfect segmentation, or batch

effects. Our use of feature selection and orthogonalization helps

mitigate overfitting and enhances interpretability, but users should

remain aware of potential pitfalls. Additionally, cytokine expression

markers such as IFNg are valuable for identifying activated immune

populations but do not reveal the source of soluble signals. Therefore,

spatial inference based on such markers should be interpreted with

caution and, where possible, validated with orthogonal methods.

On the implementation side, this approach has additional

limitations and caveats. For one, we tested the framework with a

single dataset acquired with the VECTRA platform, which is limited

to seven colors per panel, thus restricting the comprehensive

profiling of the TME. While we focused on supervised approaches

such OPLS-DA and -R as our primary modeling strategy,

unsupervised and nonlinear approaches are equally valid

alternatives, and reveal complimentary insights. We explored

unsupervised approaches such as Uniform Manifo ld

Approximation and Projection for Dimension Reduction

(UMAP) but found them computationally intensive and poorly

suited for this context, number of observations far exceeds the

number of measured variables – resulting in reduced discriminatory

power of the visualization. Finally, while this framework is well

suited for hypothesis generation, results should be validated either

in an independent cohort or experimentally.

While this framework is powerful and effective, future iterations

may incorporate advances in imaging or modeling to further

enhance performance. In addition, creative analytical strategies,

such as modeling conditional relationships between cell types, could

expand the types of questions that can be addressed beyond the

scope of this study. A key strength of this pipeline is its flexibility

and scalability, which make it well suited for both clinical and basic

science applications. It can handle large numbers of cells and can be

used to ask a wide variety of questions. The predictions of this

framework offer a way to uncover important intercellular

relationships across diverse disease contexts. More widespread

spatial profiling and analysis with approaches like this could

inform the clinical workflow, if consistent spatial relationships

such as immune infiltration or spatial colocalization can be linked

with response to immunotherapy. Its ability to integrate spatial data

in a transparent and biologically informed manner makes it a

valuable tool for both discovery and translation.

In conclusion, our study demonstrates the effectiveness of this

framework in identifying crucial spatial relationships within the

tumor microenvironment using a supervised machine learning
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approach. While the method provides unique interpretability and

insight, its adaptability across spatial scales and biological systems

makes it well suited for addressing a wide range of research

questions. This approach holds strong potential for advancing

both clinical and basic investigations into the complex

organization and function of the tumor microenvironment.
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