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relationships in the tumor
microenvironment linked
with cellular phenotypes and
patient-level features
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Medicine, Charlottesville, VA, United States

Introduction: Quantitative investigation of how the spatial organization of cells
within the tumor microenvironment associates with disease progression, patient
outcomes, and that cell's phenotypic state remains a key challenge in cancer
biology. High-dimensional multiplexed imaging offers an opportunity to explore
these relationships at single-cell resolution.

Methods: We developed a computational pipeline to quantify and analyze the
neighborhood profiles of individual cells in multiplexed immunofluorescence
images. The pipeline characterizes spatial co-localization patterns within the
tumor microenvironment and applies interpretable supervised machine learning
models, specifically orthogonal partial least squares analysis (OPLS), to identify
spatial relationships predictive of cell states and clinical phenotypes.

Results: We applied this framework to a previously published non-small cell lung
cancer (NSCLC) cohort across four applications. At the cellular level, we
identified neighborhood features associated with lymphocyte activation states.
At the tumor-immune interface, we demonstrated that the immune cell
composition surrounding major histocompatibility complex class |-expressing
(MHC 1) tumor cells could distinguish adenocarcinoma from squamous cell
carcinoma. At the patient level, spatial features predicted tumor grade.
Discussion: By integrating cell-segmented imaging data with interpretable modeling,
our pipeline reveals key spatial determinants of tumor biology. These findings
generate testable mechanistic hypotheses about intercellular interactions and
support the development of spatially informed prognostic and therapeutic strategies.
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Neighborhood Profiling at Multiple Distances
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GRAPHICAL ABSTRACT

Introduction

The tumor microenvironment (TME) encompasses the cellular
landscape surrounding a tumor, including malignant cells, immune
cells, stromal cells, extracellular matrix, vasculature and lymphatics,
and signaling molecules whose interplay shapes tumor progression,
therapeutic response, and patient outcomes. Recent advancements
in imaging and transcriptomic sequencing have revealed the
heterogeneity of the TME, both in composition and spatial
arrangement (1). However, further methodological development
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is needed to effectively integrate and interpret these complex, high
dimensional spatial data. This gap limits our ability to extract
mechanistic insights and identify predictive biomarkers from
emerging spatial multi-omics data, motivating the framework we
introduce here.

Direct tumor-immune interactions depend on the spatial
proximity of immune cells to the tumor cells and to each other.
Immune cells play diverse and sometimes opposing roles in the
TME, depending on their type, activation state, and context. Certain
immune cells, such as cytotoxic T cells and natural killer (NK) cells
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can directly attack and kill malignant cells. Others, including
regulatory T cells and some macrophage subsets, may instead
support tumor growth by suppressing anti-tumor immunity or
promoting tissue remodeling. In addition to interacting with tumor
cells, immune cells also engage with one another to coordinate
immune responses. These immune-immune interactions can
activate effector functions, shape pathways, and influence the
local cytokine milieu (2-4). Depending on the nature of the
signals exchanged, these interactions can either enhance anti-
tumor activity or contribute to immunosuppressive environments.
Interactions between cells of the TME occur by way of both cell
surface receptor interactions and secreted signaling molecules,
necessitating the proximity of interacting cells at distances
relevant for juxtracrine and paracrine signaling, respectively (5).
Observing cell neighbors within a radius corresponding to the
diameter of a typical cell (between 5-20 pm) may reveal the
potential for cell surface receptor interactions and expanding
analysis to 200-250 pm reveals cells within paracrine signaling
limits (6).

Advancements in multiplex imaging techniques such as
multiplexed ion beam imaging (MIBI) (7, 8), co-detection by
indexing (CODEX) (9, 10), imaging mass cytometry (IMC) (11,
12), and multiplexed immunofluorescence (mIF) imaging or
multiplexed immunohistochemistry (mIHC) (13-15) enable
simultaneous protein phenotyping of cells within tumor regions
while preserving spatial architecture. In this study, we explored
spatial co-localizations using mlIF, though this systems framework
may be applied to data gathered from other spatial proteomic and
transcriptomic techniques.

Recent studies highlight the efficacy of spatial molecular data in
predicting response to immunotherapy, especially colocalization
analysis (16, 17). A wide range of analytical tools have emerged in
response to these advances in spatial profiling technologies,
including ecological packages like Spatstat (18), vegan (19), and
ecoCopula (20), as well as domain-specific frameworks such as
Spatial TIME (21), MonkeyBread (22), CELESTA (23), Crescendo
(24), and SPIAT (25). These tools have collectively expanded the
analytical landscape by introducing novel conceptual frameworks
and demonstrating proof-of concept strategies for quantifying
intercellular spatial relationships within the TME cells. This
growing toolkit has enabled a more precise characterization of the
spatial organization of the TME - referred to as the colocatome (26)-
and has deepened our understanding of intratumoral cellular
interactions (27). More recently, frameworks such as CellLENS
(28), MONTAGE (29), and MicroCart (30) have further advanced
the field by integrating multiple spatial domains including
expression, neighborhood context, and tissue localization to
uncover clinically relevant immune populations, functional
cellular communities, and host-microbiome spatial
dynamics, respectively.

Spatial analysis has proven effective for elucidating anti-tumor
immune mechanisms, predicting treatment responses, and
evaluating prognostic outcomes. For instance, Sudmeier et al.
synthesized spatial localization data about CD8" T cells with
phenotypic and transcriptomic data in glioblastoma to investigate
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signaling pathways at the tumor-immune interface (31). In
metastatic melanoma, the spatial proximity of PD-1* and PD-L1"
was associated with improved response to immunotherapy (32). In
non-small cell lung cancer (NSCLC), anti-PD1 treatment was
shown to induce localized “multicellular immunity hubs” with
favorable clinical outcomes (17), and spatial profiling was recently
used to reveal that TIM-3 expression is enriched in precancerous
lesions and lost during LUAD progression, suggesting a role for
TIM-3 in early immune evasion and as a target for interception
strategies (33).

Despite these successes, the high dimensionality of modern
spatial data presents new analytical challenges. As spatial profiling
technologies improve and increasingly complex data is produced,
multivariate methods have become essential tools for interpreting
the spatial heterogeneity in the TME. Many of these methods
leverage machine learning, to deconvolute complex data and to
create clinically relevant predictions (34). While deep learning
approaches have grown in popularity for these tasks, their black-
box nature often limits biological interpretability. In contrast,
supervised statistical learning approaches (e.g., partial least
squares discriminant analysis, PLS) offer transparent,
interpretable models that remain valuable for hypothesis
generation and mechanistic insight. However, machine learning
applications in spatial multi-omics remain underdeveloped, in part
because analytical frameworks have not kept pace with rapid
advances in spatial technologies. As a result, it is unclear how to
best structure spatial data for analysis, which spatial features are
most biologically meaningful or predictive, and what types of
questions can be rigorously addressed using these tools.

To address this gap, we designed a systems analysis framework
to identify and characterize neighborhood colocalization profiles
across multiple scales, from single cells to patient-level features. Our
approach responds to the need for interpretable, multivariate
models that can integrate spatial complexity into testable
biological and clinical hypotheses. This framework builds on
existing neighborhood quantification methods by incorporating
rigorous statistical pipelines and emphasizing biological
interpretability. By leveraging single cell-resolved neighborhood
profiles and multivariate analysis, we enhance the ability to
accurately classify cell and tumor states from the micrometer
scale up to patient characteristics. Here, we introduce this novel
analysis framework, offer recommendations for data handling and
quality control, and demonstrate its applicability with examples
from a previously published mIF dataset of NSCLC biopsies (35).

Methods
Tissue specimens and data summary

As described before (35), this study included a cohort of 36
NSCLC patients with resected tissue, including 4 who received
immune checkpoint immunotherapy (ICI) at the University of
Virginia between 2014 and 2018 (Table 1). Multispectral
fluorescence imaging using the PerkinElmer Vectra 3.0 imaging
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TABLE 1 NSCLC cohort characteristics *mean + SD (minimum-
maximum).

NSCLC cohort Squamous cell

(n=32)

Adenocarcinoma
(LUAD) (n=26)

carcinoma
(LUSC) (n=6)

Dead/Alive (% alive) 5/21 (80.7%) 2/4 (66.7%)

Recurrence 9 2
Female/Male 17/9 3/3
Age* 67.7 £9.9 61.8+9.1

Cancer Grade
(G1/G1-G2/G2/G2-G3/
G3/G4)

5/1/9/1/10/0 0/0/1/4/0/1

Largest Tumor
Dimension* in cm
(Range)

341 (<2 -6.3) 3.43 (1.8-5.5)

Treated with
Immunotherapy

system was performed on these tissue samples. Quality control
measures were first performed including inspection of fluorescence
intensity distributions and verification of marker positivity
thresholds, exclusion of ROIs with low cell counts, and
confirmation that all ROIs and cells are uniquely identified (see
below for more details). Additionally, four patients were excluded
from downstream analysis due to either missing metadata or
aberrant CD56 expression on malignant cells, which confounded
our use of CD56 as a marker for NK cells. This resulted in a final
cohort of 32 NSCLC patients for analysis and characterization.

mIF imaging and geospatial analysis

NSCLC patient tissues were analyzed as described in (35).
Briefly, they were stained with antibodies against pan-cytokeratin
(PanCK), the HC10 monoclonal antibody which is a pan- major
histocompatibility complex class I (MHC I) antibody, staining the
MHC class I (MHC ) alleles HLA-A, -B, and -C, CD3, CD8, CD56,
interferon gamma (IFNY), and DAPI. HALO (Quantitative Image
Analysis for Pathology by Indica Labs) was used to segment
individual cells and assign stain positivity. Combinatorial marker
expression was used to classify cellular phenotypes (Table 2), and a

TABLE 2 Cell classification markers.

Cell phenotype Phenotypic markers

Tumor Cell PanCK' MHC I"
Tumor Cell with MHC I Loss PanCK* MHC I
Cytotoxic T Cell PanCK™ CD3" CD8"
CD8 T Cell PanCK™ CD3" CD§"
Natural Killer (NK) Cell PanCK™ CD3™ CD56"

Immune Cell Activation Marker IFNy
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classifier was trained to identify tumor and stroma regions based on
PanCK positivity. Each cell was then assigned a specific phenotype
and regional annotation for downstream analysis.

Cellular neighborhood scoring

Cell neighborhood vector quantification

An in-house custom algorithm, as described and employed by
us previously (35) was used to construct neighborhood profiles.
Briefly, intercellular spatial colocalizations in NSCLC tumors were
determined in Python using 2-dimensional coordinates of
individual segmented cells obtained from HALO. The Euclidian
distance between each cell and every other cell on the slide was
computed; r-neighbors were defined as cells with a center-to-center
Euclidian distance of less than the user-specified radius r from the
center cell. The r-neighbors of each phenotype were enumerated to
yield the neighborhood profile for every individual cell. We refer to
the individual count of neighboring cells of a specific phenotype
(e.g CD8 neighbors around a tumor cell) as the neighborhood
score. The complete set of scores across all phenotypes forms the
neighborhood vector for that cell, representing its spatial context in
a structured interpretable format. The mathematical formulation is
described below:

Let: P={p;,psr....p,n} denote a set of user-defined
phenotypic labels.

Let: C = {c},¢y,...,¢,} be the set of all cells, where each cell
c & Chas:

Spatial coordinates X, € R?,

A phenotype label I(c) € P.
Let R = {r|,7,,...,rx} be a set of radii of interest.

For each queried phenotype p; € P, Equation 1 defines the
subset of queried cells:

C,={c € C:l0)=p;} (1)

In Equation 2 we define the neighborhood score, a
transformation Tp(c): C — N™ that maps a center cell c € C to
a count of neighboring cells of each phenotype p; € P within a
fixed radius r, which makes an m-dimensional vector, N”* where N
is defined here as the set of non-negative integers:

T, 0= Soe cWXe =Xl <)1) =p)  (2)

d#c

Where:

¢'is a neighboring cell

X, and X, are the spatial coordinates of the center and neighbor
cells respectively

1(...) is an indicator function that maps the elements of a subset
to one, and all other elements to zero.

Thus, we define the neighborhood vector for each cell in
Equation 3:
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T = [T} (0, Th(0) s T (O) ] (3)

Throughout this manuscript, this neighborhood vector was
calculated for R = {r,r,} = {30 [um], 200 [um]} for cell contact
and paracrine signaling, respectively. These radii can be adjusted to
accommodate cell size and based on specific known intercellular
signaling ranges. These neighborhood vectors were inputted to
downstream supervised multivariate analysis.

Intercellular K-function analyses

Ripley’s K function is a spatial statistics tool used to evaluate
whether the spatial distribution of points - here, cells and their
phenotypic subsets — deviates from complete spatial randomness. It
assesses whether cells tend to cluster, repel, or distribute
independently, which can provide insight into underlying
mechanisms of coordination. The cross K-function extends this
analysis to two distinct phenotypic subsets, quantifying their degree
of spatial colocalization or segregation in a pairwise manner. Here
spatial colocalization patterns in NSCLC tumors were further
analyzed using the Spatstat package (18) in R version 4.2.1 to
yield the cross K-function traces to describe the colocalization
patterns of pairs of cell types of interest at a continuous range of
radii up to 200um and compare it with a completely random
placement of cells (homogeneous Poisson) process as the null
model. This continuous range analysis complements the
previously described neighborhood vector calculations. The codes
for this analysis are available at Dolatshahi-lab GitHub (https://
github.com/Dolatshahi-Lab/NSCLC_SpatialMethods) and data are
available on LibraData: (https://doi.org/10.18130/V3/VQFOL]J).

Quality control and pre-processing

Distances were first converted from pixels to micrometers using
HALO informed conversion ratios. Staining positivity thresholds were
verified by plotting histograms of cell staining intensities along with
cutoffs for positivity, consistent across tissue samples. Phenotypic
labels were defined by biologically informed protein marker
combinations (Table 2). After labeling and phenotypic enumeration,
cell densities within 3 mm? regions of interest (ROIs) were
summarized by percent composition. Quality control was performed
by removing ROIs where more than 90% of cells were unlabeled as
well as ROIs with less than 500 cells. Additionally, three patients had
tumors that stained positive for PanCK as well as CD56, our marker
for NK cells. These patients were also removed. After this quality
control and filtering we were left with 414 ROIs composed of 5307540
cells belonging to 33 patients. One of these patients lacked histological
metadata and was included in cell level analysis but removed in patient
level analysis. For grade analysis, patients were further filtered to just
those with a histological classification of Adenocarcinoma.

Normalization

After computing neighborhood scores for each cell of interest,
the resulting neighborhood scores were log-transformed using log(1
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+ p) scaling to reduce the impact of extreme values. These
neighborhood scores were then z-scored across each phenotypic
neighborhood label. The normalized matrix of neighborhood scores
was subsequently used as input for building partial least squares
discriminant analysis (PLSDA) models.

In cases where cells are being compared between different
tumors or ROIs, which often have different overall immune cell
densities, cell relationships may be inflated by the density of each
cell type which may not represent differences in interactions and
“intentional” cellular colocalization. Normalization might be
necessary if enrichment of interactions is being assessed. As such,
for tumor- or ROI-level analysis such as those in Application 4, an
additional level of normalization was performed. These
neighborhood vectors were first calculated as described before
(see cellular neighborhood scoring) and then were further
normalized by dividing by the total number of center cells (N,) of
a certain phenotypic label (p;) in each ROI as well as by the square
root of the number of neighbors (N,) of a certain phenotypic label
in that ROI (p;) (Equation 4). The division by N, calculates the
average per ROI or patient. The division by /N, accounts for the
cell type-specific density bias. This was repeated for each
phenotypic pair, resulting in neighborhood scores for each
pairwise combination of center and neighbor cells. The resulting
matrix of normalized neighborhood scores by ROI was then z-
scored and used as the input to the PLSDA models.

Normalized Neighborhood Score

11 .
N, YN, Zeen s ©

Multivariate discriminate analysis and
sampling techniques

Partial Least Squares (PLS) is a powerful supervised linear
machine learning approach that has been widely used to identify
the top contributors to a continuous outcome of choice or group
differences, called PLS regression (PLS-R) and PLS discriminant
analysis (PLS-DA), respectively. Orthogonalized PLS (OPLS) builds
upon this framework by orthogonalizing the model such that
variation in Y is captured on a single latent variable (LV) and
other latent variables described variance orthogonal (not
contributing) to Y for ease of interpretation. Here, OPLS models
were generated in Python using a combination of the pyopls package
for orthogonalization and PLSRegression function in the scikit-learn
package (36). For OPLS-DA models, the 5-fold cross validation
(CV) accuracy was reported, and significance was calculated by
comparing the CV accuracy of the constructed model against the 5-
fold CV accuracy of 1000 OPLS-DA models based on data with
randomly shuffled labels to compute an empirical permutation
testing p-value. For OPLS-R models, significance was calculated
empirically by comparing the constructed model’s mean squared
error (MSE) and CV Q? to 1000 OPLS-R models based on data with
randomly permuted continuous labels (37, 38). Variable
importance in projection (VIP) scores were used to rank the
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predictors in their contribution to the response variable. A VIP
score quantifies the contribution of each variable to the PLS-DA or
PLS-R model, summarizing how influential each predictor is in
explaining the variance of the response variable. Variables with
higher VIP scores are considered more relevant for group
separation (PLS-DA) or response prediction (PLSR), and VIP
scores are commonly used to guide feature selection. In practice,
variables with a VIP score greater than 1 are typically regarded as
contributing more than average to the response variable (39).

For patient level analysis where a large number of predictor
variables (here after called features) are involved, we applied the
least absolute shrinkage and selection operator (LASSO) (40) for
feature selection, followed by classification using only the features
selected by LASSO. We used the LassoCV function from sklearn
with 10-fold cross validation to determine the optimal
regularization parameter (alpha). A correlation network was then
constructed to identify and visualize additional variables that were
highly correlated (|r| > 0.75) with those selected by LASSO.

Model performance was additionally evaluated using F1 scores
and area under the receiver operating characteristic curve
(AUROC) values. The F1 scores provide a comprehensive metric
encompassing both precision and recall, thereby accounting for
class imbalance. AUROC quantifies the model’s ability to
distinguish between classes across all classification thresholds.

Downsampling and bootstrapping for
balanced and robust modeling

When discriminant analysis is performed on imbalanced
datasets, where the distribution of the target variable is skewed
toward one class (e.g. Application 2), the resulting model may be
biased toward the majority class. This is a common issue in cell-
level analysis. To address this, we employed stratified
downsampling combined with bootstrapping to ensure balanced
representation of the classes and quantify variability in
model performance.

Specifically, for cell level analysis, the overrepresented center
cell phenotype was downsampled prior to modeling, matching the
minority group in sample size (defaulting to 50% of the smaller
group). This resampling was repeated across multiple bootstrap
iterations (approximately 10 iterations per sample), generating a
distribution of model accuracies and VIP scores. This bootstrapped
distribution enabled us to calculate variability metrics (e.g. standard
deviation, confidence intervals), providing a more reliable measure
of model robustness. Across applications, permutation testing p-
values, precision, and F1 scores improved, indicating a better overall
fit to the data.

For regression tasks, we similarly applied bootstrapping; a fixed
number of samples were randomly drawn with replacement in each
iteration to fit the OPLS models. Model performance was assessed
using 5-fold cross validation to compute mean squared error (MSE)
and Q7 scores.

To determine the optimal bootstrapping parameters, we
conducted sensitivity analysis varying sample size and number of
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iterations while holding the dataset coverage constant (10x). This
analysis revealed that model stability, defined as convergence of
performance metrics (e.g. cross-validation accuracy, MSE) and low
variance in feature importance rankings (VIP scores) depends on
dataset size and heterogeneity. By this analysis we selected sample
sizes of 3705, and a bootstrap iteration number of 2001 for the
regression model and 50% of the smaller group size for classification
models to ensure reliability and reproducible estimates.

We also applied down-sampling in region-level analyses and
spatial statistics to address non-independence among observations.
For patient-level comparisons, we matched the number of ROIs
sampled per patient to 50% of the minimum number across the
cohort, repeatedly subsampling to incorporate more data while
maintaining class balance. For cell-dense phenotypes, center cells
were down-sampled to mitigate the statistical challenges that arise
when neighboring cells share microenvironmental features and thus
cannot be treated as independent. The number of sampled cells per
ROI was thus matched to the number of approximately non-
overlapping neighborhoods that could fit within the 3mm by 3mm
ROL. This corresponds to roughly 500-700 cells for a 30pm radius
and 15-20 center cells per ROI for a 200um to minimize spatial
overlap and ensure improved independence among observations.

For groups comparisons, Mann-Whitney U tests were
employed as a non-parametric method, offering a robust
alternative to parametric tests when data do not meet normality
assumptions. However, recognizing that traditional statistical
methods may still be influenced by spatial dependencies,
permutation testing was also be implemented as an alternative
approach. In permutation testing, the true neighborhood score is
compared to a null distribution of neighborhood scores generated
from randomized cell labels. This method provides a flexible, data-
driven framework that accounts for underlying spatial structures
and reduces the risk of false positive findings.

Recommendations for spatial
colocalization analysis

We compiled a table of best practices based on our experiences
with spatial single cell-resolved multiplexed data such as multiplex
immunofluorescence imaging (Table 3), which can be applied to
other spatial proteomics and transcriptomics data. For each step,
the table outlines specific recommendations, provides the rationale
behind them, and lists implementable tools and packages. We hope
this resource will serve as a resource for effectively managing and
analyzing similar data and building upon.

Results

Our pipeline is a two-step process that takes single-cell spatial
data as input, first quantifying the local cellular neighborhoods
around each cell, and then applying multivariate statistical analysis
to uncover spatial patterns and associations (Figure 1). Using a
previously published mIF dataset of NSCLC tumors (35)
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TABLE 3 Pipeline summary and recommendations.

Stage

A. Data Collection

B. Preprocessing

C. Radius selection

D. Cross K-function

E. Phenotype selection

F. Density Normalization

G. Down sampling/

Recommendations

Use single cell-segmented data with spatial coordinates and
multiplexed measurements (proteins or transcripts).

Apply log normalization to neighborhood scores.

Choose biologically relevant radii (e.g., r = 30 um for direct
contact; 200 um for cytokine-mediated paracrine signaling) based
on the sizes of cell types and suspected modes of
communications. Perform sensitivity analysis to the choice of r.

Use cross K-function (or G-function or others from the theory of
point processes) across a range of radii in addition to discrete
metrics.

Use biologically relevant cell types; separate tumor/stroma (or
additional tissue context) when possible.

For tissue or patient-level characteristics, normalize neighbor
counts by overall density.

Balance group sizes by subsampling with replacement (bootstrap)
and calculate accuracy and VIP scores across iterations. Use

sensitivity analysis to guide sample size and iteration count based
on dataset size and heterogeneity. Sampling half the smaller class

Rationale

Enables spatial mapping of
diverse cell types and
quantification of interactions.

Improves distributional
properties and downstream
model assumptions (e.g.,
Gaussianness,
homoscedasticity).

Captures communication at
relevant scales and ensures
robustness to the choice of
radius, while enabling
biological interpretability.

Summarizes interactions at
multiple scales; enables
comparison to null, e.g.
Poisson, models.

Prevents misclassification;
improves interpretability and
biological relevance.

Controls for sample-to-sample
variation in cell abundance and
density.

Prevents class imbalance
effects; supports robust model
evaluation, allows model and

10.3389/fimmu.2025.1642527

Tools

Segmentation algorithms:
Cellpose (41), CellProfiler (42),
HALO by Indica labs

Q-Q plots, KS tests

Euclidean distance for spatial
proximity, for neighborhood
scoring.

Ripley’s K-function via Spatstat
and SPIAT (18, 25, 43)

Morphological classifiers

Equation 4. (Normalized
neighborhood score)

Python scikit-learn (36),

Bootstrapping (classification) or a fixed fraction of the dataset (regression), with . imbalanced-learn
. feature importance errors to be
~10x total sample coverage, yields stable performance- defined as timated
. . . estimated.
convergence of accuracy estimates and low variance in feature
rankings (VIP scores) across iterations.
Reduces overfitting in high-
dimensional settings, e.g., when
R O &% ¢8» Python scikit-learn (LASSO/
comparing pairwise Ridee/
H. Feature Use LASSO or Elastic Net to select inputs; recover correlated relationships across multiple - gt Net)
astic Net),
Selection features via correlation networks. cell types for tissue-level

I. Supervised Modeling

J. Validation

K. Univariate Testing

Use interpretable linear model (e.g., OPLS-DA) or nonlinear
classifiers as appropriate.

Use cross-validation (e.g., 5-fold); validate on external cohort if
possible.

Use univariate statistics on top features identified by the
multivariate models with caution to spatial dependence between
single cell samplings of neighborhood scores.

comparisons; recovers
correlated features excluded by
regularization.

Balances performance with
interpretability; handles
multicollinearity; ranks features
based on their contribution to
effect.

Improves generalizability and
guards against overfitting.

Complements multivariate
models but requires careful
statistical handling.

Cytoscape (44) for network
visualization

Python scikit-learn
(PLSRegression),
R (MixOmics package) (45)

Python scikit-learn (CV
module)

See Wilson et al. (46) for
spatial testing considerations

multivariate statistical models were built to link quantified cell-cell
colocalizations to cellular and clinical metrics across scales
spanning cell state (Application 1 and 2) to tissue- and patient-
level characteristics such as histological subtype or tumor grade
(Applications 3 and 4). We provide strategies for data pe-processing
and normalization, choice of quantitative spatial metrics and radii
around each cell, as well as suggestions for rigorous data analysis
practices and goodness of fit criteria (Table 3 — Best practices).

Frontiers in Immunology

Cell-segmented multiplexed immunofluorescence (mlIF) data
enables single-cell resolution analyses, allowing each cell to be
assigned a phenotype and be counted per slide (Figure 2A). A
defined spatial circle of influence that reflects potential contact-
based and paracrine interactions can then be used to quantify each
cell’s level of exposure to other cell types within its local
neighborhood (Figure 2B). This framework enables the systematic
quantification of pairwise spatial relationships between cell types,
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Pipeline overview - Cell ecological feature extraction from mlF data combined with supervised multivariate analysis predicts cellular- and cohort-
level phenotypes. Cell segmentation is performed on mlIF images and staining positivity is assigned, digitizing the images. Neighborhood profiles are
calculated for each cell by quantifying the number of cells of each phenotype at distances relevant for juxtacrine and paracrine signaling.
Combinations of immunofluorescent stains are used to assign phenotypes to cells across the images. Bootstrapped Partial least squares analysis
identifies spatial relationships between cell types that predict cellular characteristics (e.g., activation) and cohort-level outcomes (e.g., survival,
histological type) based on neighborhood profiles. These relationships are validated using univariate approaches. This method is based on the
hypothesis that multiplexed spatial proteomic data contain granular, pairwise spatial relationships that, when systematically analyzed, can reveal
meaningful patterns of cellular colocalization and function. We analyze spatial data at single-cell resolution by quantifying, for each “center” cell, the
number of "neighbor” cells of each phenotype within a defined radius. This process yields a local neighborhood profile for every cell in the tissue,
analogous to applying a moving average filter across the spatial domain. Radii are selected to reflect biologically relevant distances for contact-

dependent and paracrine signaling.

forming the basis for downstream spatial statistical and machine
learning analysis.

To assess the added value of this spatial context, we first asked
whether neighborhood colocalization metrics offer insights beyond
those provided by traditional cell count data - that is, the number of
cells of a given phenotype per slide (hereafter referred to as
“counts”). To this end, we trained an OPLS model to classify
regions of interest (ROIs) based on whether the percentage of
PanCK" cells expressing MHC class 1 in tumor regions was above
or below 20%. This threshold was chosen as a biologically relevant
round number near the middle of the distribution (median = 13%,
mean = 25%) to facilitate interpretability (Supplementary Figure
S1A). We then compared CV classification performance across
models trained on counts alone, neighborhood features alone, or the
combination of both (Figure 2C). This analysis revealed that models
trained using neighborhood features alone outperformed those
trained using only counts. Including both sets yielded similar,
slightly improved accuracy which incorporated both counts and
neighborhood features amongst VIPs. Furthermore, the variable
importance in projection (VIP) scores from the combined model
demonstrated that both count-based and neighborhood-derived
features contributed meaningfully to classification with

Frontiers in Immunology

neighborhood scores ranking higher on the list, underscoring the
added value of spatial context (Figure 2D).

Neighborhood colocalization data from point pattern
transformations exhibit a piecewise distribution heavily skewed
toward zero, reflecting the abundance of cells that lack neighbors of
a given phenotype — whether common or rare (Supplementary Figure
S1B). To assess distributional properties, focusing on nonzero values,
we compared their empirical cumulative distribution function (CDF)
to that of a normal distribution (Supplementary Figure S1C).
Kolmogorov-Smirnov (KS) tests confirmed that log transformation
improves the normality of the nonzero portions of the data across all
phenotypes (Supplementary Figure S1D).

To evaluate the impact of transformation on model performance,
we trained an OPLS model to classify a test cellular phenotype - i.e.
IFNy+ T cells — based on neighborhood colocalization features.
We then compared models trained on raw versus log-transformed
data, which revealed improved accuracy for the latter (Supplementary
Figures S2A, B). Residual analysis — a statistical measure of prediction
error — further supported this improvement (Supplementary Figure
S2C). While the raw data produced bimodal residual distributions, log-
transformed data yielded unimodal, centered residuals, indicating more
consistent and unbiased model predictions. These findings support the
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Neighborhood colocalization transformation creates single cell data with predictive power. (A) Non-transformed count data highlighted in red. (B) Spatial
point data is transformed by counting neighbors of a given cellular phenotype within a given radius. This results in a transformation quantifying the pairwise
relationships between phenotypes within a radius on a cell-by-cell basis. Transformed neighbor data highlighted in blue. (C) Cross-validation accuracy of
predictive models trained to identify which patients had high MHC class | expression on tumor cells based on 3 sets of different input features: non-
transformed cell counts data (red), neighborhood-transformed data (blue), or a combination of both (purple). Bars represent one standard deviation around
the mean accuracy across bootstraps. (D) Variable importance in projection (VIP) scores from the model that contains a mixture of counts features and
neighbor relationships, underscoring the added value of including cellular colocalization, which appear on top of the list. Throughout the manuscript VIP
scores are artificially assigned the sign of the loading of that feature on LV1 to visually highlight the group they are higher in. Error bars indicate variability,
representing +1 standard deviation (SD) of model performance across bootstrap iterations, providing a measure of robustness.

application of log transformation to neighborhood data for
downstream multivariate analyses that assume approximate normality.

These log-transformed neighborhood profiles serve as inputs
for downstream multivariate modeling to uncover spatial patterns
associated with cellular or tissue-level phenotypes. Although the
framework is compatible with various modeling approaches, we
selected OPLS methods for their balance of predictive performance
and interpretability. In benchmarking experiments, OPLS-DA
outperformed logistic regression and achieved comparable
accuracy to random forest classifiers, which may better capture
nonlinear relationships. Given the small performance difference
and the advantage of interpretability, we selected OPLS-DA in the
subsequent applications.

Application 1: lymphocyte clustering
predicts IFNy expression at its focal point

We applied this framework to interrogate several biological
questions. In our first application, we focused on the relationship

Frontiers in Immunology

between a cell’s phenotypic or functional state and its local
neighborhood profile, i.e. the quantity of cells of various
phenotypes in its vicinity. Cytotoxicity and immune coordination
first require activation of immune cells. One marker of such
activation is the production of IFNY, an inflammatory cytokine
primarily produced by lymphocytes (47). The activation of T and
NK cells and their subsequent IFNy production is linked in part
with their microenvironment (Figure 3A). IFNY expression can be
triggered by antigen recognition (48) or interactions with cognate
receptors on neighboring cells, and in turn, can promote the
recruitment and activation of additional immune cells. We
assumed that IFNY intensity of a cell in the images can be used as
a proxy for IFNYy expression by that cell. Since we observed a broad
distribution IFNY intensity across lymphocytes (Figures 3B, C), we
hypothesized that IFNY intensity in T and NK cells correlates with
the composition of their surrounding local neighborhood. To test
this, we centered the analysis on all T cells and NK cells and
quantified each individual cell’s neighbors within 30 um and 200
pum. We then built an OPLS-Regression (OPLSR) model to predict
the intensity of IFNY staining based on these spatial features.
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The top predictors of IFNY expression included the local presence
of other IFNY" lymphocytes in both tumor and stromal
compartments, at distances consistent with both juxtacrine and
paracrine signaling (Figures 3D, E, Supplementary Figures S3A, B).
Associations within the 200 um radius — where direct cell-cell contact
is less likely - had slightly stronger associations, suggesting that
colocalization of activated lymphocytes may occur independently of
direct contact, which is more probably within 30 um. No features
were significantly negatively associated with IFNY intensity. This
pattern was visually confirmed in the images where IFNYy expressing
cells formed spatial pockets (Supplementary Figure S3C).

These findings support a model-driven hypothesis: IFNy
expression in one lymphocyte promotes the activation and IFNy
production in other lymphocytes through a combination of direct
signaling, recruitment of additional immune cells, and enhanced
antigen presentation. This likely reflects a coordinated positive
feedback loop that amplifies immune responses, a well-described
feature of IFNY signaling networks (49, 50), rather than direct cell-
to-cell induction. Such loops are tightly regulated to prevent
excessive inflammation (51).

Frontiers in Immunology

Application 2: IFNy intensity in CD8 CD3™
T cells is associated with T cell clustering

In a second application, we investigated whether the activation
status of CD8” CD3™ T cells (i.e., CD4 T cells) could be predicted by
their neighborhood profile. While CD8+ T lymphocytes can
recognize and kill MHC class I-bearing tumor cells displaying
tumor-derived antigens, CD4" T cells respond with cytokine
release when they detect tumor antigens displayed by MHC class
IT molecules on antigen-presenting cells (APCs) to coordinately
regulate antitumoral immunity (52). Given their critical role in
immune regulation, we hypothesized that activated (IFNy") CD4" T
cells exhibit distinct interaction patterns within the TME compared
to [IFNY CD4™" T cells. Although anti-CD4 antibody was not used to
identify CD4 T cells in this study, we approximated that most CD8"
T cells are indeed CD4" T cells since T cells lacking both CD4 and
CD8 comprise less than 5% of mature T cells (53). The spatial
nature of these interactions was explored by examining
colocalization patterns in neighborhoods extending 30-200
um (Figure 4A).
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The IFNy expression of CD8" T cells are closely associated with their paracrine-range neighborhood profile. (A) CD8™ T cells were classified based on
their IFNy expression, and an OPLS-DA model was constructed using neighborhood profiles to distinguish between IFNy" and IFNy™ cells. Only 1.0%
of the CD8" T cell population was IFN-y+ cells. The low proportion of activated CD8™ T cells necessitates the application of down-sampling
techniques to balance the data in univariate and multivariate analysis. (B) Univariate comparisons revealed significant differences in neighborhood
profiles of activated versus inactive CD8" T cells, assessed by a two-sided Mann-Whitney test with Bonferroni correction. * p <0.05, ** p < 0.01, ***
p< 1E-6, (- indicates IFNy-CD8-CD3+ is the larger group, + indicates IFNy+CD8-CD3+ is larger). (C) OPLS-DA models successfully discriminated
CD8" T cells based on IFNy expression, achieving 88.0% cross-validation (CV) accuracy and outperforming 1,000 random permutations. Scatter plots
show X scores, where each point represents a CD8™ T cell projected onto latent variables 1 and 2 (LV1 and LV2). (D) Bar plots of VIP scores illustrate
key features associated with CD8™ T cells of different IFNy expression statuses. Error bars represent +1 standard deviation of mean across bootstrap
iterations. Variables with VIP score > 1 were identified as having above-average influence on group separation. (E) Iterative down-sampling of center
cells resulted in an average model accuracy of 0.88. (F) The model predicted IFNy expression with an area under the receiver operating curve
(AUROC) of 0.97, with a threshold of 0.54 used for classification. (G) The confusion matrix, accumulated over 5-fold CV, demonstrated a model F1
score of 0.90 and precision of 0.91. (E-G) Cross K-function correlation plots illustrate spatial relationships between IFNy" CD8" T cells and (E) other
IFNY" CD8" T cells, (F) IFNy" cytotoxic T cells, and (G) IFNy" NK cells, across a range of radii. Dashed lines represent 95% confidence intervals, and
the black line indicates the Poisson (null) distribution.

Frontiers in Immunology

11

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1642527
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Hanson et al.

To test this hypothesis, we quantified the neighborhood profiles
of all CD8" T cells and performed univariate comparisons between
the neighborhood profiles of IFNY" and IFNy CD8 T cells
(Figure 4B). We then constructed an OPLS-DA model with CD8"
T cells as center cells, [IFNYy expression as the binary classifier, and
neighborhood profiles as model features. The imbalance between
the number of IFNY" and IFNy CD8™ T cells necessitated the use of
random down-sampling to address the disparity in group sizes (see
Methods). Iterative down-sampling was applied to ensure all data
were utilized while maintaining balanced group representation.
This approach improved model precision and overall
performance. Model evaluation using X scores plots demonstrated
robust performance, including high accuracy and strong results in
permutation testing (Figure 4C).

VIP scores highlighted IFNy" lymphocytes, including CD8+ T
cells, CD8 T cells, and NK cells (CD56") at 200 um signaling
distances as the strongest contributors to the separation between
activated and inactive CD8 T cell neighborhoods (Figure 4D,
Supplementary Figure S4A). To address the imbalance in group
sizes, we applied iterative random down-sampling, which ensured
equal representation of IFNy+ CD8 T cells in the model. The
stability of this down-sampling approach was validated through
1,000 permutations, which consistently showed stable model
performance (Supplementary Figure S4B). The model’s
performance was evaluated using standard machine learning
metrics, including a precision-recall curve (Supplementary Figure
S3C), which demonstrated the model’s robustness in distinguishing
between the two groups.

These results reinforce the importance of IFNy" lymphocytes in
shaping the immune landscape of the TME. Further analysis of key
features using Ripley’s cross K-function identified by VIP scores
revealed strong spatial relationships between activated CD8™ T cells
and other IFNY" lymphocytes, including CD8 T cells and NK cells,
across a range of radii (Figures 4E-G). The significant and
consistent separation observed in cross K-function plots supports
the hypothesis that IFNyY" CD8" T cells have distinct neighborhood
profiles that implicate their active role in the regulation and
coordination of antitumoral immune responses within the TME.

Using this data and building upon existing literature, we can
hypothesize mechanistic interactions at the tumor-immune
interface. In NSCLC patients, IFNy-mediated crosstalk by T cells
and NK cells likely play a key role in the immune response. CD8™ T
cells are major producers of IFNy which activates other immune
cells, including antigen presenting cells. The observed spatial
relationships between CD8- T cells and other lymphocytes
suggest that IFNYy secretion, especially from CD8 T, cells may
enhance lymphocyte clustering, thus leading to enhanced secretion
of cytokines and chemokines, additional immune cell recruitment
and activation which together facilitate a robust local immune
response in the TME. While the current study does not directly
asses IFNy production or functional outcomes, these findings
generate testable hypotheses that should be validated in future
work using spatial transcriptomic analyses or functional T cell
assays to assess cytokine signaling and pathway activation in situ.
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Application 3: tumor histologic subtype
shapes MHC class | spatial relationships

Tumor histology is a critical determinant of immune landscape in
NSCLG, influencing not only infiltration levels but also the spatial
organization around malignant cells. Although lung adenocarcinoma
(LUAD) and squamous cell carcinoma (LUSC) are both classified as
NSCLC, they differ markedly in morphology, mutational burden,
immunogenicity, and clinical outcomes all of which shape the tumor
microenvironment in distinct ways (54, 55). Here we investigated
whether these subtype specific features extend to the spatial
neighborhoods of MHC class I expressing tumor cells (Figure 5A).

Neighborhood profiles were generated for all MHC I* PanCK"
cancer cells residing within 30-200 pum signaling distances.
Univariate analyses revealed significant differences in the
composition of tumor and immune cell neighbors between LUAD
and LUSC subtypes (Figure 5B). To quantify these differences, we
developed an OPLS-DA model to predict histologic classification,
LUAD or LUSC, based on the neighborhood profile of each cancer
cell. The model achieved a cross-validation accuracy of 83%,
outperforming 1,000 models generated with shuffled labels
(Figure 5C). VIP scores highlighted enhanced colocalization with
T lymphocytes as a distinguishing feature of LUSC-resident MHC
I" PanCK" cells, whereas LUAD-resident cells exhibited greater
colocalization with other MHC I PanCK" tumor cells (Figure 5D,
Supplementary Figure S5A). Due to the imbalance in sample size
favoring LUAD, random down-sampling was applied to balance
group sizes over 1,000 permutations, which consistently showed
stable model performance (Supplementary Figure S5B). Precision-
recall curves demonstrated consistent model performance across
metrics, confirming the robustness of the analysis (Supplementary
Figure S5C).

To further validate these findings, we used cross K-function
analysis to asses spatial relationships between MHC I* PanCK" cells
and key immune populations (IFNy- CD8 T cells, CD8" T cells, and
NK cells) across a continuous range of radii (Figures 5E-G) which
revealed significant colocalization surrounding LUSC-residing
MHC I" tumor cells, corroborating OPLS-DA findings and
validating them across radii of interest. LUSC’s increased
mutational burden and tumor-associated antigen expression likely
underlie its greater immunogenicity (56). However, increased
immune tolerance or suppression may limit the role of activated
immune cells, contributing to poorer prognoses (55, 57). Regulatory
CD4 T cells (Tregs), present in the CD8"CD3" population, may also
modulate the local immune response in LUSC tumors. Conversely,
the complex morphology of LUAD may limit immune cell
infiltration, but may foster more robust T cell activation,
enhancing immune cell interactions within the microenvironment
of MHC I" cancer cells (56). However, increased immune tolerance
or suppression may limit the role of activated immune cells,
contributing to poorer prognoses (55, 57). Conversely, LUAD
may foster more robust T lymphocyte activation, enhancing
immune cell interactions within the microenvironment of MHC
I'" tumor cells.
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in LUAD and LUSC tumor regions. Group imbalance motivated the use of down-sampling techniques. (B) Univariate comparisons of neighborhood profiles
showed significant differences between LUAD and LUSC patients, determined using a two-sided Mann-Whitney test with Bonferroni correction. * < 0.05,
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Together, these findings demonstrate that histologic subtype is
associated with not only the molecular characteristics of tumors but
also the spatial organization of immune cells within the tumor
microenvironment. These patterns suggest that tumor subtype may
influence or reflect immune context, motivating further
investigation into the links between tumor-intrinsic features and
spatial immune architecture. Such insights could eventually inform
the development of more tailored therapeutic approaches, although
additional and functional validation will be necessary to support
subtype-specific strategies.

Application 4: high-grade LUAD tumors are
enriched for CD8" T cell infiltration and
MHC class | expression

Intercellular interactions in the TME are thought to influence
immune regulation and thus patient outcomes. To investigate this
connection, we next asked whether patterns of cellular colocalization in
tumors are associated with clinical characteristics, specifically tumor
grade. To this end, we compared pairwise colocalization patterns
between tumors classified as high-grade and low-grade. A cancer’s
grade reflects how abnormal malignant cells appear compared to
healthy cells under microscopic examination. Low-grade cancer cells
resemble non-malignant normal cells, are less aggressive, and are
generally associated with better prognoses. In contrast, high-grade
cancer cells exhibit greater deviations in appearance and
organization, correlating with increased aggressiveness and
worse outcomes.

To test whether higher-grade cancers exhibit distinct immune
cell colocalization patterns compared to lower-grade cancers
(Figure 6A), patient’s tumor samples were divided into two
groups based on the clinical grade of their cancer as described in
(35). Only LUAD patients were used to control for the differences
between tumors of different histological status. Patient images were
analyzed based on regions of interest (ROIs), defined as the 3mm?
images output by the HALO software. ROIs were labeled based on
whether they originated from high- or low-grade tumors. The low-
grade group contains patients labeled as G1, G1-G2, and G2 based
on the American Joint Committee on Cancer (AJCC) seventh
edition and was composed of 17 patients represented by 177
ROIs and 1,729,555 individual cells while the high-grade group
consisted of 11 patients labeled as G2-G3, G3, and G4 represented
by 129 ROIs and 1,267,714 cells. Because group sizes were
comparable, no down-sampling was required.

Samples from patients in each group were characterized
according to the colocalization patterns of the various cell types
on an ROI-by-ROI basis. This is in contrast with the cell-by-cell
basis analysis pipeline of the previous applications. Here, single cell-
resolved neighborhood counts are averaged across the center cells of
the same type within an ROI to result in ROI-averaged
neighborhood counts as input to the downstream supervised
analysis. For each ROI, cells were classified based on cell type
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specific stains and whether they were in the tumor or stroma, as
determined by the Halo classifier. For each cell, neighborhoods were
characterized according to the method described. Then for each
ROI, pairwise relationships were summarized for each cell type/
location as well as ROI level summaries (e.g. tumor CD8 IFNY" %,
number of CD8"T cells in tumor regions, etc), which resulted in 528
features. To reduce model complexity and prevent overfitting, we
applied LASSO regression (40) to select the most important spatial
features. An OPLS-DA model was then built on these LASSO
selected features to classify whether a given ROI belonged to a
high- or low-grade tumor (Figures 6B, C, Supplementary Figure S6).

We assessed model stability by performing permutation testing,
comparing the accuracy of the true-label model to a distribution of
1,000 models trained on randomly shuffled labels to yield an
empirical p-value. This model outperformed all randomly
permuted models (p<0.001) and achieved a cross-validation
accuracy of 0.76. This model identified seven LASSO selected
features with above-average discriminatory power VIP scores > 1
between high- and low-grade tumors, marking them as significant
contributors to classification performance. Because LASSO removes
features that are linearly dependent on other predictors, it may
exclude features that are highly correlated with those deemed
significant by downstream analysis. To ensure these correlated
but excluded features are not overlooked, we used correlation
networks to identify LASSO-removed features that showed strong
correlations (r > 0.75) with significant features (Figures 6D, E).

These results indicate that high-grade tumors are characterized
by CD8" T cell infiltration and increased heterogeneity of tumor cell
MHOC class I expression. Correlation analysis between significant VIP
features and non-selected features from the LASSO model revealed
that, although CD8" T cells were the dominant distinguishing feature,
other immune populations also correlated with CD8" T cell presence.
We interpret these findings to suggest that high-grade tumors,
characterized by greater abnormal differentiation and
immunogenicity, are more likely to elicit robust T cell responses,
resulting in increased infiltration by CD8" T cells.

Discussion

In this study, we present a framework for analyzing and
interpreting spatially resolved single-cell data of the TME. This
approach integrates an algorithm for neighborhood characterization
with a robust multivariate machine learning pipeline to identify spatial
relationships between cell types that are predictive of cellular state,
tissue architecture, or patient outcomes. Although demonstrated here
using mIF data, the framework is broadly applicable to other single-cell
resolved spatial platforms, offering a flexible and interpretable approach
for studying tissue organization in health and disease.

While our framework links spatial patterns to biological
outcomes, findings vary in certainty. For example, the conclusion
of Application 1 aligns with well-established paracrine cytokine
signaling (e.g., IFNy-mediated immune activation), as supported by

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1642527
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Hanson et al. 10.3389/fimmu.2025.1642527

(¢
VIPs for oPLSDA model
(T) MHCI-PanCK+ —ggg— (T) IFNy-CD8+CD3++ i
MHCI+ % of PanCK+ Cells in Tumor-
(T) MHCI-PanCK+ —gm— () IFNy-CD8+CD3+- — =
B/ (T) MHCI-PanCK+ —z— (T) MHCI-PanCK-+~ S i
(G2-G3,G3)/ 11/ 129/ 1,267,714 (T) IFNY-CD8+CD3+ —gqpm—(S) MHCI-PanCk+ -
(T) IFNY-CD56+ —zogm— (T) IFNY-CD56+-  — {
S) MHCI+PanCK+ —gzm— (S) MHCI-PanCK+-| -
B : - ¢ "
X Scores: (CV 520 001 0.85340.022) (T) IFNy-CD56+ —5m— (S) MHCI-PanCK+| —®
s+ Low-grade . (S) IFNy-CD56+ 55— (T) IFNy-CD56+- _
S |e High-grade o . " (T) IFNY-CD56+ —5m—(T) IFNy-CD56+- i SSi
T'jz- . . . () IFNY-CDS6+ 5 — () MHCI-PanCK+4 B |
>‘_§ o ° ° 8o ° Number of CD8+CD3+ Cells in Stroma- -
- 6 o © P oo () IFNy-CD8+CD3+ —gm— (T)MHCI-Panck+- S
§o- % o®oo (S) IFNy-CD8-CD3+ ~gaw—  (T) MHCI+PanCK+ [,
] .'0'-.° .'.’3' A @ (T) IFNy+CD8+CD3+ —g5am— (S) IFNy+CD8+CD3+- —
[ o0 °
s, et S _— ® (S) IFNy-CD8+CD3+5gm— (T) IFNy-CD8-CD3+- =
o o (S) IFNy-CD8+CD3+ 55— (T) IFNy-CD8-CD3+- |
2 e Lo o (T) IFNy-CD8+CD3+ —gam— (T) IFNy-CD8-CD3+ ~El
-4- o o O (S) MHCI+PanCK+ g (S) IFNy-CD8-CD3+-| -l
(S) IFNy+CD8+CD3+ ~3q— (T) IFNy-CD8+CD3+-| Hill
4 2 0 2 4 (T) IFNy+CD8-CD3+ —3gm— (T) IFNy-CD8+CD3+-| Hll
LV1 (Xvar = 70%, Yvar = 45%)
T —— —

(T) MHCI-PanCK+ -1.0 0.0 1.0
(T) IFNy-CD8+CD3+ **™ VIP Score (Mean + SD)

Key:
(Location of Center Cell) ‘Center Cel type’

Bistance

(Location of Neighbor Cell’) ‘Neighbor Cell Type'

(T) MHCI+PanCK+
(S) MHCI-PanCK+

(S) MHCI+PanCK+
(S) MHCI-PanCK+

200pm 200pm

Normalized
Neighorhood Score
N

[

(T) IFNy-CD8+CD3+ _____ [ vy
T) MHCI-PanCK+ (T) MHCI-PanCK+ S) MHCLPanCKs 2™ (S) -Pan P
('l('))IFNv-CD8+CD3+ oum = (T) MHCI-PanCK+ #%m — (8) MHCI-PanCK+ MHCI+ % of
PanCK+
o * ] (T) MHCI-PanCK+
g ™ (S) IFNy-CD8+CD3+
o § b u8> (S) MHCI-PanCK+ ™" ‘ (S) MHGI-PancKs ™ Cells in Tumor
o N T
38 S 3 (T) MHCI-PanCK+
Ef ES (T) MHCI+PanCK+
25 25
5 S
z = (T) MHCI+PanCK+ __
: (T) IFNy-CD8+CD3+ (T) MHCI-PanCK+
MHCI+ % of PancK+ (1) IFNy-CD8+CD3+ T
Cein Tumor (S) MHCI-Pancks ™ B (T) MHGI-PanCk+
e | —T0 T(TI)F’\I/\IJHCCIIDP 81”55; e (T) MHCI-PanCK+
g 30 T (DIENY- (T) MHCI-PanCK+ ~3m
g & 3 \ I
& ® o 2 ., h (d
8 E< P
o s S Ni N
a z < R
e i (T) MHCI-PanCK+__ (S) MHCI+PanCK+ ____
z (T) IFNy-CD8+CD3+ " (T) IFNy-CD8+CD3+ ™
(S) MHCI+PanCK+ (T) IFNY-CDS6+ _
(S) MHCI-PanCK+ %™ (8) MHCI-PanCK+ ™™ | (s) IFNy-CD8+CD3+ () MHCI-PanCK+ - R e s
0’ * . [ * (T) IFNy-CD8+CD3+ " (T) IFNy-CD8+CD3+ (T) IFNy-CD8+CD3+
g g ¢ z -
g % . g3 i+ (T) MHGI+PanCK+ (T) IFNy-CD56+ o
N o = 0 il - )
- é - 1 g o . 4 (T) IFNy-CD8+CD3+ """ (T) IFNy-CD8+CD3+
= 5 S 4 "
IR 1 R HEN
z B2
g ool ke i 2 o

S) MHCI+PanCK+
S) MHCI-PanCK+

ae de
Low- g‘a(\t\_ \g“’g‘ade Lo W-ar i gh_g\'a 200pm

(S) MHCI+PanCK+
(S )MHCI-PanCK+

FIGURE 6

30pm

High-grade LUAD tumors are enriched for CD8" T cell infiltration and MHC | expression. (A) ROIs were classified as low-grade or high-grade based on
pathologist-defined cancer grades. (B, C) An OPLS-DA model was constructed to distinguish between ROls from high- or low-grade tumors. The model
achieved 76% classification accuracy in 5-fold cross-validation and outperformed all 1,000 randomly permuted models (p< 0.001). (B) Scatter plots of X
scores depict each tumor ROI projected onto latent variables. (C) Bar plots of VIP scores highlight features with VIP scores > 1, indicating above-average
influence on group separation. Features are artificially oriented by loadings on LV1 and colored based on association with high- or low-grade regions. Grey
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recent literature. Notably, the observed distance-dependent
association provides in situ evidence of paracrine cytokine activity.
Although most prior studies of cytokine propagation have largely
relied on in vitro or computational systems, our spatial analysis of
histology data offers complementary insights. Recent experimental
and modeling work has further elucidated the spatiotemporal
dynamics of IL-2 and type I/II interferons — highlighting distance
thresholds for effective signaling and the influence of tissue
architecture - thus providing a mechanistic foundation for our
findings (58-63). In contrast, the conclusions from Applications 2
and 3 are more exploratory, suggesting potential molecular
characteristics and subtype-specific therapeutic strategies that
warrant further experimental or multi-modal validation.

We showecase the utility of the framework in four applications:
first by identifying spatial features associated with immune
activation, inferred by IFNg expression (Application 1) or
positivity (Application 2); distinguishing cell-type colocalization
patterns across histological subtypes (Application 3); and
uncovering immune spatial features predictive of tumor grade
(Application 4). In each case, the pipeline accurately distinguishes
between groups and identifies the most informative cell-cell
colocalizations driving these distinctions. A central strength of
this approach lies in its ability to operate across spatial scales,
from single cells to cell neighborhoods to whole tissue regions,
enabling diverse biological questions to be addressed within a
unified analytical structure.

By leveraging spatial features as inputs to supervised OPLS-DA
models, we uncover mechanistic insights into how cellular
interactions in the TME relate to cell state and tumor
microenvironment, which could be tested experimentally. This
systems-level strategy supports hypothesis generation, particularly
in contexts where mechanistic evidence is sparse. As spatial
proteomics and transcriptomics platforms continue to evolve, this
framework may serve as a foundation for exploring pathway-level
drivers of immune activation or therapeutic response. To support
broader adoption, we also provide methodological
recommendations and implementation guidelines.

Despite its strengths, the approach has several limitations. First,
spatial imaging captures a single time point and cannot resolve
dynamic cellular processes, limiting interpretations to correlative
rather than causative relationships. As such, mechanistic
conclusions should be validated through perturbation
experiments. Furthermore, imaging was performed on sliced
tissue and consequently our methods focused on two-dimensional
(2D) neighborhoods of cells. While this simplification does not
capture the full three-dimensional (3D) architecture of the tumor
microenvironment, previous studies have demonstrated that 2D
spatial metrics can provide biologically meaningful insights into
cellular organization when consistently applied across all samples
(7-9). Future advancement in 3D image analysis can provide a
more comprehensive representation of the local neighborhoods of
cells and their interaction patterns. Image-based segmentation also
introduces classification errors, especially in dense or multilayered
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tissues, where neighboring cells may be merged or misidentified.
For example, closely apposed cells may be misidentified as a single
cell expressing markers of multiple lineages, and cells located at
different tissue depths may be difficult to resolve accurately,
especially in specimens that are not uniformly one cell thick.
These issues can propagate through the modeling process, making
rigorous quality control and expert annotation essential.

From a computational standpoint, multivariate modeling is
sensitive to input variability and may be influenced by systematic
biases introduced by mislabeling, imperfect segmentation, or batch
effects. Our use of feature selection and orthogonalization helps
mitigate overfitting and enhances interpretability, but users should
remain aware of potential pitfalls. Additionally, cytokine expression
markers such as IFNy are valuable for identifying activated immune
populations but do not reveal the source of soluble signals. Therefore,
spatial inference based on such markers should be interpreted with
caution and, where possible, validated with orthogonal methods.

On the implementation side, this approach has additional
limitations and caveats. For one, we tested the framework with a
single dataset acquired with the VECTRA platform, which is limited
to seven colors per panel, thus restricting the comprehensive
profiling of the TME. While we focused on supervised approaches
such OPLS-DA and -R as our primary modeling strategy,
unsupervised and nonlinear approaches are equally valid
alternatives, and reveal complimentary insights. We explored
unsupervised approaches such as Uniform Manifold
Approximation and Projection for Dimension Reduction
(UMAP) but found them computationally intensive and poorly
suited for this context, number of observations far exceeds the
number of measured variables — resulting in reduced discriminatory
power of the visualization. Finally, while this framework is well
suited for hypothesis generation, results should be validated either
in an independent cohort or experimentally.

While this framework is powerful and effective, future iterations
may incorporate advances in imaging or modeling to further
enhance performance. In addition, creative analytical strategies,
such as modeling conditional relationships between cell types, could
expand the types of questions that can be addressed beyond the
scope of this study. A key strength of this pipeline is its flexibility
and scalability, which make it well suited for both clinical and basic
science applications. It can handle large numbers of cells and can be
used to ask a wide variety of questions. The predictions of this
framework offer a way to uncover important intercellular
relationships across diverse disease contexts. More widespread
spatial profiling and analysis with approaches like this could
inform the clinical workflow, if consistent spatial relationships
such as immune infiltration or spatial colocalization can be linked
with response to immunotherapy. Its ability to integrate spatial data
in a transparent and biologically informed manner makes it a
valuable tool for both discovery and translation.

In conclusion, our study demonstrates the effectiveness of this
framework in identifying crucial spatial relationships within the
tumor microenvironment using a supervised machine learning
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approach. While the method provides unique interpretability and
insight, its adaptability across spatial scales and biological systems
makes it well suited for addressing a wide range of research
questions. This approach holds strong potential for advancing
both clinical and basic investigations into the complex
organization and function of the tumor microenvironment.
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