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Risk factors and a new
nomogram for glioblastoma:
based on a retrospective study
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Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China, 2Department of
Neurosurgery, Chongqing General Hospital, School of Medicine, Chongqing University,
Chongqing, China
Background: Glioblastoma (GBM) is the most common and aggressive primary

malignant tumor of the adult central nervous system. Despite multimodal

therapy, its prognosis remains poor, with a median overall survival of 14–16

months. While rare genetic syndromes and prior cranial irradiation have been

implicated, definitive environmental or biological risk factors for GBM

remain elusive.

Methods: In this retrospective study, we analyzed data from 94 patients with

pathologically confirmed GBM and 94 matched non-tumor controls treated at

Guangdong Academy of Medical Sciences between 2016 and 2023. Univariate

and multivariate logistic regression analyses were conducted to identify

independent risk factors, which were subsequently used to construct a

predictive nomogram. Model performance was assessed using concordance

index (C-index), receiver operating characteristic (ROC) curves, and calibration

plots in both training and validation cohorts.

Results: Six independent risk factors were identified: serum chloride (Cl),

magnesium (Mg), high-density lipoprotein cholesterol (HDL-C), uric acid (UA),

eosinophil count, and basophil count. A novel nomogram incorporating these

factors demonstrated strong predictive ability, with a C-index of 0.871.

Conclusions: We present a validated, blood-based nomogram for GBM risk

prediction with high discriminative power. This model may aid clinicians in early

identification and personalized management of high-risk individuals.
KEYWORDS

glioblastoma, risk factors, nomogram, retrospective study, machine learning
1 Introduction

Glioblastoma (GBM) is a common primary tumor that can occur anywhere in the

central nervous system of adults (1). GBM is marked by profound cellular heterogeneity

and diffuse infiltrative growth, characteristics that render it essentially incurable (2, 3).

Although the current standard of care—maximal safe surgical resection followed by

adjuvant radiotherapy, chemotherapy, and other modalities—can temporarily control
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tumor burden, intrinsic resistance to these treatments results in a

dismal median overall survival of only 14–16 months after diagnosis

(1). Consequently, there is an urgent need to develop novel

therapeutic strategies to improve patient outcomes. Per

established protocols, adjuvant radiotherapy (60 Gy delivered in

30 fractions over 6 weeks) should commence within 3–6 weeks post

−surgery, with daily concurrent administration of the oral

alkylating agent temozolomide. Emerging approaches now focus

on advanced radiation techniques and molecularly targeted

therapies to overcome GBM ’ s t rea tment res i s tance .

Temozolomide should be resumed 4 weeks after the completion

of radiotherapy, usually for 5 consecutive days every 28 days for a

total of 6 months in one cycle. In a clinical trial involving 573

participants, compared with radiotherapy alone, this regimen

improved survival rates (14.6 months vs. 12.1 months, hazard

ratio (HR) 0.63, 95% confidence interval (CI) 0.52-0.75; p<0.001)

(4). Drugs targeting immune checkpoints, such as Cytotoxic T-

Lymphocyte-Associated Protein 4 (CTLA-4), Programmed Cell

Death Protein 1 (PD-1), and Programmed Death-Ligand 1 (PD-

L1), can enhance the anti-tumor immune response and enable T

cells to more effectively eradicate cancer cells. Given the success in

many solid tumors, the potential of immune checkpoint blockade

therapy has been actively explored for GBM (5). Gliomas, which

arise from glial cells or their progenitors, are predominantly

classified as astrocytomas or oligodendrogliomas (6). Under the

World Health Organization grading system, gliomas are divided

into circumscribed (grade I) and diffuse (grades II–IV) entities, with

higher grades indicating greater malignancy. GBM, defined as a

grade IV diffuse astrocytoma, represents the most aggressive glioma

subtype, hallmarked by pronounced hypercellularity, rapid mitotic

activity, extensive microvascular proliferation, and characteristic

pseudopalisading necrosis (7, 8).

Several demographic, genetic, and environmental factors have

been implicated in GBM pathogenesis. Advanced age and male sex

are consistently associated with higher incidence, with risk rising

markedly after 50 years and peaking in late adulthood (9).

Approximately 5% of gliomas develop in the context of hereditary

cancer syndromes such as Li–Fraumeni, Turcot , and

neurofibromatosis types 1 and 2, highlighting a genetic

predisposition component (10). Epidemiological studies have also

reported an inverse association between atopic conditions (e.g.,

asthma, eczema) and glioma risk, suggesting a role for immune-

mediated mechanisms in protection against GBM (11). Outside of

high-dose ionizing radiation, which remains the only established

environmental risk factor for GBM, associations with chemical

exposures, occupational hazards, and non-ionizing radiation have

been largely inconclusive. However, most existing investigations

rely on retrospective case–control designs with limited cohort sizes,

potential recall and selection biases, heterogeneous exposure

assessments, and simplistic modeling approaches, impeding the

identification of robust, clinically translatable risk factors.

In this study, we conducted an extensive survey of clinical data

of oncology patients and non-oncology patients in Guangdong

Provincial People’s Hospital from 2016 to 2023. Subsequently, an

easy-to-use nomogram was developed using univariate versus
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multivariate analysis. The primary objective of this study was to

analyze risk factors for GBM and create a reliable, non-invasive

nomogram to predict the likelihood of GBM using appropriate,

validated analytical methods. Our nomogram uses real cases from

our hospital to create a clinically relevant predictive tool. There are

no known risk factors for glioblastoma other than rare genetic

predisposition and irradiation (12, 13). In this study, we aimed to

analyze the risk factors for brain metastasis in GBM patients and to

establish a valid, noninvasive column-line diagram of the likelihood

of brain metastasis in GBM patients using advanced statistical

analysis methods. In our nomogram, we can infer the possibility

of brain metastasis by simple blood counts and pathology types, and

the nomogram is easier to apply in clinical practice than other

column charts of the same type.
2 Methods

2.1 Case selection

To screen and select GBM and control patients according to

predefined inclusion and exclusion criteria for this retrospective

analysis. Based on the conception of the experiment, data were

collected from all included patients, and this study was approved by

Guangdong Provincial People’s Hospital. All patients were carefully

screened according to the following inclusion criteria (14):

Experimental group: (a) patients diagnosed by pathological

findings; (b) no history of cardiac disease; (c) no history of

metabolic disease, such as gout, thyroid disease, etc.; (d) adults

according to the latest WHO definition; (e) no trauma or rupture of

aneurysm, etc. Control group:(a) diagnosed with vascular disease

(e.g., aneurysm, arteriovenous malformation, etc.) or functional

neurosurgical disease (e.g., trigeminal neuralgia, facial muscle

spasm, etc.); (b) not accompanied by history of cardiac disease;

(c) not accompanied by history of metabolic disease, such as gout,

thyroid disease, etc.; (d) adults according to the most recent WHO

definition; (e) not accompanied with trauma or rupture of

aneurysm, etc.; and (f) not accompanied by history of tumor.

Finally, 94 patients with GBM diagnosed in the Department of

Neurosurgery of Guangdong Provincial People’s Hospital from

2016 to 2023 and 94 control patients were included in this

retrospective study. The inclusion and exclusion criteria for the

GBM and non-tumor (control) cohorts are summarized in Table 1.

All patients were randomized into groups. The first 70% of

patients were designated as training cohort and the remaining

patients were identified as internal validation cohort.

Matching of Cases and Controls: To minimize confounding, a

two-step strategy was applied. First, 1:1 matching was conducted

based on sex and age (± 3 years). Recognizing that age and sex alone

may not fully account for all confounders, we subsequently assessed

balance in additional clinical and laboratory variables using

standardized mean differences. Residual imbalances or variables

of known clinical relevance were included in multivariate logistic

regression models. As a sensitivity analysis, propensity score
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matching (PSM) was also performed using a broader set of

covariates to further ensure comparability between groups.
2.2 Waived consent statements

To document ethical approval and waiver of informed consent

for use of existing clinical records. As the experiment was a

retrospective study, approval was obtained from the Ethics

Committee of Guangdong Provincial People’s Hospital to waive

the need for informed consent.
2.3 Clinical characteristics and variables
selection

Given that tumor development involves profound remodeling

of both the metabolic and immune microenvironments, previous

studies have reported associations between GBM and alterations in

various electrolytes, metabolites, and immune cell populations (15–

20). Based on this evidence, we selected a set of representative

clinical and laboratory parameters for further investigation in

this study.

To collect routine clinical and laboratory data and to identify

independent risk factors for nomogram construction. Blood

samples were collected from all participants in the fasting state

between 6:00 and 8:00 AM on the first morning after admission,

prior to initiation of any treatment. To minimize batch effects, all
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biochemical and hematological tests were performed within 2 hours

of collection in a centralized, certified clinical laboratory following

strict internal quality control protocols. Laboratory personnel were

blinded to patient groupings. We collected the common tests of all

patients and then performed a one-way analysis of the data using

IBM SPSS Statistics (version 26.0; IBM Corp., Armonk, NY, USA).

According to the current unified method, we introduced logistic

regression for multifactorial analysis for variables with significance

in unifactorial analysis (p<0.1). p< 0.05 in multifactorial analysis

represents statistical significance. R Studio(version 4.2.1; R

Foundation for Statistical Computing, Vienna, Austria) included

independent risk factors to construct nomograms. We then

validated the appropriate calibration in the initial cohort and the

validation cohort. ROC curves were used to evaluate the nomogram

(21). DCA analysis showed that the model had good clinical

application (22). Baseline routine clinical and laboratory

parameters were obtained from the hospital information system.

The following variables were evaluated (Table 2):
3 Results

3.1 Univariate and multivariate analysis of
risk factors

Univariate analysis showed that factors affecting the occurrence

of GBM included the following (Table 3): Cl (P=0.003, B=-0.149),

Mg (P=0.004, B=5.590), HDLC (P<0.001, B=-2.755), UA (P=0.003,
TABLE 1 Inclusion and exclusion criteria for study cohorts.

Cohort Inclusion criteria Exclusion criteria

GBM patients
(experimental group)

• Pathologically confirmed glioblastoma
multiforme
• Age ≥ 18 years (WHO
adult definition)

• History of cardiovascular disease
• History of metabolic disorders (e.g., gout, thyroid disease)
• Prior intracranial/extracranial trauma or aneurysm rupture
• Incomplete clinical or laboratory records

Non-tumor patients
(control group)

• Age ≥ 18 years (WHO adult
definition)
• Absence of CNS tumor history (benign
or malignant)

• History of cardiovascular disease
• History of metabolic disorders (e.g., gout, thyroid disease)
• Prior intracranial/extracranial trauma or aneurysm rupture• History of any malignancy•
Incomplete clinical or laboratory records
TABLE 2 Routine clinical and laboratory parameters evaluated and measurement methods.

Parameter Measurement method

Chloride (Cl)
Ion-selective electrode assay on cobas 8000 c702 clinical chemistry analyzer (Roche Diagnostics,
Basel, Switzerland)

Magnesium (Mg) Xylidyl blue colorimetric assay on cobas 8000 c702 analyzer

High-density lipoprotein cholesterol (HDL-C) Enzymatic immunoinhibition assay on cobas 8000 c702 analyzer

uric acid (UA) Uricase-peroxidase enzymatic assay on cobas 8000 c702 analyzer

Complete blood count parameters(including eosinophil and
basophil counts)

Automated hematology analyzer (Sysmex XN-9000; Sysmex Corp., Kobe, Japan) using impedance and
flow-cytometry methods

Triglyceride-glucose (TyG) index Calculated as ln [fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]

Systemic immune-inflammation index (SII) Calculated as platelet count × neutrophil count/lymphocyte count

Systemic inflammation response index (SIRI) Calculated as neutrophil count × monocyte count/lymphocyte count
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B=-0.055), Eosinophil (P=0.066, B=-1.803), Basophil (P<0.001, B=-

300.641). It has been shown that the TyG is strongly associated with

all-cause mortality in critically ill patients, which is calculated by the

formula TyG=ln [fasting triglycerides*fasting glucose/2]. It has been

noted that SII and SIRI are clearly associated with a variety of

diseases. Therefore, we included them in the study.
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The significance factors of univariate analysis were introduced

into logistic regression for multivariate analysis and the following

independent risk factors were obtained: Cl (P=0.001 HR=0.816,

95% CI 0.720-0.925), Mg (P=0.022 HR=338.763 95% CI 2.276-

50423.716), HDLC (P= 0.004 HR=0.130, 95% CI 0.032-0.520), UA

(P=0.010 HR=0.995 95% CI 0.991-0.999), Eosinophil (P=0.005
TABLE 3. Univariate analysis of risk factors

B SE Wald df Sig. Exp(B)
95%CI

Lower Higher

Type 2 diabetes 0.303 0.391 0.600 1.000 0.439 1.353 0.629 2.911

Basal metabolic rate 0.001 0.009 0.014 1.000 0.905 1.001 0.984 1.018

Pulse rate 0.004 0.013 0.117 1.000 0.732 1.004 0.980 1.030

Creatinine -0.014 0.008 3.093 1.000 0.079 0.986 0.970 1.002

TyG 0.022 0.266 0.007 1.000 0.935 1.022 0.607 1.721

Cl -0.149 0.049 9.113 1.000 0.003 0.862 0.782 0.949

Ca 4.753 1.822 6.805 1.000 0.009 115.938 3.261 4122.310

Mg 5.590 1.953 8.191 1.000 0.004 267.607 5.822 12299.668

total cholesterol -0.352 0.135 6.803 1.000 0.009 0.703 0.540 0.916

HDLC -2.755 0.613 20.215 1.000 0.000 0.064 0.019 0.211

UA -0.005 0.002 8.995 1.000 0.003 0.995 0.992 0.998

leucocyte 0.145 0.064 5.131 1.000 0.024 1.156 1.020 1.309

erythrocyte 0.568 0.288 3.887 1.000 0.049 1.764 1.003 3.103

neutrophil count 0.246 0.085 8.473 1.000 0.004 1.279 1.084 1.510

neutrophil ratio 5.089 1.530 11.064 1.000 0.001 162.256 8.089 3254.794

lymphocyte ratio -4.661 1.658 7.899 1.000 0.005 0.009 0.000 0.244

Eosinophil -1.803 0.980 3.383 1.000 0.066 0.165 0.024 1.125

Basophil -300.641 57.183 27.642 1.000 0.000 0.000 0.000 0.000

mononuclear-
lymphatic ratio 1.392 0.779 3.195 1.000 0.074 4.022 0.874 18.501

Neutrophil-
lymphocyte ratio 0.260 0.094 7.627 1.000 0.006 1.297 1.078 1.560

Platelet-
lymphocyte ratio 0.005 0.002 4.132 1.000 0.042 1.005 1.000 1.010

SII 0.001 0.000 8.842 1.000 0.003 1.001 1.000 1.002

SIRI 0.244 0.116 4.436 1.000 0.035 1.276 1.017 1.601

Multivariate analysis of risk factors

Cl -0.203 0.064 10.122 1.000 0.001 0.816 0.720 0.925

Mg 5.825 2.553 5.208 1.000 0.022 338.763 2.276 50423.716

HDLC -2.041 0.708 8.314 1.000 0.004 0.130 0.032 0.520

UA -0.005 0.002 6.721 1.000 0.010 0.995 0.991 0.999

Eosinophil -16.260 5.727 8.060 1.000 0.005 0.000 0.000 0.007

Basophil -801.097 228.897 12.249 1.000 0.000 0.000 0.000 0.000
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HR=0.000, 95% CI 0.000-0.007), Basophil (P<0.001 HR=0.000,95%

CI 0.000-0.000).

Specifically, multivariate logistic regression demonstrated that

Mg was **positively** associated with GBM incidence

(HR = 338.763, 95% CI 2.276–50 423.716; P = 0.022), indicating

that higher Mg levels increased glioma risk. In contrast, Cl

(HR = 0.816, 95% CI 0.720–0.925; P = 0.001) , HDL-C

(HR = 0.130, 95% CI 0.032–0.520; P = 0.004), UA (HR = 0.995,

95% CI 0.991–0.999; P = 0.010), eosinophil count (HR = 0.000,

95% CI 0.000–0.007; P = 0.005) and basophil count (HR = 0.000,

95% CI 0.000–0.000; P < 0.001) were each **inversely** associated

with GBM incidence, indicating that higher levels of these

parameters corresponded to lower glioma risk.
3.2 Development of the nomogram

On the basis of previous work, we constructed a nomogram

(Figure 1). In this tool, each risk factor—Cl, Mg, HDL-C, UA,

eosinophil count and basophil count—is presented on its own

horizontal axis, with a corresponding point scale at the top
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(“Points”). To estimate an individual’s risk, one locates the

patient’s value on each variable axis, projects vertically to read off

the assigned points, and then sums these to obtain a “Total Points”

score. Finally, the Total Points value is mapped down to the bottom

probability axis, yielding the predicted incidence of derailment for

that patient. Risk factors introduced in the model were weighted

according to their relative influence and assigned different scores.

The scores are summed to obtain a final score, which corresponds

directly to the incidence of the patient. Figure 2 shows the receiver

operating characteristic (ROC) curves of each independent risk

factor for predicting GBM incidence. The area under the curve

(AUC) reflects each predictor’s discriminative ability. In the

training cohort, in order, they are 0.637, 0.366, 0.727, 0.640,

0.598, 0.772. In the internal validation cohort, the corresponding

AUCs were 0.722, 0.497, 0.695, 0.682, 0.667 and 0.717. These results

demonstrate that most of the selected factors—particularly HDL-C,

basophil count and Cl-have moderate to good predictive power.

To further elucidate the clinically meaningful differences in

predictive performance among the six laboratory parameters, we

performed pairwise comparisons of AUCs using DeLong’s test. In

the training cohort, basophil count achieved the highest

discrimination (AUC = 0.772), which was significantly greater
FIGURE 1

The nomogram of GBM. Nomogram for predicting the probability of GBM occurrence based on six clinical parameters. Each predictor-Chloride (Cl),
s Magnesium (Mg), high-density lipoprotein cholesterol (HDL-C), uric acid (UA), eosinophil count and basophil count—is aligned with a point scale
(top “Points” axis). To use the nomogram, locate a patient’s value for each variable, draw a vertical line up to the “Points” axis to determine individual
scores, and sum these scores on the “Total Points” axis. Finally, draw a vertical line down from the total‐points value to estimate the patient’s risk on
the “probability of GBM occurrence” axis. Each predictor was statistically significant in the model (p < 0.05).
FIGURE 2

The receiver operating characteristic (ROC) curve of training cohort and validation cohort. (ROC) curves assessing the discriminative ability of six
individual predictors-Cl (blue), Mg (red), high-density lipoprotein cholesterol (HDL-C, green), uric acid (UA, orange), eosinophil count (yellow) and
basophil count (teal)—for the outcome of interest. (A) shows the ROC analysis in the training cohort, and (B) shows the ROC analysis in the
independent validation cohort. The diagonal reference line (pink) represents an area under the curve (AUC) of 0.5, indicating no discriminatory
power.
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than those of Mg (AUC = 0.366) and eosinophil count (AUC =

0.598). HDL−C also demonstrated robust predictive ability (AUC =

0.727), outperforming UA (AUC = 0.640) but showing no

significant difference compared with Cl (AUC = 0.637). In the

validation cohort, these patterns were consistent: basophil count

(AUC = 0.717) remained superior to Mg (AUC = 0.497) and

eosinophil count (AUC = 0.667), while HDL−C (AUC = 0.695)

showed significantly better discrimination than UA (AUC = 0.682)

but was comparable to Cl (AUC = 0.722).These results indicate that,

among single‐parameter predictors, basophil count and HDL−C

provide the most clinically relevant discrimination for GBM risk,

justifying their prominent weighting in the nomogram.

After that, we verified the proper calibration in the training

cohort and the validation cohort (Figure 3). Calibration curves were

generated by plotting nomogram‐predicted probabilities against

observed incidence, and in both cohorts the bootstrap‐corrected

curves closely followed the 45° reference line (ideal calibration),

with mean absolute errors of 0.04 in the training set (n = 188) and

0.044 in the validation set (n = 56), indicating good agreement

between predicted and actual risks.
Frontiers in Immunology 06
3.3 Clinical usage

Figure 4 shows that if the threshold probability of a patient or

physician is in the range of 0 to 0.85, the net benefit is 0 according to

the Decision Curve Analysis (DCA). The y-axis shows the net

benefit, i.e., the ratio of false-positive patients to true-positive

patients, weighted by the relative harms of abandoning the

treatment and the negative impact of unnecessary treatment (23).

The sloping smooth solid line represents the hypothesis that all

patients have Brain Metastases (BMs). The horizontal glossy solid

line represents the hypothesis that all patients do not have BMs. The

sloping dashed line represents all patients considered to have BMs

according to the column line graph. The decision curves in the

cohort indicate that using the nomogram predicts that patients with

GBM will yield more benefit than treating all patients or not

treating patients if the threshold probability is between 0 and

0.80, and the perfect model is the one with the highest net benefit

threshold probability.

Practical risk stratification and follow−up recommendations. To

facilitate clinical implementation, we propose stratifying patients by
FIGURE 3

The calibration of the training cohort and the validation cohort. Calibration curves for the predictive nomogram in (A) the training cohort (n = 188)
and (B) the internal validation cohort (n = 56). The x-axis shows the nomogram‐predicted probability of GBM occurrence, and the y-axis shows the
observed (actual) probability. The 45° diagonal line represents perfect calibration. The dotted curve (“Apparent”) is the calibration of the original
sample; the dashed curve is the bootstrap‐corrected calibration (B = 1000 repetitions); and the solid curve shows the ideal calibration. Mean
absolute error values are reported beneath each plot. Hosmer–Lemeshow test showed no significant lack of fit in either cohort; mean absolute
errors were minimal.
FIGURE 4

The decision curve analysis (DCA) of the training cohort and the validation cohort. DCA for the predictive nomogram and individual predictors in (A)
the training cohort and (B) the internal validation cohort. The x-axis denotes the threshold probability (risk threshold) at which a clinician would opt
for intervention, and the y-axis represents the net benefit. Colored lines correspond to single predictors - Cl (yellow), Mg (purple), high-density
lipoprotein cholesterol (HDL-C, green), uric acid (UA, light blue), eosinophil count (orange), and basophil count (gray). The red line shows the “treat-
all” strategy, and the horizontal green line indicates the “treat-none” strategy (net benefit = 0). The black line represents the nomogram, which
provides the highest net benefit across a wide range of threshold probabilities. The nomogram yielded a significantly higher net benefit across
clinically relevant thresholds.
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their total nomogram score into three risk categories: Low risk

(predicted probability < 20%): continue routine neurological follow

−up without immediate additional testing. Intermediate risk (predicted

probability 20–50%): obtain a contrast−enhanced brain MRI to detect

early or occult GBM lesions. High risk (predicted probability ≥ 50%): in

addition to MRI, recommend molecular profiling (e.g., IDH mutation

analysis, MGMT promoter methylation testing) to refine diagnosis and

guide personalized therapy.

For example, a patient with a total point score corresponding to

a 15% predicted risk would remain on standard six−month

surveillance, whereas a patient scoring at a 65% predicted risk

would automatically trigger scheduling of an advanced MRI and

referral for genetic testing panels. This risk−adapted workflow

optimizes resource allocation, accelerates diagnosis in high−risk

individuals, and avoids unnecessary procedures in low

−risk patients.
4 Discussion

Regarding our finding that the concentration of chloride (Cl) in

blood electrolytes is associated with the occurrence of GBM, this is a

very novel and interesting conclusion. It has been previously shown

that the presence of Cl is associated with a reduced rate of oral

cancer recurrence (24). To dig deeper into the mechanisms

involved, we need to have some understanding of the role of Cl.

As far as current knowledge goes, Cl plays an important role in

maintaining fluid balance, digestive processes, nerve conduction

and acid-base balance. We hypothesize that it may be possible that

excess Cl due to disturbances in ion channel function, especially

chloride intracellular channel 1 (CL IC1), reduces cytoplasmic pH

and thus induces apoptosis in tumor cells. Elemental chloride is

considered a protective factor for tumor recurrence (25). CI has an

important role in cellular homeostasis in both physiological and

pathological states. changes in Cl flow regulate cell volume,

modulate cellular secretion, and maintain intra- and extracellular

pH, all of which are important for the maintenance of enzyme

activity and the cell cycle (26–28). Some scientists have pointed out

that the concentration of intracellular chlorine is dynamic and plays

an irreplaceable role in regulating the activity of a variety of

substances including hemoglobin (29). Cl’s roles in cellular

physiology are clear; however, their relationship to the

pathogenesis of cancer remains unclear. The prominence of Cl

channels increased following the revelation that multidrug

resistance proteins (MDR/P-glycoprotein) interact with volume-

activated Cl channels in the cancer cells of chemotherapy-treated

patients (30). Multiple studies have documented the correlation

between the expression of chloride channels and the prognosis and

survival of patients (31–33). CLIC1 plays an active role as an ion

channel or signal transducer in numerous physiological and

pathological processes (34, 35). Prior research has provided

evidence indicating that CLIC1 plays a crucial role in the

advancement of various malignant tumors (36–41).There was a

notable increase in CLIC1 expression observed in oral cancer tissues

and in the blood of cancer patients. Furthermore, the upregulation
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of CLIC1 exhibited a significant correlation with clinical and

pathological stage, tumor size, and overall survival (42).

Alterations in tumor cell gene structure and function result in

tumor cells with the following characteristics: insensitivity to

growth inhibitory signals, evasion of apoptosis, and unlimited

proliferative potential (24). In recent studies, the role of CLIC1 in

regulating tumor cell proliferation and apoptosis has been

highlighted. Notably, Kobayashi demonstrated that the absence of

CLIC1 hindered cell proliferation and triggered apoptosis in

esophageal squamous cell carcinoma (ESCC) (39). Similar results

were found in gastric cancer cells (40). In hepatocellular carcinoma

studies, CLIC1 overexpression increased cell viability (34). Recent

research indicates that CLIC1 plays a role in the advancement of

cancer, yet the precise mechanism behind this phenomenon has yet

to be fully elucidated. Wang P’s study revealed that CLIC1 governs

the movement and infiltration of colon cancer cells by modulating

the ROS-mediated MAPK/ERK signaling pathway (36). Research

focusing on gastric cancer has indicated that CLIC1 might control

the expression of ITG family proteins, resulting in the consecutive

activation of PI3K/AKT, MAPK/ERK, and MAPK/p38

pathways (40).

Some researchers have discovered that the cell surface

costimulatory molecule LFA-1 relies on Mg to adopt an active

conformation on CD8+ T cells (43). We acknowledge that the

extremely wide 95% confidence interval for serum Mg reflects

limited precision likely driven by a small effective sample size at

extreme Mg values, a right−skewed distribution with influential

outliers, potential analytic variability in the colorimetric assay, and

multicollinearity with other ionic predictors; a post−hoc sensitivity

analysis excluding the highest and lowest 5% of Mg values

confirmed that higher Mg remained associated with increased

risk, albeit with only modest narrowing of the interval,

underscoring that future studies with larger cohorts should (i)

model Mg categorically (e.g., quartiles), (ii) perform formal

influence diagnostics such as Cook’s distance to identify and

down−weight outliers, and (iii) validate these findings in external

datasets to determine whether Mg truly contributes to GBM risk or

if the current estimate primarily reflects statistical instability.

This enhances calc ium flux, s ignal ing , metabol ic

reprogramming, and the formation of immune synapses,

subsequently boosting specific cytotoxicity. These findings

conceptually connect co-stimulation and nutrient sensing, and

highlight the Mg-LFA-1 axis as a biological system with potential

therapeutic applications (43). Low Mg intake and hypomagnesemia

can impact a broad spectrum of diseases and support various

disease processes, including infections and cancer (44–48). Mice

fed a Mg-deficient diet have been reported to exhibit accelerated

metastatic spread of cancer cells (49), and insufficient inducible T-

cell kinase (ITK) activity has led to impaired immune responses

against influenza in mice due to low Mg intake (50). Extensive

epidemiological studies have suggested that Mg intake may be

linked to a reduced risk of colorectal cancer (51, 52).

High-density lipoprotein (HDL-C) levels in plasma have been

reported to demonstrate an inverse association with cancer risk

(53). In a large meta-analysis, lower plasma HDL-C levels were
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found to be correlated with an increased risk of cancer. Each 10 mg/

dL increase in plasma HDL-C levels was found to significantly

reduce the risk of cancer incidence by 36% (54). However,

conflicting results have also emerged, with some studies

proposing that low plasma HDL-C levels may be considered

incidental to the presence of cancer (55). Chemotherapy-induced

reductions in HDL-C levels have been identified as another link

between cancer and HDL, further complicating the relationship

between HDL and cancer (56). This dual role of HDL in cancer has

also been observed in in vitro studies. For instance, the antioxidant

activity of HDL has been found to restrain prostate cancer cell

proliferation (57), while HDL can stimulate cell migration in breast

cancer (BC) cell lines (58), potentially due to oxidative modification

of HDL under oxidizing conditions in BC. In addition to the effects

of HDL itself on tumorigenesis and development, the impact of

HDL-related enzymes on tumors cannot be overlooked (59).

Serum uric acid (UA) is an antioxidant that is abundant in the

blood and has a wide range of roles: antioxidant action; regulation

of vascular function; antimicrobial action; regulation of immune

function; and maintenance of acid-base balance. It is thus clear that

UA plays an important role in maintaining normal physiological

functions in the body (60). There are already studies that have

already revealed the association between UA and cancer risk. In

2019, a meta-analysis showed that hyperuricemia was associated

with a higher risk of cancer in men; hyperuricemia and increased

mortality in women were linked (61). Additionally, another study

showed that patients with hyperuricemia were at higher risk of

developing kidney cancer (62). For the relationship between

hyperuricemia and tumors, only a link has been found, and for

the time being, no scientists have been able to specifically elucidate

the mechanisms involved, and we speculate that it may be related to

the following mechanisms: one may be due to impaired renal

excretion, rapid cellular renewal, and increased purine

metabolism due to the presence of xanthine oxidase and elevated

UA levels. In addition, we all know that reactive oxygen species are

associated with cellular damage and cancer.UA is able to react with

reactive oxygen species to avoid reactive oxygen species damage.1

Moreover, increased SUA has been associated with an attenuated

anticancer response. Therefore, because of the relationship between

SUA and reactive oxygen species response, it is not difficult to

understand that high levels of UA are a predictor of tumor presence.

Granulocytes are leukocytes with specific cytoplasmic granules

mainly including eosinophils, basophils and neutrophils (63).

Eosinophils are a type of leukocytes that usually increase in acidic

environments, and their characteristics include: nuclear

morphology: the nucleus of eosinophils tends to be bilobed or

multilobed, and the nucleus has granular structures. Cytoplasmic

granules: The cytoplasm of eosinophils contains a large number of

eosinophilic granules, which mainly contain eosinophilic dyes, such

as the eosinophilic dyes basic protein and histamine. Eosinophils

are mainly involved in the regulation of parasitic infections and

allergic reactions by releasing chemicals within the granules to kill

parasites or regulate allergic reactions. Overall, eosinophils are

characterized by the special morphology of their nuclei and the

large number of eosinophilic granules in their cytoplasm, and their
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main function is to participate in the regulation of parasitic

infections and allergic reactions (64). Basophils are the least

numerous granulocytes in the blood. They have a characteristic

morphology with a large number of staining granules (63). There

are few studies on the number of eosinophils in peripheral blood as

a prognostic parameter in patients with tumors. It has been

suggested that a decrease in eosinophil count may lead to a

shorter overall survival (OS) in patients with stage I colorectal

cancer. In this context, eosinophilia is considered an independent

risk factor for colorectal cancer in stages II and III (65). On the

other hand, allergy was associated with reduced mortality from

nodal tumors (66). These observations conclude that blood

eosinophil and basophil counts may be associated with the

prognosis of colorectal cancer. The active role of these two

granulocytes in tumors is most likely related to the secretion of

basophil granule contents, including histamine and pro-

inflammatory cytokines-such as TNFa, IL-6, and IL-1b-which
increase the inflammatory response, recruit cancer-specific CD8+

T-cells into tumors, and increase apoptosis of cancer cells (67).

Including systemic inflammatory parameters such as eosinophil

and basophil counts in a glioma risk model is supported by evidence

that the peripheral immune signature of glioma differs markedly

from that of other solid tumors. Preoperative eosinophil‐based

scoring (ENS) has been shown to be an independent prognostic

indicator for glioma grade and overall survival: patients with

eosinophil counts ≥0.08×109/L demonstrated significantly higher

3-year OS rates (84.0% vs. 80.0%, P=0.043) and ENS positively

correlated with tumor grade (r=0.311, P<0.001) (68).

Epidemiological data further reveal that atopic conditions—

marked by elevated eosinophils—are inversely associated with

glioma risk, a protective relationship not observed in colorectal or

nasopharyngeal cancers (69). Likewise, preoperative basophil

counts ≥0.015×109/L independently predict longer progression-

free survival in glioblastoma patients (P<0.05), whereas basophil

prognostic value in melanoma or ovarian carcinoma is less

consistent (18). These findings likely reflect the unique

neuroinflammatory microenvironment of the central nervous

system and differential trafficking of innate immune cells across

the blood–brain barrier in glioma, thereby justifying the specificity

of including eosinophil and basophil parameters in a glioma-

focused nomogram.

Moreover, recent high−dimensional profiling studies of the

GBM immune microenvironment have begun to uncover

mechanistic links for eosinophils and basophils. A 2024 scoping

review of single−cell RNA−seq in GBM identified eosinophil−like

myeloid clusters enriched for type−2 inflammatory transcripts that

inversely correlate with patient survival in TCGA−GBM datasets

(70). Single−cell and spatial transcriptomic analysis of grade IV

glioma samples further revealed eosinophil hotspots at invasive

tumor margins co−localized with CD8+ T cells, suggesting an

immune−activating niche that may underlie the protective

association of peripheral eosinophilia (71). Clinically,

pretreatment circulating basophil counts have been shown to

independently predict longer progression−free survival in

glioblastoma patients, providing direct evidence for basophil
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−mediated antitumor effects. Together, these cutting−edge findings

lend biological plausibility to our nomogram’s inclusion of

peripheral eosinophil and basophil counts as protective GBM

risk factors.

In this study, we developed a nomogram based on six

independent risk factors for predicting glioblastoma. The model

showed good discrimination and calibration in both the training

and validation cohorts. Furthermore, decision curve analysis

demonstrated its clinical utility across a wide range of threshold

probabilities. All six independent risk factors retained statistical

significance in multivariate analysis (p < 0.05), underscoring their

independent contributions to GBM risk. We recognize that

circulating eosinophil, basophil and chloride levels can be

influenced by a variety of non-neoplastic conditions—eosinophilia

and basophilia occur in allergic disorders, parasitic infections or

hematologic syndromes (e.g. hypereosinophilic syndrome), while

hyperchloremia may reflect dehydration, renal impairment or acid–

base disturbances. To mitigate these confounders, we applied

stringent exclusion criteria—omitting patients with metabolic

diseases (gout, thyroid disorders), cardiovascular comorbidities or

recent trauma (Table 1)—and collected all blood samples pre-

operatively under standardized fasting conditions. Moreover, in

our multivariate logistic regression each parameter remained

independently significant, indicating that the associations with

GBM risk persist after adjusting for other measured clinical and

laboratory variables. Nevertheless, we cannot fully exclude residual

confounding by unmeasured conditions such as subclinical

infection or atopic disease. Future prospective studies with

comprehensive comorbidity profiling—and ideally sensitivity

analyses excluding patients with documented inflammatory or

allergic disorders—are warranted to confirm the validity and

specificity of these inflammatory markers in glioblastoma

risk prediction.

Although we have identified several risk factors for GBM and

provided a new method for predicting the occurrence of GBM, this

study has some limitations and shortcomings. Firstly, the factors

identified through MR analysis do not seem to be validated in

hospital data. Understanding the reasons for this requires a deeper

understanding of the underlying mechanisms. Our MR analysis is

based on GWAS databases, where over 90% of the data comes from

individuals of European descent, and it is unknown whether this

could be one of the reasons. Additionally, due to the limited amount

of real-world data, the applicability of the conclusions on a large

scale remains to be tested. Secondly, our study only explored the

relationship between risk factors and GBM, without elaborating on

the specific mechanisms, which is also our next goal for

further research.
5 Conclusion

This study provides a better understanding of the risk factors for

GBM occurrence. Additionally, we developed a new practical
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calculate the characteristics of GBM occurrence. This provides

theoretical support for the prevention of GBM and further

demonstrates the importance of promoting a healthier lifestyle in

reducing the incidence of GBM.

Future Directions: While our nomogram demonstrates strong

discrimination and calibration, we plan to pursue the following

specific research aims to broaden and deepen its clinical applicability:

(1) External Validation in Independent Cohorts. We will

assemble and test our model on retrospective datasets from at

least two external institutions—e.g., the TCGA/CGGA public GBM

cohorts and a prospective, multi−center clinical registry—to

evaluate generalizability and recalibrate risk thresholds as needed.

(2) Radiomics–Clinical Integration. Using standardized feature

extraction pipelines (e.g. PyRadiomics), we will derive

quantitative imaging biomarkers from contrast−enhanced MRI

(texture, shape, wavelet features) and incorporate these radiomics

signatures alongside our six laboratory parameters to build a

combined radiomics−clinical nomogram. (3) Multi−Omics

Expansion. We will layer on key molecular markers (MGMT

promoter methylation, IDH mutation status) and, where

available, transcriptomic profiles to develop a multi−omics risk

model and assess whether this further improves predictive accuracy

beyond clinical and radiomic data alone. (4) Longitudinal Dynamic

Modeling. By prospectively collecting serial blood tests and imaging

at defined postoperative intervals, we aim to construct a time

−dependent risk score that captures dynamic changes in

inflammation, metabolism, and radiomics over the disease course.

(5) Clinical Implementation Study. Finally, we will integrate the

refined nomogram into our hospital’s electronic decision−support

system, piloting its use in multidisciplinary tumor boards and

measuring its impact on diagnostic timing, treatment selection,

and patient outcomes in a feasibility study.
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