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Risk factors and a new
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based on a retrospective study
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‘Department of Neurosurgery, Guangdong Provincial People’s Hospital (Guangdong Academy of
Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China, 2Department of
Neurosurgery, Chongqging General Hospital, School of Medicine, Chongging University,
Chongging, China

Background: Glioblastoma (GBM) is the most common and aggressive primary
malignant tumor of the adult central nervous system. Despite multimodal
therapy, its prognosis remains poor, with a median overall survival of 14-16
months. While rare genetic syndromes and prior cranial irradiation have been
implicated, definitive environmental or biological risk factors for GBM
remain elusive.

Methods: In this retrospective study, we analyzed data from 94 patients with
pathologically confirmed GBM and 94 matched non-tumor controls treated at
Guangdong Academy of Medical Sciences between 2016 and 2023. Univariate
and multivariate logistic regression analyses were conducted to identify
independent risk factors, which were subsequently used to construct a
predictive nomogram. Model performance was assessed using concordance
index (C-index), receiver operating characteristic (ROC) curves, and calibration
plots in both training and validation cohorts.

Results: Six independent risk factors were identified: serum chloride (Cl),
magnesium (Mg), high-density lipoprotein cholesterol (HDL-C), uric acid (UA),
eosinophil count, and basophil count. A novel nomogram incorporating these
factors demonstrated strong predictive ability, with a C-index of 0.871.
Conclusions: We present a validated, blood-based nomogram for GBM risk
prediction with high discriminative power. This model may aid clinicians in early
identification and personalized management of high-risk individuals.

KEYWORDS
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1 Introduction

Glioblastoma (GBM) is a common primary tumor that can occur anywhere in the
central nervous system of adults (1). GBM is marked by profound cellular heterogeneity
and diffuse infiltrative growth, characteristics that render it essentially incurable (2, 3).
Although the current standard of care—maximal safe surgical resection followed by
adjuvant radiotherapy, chemotherapy, and other modalities—can temporarily control
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tumor burden, intrinsic resistance to these treatments results in a
dismal median overall survival of only 14-16 months after diagnosis
(1). Consequently, there is an urgent need to develop novel
therapeutic strategies to improve patient outcomes. Per
established protocols, adjuvant radiotherapy (60 Gy delivered in
30 fractions over 6 weeks) should commence within 3-6 weeks post
—surgery, with daily concurrent administration of the oral
alkylating agent temozolomide. Emerging approaches now focus
on advanced radiation techniques and molecularly targeted
therapies to overcome GBM’s treatment resistance.
Temozolomide should be resumed 4 weeks after the completion
of radiotherapy, usually for 5 consecutive days every 28 days for a
total of 6 months in one cycle. In a clinical trial involving 573
participants, compared with radiotherapy alone, this regimen
improved survival rates (14.6 months vs. 12.1 months, hazard
ratio (HR) 0.63, 95% confidence interval (CI) 0.52-0.75; p<0.001)
(4). Drugs targeting immune checkpoints, such as Cytotoxic T-
Lymphocyte-Associated Protein 4 (CTLA-4), Programmed Cell
Death Protein 1 (PD-1), and Programmed Death-Ligand 1 (PD-
L1), can enhance the anti-tumor immune response and enable T
cells to more effectively eradicate cancer cells. Given the success in
many solid tumors, the potential of immune checkpoint blockade
therapy has been actively explored for GBM (5). Gliomas, which
arise from glial cells or their progenitors, are predominantly
classified as astrocytomas or oligodendrogliomas (6). Under the
World Health Organization grading system, gliomas are divided
into circumscribed (grade I) and diffuse (grades II-IV) entities, with
higher grades indicating greater malignancy. GBM, defined as a
grade IV diffuse astrocytoma, represents the most aggressive glioma
subtype, hallmarked by pronounced hypercellularity, rapid mitotic
activity, extensive microvascular proliferation, and characteristic
pseudopalisading necrosis (7, 8).

Several demographic, genetic, and environmental factors have
been implicated in GBM pathogenesis. Advanced age and male sex
are consistently associated with higher incidence, with risk rising
markedly after 50 years and peaking in late adulthood (9).
Approximately 5% of gliomas develop in the context of hereditary
cancer syndromes such as Li-Fraumeni, Turcot, and
neurofibromatosis types 1 and 2, highlighting a genetic
predisposition component (10). Epidemiological studies have also
reported an inverse association between atopic conditions (e.g.,
asthma, eczema) and glioma risk, suggesting a role for immune-
mediated mechanisms in protection against GBM (11). Outside of
high-dose ionizing radiation, which remains the only established
environmental risk factor for GBM, associations with chemical
exposures, occupational hazards, and non-ionizing radiation have
been largely inconclusive. However, most existing investigations
rely on retrospective case—control designs with limited cohort sizes,
potential recall and selection biases, heterogeneous exposure
assessments, and simplistic modeling approaches, impeding the
identification of robust, clinically translatable risk factors.

In this study, we conducted an extensive survey of clinical data
of oncology patients and non-oncology patients in Guangdong
Provincial People’s Hospital from 2016 to 2023. Subsequently, an
easy-to-use nomogram was developed using univariate versus
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multivariate analysis. The primary objective of this study was to
analyze risk factors for GBM and create a reliable, non-invasive
nomogram to predict the likelihood of GBM using appropriate,
validated analytical methods. Our nomogram uses real cases from
our hospital to create a clinically relevant predictive tool. There are
no known risk factors for glioblastoma other than rare genetic
predisposition and irradiation (12, 13). In this study, we aimed to
analyze the risk factors for brain metastasis in GBM patients and to
establish a valid, noninvasive column-line diagram of the likelihood
of brain metastasis in GBM patients using advanced statistical
analysis methods. In our nomogram, we can infer the possibility
of brain metastasis by simple blood counts and pathology types, and
the nomogram is easier to apply in clinical practice than other
column charts of the same type.

2 Methods
2.1 Case selection

To screen and select GBM and control patients according to
predefined inclusion and exclusion criteria for this retrospective
analysis. Based on the conception of the experiment, data were
collected from all included patients, and this study was approved by
Guangdong Provincial People’s Hospital. All patients were carefully
screened according to the following inclusion criteria (14):
Experimental group: (a) patients diagnosed by pathological
findings; (b) no history of cardiac disease; (c) no history of
metabolic disease, such as gout, thyroid disease, etc; (d) adults
according to the latest WHO definition; (e) no trauma or rupture of
aneurysm, etc. Control group:(a) diagnosed with vascular disease
(e.g., aneurysm, arteriovenous malformation, etc.) or functional
neurosurgical disease (e.g., trigeminal neuralgia, facial muscle
spasm, etc.); (b) not accompanied by history of cardiac disease;
(c) not accompanied by history of metabolic disease, such as gout,
thyroid disease, etc.; (d) adults according to the most recent WHO
definition; (e) not accompanied with trauma or rupture of
aneurysm, etc; and (f) not accompanied by history of tumor.
Finally, 94 patients with GBM diagnosed in the Department of
Neurosurgery of Guangdong Provincial People’s Hospital from
2016 to 2023 and 94 control patients were included in this
retrospective study. The inclusion and exclusion criteria for the
GBM and non-tumor (control) cohorts are summarized in Table 1.

All patients were randomized into groups. The first 70% of
patients were designated as training cohort and the remaining
patients were identified as internal validation cohort.

Matching of Cases and Controls: To minimize confounding, a
two-step strategy was applied. First, 1:1 matching was conducted
based on sex and age (+ 3 years). Recognizing that age and sex alone
may not fully account for all confounders, we subsequently assessed
balance in additional clinical and laboratory variables using
standardized mean differences. Residual imbalances or variables
of known clinical relevance were included in multivariate logistic
regression models. As a sensitivity analysis, propensity score
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TABLE 1 Inclusion and exclusion criteria for study cohorts.

Cohort Inclusion criteria

« Pathologically confirmed glioblastoma
multiforme

« Age > 18 years (WHO

adult definition)

GBM patients
(experimental group)

« Age > 18 years (WHO adult
definition)

« Absence of CNS tumor history (benign
or malignant)

Non-tumor patients
(control group)

matching (PSM) was also performed using a broader set of
covariates to further ensure comparability between groups.

2.2 Waived consent statements

To document ethical approval and waiver of informed consent
for use of existing clinical records. As the experiment was a
retrospective study, approval was obtained from the Ethics
Committee of Guangdong Provincial People’s Hospital to waive
the need for informed consent.

2.3 Clinical characteristics and variables
selection

Given that tumor development involves profound remodeling
of both the metabolic and immune microenvironments, previous
studies have reported associations between GBM and alterations in
various electrolytes, metabolites, and immune cell populations (15-
20). Based on this evidence, we selected a set of representative
clinical and laboratory parameters for further investigation in
this study.

To collect routine clinical and laboratory data and to identify
independent risk factors for nomogram construction. Blood
samples were collected from all participants in the fasting state
between 6:00 and 8:00 AM on the first morning after admission,
prior to initiation of any treatment. To minimize batch effects, all

10.3389/fimmu.2025.1642107

Exclusion criteria

« History of cardiovascular disease

« History of metabolic disorders (e.g., gout, thyroid disease)
« Prior intracranial/extracranial trauma or aneurysm rupture
« Incomplete clinical or laboratory records

« History of cardiovascular disease

« History of metabolic disorders (e.g., gout, thyroid disease)

« Prior intracranial/extracranial trauma or aneurysm rupturee History of any malignancye
Incomplete clinical or laboratory records

biochemical and hematological tests were performed within 2 hours
of collection in a centralized, certified clinical laboratory following
strict internal quality control protocols. Laboratory personnel were
blinded to patient groupings. We collected the common tests of all
patients and then performed a one-way analysis of the data using
IBM SPSS Statistics (version 26.0; IBM Corp., Armonk, NY, USA).
According to the current unified method, we introduced logistic
regression for multifactorial analysis for variables with significance
in unifactorial analysis (p<0.1). p< 0.05 in multifactorial analysis
represents statistical significance. R Studio(version 4.2.1; R
Foundation for Statistical Computing, Vienna, Austria) included
independent risk factors to construct nomograms. We then
validated the appropriate calibration in the initial cohort and the
validation cohort. ROC curves were used to evaluate the nomogram
(21). DCA analysis showed that the model had good clinical
application (22). Baseline routine clinical and laboratory
parameters were obtained from the hospital information system.
The following variables were evaluated (Table 2):

3 Results

3.1 Univariate and multivariate analysis of
risk factors

Univariate analysis showed that factors affecting the occurrence
of GBM included the following (Table 3): Cl (P=0.003, B=-0.149),
Mg (P=0.004, B=5.590), HDLC (P<0.001, B=-2.755), UA (P=0.003,

TABLE 2 Routine clinical and laboratory parameters evaluated and measurement methods.

Parameter Measurement method

Chloride (Cl)

Ton-selective electrode assay on cobas 8000 c702 clinical chemistry analyzer (Roche Diagnostics,
Basel, Switzerland)

Magnesium (Mg)

Xylidyl blue colorimetric assay on cobas 8000 c702 analyzer

High-density lipoprotein cholesterol (HDL-C)

Enzymatic immunoinhibition assay on cobas 8000 c702 analyzer

uric acid (UA)

Complete blood count parameters(including eosinophil and
basophil counts)

Triglyceride-glucose (TyG) index

Uricase-peroxidase enzymatic assay on cobas 8000 c702 analyzer

Automated hematology analyzer (Sysmex XN-9000; Sysmex Corp., Kobe, Japan) using impedance and
flow-cytometry methods

Calculated as In [fasting triglycerides (mg/dL) x fasting glucose (mg/dL)/2]

Systemic immune-inflammation index (SII)

Systemic inflammation response index (SIRI)
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Calculated as platelet count x neutrophil count/lymphocyte count

Calculated as neutrophil count x monocyte count/lymphocyte count
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TABLE 3. Univariate analysis of risk factors

95%ClI
Exp(B)
Lower Higher
Type 2 diabetes 0.303 0.391 0.600 1.000 0.439 1.353 0.629 2911
Basal metabolic rate 0.001 0.009 0.014 1.000 0.905 1.001 0.984 1.018
Pulse rate 0.004 0.013 0.117 1.000 0.732 1.004 0.980 1.030
Creatinine -0.014 0.008 3.093 1.000 0.079 0.986 0.970 1.002
TyG 0.022 0.266 0.007 1.000 0.935 1.022 0.607 1.721
cl -0.149 0.049 9.113 1.000 0.003 0.862 0.782 0.949
Ca 4.753 1.822 6.805 1.000 0.009 115.938 3.261 4122310
Mg 5.590 1.953 8.191 1.000 0.004 267.607 5.822 12299.668
total cholesterol -0.352 0.135 6.803 1.000 0.009 0.703 0.540 0.916
HDLC 2755 0.613 20.215 1.000 0.000 0.064 0.019 0.211
UA -0.005 0.002 8.995 1.000 0.003 0.995 0.992 0.998
leucocyte 0.145 0.064 5.131 1.000 0.024 1.156 1.020 1.309
erythrocyte 0.568 0.288 3.887 1.000 0.049 1.764 1.003 3.103
neutrophil count 0.246 0.085 8.473 1.000 0.004 1279 1.084 1.510
neutrophil ratio 5,089 1.530 11.064 1.000 0.001 162.256 8.089 3254.794
lymphocyte ratio -4.661 1.658 7.899 1.000 0.005 0.009 0.000 0.244
Eosinophil -1.803 0.980 3.383 1.000 0.066 0.165 0.024 1.125
Basophil -300.641 57.183 27.642 1.000 0.000 0.000 0.000 0.000
mononuclear-
lymphatic ratio 1.392 0.779 3.195 1.000 0.074 4.022 0.874 18.501
Neutrophil-
lymphocyte ratio 0.260 0.094 7.627 1.000 0.006 1297 1.078 1.560
Platelet-
lymphocyte ratio 0.005 0.002 4132 1.000 0.042 1.005 1.000 1.010
SII 0.001 0.000 8.842 1.000 0.003 1.001 1.000 1.002
SIRI 0.244 0.116 4.436 1.000 0.035 1276 1.017 1.601
Multivariate analysis of risk factors
cl -0.203 0.064 10.122 1.000 0.001 0.816 0.720 0.925
Mg 5.825 2.553 5.208 1.000 0.022 338763 2.276 50423.716
HDLC -2.041 0.708 8.314 1.000 0.004 0.130 0.032 0.520
UA -0.005 0.002 6.721 1.000 0.010 0.995 0.991 0.999
Eosinophil -16.260 5.727 8.060 1.000 0.005 0.000 0.000 0.007
Basophil -801.097 228.897 12.249 1.000 0.000 0.000 0.000 0.000
B=-0.055), Eosinophil (P=0.066, B=-1.803), Basophil (P<0.001, B=- The significance factors of univariate analysis were introduced

300.641). It has been shown that the TyG is strongly associated with  into logistic regression for multivariate analysis and the following
all-cause mortality in critically ill patients, which is calculated by the ~ independent risk factors were obtained: Cl (P=0.001 HR=0.816,
formula TyG=In [fasting triglycerides*fasting glucose/2]. Ithasbeen =~ 95% CI 0.720-0.925), Mg (P=0.022 HR=338.763 95% CI 2.276-
noted that SII and SIRI are clearly associated with a variety of = 50423.716), HDLC (P= 0.004 HR=0.130, 95% CI 0.032-0.520), UA
diseases. Therefore, we included them in the study. (P=0.010 HR=0.995 95% CI 0.991-0.999), Eosinophil (P=0.005
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The nomogram of GBM. Nomogram for predicting the probability of GBM occurrence based on six clinical parameters. Each predictor-Chloride (Cl),
s Magnesium (Mg), high-density lipoprotein cholesterol (HDL-C), uric acid (UA), eosinophil count and basophil count—is aligned with a point scale
(top “"Points” axis). To use the nomogram, locate a patient's value for each variable, draw a vertical line up to the "Points” axis to determine individual
scores, and sum these scores on the "Total Points” axis. Finally, draw a vertical line down from the total-points value to estimate the patient’s risk on
the “probability of GBM occurrence” axis. Each predictor was statistically significant in the model (p < 0.05).

HR=0.000, 95% CI 0.000-0.007), Basophil (P<0.001 HR=0.000,95%
CI 0.000-0.000).

Specifically, multivariate logistic regression demonstrated that
Mg was **positively** associated with GBM incidence
(HR=338.763, 95% CI 2.276-50 423.716; P =0.022), indicating
that higher Mg levels increased glioma risk. In contrast, CI
(HR=0.816, 95% CI 0.720-0.925; P=0.001), HDL-C
(HR =0.130, 95% CI 0.032-0.520; P =0.004), UA (HR=0.995,
95% CI 0.991-0.999; P =0.010), eosinophil count (HR =0.000,
95% CI 0.000-0.007; P =0.005) and basophil count (HR =0.000,
95% CI 0.000-0.000; P < 0.001) were each **inversely** associated
with GBM incidence, indicating that higher levels of these
parameters corresponded to lower glioma risk.

3.2 Development of the nomogram

On the basis of previous work, we constructed a nomogram
(Figure 1). In this tool, each risk factor—Cl, Mg, HDL-C, UA,
eosinophil count and basophil count—is presented on its own
horizontal axis, with a corresponding point scale at the top

(“Points”). To estimate an individual’s risk, one locates the
patient’s value on each variable axis, projects vertically to read off
the assigned points, and then sums these to obtain a “Total Points”
score. Finally, the Total Points value is mapped down to the bottom
probability axis, yielding the predicted incidence of derailment for
that patient. Risk factors introduced in the model were weighted
according to their relative influence and assigned different scores.
The scores are summed to obtain a final score, which corresponds
directly to the incidence of the patient. Figure 2 shows the receiver
operating characteristic (ROC) curves of each independent risk
factor for predicting GBM incidence. The area under the curve
(AUC) reflects each predictor’s discriminative ability. In the
training cohort, in order, they are 0.637, 0.366, 0.727, 0.640,
0.598, 0.772. In the internal validation cohort, the corresponding
AUCs were 0.722, 0.497, 0.695, 0.682, 0.667 and 0.717. These results
demonstrate that most of the selected factors—particularly HDL-C,
basophil count and Cl-have moderate to good predictive power.
To further elucidate the clinically meaningful differences in
predictive performance among the six laboratory parameters, we
performed pairwise comparisons of AUCs using DeLong’s test. In
the training cohort, basophil count achieved the highest
discrimination (AUC = 0.772), which was significantly greater

train cohort ro

o
— Mg
—HDLC
UA
Eosinophil
—— Basophil

=

o 02 04

1 -

FIGURE 2

d
— Mg
——HDLC
—UA
Eosinophil
—— Basophil

The receiver operating characteristic (ROC) curve of training cohort and validation cohort. (ROC) curves assessing the discriminative ability of six
individual predictors-Cl (blue), Mg (red), high-density lipoprotein cholesterol (HDL-C, green), uric acid (UA, orange), eosinophil count (yellow) and
basophil count (teal) —for the outcome of interest. (A) shows the ROC analysis in the training cohort, and (B) shows the ROC analysis in the
independent validation cohort. The diagonal reference line (pink) represents an area under the curve (AUC) of 0.5, indicating no discriminatory

power.
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The calibration of the training cohort and the validation cohort. Calibration curves for the predictive nomogram in (A) the training cohort (n = 188)
and (B) the internal validation cohort (n = 56). The x-axis shows the nomogram-predicted probability of GBM occurrence, and the y-axis shows the
observed (actual) probability. The 45° diagonal line represents perfect calibration. The dotted curve ("Apparent”) is the calibration of the original
sample; the dashed curve is the bootstrap-corrected calibration (B = 1000 repetitions); and the solid curve shows the ideal calibration. Mean
absolute error values are reported beneath each plot. Hosmer—Lemeshow test showed no significant lack of fit in either cohort; mean absolute

errors were minimal.

than those of Mg (AUC = 0.366) and eosinophil count (AUC =
0.598). HDL-C also demonstrated robust predictive ability (AUC =
0.727), outperforming UA (AUC = 0.640) but showing no
significant difference compared with Cl (AUC = 0.637). In the
validation cohort, these patterns were consistent: basophil count
(AUC = 0.717) remained superior to Mg (AUC = 0.497) and
eosinophil count (AUC = 0.667), while HDL-C (AUC = 0.695)
showed significantly better discrimination than UA (AUC = 0.682)
but was comparable to Cl (AUC = 0.722).These results indicate that,
among single-parameter predictors, basophil count and HDL-C
provide the most clinically relevant discrimination for GBM risk,
justifying their prominent weighting in the nomogram.

After that, we verified the proper calibration in the training
cohort and the validation cohort (Figure 3). Calibration curves were
generated by plotting nomogram-predicted probabilities against
observed incidence, and in both cohorts the bootstrap-corrected
curves closely followed the 45° reference line (ideal calibration),
with mean absolute errors of 0.04 in the training set (n = 188) and
0.044 in the validation set (n = 56), indicating good agreement
between predicted and actual risks.
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3.3 Clinical usage

Figure 4 shows that if the threshold probability of a patient or
physician is in the range of 0 to 0.85, the net benefit is 0 according to
the Decision Curve Analysis (DCA). The y-axis shows the net
benefit, ie., the ratio of false-positive patients to true-positive
patients, weighted by the relative harms of abandoning the
treatment and the negative impact of unnecessary treatment (23).
The sloping smooth solid line represents the hypothesis that all
patients have Brain Metastases (BMs). The horizontal glossy solid
line represents the hypothesis that all patients do not have BMs. The
sloping dashed line represents all patients considered to have BMs
according to the column line graph. The decision curves in the
cohort indicate that using the nomogram predicts that patients with
GBM will yield more benefit than treating all patients or not
treating patients if the threshold probability is between 0 and
0.80, and the perfect model is the one with the highest net benefit
threshold probability.

Practical risk stratification and follow—up recommendations. To
facilitate clinical implementation, we propose stratifying patients by

internal cohort DCA
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The decision curve analysis (DCA) of the training cohort and the validation cohort. DCA for the predictive nomogram and individual predictors in (A)
the training cohort and (B) the internal validation cohort. The x-axis denotes the threshold probability (risk threshold) at which a clinician would opt
for intervention, and the y-axis represents the net benefit. Colored lines correspond to single predictors - Cl (yellow), Mg (purple), high-density
lipoprotein cholesterol (HDL-C, green), uric acid (UA, light blue), eosinophil count (orange), and basophil count (gray). The red line shows the “treat-
all” strategy, and the horizontal green line indicates the "treat-none” strategy (net benefit = 0). The black line represents the nomogram, which
provides the highest net benefit across a wide range of threshold probabilities. The nomogram yielded a significantly higher net benefit across

clinically relevant thresholds.
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their total nomogram score into three risk categories: Low risk
(predicted probability < 20%): continue routine neurological follow
—up without immediate additional testing. Intermediate risk (predicted
probability 20-50%): obtain a contrast—enhanced brain MRI to detect
early or occult GBM lesions. High risk (predicted probability > 50%): in
addition to MRI, recommend molecular profiling (e.g., IDH mutation
analysis, MGMT promoter methylation testing) to refine diagnosis and
guide personalized therapy.

For example, a patient with a total point score corresponding to
a 15% predicted risk would remain on standard six—month
surveillance, whereas a patient scoring at a 65% predicted risk
would automatically trigger scheduling of an advanced MRI and
referral for genetic testing panels. This risk—adapted workflow
optimizes resource allocation, accelerates diagnosis in high-risk
individuals, and avoids unnecessary procedures in low
—risk patients.

4 Discussion

Regarding our finding that the concentration of chloride (Cl) in
blood electrolytes is associated with the occurrence of GBM, this is a
very novel and interesting conclusion. It has been previously shown
that the presence of Cl is associated with a reduced rate of oral
cancer recurrence (24). To dig deeper into the mechanisms
involved, we need to have some understanding of the role of CL
As far as current knowledge goes, Cl plays an important role in
maintaining fluid balance, digestive processes, nerve conduction
and acid-base balance. We hypothesize that it may be possible that
excess Cl due to disturbances in ion channel function, especially
chloride intracellular channel 1 (CL IC1), reduces cytoplasmic pH
and thus induces apoptosis in tumor cells. Elemental chloride is
considered a protective factor for tumor recurrence (25). CI has an
important role in cellular homeostasis in both physiological and
pathological states. changes in Cl flow regulate cell volume,
modulate cellular secretion, and maintain intra- and extracellular
pH, all of which are important for the maintenance of enzyme
activity and the cell cycle (26-28). Some scientists have pointed out
that the concentration of intracellular chlorine is dynamic and plays
an irreplaceable role in regulating the activity of a variety of
substances including hemoglobin (29). CI's roles in cellular
physiology are clear; however, their relationship to the
pathogenesis of cancer remains unclear. The prominence of Cl
channels increased following the revelation that multidrug
resistance proteins (MDR/P-glycoprotein) interact with volume-
activated Cl channels in the cancer cells of chemotherapy-treated
patients (30). Multiple studies have documented the correlation
between the expression of chloride channels and the prognosis and
survival of patients (31-33). CLIC1 plays an active role as an ion
channel or signal transducer in numerous physiological and
pathological processes (34, 35). Prior research has provided
evidence indicating that CLIC1 plays a crucial role in the
advancement of various malignant tumors (36-41).There was a
notable increase in CLIC1 expression observed in oral cancer tissues
and in the blood of cancer patients. Furthermore, the upregulation
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of CLICI exhibited a significant correlation with clinical and
pathological stage, tumor size, and overall survival (42).
Alterations in tumor cell gene structure and function result in
tumor cells with the following characteristics: insensitivity to
growth inhibitory signals, evasion of apoptosis, and unlimited
proliferative potential (24). In recent studies, the role of CLICI in
regulating tumor cell proliferation and apoptosis has been
highlighted. Notably, Kobayashi demonstrated that the absence of
CLIC1 hindered cell proliferation and triggered apoptosis in
esophageal squamous cell carcinoma (ESCC) (39). Similar results
were found in gastric cancer cells (40). In hepatocellular carcinoma
studies, CLIC1 overexpression increased cell viability (34). Recent
research indicates that CLICI plays a role in the advancement of
cancer, yet the precise mechanism behind this phenomenon has yet
to be fully elucidated. Wang P’s study revealed that CLIC1 governs
the movement and infiltration of colon cancer cells by modulating
the ROS-mediated MAPK/ERK signaling pathway (36). Research
focusing on gastric cancer has indicated that CLICI might control
the expression of ITG family proteins, resulting in the consecutive
activation of PI3K/AKT, MAPK/ERK, and MAPK/p38
pathways (40).

Some researchers have discovered that the cell surface
costimulatory molecule LFA-1 relies on Mg to adopt an active
conformation on CD8+ T cells (43). We acknowledge that the
extremely wide 95% confidence interval for serum Mg reflects
limited precision likely driven by a small effective sample size at
extreme Mg values, a right—skewed distribution with influential
outliers, potential analytic variability in the colorimetric assay, and
multicollinearity with other ionic predictors; a post—hoc sensitivity
analysis excluding the highest and lowest 5% of Mg values
confirmed that higher Mg remained associated with increased
risk, albeit with only modest narrowing of the interval,
underscoring that future studies with larger cohorts should (i)
model Mg categorically (e.g., quartiles), (ii) perform formal
influence diagnostics such as Cook’s distance to identify and
down-weight outliers, and (iii) validate these findings in external
datasets to determine whether Mg truly contributes to GBM risk or
if the current estimate primarily reflects statistical instability.

This enhances calcium flux, signaling, metabolic
reprogramming, and the formation of immune synapses,
subsequently boosting specific cytotoxicity. These findings
conceptually connect co-stimulation and nutrient sensing, and
highlight the Mg-LFA-1 axis as a biological system with potential
therapeutic applications (43). Low Mg intake and hypomagnesemia
can impact a broad spectrum of diseases and support various
disease processes, including infections and cancer (44-48). Mice
fed a Mg-deficient diet have been reported to exhibit accelerated
metastatic spread of cancer cells (49), and insufficient inducible T-
cell kinase (ITK) activity has led to impaired immune responses
against influenza in mice due to low Mg intake (50). Extensive
epidemiological studies have suggested that Mg intake may be
linked to a reduced risk of colorectal cancer (51, 52).

High-density lipoprotein (HDL-C) levels in plasma have been
reported to demonstrate an inverse association with cancer risk
(53). In a large meta-analysis, lower plasma HDL-C levels were
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found to be correlated with an increased risk of cancer. Each 10 mg/
dL increase in plasma HDL-C levels was found to significantly
reduce the risk of cancer incidence by 36% (54). However,
conflicting results have also emerged, with some studies
proposing that low plasma HDL-C levels may be considered
incidental to the presence of cancer (55). Chemotherapy-induced
reductions in HDL-C levels have been identified as another link
between cancer and HDL, further complicating the relationship
between HDL and cancer (56). This dual role of HDL in cancer has
also been observed in in vitro studies. For instance, the antioxidant
activity of HDL has been found to restrain prostate cancer cell
proliferation (57), while HDL can stimulate cell migration in breast
cancer (BC) cell lines (58), potentially due to oxidative modification
of HDL under oxidizing conditions in BC. In addition to the effects
of HDL itself on tumorigenesis and development, the impact of
HDL-related enzymes on tumors cannot be overlooked (59).
Serum uric acid (UA) is an antioxidant that is abundant in the
blood and has a wide range of roles: antioxidant action; regulation
of vascular function; antimicrobial action; regulation of immune
function; and maintenance of acid-base balance. It is thus clear that
UA plays an important role in maintaining normal physiological
functions in the body (60). There are already studies that have
already revealed the association between UA and cancer risk. In
2019, a meta-analysis showed that hyperuricemia was associated
with a higher risk of cancer in men; hyperuricemia and increased
mortality in women were linked (61). Additionally, another study
showed that patients with hyperuricemia were at higher risk of
developing kidney cancer (62). For the relationship between
hyperuricemia and tumors, only a link has been found, and for
the time being, no scientists have been able to specifically elucidate
the mechanisms involved, and we speculate that it may be related to
the following mechanisms: one may be due to impaired renal
excretion, rapid cellular renewal, and increased purine
metabolism due to the presence of xanthine oxidase and elevated
UA levels. In addition, we all know that reactive oxygen species are
associated with cellular damage and cancer.UA is able to react with
reactive oxygen species to avoid reactive oxygen species damage.1
Moreover, increased SUA has been associated with an attenuated
anticancer response. Therefore, because of the relationship between
SUA and reactive oxygen species response, it is not difficult to
understand that high levels of UA are a predictor of tumor presence.
Granulocytes are leukocytes with specific cytoplasmic granules
mainly including eosinophils, basophils and neutrophils (63).
Eosinophils are a type of leukocytes that usually increase in acidic
environments, and their characteristics include: nuclear
morphology: the nucleus of eosinophils tends to be bilobed or
multilobed, and the nucleus has granular structures. Cytoplasmic
granules: The cytoplasm of eosinophils contains a large number of
eosinophilic granules, which mainly contain eosinophilic dyes, such
as the eosinophilic dyes basic protein and histamine. Eosinophils
are mainly involved in the regulation of parasitic infections and
allergic reactions by releasing chemicals within the granules to kill
parasites or regulate allergic reactions. Overall, eosinophils are
characterized by the special morphology of their nuclei and the
large number of eosinophilic granules in their cytoplasm, and their
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main function is to participate in the regulation of parasitic
infections and allergic reactions (64). Basophils are the least
numerous granulocytes in the blood. They have a characteristic
morphology with a large number of staining granules (63). There
are few studies on the number of eosinophils in peripheral blood as
a prognostic parameter in patients with tumors. It has been
suggested that a decrease in eosinophil count may lead to a
shorter overall survival (OS) in patients with stage I colorectal
cancer. In this context, eosinophilia is considered an independent
risk factor for colorectal cancer in stages II and III (65). On the
other hand, allergy was associated with reduced mortality from
nodal tumors (66). These observations conclude that blood
eosinophil and basophil counts may be associated with the
prognosis of colorectal cancer. The active role of these two
granulocytes in tumors is most likely related to the secretion of
basophil granule contents, including histamine and pro-
inflammatory cytokines-such as TNFo, IL-6, and IL-1B-which
increase the inflammatory response, recruit cancer-specific CD8+
T-cells into tumors, and increase apoptosis of cancer cells (67).

Including systemic inflammatory parameters such as eosinophil
and basophil counts in a glioma risk model is supported by evidence
that the peripheral immune signature of glioma differs markedly
from that of other solid tumors. Preoperative eosinophil-based
scoring (ENS) has been shown to be an independent prognostic
indicator for glioma grade and overall survival: patients with
eosinophil counts >0.08x10°/L. demonstrated significantly higher
3-year OS rates (84.0% vs. 80.0%, P=0.043) and ENS positively
correlated with tumor grade (r=0.311, P<0.001) (68).
Epidemiological data further reveal that atopic conditions—
marked by elevated eosinophils—are inversely associated with
glioma risk, a protective relationship not observed in colorectal or
nasopharyngeal cancers (69). Likewise, preoperative basophil
counts >0.015x10°/L independently predict longer progression-
free survival in glioblastoma patients (P<0.05), whereas basophil
prognostic value in melanoma or ovarian carcinoma is less
consistent (18). These findings likely reflect the unique
neuroinflammatory microenvironment of the central nervous
system and differential trafficking of innate immune cells across
the blood-brain barrier in glioma, thereby justifying the specificity
of including eosinophil and basophil parameters in a glioma-
focused nomogram.

Moreover, recent high—dimensional profiling studies of the
GBM immune microenvironment have begun to uncover
mechanistic links for eosinophils and basophils. A 2024 scoping
review of single—cell RNA—-seq in GBM identified eosinophil-like
myeloid clusters enriched for type—2 inflammatory transcripts that
inversely correlate with patient survival in TCGA-GBM datasets
(70). Single—cell and spatial transcriptomic analysis of grade IV
glioma samples further revealed eosinophil hotspots at invasive
tumor margins co-localized with CD8" T cells, suggesting an
immune-activating niche that may underlie the protective
association of peripheral eosinophilia (71). Clinically,
pretreatment circulating basophil counts have been shown to
independently predict longer progression—free survival in
glioblastoma patients, providing direct evidence for basophil
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—mediated antitumor effects. Together, these cutting—edge findings
lend biological plausibility to our nomogram’s inclusion of
peripheral eosinophil and basophil counts as protective GBM
risk factors.

In this study, we developed a nomogram based on six
independent risk factors for predicting glioblastoma. The model
showed good discrimination and calibration in both the training
and validation cohorts. Furthermore, decision curve analysis
demonstrated its clinical utility across a wide range of threshold
probabilities. All six independent risk factors retained statistical
significance in multivariate analysis (p < 0.05), underscoring their
independent contributions to GBM risk. We recognize that
circulating eosinophil, basophil and chloride levels can be
influenced by a variety of non-neoplastic conditions—eosinophilia
and basophilia occur in allergic disorders, parasitic infections or
hematologic syndromes (e.g. hypereosinophilic syndrome), while
hyperchloremia may reflect dehydration, renal impairment or acid-
base disturbances. To mitigate these confounders, we applied
stringent exclusion criteria—omitting patients with metabolic
diseases (gout, thyroid disorders), cardiovascular comorbidities or
recent trauma (Table 1)—and collected all blood samples pre-
operatively under standardized fasting conditions. Moreover, in
our multivariate logistic regression each parameter remained
independently significant, indicating that the associations with
GBM risk persist after adjusting for other measured clinical and
laboratory variables. Nevertheless, we cannot fully exclude residual
confounding by unmeasured conditions such as subclinical
infection or atopic disease. Future prospective studies with
comprehensive comorbidity profiling—and ideally sensitivity
analyses excluding patients with documented inflammatory or
allergic disorders—are warranted to confirm the validity and
specificity of these inflammatory markers in glioblastoma
risk prediction.

Although we have identified several risk factors for GBM and
provided a new method for predicting the occurrence of GBM, this
study has some limitations and shortcomings. Firstly, the factors
identified through MR analysis do not seem to be validated in
hospital data. Understanding the reasons for this requires a deeper
understanding of the underlying mechanisms. Our MR analysis is
based on GWAS databases, where over 90% of the data comes from
individuals of European descent, and it is unknown whether this
could be one of the reasons. Additionally, due to the limited amount
of real-world data, the applicability of the conclusions on a large
scale remains to be tested. Secondly, our study only explored the
relationship between risk factors and GBM, without elaborating on
the specific mechanisms, which is also our next goal for
further research.

5 Conclusion

This study provides a better understanding of the risk factors for
GBM occurrence. Additionally, we developed a new practical
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nomogram, greatly expanding the scope of clinical practice to
calculate the characteristics of GBM occurrence. This provides
theoretical support for the prevention of GBM and further
demonstrates the importance of promoting a healthier lifestyle in
reducing the incidence of GBM.

Future Directions: While our nomogram demonstrates strong
discrimination and calibration, we plan to pursue the following
specific research aims to broaden and deepen its clinical applicability:

(1) External Validation in Independent Cohorts. We will
assemble and test our model on retrospective datasets from at
least two external institutions—e.g., the TCGA/CGGA public GBM
cohorts and a prospective, multi—center clinical registry—to
evaluate generalizability and recalibrate risk thresholds as needed.
(2) Radiomics—Clinical Integration. Using standardized feature
extraction pipelines (e.g. PyRadiomics), we will derive
quantitative imaging biomarkers from contrast-enhanced MRI
(texture, shape, wavelet features) and incorporate these radiomics
signatures alongside our six laboratory parameters to build a
combined radiomics—clinical nomogram. (3) Multi-Omics
Expansion. We will layer on key molecular markers (MGMT
promoter methylation, IDH mutation status) and, where
available, transcriptomic profiles to develop a multi—omics risk
model and assess whether this further improves predictive accuracy
beyond clinical and radiomic data alone. (4) Longitudinal Dynamic
Modeling. By prospectively collecting serial blood tests and imaging
at defined postoperative intervals, we aim to construct a time
—dependent risk score that captures dynamic changes in
inflammation, metabolism, and radiomics over the disease course.
(5) Clinical Implementation Study. Finally, we will integrate the
refined nomogram into our hospital’s electronic decision—support
system, piloting its use in multidisciplinary tumor boards and
measuring its impact on diagnostic timing, treatment selection,
and patient outcomes in a feasibility study.
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