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Background: The immunosuppressive nature of the HCC tumor

microenvironment limits the effectiveness of current immunotherapeutic

strategies. Identifying key immune-related regulators is essential for improving

patient stratification and therapeutic outcomes.

Methods: Transcriptomic data from TCGA and GEO datasets were integrated to

screen IRDEGs. Functional enrichment, co-expression, and PPI network analyses

were performed to explore the biological context. Consensus clustering based

on hub gene expression was used to define immune-related molecular subtypes.

Immune infiltration characteristics, immune checkpoint expression, TIDE and IPS

scores, and predicted immunotherapy responses were compared. FCGR2A

expression was validated in clinical HCC tissues by immunohistochemistry and

western blotting. In vitro assays evaluated the effects of FCGR2A knockdown on

HCC cell proliferation, migration, and invasion.

Results: A total of 21 IRDEGs were identified, among which FCGR2A was

consistently upregulated and associated with poor prognosis. Enrichment

analysis indicated significant involvement in immune activation and

inflammatory signaling pathways. PPI network analysis identified nine hub

genes, including FCGR2A. Consensus clustering revealed two distinct immune-

related molecular subtypes with marked differences in immune infiltration

patterns, immune checkpoint profi les, TIDE and IPS scores. GSEA

demonstrated subtype-specific activation of antigen processing, T cell

signaling, and inflammatory pathways. Experimental validation confirmed

elevated FCGR2A expression in HCC tissues. Functional assays showed that

FCGR2A knockdown significantly inhibited HCC cell proliferation, migration,

and invasion.
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Conclusions: FCGR2A acts as both a prognostic biomarker and an immune

regulatory hub in HCC, anchoring a broader gene network that defines immune

subtypes and predicts therapeutic responsiveness. Incorporating FCGR2A-based

stratification may optimize immunotherapeutic strategies for HCC.
KEYWORDS

hepatocellular carcinoma, FCGR2A, immune subtypes, immunotherapy, bioinformatics,
functional validation
Introduction

HCC is the predominant subtype of primary liver cancer,

accounting for approximately 90% of global liver cancer cases,

and consistently ranks among the leading causes of cancer-related

morbidity and mortality worldwide (1). Due to the insidious onset

and lack of highly sensitive diagnostic biomarkers, most HCC

patients are diagnosed at an advanced stage, at which point

conventional therapies offer limited efficacy. The substantial

intratumor heterogeneity and drug resistance further complicate

clinical management (2). Thus, HCC treatment remains a

formidable challenge, underscoring the urgent need for novel

therapeutic strategies.

In recent years, immunotherapies such as ICIs have

demonstrated clinical benefits in advanced HCC, with several

pivotal phase III trials confirming survival advantages (3–6).

Nevertheless, the application of ICIs in HCC faces multiple

obstacles. Not all patients respond to immunotherapy, and the

immunosuppressive microenvironment, together with the intrinsic

heterogeneity of HCC, contributes to primary or acquired resistance

in a significant proportion of cases (7). Currently, the absence of

reliable biomarkers for predicting therapeutic responsiveness

hinders optimal clinical decision-making (8, 9).

Given this background, the identification of novel therapeutic

targets and prognostic biomarkers is crucial to improving outcomes

in HCC (10). In-depth exploration of the tumor immune

microenvironment and discovery of key immune-related
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molecules may overcome treatment resistance and enhance

immunotherapeutic efficacy (11). This study focuses on the

characterization of IRDEGs in HCC, which are intimately

involved in antitumor immune responses and may contribute to

tumor progression and immune evasion when dysregulated. Prior

studies across various cancers have demonstrated that profiling

IRDEGs can unveil novel therapeutic targets for personalized

treatment and improve clinical efficacy (12, 13). By integrating

multi-omics analyses with experimental validation, this study aims

to systematically identify immune-regulatory IRDEGs in HCC,

uncover their mechanistic roles, and propose novel immune

biomarkers and therapeutic candidates, providing a theoretical

and technical foundation for precision immunotherapy in HCC.
Materials and methods

Data acquisition and preprocessing

RNA-seq data and clinical information for 368 HCC tumor

samples and 50 adjacent normal tissues were obtained from the

TCGA-LIHC dataset via the R package TCGAbiolinks (14). Raw

count data were normalized to FPKM format, and clinical

annotations were retrieved from the UCSC Xena platform (15).

Two microarray datasets, GSE10143 (16) (GPL5474, 80 HCC

samples) and GSE14520 (17) (GPL3921, 225 HCC and 220

normal liver samples), were downloaded from the GEO database
TABLE 1 Baseline table with LIHC patients characteristics.

Characteristics Overall

Age, median (IQR) 62 (52, 69.75)

Gender, n (%)

Male 277 (66.3%)

female 141 (33.7%)

Stage, n (%)

Stage I 190 (49.2%)

Stage II 96 (24.9%)

Stage III&IV 100 (25.9%)
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using the R package GEOquery (18, 19) (Table 1). A total of 124

IRGs were retrieved from the GeneCards (20, 21) using the

keyword “Immunotherapy” and filtered by criteria: protein-

coding and relevance score >3. (Supplementary Table S1). Batch

effects across GEO datasets were corrected using the sva package

(22), and expression matrices were normalized using limma (23).

Principal Component Analysis (24) was used to assess

batch correction.

To provide an integrated perspective on the analytical strategy

employed in this study, a comprehensive schematic diagram is

presented in Flow Chart for the Comprehensive Analysis of

FCGR2A. This workflow outlines the sequential steps from multi-

dataset integration and immune-related gene screening to FCGR2A-

centric analyses, co-expression network construction, consensus

clustering, and evaluation of immunotherapy responsiveness.

Flow Chart for the Comprehensive Analysis of FCGR2A.
Identification of differentially expressed
genes

DEGs were identified between tumor and normal samples in the

TCGA-LIHC dataset using DESeq2 (|logFC| > 0.25, p < 0.05) (25).

For GEO datasets, DEGs were identified using limma with the same

thresholds. A volcano plot was generated using ggplot2 (v3.4.4).

Volcano plots and heatmaps were generated using ggplot2 and

pheatmap (v1.0.12), respectively, to visualize expression differences

of IRDEGs.
Functional enrichment analysis

GO (26), KEGG (27) and GSEA (28) were conducted using the

clusterProfiler package (v4.10.0) (29). GO and KEGG analyses were

based on IRDEGs, while GSEA was performed on the full gene

expression matrix ranked by logFC using the MSigDB c2 gene set

(v2023.2.Hs). Parameters included seed = 2020, gene set size = 10–

500, adjusted p < 0.05, and FDR < 0.25.
Prognostic model construction

Patients were stratified into high- and low-expression groups

based on the optimal cut-off value of FCGR2A. Kaplan–Meier (30)

survival curves and time-dependent ROC (31) curves were

generated using survival and survivalROC packages. Cox

regression was used to determine independent prognostic value,

with visualizations via forest plots.
PPI network and hub gene identification

A PPI network of FCGR2A co-expressed genes was constructed

using STRING (score > 0.400) (32). Hub genes were identified using

CytoHubba (algorithms: MCC, Degree, MNC, EPC, Closeness)
Frontiers in Immunology 03
(33), and the top 10 genes from each method were intersected.

Venn diagrams visualized the overlapping hub genes.
Multilayer regulatory networks

Regulatory relationships were retrieved from multiple

databases: TF–mRNA from ChIPBase (34), miRNA–mRNA from

TarBase (http://www.microrna.gr/tarbase), RBP–mRNA from

StarBase (https://starbase.sysu.edu.cn/), and drug–gene

interactions from CTD (https://ctdbase.org/). All networks were

visualized using Cytoscape (35).
Immune infiltration and molecular
subtyping

ssGSEA (36) was applied using the GSVA package to estimate

immune cell infiltration levels. Spearman correlation and heatmaps

were used to evaluate immune cell relationships. Hub gene–

immune cell associations were visualized using bubble plots.

Consensus clustering (37) based on hub gene expression was

performed using ConsensusClusterPlus (38) to identify HCC

subtypes. CDF curves and consensus matrices determined the

optimal number of clusters. Heatmaps and group comparison

plots showed hub gene differences across subtypes.
Immunotherapy response prediction

Expression differences of 47 ICGs across subtypes were assessed

using the Mann–Whitney U test (39) (Supplementary Table S2).

TIDE scores were downloaded from the TIDE platform to predict

immune evasion and therapy response (40, 41) (http://

tide.dfci.harvard.edu). IPS from the TCIA database quantified

tumor immunogenicity and were compared between subtypes

(42) (https://tcia.at/home). TMB (43) (https://www.cbioportal.org/

) and MSI data from cBioPortal were also analyzed between groups.
Somatic mutation and pathway analysis

Masked somatic mutation data were obtained from TCGA and

processed with VarScan. Mutation profiles were analyzed using

maftools (44) (v2.10.0). Differences between FCGR2A high- and

low-expression groups were visualized using ggplot2. Oncogenic

pathway enrichment was analyzed using maftools functions

OncogenicPathways and PlotOncogenicPathways.
Patient tissue specimens and
immunohistochemistry

Formalin-fixed, paraffin-embedded HCC tissues and paired

adjacent non-tumorous liver tissues were obtained from Sichuan
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Cancer Hospital, Chengdu, China. None of the patients had

received preoperative chemotherapy, radiotherapy, or

immunotherapy prior to surgical resection. Clinicopathological

information was collected from medical records, and all tissue

samples were h i s topatho log ica l ly confirmed by two

independent pathologists.

FFPE tissue specimens from HCC and matched adjacent non-

tumor tissues were sectioned at 4 mm thickness. After

deparaffinization and rehydration, antigen retrieval was

performed using 10 mM sodium citrate buffer (pH 6.0) in a

pressure cooker for 10 minutes. Endogenous peroxidase activity

was quenched with 3% hydrogen peroxide for 10 minutes, followed

by blocking with 5% BSA for 30 minutes at room temperature.

Sections were incubated overnight at 4 °C with a rabbit anti-

FCGR2A primary antibody (Abcam, ab134045, dilution 1:200),

followed by incubation with HRP-conjugated secondary antibody

(ZSGB-BIO, China, PV-9001) for 30 minutes at 37 °C. Signal was

developed using DAB substrate kit (ZSGB-BIO), and nuclei were

counterstained with hematoxylin. Stained sections were scanned

using a PANNORAMIC 250 digital slide scanner (3DHISTECH).

Quantitative analysis of FCGR2A expression was performed using

HALO software (v3.3; Indica Labs). Positive staining was defined as

brown cytoplasmic or membranous signal. Expression scores were

calculated based on H-score method: H-score = (% weak ×1) + (%

moderate ×2) + (% strong ×3), yielding a total score range of 0–300.
Cell culture and in vitro experiments

THLE-2 normal liver cells (CL-0833, Procell) and human HCC

cell lines SNU-878 (h458, iCell), Huh-7 (h080, iCell), and HepG2

(h092, iCell) were cultured in RPMI-1640 or DMEM (Gibco, USA)

supplemented with 10% fetal bovine serum (FBS, Gibco) and 1%

penicillin/streptomycin at 37 °C in a humidified incubator with 5%

CO2. For gene silencing assays, SNU-878 cells were seeded in 6-well

plates at a density of 2 × 105 cells/well. Transfection was conducted

using the Hieff Trans™ Liposomal Transfection Reagent (YEASEN,

Shanghai, China) according to the manufacturer’s instructions.

Briefly, 75pmol of siRNA was mixed with 42.5mL transfection

buffer and 7.5mL Plus reagent, incubated for 10 min to form a

siRNA-lipid complex, and added to cells after 6 h of attachment.

Medium was replaced after 6 h with fresh complete medium. Four

siRNAs targeting FCGR2A were synthesized by GenePharma

(Shanghai, China) with the following sequences: FCGR2A-Homo-

12: Sense: 5′-AUGACUAUGAGACCCAAATT-3′ and Antisense:

5′-UUUGGGUCUCAUAGUCAUTT-3′; FCGR2A-Homo-137:

Sense: 5′-GAAACUUGAGCCCCCGUGGTT-3′ and Antisense:

5′-CCACGGGGGCUCAAGUUUCTT-3′; FCGR2A-Homo-507:

Sense: 5′-CAUUUGGAUUCCACCUUCUUTT-3′ and Antisense:

5′-AGAAGGUGGAAUCCAAAUGTT-3′; FCGR2A-Homo-678

Sense: 5′-AUUUGGCACUGCUGUAGCAGTT-3′ and Antisense:

5′-CUGCUACAGCAGUGCCAAUTT-3′. Knockdown efficiency

was evaluated by Western blotting 48 hours post-transfection.

The most effective siRNA sequence was used for subsequent

functional assays.
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Western blotting

Total protein was extracted from transfected and control cells

using RIPA lysis buffer (Beyotime, China) supplemented with

protease and phosphatase inhibitors. Protein concentrations were

determined using a BCA Protein Assay Kit (Thermo Fisher

Scientific, USA). Equal amounts of protein (30mg per sample)

were separated by SDS-PAGE on 10% polyacrylamide gels, and

then transferred onto PVDF membranes (Millipore, USA).

Membranes were blocked with 5% non-fat milk in TBST for 1

hour at room temperature and incubated overnight at 4 °C with

primary antibodies against FCGR2A (Abcam, ab182958, 1:1000)

and b-actin (Cell Signaling Technology, #4970, 1:5000). After

washing, membranes were incubated with appropriate HRP-

conjugated secondary antibodies (1:5000, CST) for 1 hour at

room temperature. Protein bands were visualized using enhanced

chemiluminescence (ECL, Thermo Scientific) and imaged with a

ChemiDoc™ XRS+ System (Bio-Rad, USA). Band intensities were

quantified using ImageJ software (v2.3.0, NIH, USA) and

normalized to b-actin.
Cell functional assays

Cell viability was assessed using the Cell Counting Kit-8 (CCK-

8, Dojindo, Japan) according to the manufacturer’s instructions.

Transfected and control SNU-878 cells were seeded into 96-well

plates (5 × 10³ cells/well) and incubated for 24, 48, and 72 hours. At

each time point, 10mL of CCK-8 reagent was added per well and

incubated for 2 hours. Absorbance was measured at 450 nm using a

microplate reader (BioTek, USA).

Wound healing assays were conducted to evaluate cell

migratory capacity. Transfected SNU-878 cells were seeded into

6-well plates and grown to ~90% confluency. A straight scratch was

made using a 200mL pipette tip, and detached cells were gently

removed with PBS. Cells were then cultured in serum-free medium

and imaged at 0 and 24 hours under an inverted microscope

(Olympus, Japan). Migration rate was calculated by measuring

the wound area using ImageJ software.

Invasion assays were performed using Transwell chambers

(8mm pore size, Corning, USA) pre-coated with Matrigel (BD

Biosciences, USA). A total of 1 × 105 transfected cells in serum-

free medium were seeded into the upper chamber, while the lower

chamber was filled with medium containing 10% FBS as

chemoattractant. After 24 hours of incubation at 37 °C, non-

invading cells were removed, and invaded cells on the lower

surface were fixed with 4% paraformaldehyde, stained with 0.1%

crystal violet, and counted under a microscope.
Statistical analysis

All analyses were conducted using R (v4.3.0) and SPSS 27.0.

Student’s t-test or Mann–Whitney U test was applied as

appropriate. The Kruskal–Wallis test was used for comparisons
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among multiple groups. Spearman correlation assessed variable

relationships. A p-value < 0.05 was considered statistically
Frontiers in Immunology 05
significant. All in vitro experiments, including CCK-8 assays,

wound healing, and Transwell assays, were independently

performed at least three times. Data are presented as mean ± SD

from three biological replicates unless otherwise specified.
Results

Identification of IDREGs and initial
screening of FCGR2A

Firstly, to identify immune-related gene signatures in HCC, we

first performed differential expression analyses using the liver

cancer expression datasets GSE10143 and GSE14520 (Table 2).
TABLE 2 GEO microarray chip information.

GSE10143 GSE14520

Platform GPL5474 GPL3921

Species Homo sapiens Homo sapiens

Tissue Liver Liver

Samples in LIHC group 80 225

Samples in Control group / 220

Reference PMID: 31344396 PMID: 39718737
FIGURE 1

Identification and functional characterization of IRDEGs in HCC. (A) Volcano plot showing DEGs in the TCGA-LIHC cohort. Red and blue dots represent
significantly upregulated and downregulated genes, respectively (|log2FC| > 1.5, adj. p < 0.05); gray dots indicate non-significant genes. (B) Venn diagram
showing the overlap between DEGs and known IRGs, identifying 21 IRDEGs for further analysis. (C) Heatmap displaying the expression profiles of the 21
IRDEGs in TCGA-LIHC tumor versus control samples. Red and blue indicate higher and lower expression levels, respectively. (D) Barplot summarizing
GO and KEGG enrichment analysis results of the IRDEGs, including top terms from BP, CC, MF, and KEGG pathways. (E) Gene-concept network plot of
significantly enriched KEGG pathways based on the 21 IRDEGs. Node size reflects the gene count per term.
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After batch effect correction and normalization using the sva

package, PCA and boxplot visualizations confirmed effective

harmonization across the merged datasets (Supplementary

Figures S1A–D).

In the TCGA cohort, 12,596 DEGs were identified (|log2FC| >

0.25, p < 0.05), with 7,853 upregulated and 4,743 downregulated

(Figure 1A). Similarly, 2,630 DEGs (1,467 up, 1,163 down) were

obtained from the merged GEO datasets (Supplementary Figure

S3A). Venn diagram analysis revealed 1,790 overlapping DEGs

between TCGA and GEO cohorts (Supplementary Figures S3B–C),

which were intersected with a predefined IRG set to yield 21

IRDEGs (Figure 1B; Supplementary Table S3). These included:

BIRC5, MAGEA1, PRAME, BRCA2, SART3, FCGR2A, JUN,

STAT3, IL1B, IL4R, FOLH1, CD69, AKT1, IL2RB, FLT3, EGFR,

CRP, TNFSF10, KLRK1, CXCR4, and ITGB2.

Expression heatmaps in both TCGA (Figure 1C) and GEO

(Supplementary Figure S3D) datasets confirmed consistent

differential expression patterns of the 21 IRDEGs between HCC

and normal tissues. Further statistical comparison validated that

most IRDEGs showed significant differential expression across both

datasets, including FCGR2A (Supplementary Figures S2A, B).

Functional enrichment analyses demonstrated that IRDEGs

were significantly involved in immune- and inflammation-related
Frontiers in Immunology 06
pathways. GO analysis revealed enrichment in cytokine-mediated

signaling, leukocyte adhesion, and nitric oxide biosynthesis

(Figure 1D; Table 3). Molecular functions such as opsonin

binding, immune receptor activity, and complement binding were

also prominent. KEGG analysis highlighted pathways including

Th17 cell differentiation, JAK–STAT signaling, and pancreatic

cancer. The enrichment network (Figure 1E) and complementary

GO-term networks (Supplementary Figures S3E–G) further

illustrated the functional landscape of IRDEGs and positioned

FCGR2A as a hub gene involved in multiple immune-

regulatory processes.
Prognostic and functional implications of
FCGR2A in HCC

To assess the prognostic significance of FCGR2A in LIHC,

patients from the TCGA-LIHC cohort were stratified into high- and

low-expression groups based on the optimal cutoff value. Kaplan–

Meier analysis revealed significantly poorer OS in the high-

expression group (p < 0.05; Figure 2A). Time-dependent ROC

curves indicated moderate predictive accuracy, with AUCs ranging

from 0.5 to 0.7 at 1-, 3-, and 5-year time points (Figure 2B). A risk
TABLE 3 Result of GO and KEGG enrichment analysis for DEGs.

Ontology ID Description Gene ratio Bg ratio Pvalue P.adjust Qvalue

BP GO:0019221 cytokine-mediated signaling pathway 7/21 492/18614 7.28E-07 1.14E-03 5.71E-04

BP GO:0071276 cellular response to cadmium ion 3/21 31/18614 5.45E-06 4.15E-03 2.08E-03

BP GO:1903039
positive regulation of leukocyte cell-cell
adhesion

5/21 273/18614 1.10E-05 4.15E-03 2.08E-03

BP GO:0045429
positive regulation of nitric oxide
biosynthetic process

3/21 42/18614 1.38E-05 4.15E-03 2.08E-03

BP GO:0050999 regulation of nitric-oxide synthase activity 3/21 42/18614 1.38E-05 4.15E-03 2.08E-03

CC GO:0009897 external side of plasma membrane 5/21 426/19518 7.38E-05 5.38E-03 4.27E-03

CC GO:0000228 nuclear chromosome 3/21 223/19518 1.68E-03 6.14E-02 4.87E-02

CC GO:0031252 cell leading edge 3/21 422/19518 9.99E-03 1.90E-01 1.51E-01

CC GO:0000800 lateral element 1/21 12/19518 1.28E-02 1.90E-01 1.51E-01

CC GO:1990391 DNA repair complex 1/21 22/19518 2.34E-02 1.90E-01 1.51E-01

MF GO:0140375 immune receptor activity 5/21 141/18369 4.57E-07 6.04E-05 3.32E-05

MF GO:0004896 cytokine receptor activity 4/21 92/18369 3.30E-06 2.18E-04 1.20E-04

MF GO:0001846 opsonin binding 2/21 21/18369 2.58E-04 1.14E-02 6.25E-03

MF GO:0001848 complement binding 2/21 26/18369 3.98E-04 1.16E-02 6.37E-03

MF GO:0019838 growth factor binding 3/21 132/18369 4.39E-04 1.16E-02 6.37E-03

KEGG hsa04659 Th17 cell differentiation 5/16 109/8541 1.21E-06 1.98E-04 8.25E-05

KEGG hsa05162 Measles 5/16 139/8541 4.02E-06 3.02E-04 1.26E-04

KEGG hsa05321 Inflammatory bowel disease 4/16 66/8541 5.52E-06 3.02E-04 1.26E-04

KEGG hsa04630 JAK-STAT signaling pathway 5/16 168/8541 1.02E-05 3.10E-04 1.29E-04

KEGG hsa05212 Pancreatic cancer 4/16 77/8541 1.02E-05 3.10E-04 1.29E-04
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distribution plot demonstrated increased mortality in patients with

elevated FCGR2A expression (Figure 2C).

Univariate Cox regression analysis identified FCGR2A and clinical

stage as potential prognostic variables (Figure 2D). Multivariate

analysis further confirmed FCGR2A as an independent prognostic

factor for OS (Figure 2E). Calibration curves showed good concordance

between predicted and actual survival probabilities, especially at 1 year

(Figures 2F–H), supporting the model’s predictive validity.

To explore the functional relevance of FCGR2A, we constructed

a PPI network using the GeneMANIA database, which revealed

extensive connections between FCGR2A and immune-regulatory

genes (Supplementary Figure S4A; Supplementary Table S4).

Additionally, multilayered regulatory networks were established,

including transcription factors (Supplementary Figure S4B;

Supplementary Table S5), miRNAs (Supplementary Figure S4C;

Supplementary Table S6), RNA-binding proteins (Supplementary

Figure S4D; Supplementary Table S7), and candidate compounds
Frontiers in Immunology 07
(Supplementary Figure S4E; Supplementary Table S8). These

findings suggest that FCGR2A may play a multifaceted role in

tumor biology and immune regulation, highlighting its potential as

both a prognostic biomarker and a therapeutic target in LIHC.
Experimental validation of FCGR2A as a
functional promoter in HCC

To validate the tumor-specific expression of FCGR2A at the

protein level, we performed IHC on paired HCC and adjacent

tissues. FCGR2A was predominantly localized to the membrane

and cytoplasm, showing significantly higher expression in tumor

tissues (p < 0.001; Figures 3A,B). Western blot (WB) analysis

further confirmed this upregulation, with tumor tissues displaying

a 5-fold increase in FCGR2A levels compared to adjacent liver (6.24

± 4.28% vs. 1.20 ± 0.97%).
FIGURE 2

Prognostic significance and survival prediction value of FCGR2A in hepatocellular carcinoma. (A) Kaplan–Meier survival analysis of FCGR2A in the TCGA-
LIHC cohort. (B) Time-dependent ROC curves of FCGR2A expression for predicting 1-, 3-, and 5-year overall survival. (C) Distribution of FCGR2A
expression, survival time, and survival status in HCC patients. (D, E) Univariate and multivariate Cox regression analyses of clinical variables and FCGR2A
expression in relation to overall survival. (F–H) Calibration plots for a nomogram model integrating FCGR2A expression to predict 1-, 3-, and 5-year
overall survival probabilities in HCC patients.
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To identify suitable in vitro models, FCGR2A protein

expression was evaluated in normal hepatocytes (THLE-2) and

HCC cell lines (HepG2, Huh-7, and SNU-878). All cancer cell lines

exhibited elevated FCGR2A expression, with the highest level

observed in SNU-878 cells (p < 0.01), which were therefore

selected for subsequent functional assays (Supplementary Figure

S8). The knockdown efficiency of four siRNA constructs targeting

FCGR2A in SNU-878 cells was further confirmed by Western

blotting (Figures 3C, D).

After selecting SNU-878 as the cell model with the highest

FCGR2A expression, functional validation was performed using

siRNA-mediated FCGR2A knockdown. CCK-8 assays showed that

silencing FCGR2A significantly suppressed cell proliferation at 24,

48, and 72 hours (Figures 4A, B). Wound healing assays

demonstrated reduced migratory ability following FCGR2A

inhibition (Figures 4C,D), while Transwell assays revealed

markedly impaired invasion capacity (Figures 4E, F). These

findings collectively support a pro-tumorigenic role of FCGR2A

in HCC progression.
Functional enrichment and co-expression
network analysis of FCGR2A

A total of 589 DEGs were identified from the TCGA-LIHC

dataset under the criteria of |log2 fold change| > 1.5 and adjusted p-

value < 0.05, including 430 upregulated and 159 downregulated

genes. A volcano plot was generated to visualize the global
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transcriptional alterations (Figure 5A), and a heatmap illustrating

the top 10 upregulated and downregulated DEGs, along with

FCGR2A , wa s c on s t ru c t ed u s i ng th e phe a tmap R

package (Figure 5B).

To refine the genes closely associated with FCGR2A, we

intersected the DEGs from TCGA-LIHC with the gene set

obtained from the combined GEO datasets, yielding 253

overlapping DEGs (Supplementary Table S9). Pearson correlation

analysis was subsequently performed between FCGR2A and these

overlapping DEGs. The top 20 genes with the highest absolute

correlation coefficients were defined as FCGR2A co-expressed

genes, including CD86, LAIR1, LILRB4, ALOX5AP, CYBB, SYK,

ITGB2, FCGR1A, HCK, CD53, VSIG4, FPR1, PLAUR, PTPRO,

MNDA, DOCK2, IL2RA, BCAT1, CCR1, and PLEK. Correlation

heatmaps in both the TCGA (Figure 5C) and combined GEO

datasets (Figure 5D) demonstrated consistent, robust positive

correlations (r > 0), supporting the reliability of these co-

expressed relationships.

We further performed expression comparison analysis of the

nine top-ranked hub genes between FCGR2A-high and FCGR2A-

low groups. All genes—MNDA, CCR1, PLEK, FCGR2A, FCGR1A,

HCK, CYBB, CD86, and ITGB2—were significantly upregulated in

the high-expression group (p < 0.001; Figure 5E).

To further characterize the co-expression relationships at the

protein level, we constructed a PPI network of the 20 co-expressed

genes using the STRING database (Supplementary Figure S5A).

Five centrality algorithms—Closeness (Supplementary Figure S5B),

Degree (Supplementary Figure S5C), EPC (Supplementary Figure
FIGURE 3

FCGR2A protein expression in HCC tissues and liver cell lines. (A) Representative IHC staining of FCGR2A in HCC tissues and matched adjacent non-
tumor tissues. (B) Quantitative scoring of IHC staining for FCGR2A expression in tumor and adjacent tissues. (C) Western blot analysis showing the
knockdown efficiency of four siRNA constructs targeting FCGR2A in SNU-878 cells. (D) Densitometric quantification of FCGR2A protein levels
normalized to b-actin after siRNA transfection. ***p < 0.001.
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S5D) , MCC (Supplementary Figure S5E) , and MNC

(Supplementary Figure S5F)—were applied via the CytoHubba

plugin in Cytoscape to identify topological hub genes. A Venn

diagram revealed nine genes commonly ranked among the top 10

by all algorithms (Supplementary Figure S5G), confirming ITGB2,

CD86, CYBB, HCK, FCGR1A, FCGR2A, PLEK, CCR1, and MNDA

as hub genes closely connected to FCGR2A in LIHC.
Hub gene–based subtyping and immune
microenvironment characterization

To elucidate the immunological implications of FCGR2A and

its co-expressed hub genes, we assessed immune cell infiltration in

the TCGA-LIHC cohort using ssGSEA. A total of 28 immune cell

types were profiled across the FCGR2A-high and -low groups.
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Notably, 24 subsets displayed significantly different infiltration

levels (p < 0.05; Figure 6A), including activated CD4+/CD8+ T

cells, gd T cells, central/effector memory T cells, macrophages,

dendritic cells, regulatory T cells, natural killer cells, and T helper

subtypes (Th1/Th2/Th17), indicating a substantial shift in the

immune landscape based on FCGR2A expression.

To evaluate internal coordination among immune subtypes,

pairwise correlation heatmaps were generated within each

expression group. In the low-expression group (Figure 6B), strong

positive correlations were observed, most prominently between

effector memory CD8+ T cells and Th1 cells (r = 0.823, p < 0.05).

In the high-expression group (Figure 6C), a highly correlated

immune network was also evident, with the strongest link

detected between Tregs and MDSCs (r = 0.894, p < 0.05).

Finally, we evaluated the association between hub gene expression

and immune infiltration using correlation bubble plots. In the low-
FIGURE 4

Functional assays of FCGR2A knockdown in liver cancer cells. (A) CCK-8 assay images of SNU-878 cells transfected with si-NC or si-FCGR2A at 24 h,
48 h, and 72 h (B) Quantification of OD450 values from the CCK-8 assay at different time points. (C) Representative wound healing images at 0 h, 24 h,
48 h, and 72 h post-scratch in si-NC and si-FCGR2A groups. (D) Quantitative analysis of wound closure distance. (E) Representative images from Transwell
invasion assay showing cell invasion capacity. (F) Quantification of the number of invading cells per field. * p < 0.05; ** p < 0.01; *** p < 0.001.
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expression group (Figure 6D), CYBB expression showed the strongest

positive correlation with Treg abundance (r = 0.779, p < 0.05), while in

the high-expression group (Figure 6E), HCK was most strongly

correlated with T follicular helper cells (r = 0.817, p < 0.05). These

findings suggest that FCGR2A and its immune-related co-expressed

genes may participate in modulating distinct immune

microenvironments depending on expression status.
Hub gene–based subtyping reveals distinct
immune profiles in HCC

To investigate potential molecular subtypes in HCC, consensus

clustering was performed based on the expression profiles of nine

hub genes (FCGR2A, ITGB2, CD86, CYBB, FCGR1A, HCK,
Frontiers in Immunology 10
MNDA, PLEK, and CCR1) using the Consensus ClusterPlus

package. The optimal clustering partition divided the TCGA-

LIHC cohort into two subtypes: Subtype A (Cluster 1, n = 137)

and Subtype B (Cluster 2, n = 231), as supported by consensus

heatmaps and CDF curves (Figures 7A–C). A 3D t-SNE projection

further confirmed distinct separation between the two

clusters (Figure 7D).

Expression heatmaps and statistical comparisons demonstrated

that all nine hub genes were significantly differentially expressed

between the two subtypes (Figures 7E, F; p < 0.001 for each gene).

To characterize immunological differences between clusters, we

applied the ssGSEA algorithm to quantify the infiltration levels of

28 immune cell types. Differential analysis revealed statistically

significant differences (p < 0.05) in 27 immune cell subsets,

including key components such as CD8+ T cells, regulatory T
FIGURE 5

Identification and expression pattern of FCGR2A-related hub genes in HCC. (A) Volcano plot showing DEGs between high and low FCGR2A
expression groups in the TCGA-LIHC cohort. (B) Heatmap of the top 20 DEGs associated with FCGR2A expression. (C, D) Pearson correlation
matrices of FCGR2A-related genes in the low (C) and high (D) FCGR2A expression groups, respectively. (E) Boxplots showing the expression levels of
the 9 hub genes (MNDA, CCR1, PLEK, FCGR2A, FCGR1A, HCK, CYBB, CD86, ITGB2), which were selected from FCGR2A co-expressed DEGs.
* p < 0.05; *** p < 0.001.
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cells, dendritic cells, macrophages, NK cells, and memory T cells

(Supplementary Figure S6A).

Correlation heatmaps showed extensive co-infiltration patterns

within each subtype: in Subtype A, macrophages and MDSCs were

most strongly correlated (r = 0.827), while in Subtype B, the strongest

association was observed between Effector memory CD8+ T cells and

Type 1 helper T cells (r = 0.721) (Supplementary Figures S6B, C).

Additionally, gene–immune cell correlation bubble plots revealed that

HCK expression was most strongly correlated with T follicular helper

cells in Subtype A, whereas CD86 exhibited the strongest correlation

with MDSCs in Subtype B (Supplementary Figures S6D, E).
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Subtype-specific immunotherapeutic
implications and mutation landscape

We next assessed the immunotherapy response potential and

mutational characteristics associated with the two molecular

subtypes. A total of 44 ICGs were evaluated, of which 41 showed

statistically significant expression differences between Subtype A

and Subtype B (Supplementary Table S10). Specifically, TNFSF4,

TNFSF14, and IDO2 exhibited moderate significance (p < 0.01),

while most others, including CD86, PDCD1, CTLA4, and TIGIT,

showed highly significant differences (p < 0.001) (Figure 8A).
FIGURE 6

Correlation between hub genes and immune infiltration in HCC. (A) Comparison of immune cell infiltration levels between FCGR2A-high and -low
expression groups using ssGSEA. (B, C) Heatmaps of immune cell correlations within FCGR2A low (B) and high (C) expression groups. (D, E) Bubble
plots showing correlations between hub genes and immune cell infiltration scores in FCGR2A-low (D) and -high (E) groups. * p < 0.05;
*** p < 0.001; ns, not significant.
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Furthermore, Subtype A exhibited a lower TIDE score,

suggesting reduced immune evasion and potentially greater

benefit from immunotherapy (p < 0.001; Figure 8B). IPS

comparisons based on TCIA data also revealed statistically

significant subtype differences in IPS components, indicating

differential immune activation potential (Figure 8C).

We further analyzed somatic mutation data between High and

Low FCGR2A expression groups. The most frequently mutated

genes included TP53, CTNNB1, and TTN (Supplementary Figure

S7A). Notably, CTNNB1 mutation frequency was significantly

higher in the Low Expression group (p < 0.001; Supplementary

Figure S7D). Functional enrichment of mutated genes revealed

pathway preferences: WNT, RTK-RAS, and Hippo signaling were

dominant in the Low Expression group (Supplementary Figure
Frontiers in Immunology 12
S7B), while RTK-RAS, TP53, and WNT pathways were enriched in

the High Expression group (Supplementary Figure S7C).

Finally, genomic instability indicators including MSI and TMB

were compared. MSI scores differed significantly between the two

groups (p < 0.001; Supplementary Figure S7E), suggesting subtype-

specific immunogenomic features potentially relevant to immune

checkpoint blockade responsiveness.
Discussion

HCC is a malignancy with pronounced immune heterogeneity.

Despite the increasing clinical application of ICIs in recent years, their

efficacy remains limited to a subset of patients, indicating the
FIGURE 7

Identification of molecular subtypes based on the expression of hub genes. (A) Consensus matrix heatmap based on the expression of nine hub
genes in the TCGA-LIHC dataset. (B–C) CDF curve (B) and delta area plot (C) used to determine the optimal number of clusters. (D) 3D t-SNE
visualization of the two identified molecular subtypes. (E) Heatmap displaying the expression levels of hub genes across the two liver cancer
subtypes. (F) Group comparison plot of hub gene expression between Subtype A (Cluster 1) and Subtype B (Cluster 2). *** p < 0.001.
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existence of complex immune evasion mechanisms and therapeutic

resistance within the HCC immune microenvironment. This study

presents a systematic research strategy that integrates IRDEG

screening and functional interpretation, bridging data mining with

functional validation. By integrating multiple transcriptomic datasets

of HCC, we identified 21 IRDEGs closely associated with immune

regulation and established a prognostic model centered on FCGR2A,

achieving high predictive accuracy (AUC > 0.9). These findings offer

theoretical support for biomarker discovery and individualized

therapeutic strategies in HCC immunotherapy. Among the

identified IRDEGs, several genes such as BIRC5, MAGEA1, and

PRAME have been previously implicated in immune regulation

across multiple solid tumors. For instance, Survivin encoded by

BIRC5 not only modulates cell cycle progression but also

contributes to immune escape by upregulating PD-L1 expression

(45, 46);MAGEA1 and PRAME, as classical cancer-testis antigens,

possess strong immunogenicity and have been recognized as effective

targets for TCR-T cell therapies under specific HLA contexts (47, 48).

These genes exhibit dual properties—oncogenicity and antigenicity—

which may render them preferentially activated under immune-

suppressive conditions, thereby promoting tumor progression and

immune evasion simultaneously (49). Thus, the expression profile of

IRDEGs not only holds prognostic value but may also reflect critical

immune selective pressures shaping the tumor microenvironment.
Frontiers in Immunology 13
Functional enrichment analysis revealed that IRDEGs are

significantly enriched in cytokine-mediated signaling pathways,

including classical inflammatory cascades such as JAK/STAT and

NF-kB, and crosstalk with oncogenic pathways such as PI3K/AKT

and RAS/MAPK (50). This signaling interplay suggests a potential

mechanism by which immune and proliferative cues jointly shape the

HCC phenotype. Based on consensus clustering, we further stratified

HCC patients into two immune subtypes: an immune-inflamed

phenotype enriched for immune response and chemotaxis signals,

and an immune-excluded phenotype characterized by

immunosuppressive pathways such as Wnt/b-catenin and TGF-b.
This classification aligns with previously reported immune

phenotypes in liver cancer and provides a conceptual framework

for explaining heterogeneous responses to ICIs while informing

combination treatment strategies (51, 52). Our FCGR2A-centered

classification complements existing immune subtyping frameworks

by providing a molecularly grounded, gene-specific perspective that

links immune activation patterns with clinical outcomes, thereby

enhancing its potential translational relevance. FCGR2A emerged as

a central node in the PPI network, interacting with multiple immune-

related proteins such as SYK, ITGB2, and FCGR3A (53). Previous

studies have shown that FCGR2A, a low-affinity Fcg receptor, plays a
key role in ADCP mediated by macrophages and regulates myeloid

cell polarization via Fc signaling pathways (54, 55). We validated the
FIGURE 8

Immune checkpoint expression and predicted immunotherapy responses between HCC subtypes. (A) Expression profiles of immune checkpoint-
related genes between Cluster1 and Cluster2. (B) TIDE scores in Cluster2. (C) IPS analysis under four immunotherapy scenarios. * p < 0.05; ** p <
0.01; *** p < 0.001; ns, not significant.
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expression pattern and biological functions of FCGR2A through IHC

and in vitro assays, demonstrating its significant upregulation inHCC

tissues and its capacity to promote tumor cell proliferation,

migration, and invasion. Given its upstream interaction with SYK

and the established downstream activation of PI3K/AKT and NF-kB
signaling, it is plausible that FCGR2A may drive tumor progression

through these canonical immune-related pathways. This mechanistic

axis represents a promising direction for further exploration to

delineate how FCGR2A integrates immune recognition with

oncogenic signaling in HCC. These findings suggest that FCGR2A

may represent an adaptive response to immune pressure and

function as a central mediator linking immune recognition, signal

transduction, and tumor cell behavior.

From a translational perspective, FCGR2A has potential as both a

diagnostic biomarker in immune pathology and a therapeutic target.

Recent advances in antibody Fc engineering—such as enhancing

FcgR binding affinity—have been employed to improve ADCC, and

in this context, modulating FCGR2A expression or function may

provide a novel entry point to boost ICI responsiveness in HCC (56).

Furthermore, the prognostic model incorporating FCGR2A

demonstrated excellent risk stratification capacity (AUC > 0.9), and

could be integrated with traditional staging systems such as BCLC or

TNM to form a dual-layer molecular-clinical predictive framework,

thereby enhancing the precision of patient stratification and

therapeutic decision-making (57). Despite the comprehensive

mechanistic and experimental validation in this study, several

limitations remain. First, all bioinformatic analyses relied on

publicly available datasets and lack validation in large-scale, multi-

center cohorts. Future work will aim to expand these analyses across

additional international datasets and prospective clinical samples to

further validate the robustness and generalizability of our findings.

Second, the IHC validation in this study was based on a relatively

modest number of patient samples, and the in vitro functional assays

were performed using a single HCC cell line (SNU-878). These

factors may limit the generalizability of our experimental findings.

Third, the cell-type–specific expression patterns and signaling roles of

FCGR2A (e.g., in tumor-associated macrophages vs. tumor cells)

warrant further investigation using single-cell and spatial

transcriptomic technologies. Integrating these multi-resolution

datasets could clarify whether FCGR2A-driven immune

modulation is predominantly immune-cell–intrinsic or tumor-cell–

associated. Finally, while in vitro assays have preliminarily confirmed

its functional role, causal relationships and immunotherapeutic

implications require further validation in organoid or animal models.

In conclusion, this study systematically delineates the role of

FCGR2A in HCC immune regulation and tumor progression

through multi-omics analysis, network modeling, and biological

val idation. Our findings establ ish FCGR2A as a key

immunoregulatory molecule and propose a closed-loop strategy

for biomarker discovery—from data mining to functional

confirmation. Collectively, this study integrates multi-omics and

functional validation to define FCGR2A as a mechanistically

interpretable biomarker linking immune activation with clinical

outcomes, offering potential guidance for personalized

immunotherapy and advancing precision oncology in HCC.
Frontiers in Immunology 14
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

This study was conducted in accordance with the Declaration of

Helsinki and approved by the Ethics Committee of Sichuan Cancer

Hospital (Approval No. SCCHEC-02-2024-222). Written informed

consent was obtained from all patients prior to the collection and

use of their tissue samples. All patient data were anonymized to

protect privacy. Publicly available datasets were analyzed in

accordance with their data access policies, and no additional

ethical approval was required for these datasets.
Author contributions

DZ: Writing – original draft, Writing – review & editing. YL:

Conceptualization, Writing – original draft. HY: Data curation,

Writing – original draft. XC: Formal Analysis, Writing – original

draft. YC: Investigation, Writing – original draft. SM: Methodology,

Writing – original draft. YS: Project administration, Writing –

original draft. FW: Project administration, Writing – original draft.

XPC: Resources, Writing – original draft. QY: Software, Writing –

original draft. ZL: Supervision, Writing – original draft. MW:

Writing – review & editing. XH: Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This study was supported

by the Science and Technology Department of Sichuan Province

(Grant No. 2024YFHZ0358).
Acknowledgments

We thank all the participants and medical staff involved in

this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1641420
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2025.1641420
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.1641420/

full#supplementary-material
Frontiers in Immunology 15
SUPPLEMENTARY TABLE S1

List of immune-related genes (IRGs) obtained fromGeneCards using the keyword
"Immunotherapy", filtered by protein-coding status and relevance score >3.

SUPPLEMENTARY TABLE S2

Immune checkpoint genes (ICGs) used for subtype comparison.

SUPPLEMENTARY TABLE S3

Differentially expressed genes (DEGs) identified from TCGA-LIHC dataset
using DESeq2.

SUPPLEMENTARY TABLE S4

Gene interaction candidates predicted by GeneMANIA using FCGR2A as the

seed gene.

SUPPLEMENTARY TABLE S5

mRNA–TF regulatory network pairs derived from ChIPBase.

SUPPLEMENTARY TABLE S6

mRNA–miRNA regulatory network.

SUPPLEMENTARY TABLE S7

mRNA–RBP interaction pairs based on StarBase predictions.

SUPPLEMENTARY TABLE S8

Predicted mRNA–drug interactions from the Comparative Toxicogenomics

Database (CTD).

SUPPLEMENTARY TABLE S9

Overlapping DEGs shared between TCGA and GEO datasets.

SUPPLEMENTARY TABLE S10

Expression matrix of immune checkpoint genes (ICGs) for 368 TCGA-

LIHC samples.
References
1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA: Cancer J Clin.
(2024) 74:12–49. doi: 10.3322/caac.21820

2. Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, et al. Biomarkers for diagnosis and
therapeutic options in hepatocellular carcinoma. Mol Cancer. (2024) 23:189.
doi: 10.1186/s12943-024-02101-z

3. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus
bevacizumab in unresectable hepatocellular carcinoma. New Engl J Med. (2020)
382:1894–905. doi: 10.1056/NEJMoa1915745

4. Qin S, Kudo M, Meyer T, Bai Y, Guo Y, Meng Z, et al. Tislelizumab vs sorafenib as
first-line treatment for unresectable hepatocellular carcinoma: A phase 3 randomized
clinical trial. JAMA Oncol. (2023) 9:1651–9. doi: 10.1001/jamaoncol.2023.4003

5. Ren Z, Xu J, Bai Y, Xu A, Cang S, Du C, et al. Sintilimab plus a bevacizumab
biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma
(ORIENT-32): a randomised, open-label, phase 2–3 study. Lancet Oncol. (2021)
22:977–90. doi: 10.1016/S1470-2045(21)00252-7

6. Sangro B, Chan SL, Kelley RK, Lau G, KudoM, SukeepaisarnjaroenW, et al. Four-
year overall survival update from the phase III HIMALAYA study of tremelimumab
plus durvalumab in unresectable hepatocellular carcinoma. Ann Oncol. (2024) 35:448–
57. doi: 10.1016/j.annonc.2024.02.005

7. Wang Z, Wang Y, Gao P, Ding J. Immune checkpoint inhibitor resistance in
hepatocellular carcinoma. Cancer Lett. (2023) 555:216038. doi: 10.1016/
j.canlet.2022.216038

8. Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, et al. Biomarkers
for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol. (2023) 20:780–
98. doi: 10.1038/s41571-023-00816-4

9. Singal AG, Hoshida Y, Pinato DJ, Marrero J, Nault JC, Paradis V, et al.
International liver cancer association (ILCA) white paper on biomarker development
for hepatocellular carcinoma. Gastroenterology. (2021) 160:2572–84. doi: 10.1053/
j.gastro.2021.01.233

10. Childs A, Aidoo-Micah G, Maini MK, Meyer T. Immunotherapy for
hepatocellular carcinoma. JHEP reports: Innovation Hepatol. (2024) 6:101130.
doi: 10.1016/j.jhepr.2024.101130
11. Shen KY, Zhu Y, Xie SZ, Qin LX. Immunosuppressive tumor microenvironment
and immunotherapy of hepatocellular carcinoma: current status and prospectives. J
Hematol Oncol. (2024) 17:25. doi: 10.1186/s13045-024-01549-2

12. Guerini-Rocco E, Bellerba F, Concardi A, Taormina SV, Cammarata G,
Fumagalli C, et al. Expression of immune-related genes and breast cancer recurrence
in women with ductal carcinoma in situ. Eur J Cancer (Oxford England: 1990). (2024)
203:114063. doi: 10.1016/j.ejca.2024.114063

13. Thareja G, Salvioni A, Lauzeral-Vizcaino F, Halabi N, Mery-Lamarche E,
Thebault N, et al. Assessing the implications of sentinel lymph node removal in
cervical cancer: an immunogenetic perspective - a SENTICOL ancillary study. J
immunother Cancer. (2024) 12:e008734. doi: 10.1136/jitc-2023-008734

14. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
Nucleic Acids Res. (2016) 44:e71. doi: 10.1093/nar/gkv1507

15. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al.
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