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Background: The immunosuppressive nature of the HCC tumor
microenvironment limits the effectiveness of current immunotherapeutic
strategies. Identifying key immune-related regulators is essential for improving
patient stratification and therapeutic outcomes.

Methods: Transcriptomic data from TCGA and GEO datasets were integrated to
screen IRDEGs. Functional enrichment, co-expression, and PPl network analyses
were performed to explore the biological context. Consensus clustering based
on hub gene expression was used to define immune-related molecular subtypes.
Immune infiltration characteristics, immune checkpoint expression, TIDE and IPS
scores, and predicted immunotherapy responses were compared. FCGR2A
expression was validated in clinical HCC tissues by immunohistochemistry and
western blotting. /n vitro assays evaluated the effects of FCGR2A knockdown on
HCC cell proliferation, migration, and invasion.

Results: A total of 21 IRDEGs were identified, among which FCGR2A was
consistently upregulated and associated with poor prognosis. Enrichment
analysis indicated significant involvement in immune activation and
inflammatory signaling pathways. PPl network analysis identified nine hub
genes, including FCGR2A. Consensus clustering revealed two distinct immune-
related molecular subtypes with marked differences in immune infiltration
patterns, immune checkpoint profiles, TIDE and IPS scores. GSEA
demonstrated subtype-specific activation of antigen processing, T cell
signaling, and inflammatory pathways. Experimental validation confirmed
elevated FCGR2A expression in HCC tissues. Functional assays showed that
FCGR2A knockdown significantly inhibited HCC cell proliferation, migration,
and invasion.
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Conclusions: FCGR2A acts as both a prognostic biomarker and an immune
regulatory hub in HCC, anchoring a broader gene network that defines immune
subtypes and predicts therapeutic responsiveness. Incorporating FCGR2A-based
stratification may optimize immunotherapeutic strategies for HCC.

KEYWORDS

hepatocellular carcinoma, FCGR2A, immune subtypes, immunotherapy, bioinformatics,

functional validation

Introduction

HCC is the predominant subtype of primary liver cancer,
accounting for approximately 90% of global liver cancer cases,
and consistently ranks among the leading causes of cancer-related
morbidity and mortality worldwide (1). Due to the insidious onset
and lack of highly sensitive diagnostic biomarkers, most HCC
patients are diagnosed at an advanced stage, at which point
conventional therapies offer limited efficacy. The substantial
intratumor heterogeneity and drug resistance further complicate
clinical management (2). Thus, HCC treatment remains a
formidable challenge, underscoring the urgent need for novel
therapeutic strategies.

In recent years, immunotherapies such as ICIs have
demonstrated clinical benefits in advanced HCC, with several
pivotal phase III trials confirming survival advantages (3-6).
Nevertheless, the application of ICIs in HCC faces multiple
obstacles. Not all patients respond to immunotherapy, and the
immunosuppressive microenvironment, together with the intrinsic
heterogeneity of HCC, contributes to primary or acquired resistance
in a significant proportion of cases (7). Currently, the absence of
reliable biomarkers for predicting therapeutic responsiveness
hinders optimal clinical decision-making (8, 9).

Given this background, the identification of novel therapeutic
targets and prognostic biomarkers is crucial to improving outcomes
in HCC (10). In-depth exploration of the tumor immune
microenvironment and discovery of key immune-related

Abbreviations: HCC, hepatocellular carcinoma; FCGR2A, Fc gamma receptor
IIA; TME, Tumor microenvironment; IRDEGs, immune-related differentially
expressed genes; GEO, Gene Expression Omnibus; TCGA, The Cancer Genome
Atlas; ssGSEA, Single-sample gene set enrichment analysis; TIDE, Tumor
Immune Dysfunction and Exclusion; IPS, Immunophenoscore; IHC,
immunohistochemistry; WB, Western blot; PPI, protein—protein interaction;
ICIs, immune checkpoint inhibitors; GO, Gene ontology; BP, Biological
Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto
Encyclopedia of Genes and Genomes; ICGs, immune checkpoint genes; TMB,
Tumor mutation burden; MSI, microsatellite instability; CDF, Cumulative
distribution function; 3D t-SNE, Three-dimensional t-distributed stochastic

neighbor embedding.
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molecules may overcome treatment resistance and enhance
immunotherapeutic efficacy (11). This study focuses on the
characterization of IRDEGs in HCC, which are intimately
involved in antitumor immune responses and may contribute to
tumor progression and immune evasion when dysregulated. Prior
studies across various cancers have demonstrated that profiling
IRDEGs can unveil novel therapeutic targets for personalized
treatment and improve clinical efficacy (12, 13). By integrating
multi-omics analyses with experimental validation, this study aims
to systematically identify immune-regulatory IRDEGs in HCC,
uncover their mechanistic roles, and propose novel immune
biomarkers and therapeutic candidates, providing a theoretical
and technical foundation for precision immunotherapy in HCC.

Materials and methods

Data acquisition and preprocessing

RNA-seq data and clinical information for 368 HCC tumor
samples and 50 adjacent normal tissues were obtained from the
TCGA-LIHC dataset via the R package TCGAbiolinks (14). Raw
count data were normalized to FPKM format, and clinical
annotations were retrieved from the UCSC Xena platform (15).
Two microarray datasets, GSE10143 (16) (GPL5474, 80 HCC
samples) and GSE14520 (17) (GPL3921, 225 HCC and 220
normal liver samples), were downloaded from the GEO database

TABLE 1 Baseline table with LIHC patients characteristics.

Overall

Characteristics

Age, median (IQR) 62 (52, 69.75)

Gender, n (%)

Male 277 (66.3%)
female 141 (33.7%)
Stage, n (%)
Stage 1 190 (49.2%)
Stage 1T 96 (24.9%)
Stage ITI&IV 100 (25.9%)
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using the R package GEOquery (18, 19) (Table 1). A total of 124
IRGs were retrieved from the GeneCards (20, 21) using the
keyword “Immunotherapy” and filtered by criteria: protein-
coding and relevance score >3. (Supplementary Table S1). Batch
effects across GEO datasets were corrected using the sva package
(22), and expression matrices were normalized using limma (23).
Principal Component Analysis (24) was used to assess
batch correction.

To provide an integrated perspective on the analytical strategy
employed in this study, a comprehensive schematic diagram is
presented in Flow Chart for the Comprehensive Analysis of
FCGR2A. This workflow outlines the sequential steps from multi-
dataset integration and immune-related gene screening to FCGR2A-
centric analyses, co—expression network construction, consensus
clustering, and evaluation of immunotherapy responsiveness.

Flow Chart for the Comprehensive Analysis of FCGR2A.

Identification of differentially expressed
genes

DEGs were identified between tumor and normal samples in the
TCGA-LIHC dataset using DESeq2 (|logFC| > 0.25, p < 0.05) (25).
For GEO datasets, DEGs were identified using limma with the same
thresholds. A volcano plot was generated using ggplot2 (v3.4.4).
Volcano plots and heatmaps were generated using ggplot2 and
pheatmap (v1.0.12), respectively, to visualize expression differences
of IRDEGs.

Functional enrichment analysis

GO (26), KEGG (27) and GSEA (28) were conducted using the
clusterProfiler package (v4.10.0) (29). GO and KEGG analyses were
based on IRDEGs, while GSEA was performed on the full gene
expression matrix ranked by logFC using the MSigDB c2 gene set
(v2023.2.Hs). Parameters included seed = 2020, gene set size = 10-
500, adjusted p < 0.05, and FDR < 0.25.

Prognostic model construction

Patients were stratified into high- and low-expression groups
based on the optimal cut-off value of FCGR2A. Kaplan-Meier (30)
survival curves and time-dependent ROC (31) curves were
generated using survival and survivalROC packages. Cox
regression was used to determine independent prognostic value,
with visualizations via forest plots.

PPl network and hub gene identification
A PPI network of FCGR2A co-expressed genes was constructed

using STRING (score > 0.400) (32). Hub genes were identified using
CytoHubba (algorithms: MCC, Degree, MNC, EPC, Closeness)
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(33), and the top 10 genes from each method were intersected.
Venn diagrams visualized the overlapping hub genes.

Multilayer regulatory networks

Regulatory relationships were retrieved from multiple
databases: TF-mRNA from ChIPBase (34), miRNA-mRNA from
TarBase (http://www.microrna.gr/tarbase), RBP-mRNA from
StarBase (https://starbase.sysu.edu.cn/), and drug-gene
interactions from CTD (https://ctdbase.org/). All networks were
visualized using Cytoscape (35).

Immune infiltration and molecular
subtyping

ssGSEA (36) was applied using the GSVA package to estimate
immune cell infiltration levels. Spearman correlation and heatmaps
were used to evaluate immune cell relationships. Hub gene-
immune cell associations were visualized using bubble plots.
Consensus clustering (37) based on hub gene expression was
performed using ConsensusClusterPlus (38) to identify HCC
subtypes. CDF curves and consensus matrices determined the
optimal number of clusters. Heatmaps and group comparison
plots showed hub gene differences across subtypes.

Immunotherapy response prediction

Expression differences of 47 ICGs across subtypes were assessed
using the Mann-Whitney U test (39) (Supplementary Table S2).
TIDE scores were downloaded from the TIDE platform to predict
immune evasion and therapy response (40, 41) (http://
tide.dfci.harvard.edu). IPS from the TCIA database quantified
tumor immunogenicity and were compared between subtypes
(42) (https://tcia.at/home). TMB (43) (https://www.cbioportal.org/
) and MSI data from cBioPortal were also analyzed between groups.

Somatic mutation and pathway analysis

Masked somatic mutation data were obtained from TCGA and
processed with VarScan. Mutation profiles were analyzed using
maftools (44) (v2.10.0). Differences between FCGR2A high- and
low-expression groups were visualized using ggplot2. Oncogenic
pathway enrichment was analyzed using maftools functions
OncogenicPathways and PlotOncogenicPathways.

Patient tissue specimens and
immunohistochemistry

Formalin-fixed, paraftin-embedded HCC tissues and paired
adjacent non-tumorous liver tissues were obtained from Sichuan
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Cancer Hospital, Chengdu, China. None of the patients had
received preoperative chemotherapy, radiotherapy, or
immunotherapy prior to surgical resection. Clinicopathological
information was collected from medical records, and all tissue
samples were histopathologically confirmed by two
independent pathologists.

FFPE tissue specimens from HCC and matched adjacent non-
tumor tissues were sectioned at 4 um thickness. After
deparaffinization and rehydration, antigen retrieval was
performed using 10 mM sodium citrate buffer (pH 6.0) in a
pressure cooker for 10 minutes. Endogenous peroxidase activity
was quenched with 3% hydrogen peroxide for 10 minutes, followed
by blocking with 5% BSA for 30 minutes at room temperature.
Sections were incubated overnight at 4 °C with a rabbit anti-
FCGR2A primary antibody (Abcam, ab134045, dilution 1:200),
followed by incubation with HRP-conjugated secondary antibody
(ZSGB-BIO, China, PV-9001) for 30 minutes at 37 °C. Signal was
developed using DAB substrate kit (ZSGB-BIO), and nuclei were
counterstained with hematoxylin. Stained sections were scanned
using a PANNORAMIC 250 digital slide scanner (3DHISTECH).
Quantitative analysis of FCGR2A expression was performed using
HALO software (v3.3; Indica Labs). Positive staining was defined as
brown cytoplasmic or membranous signal. Expression scores were
calculated based on H-score method: H-score = (% weak x1) + (%
moderate x2) + (% strong x3), yielding a total score range of 0-300.

Cell culture and in vitro experiments

THLE-2 normal liver cells (CL-0833, Procell) and human HCC
cell lines SNU-878 (h458, iCell), Huh-7 (h080, iCell), and HepG2
(h092, iCell) were cultured in RPMI-1640 or DMEM (Gibco, USA)
supplemented with 10% fetal bovine serum (FBS, Gibco) and 1%
penicillin/streptomycin at 37 °C in a humidified incubator with 5%
CO,. For gene silencing assays, SNU-878 cells were seeded in 6-well
plates at a density of 2 x 10 cells/well. Transfection was conducted
using the Hieff Trans Liposomal Transfection Reagent (YEASEN,
Shanghai, China) according to the manufacturer’s instructions.
Briefly, 75pmol of siRNA was mixed with 42.5uL transfection
buffer and 7.5uL Plus reagent, incubated for 10 min to form a
siRNA-lipid complex, and added to cells after 6 h of attachment.
Medium was replaced after 6 h with fresh complete medium. Four
siRNAs targeting FCGR2A were synthesized by GenePharma
(Shanghai, China) with the following sequences: FCGR2A-Homo-
12: Sense: 5'-AUGACUAUGAGACCCAAATT-3" and Antisense:
5'-UUUGGGUCUCAUAGUCAUTT-3"; FCGR2A-Homo-137:
Sense: 5'-GAAACUUGAGCCCCCGUGGTT-3" and Antisense:
5’-CCACGGGGGCUCAAGUUUCTT-3"; FCGR2A-Homo-507:
Sense: 5'-CAUUUGGAUUCCACCUUCUUTT-3" and Antisense:
5-AGAAGGUGGAAUCCAAAUGTT-3"; FCGR2A-Homo-678
Sense: 5'-AUUUGGCACUGCUGUAGCAGTT-3" and Antisense:
5'-CUGCUACAGCAGUGCCAAUTT-3'. Knockdown efficiency
was evaluated by Western blotting 48 hours post-transfection.
The most effective siRNA sequence was used for subsequent
functional assays.
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Western blotting

Total protein was extracted from transfected and control cells
using RIPA lysis buffer (Beyotime, China) supplemented with
protease and phosphatase inhibitors. Protein concentrations were
determined using a BCA Protein Assay Kit (Thermo Fisher
Scientific, USA). Equal amounts of protein (30ug per sample)
were separated by SDS-PAGE on 10% polyacrylamide gels, and
then transferred onto PVDF membranes (Millipore, USA).
Membranes were blocked with 5% non-fat milk in TBST for 1
hour at room temperature and incubated overnight at 4 °C with
primary antibodies against FCGR2A (Abcam, ab182958, 1:1000)
and PB-actin (Cell Signaling Technology, #4970, 1:5000). After
washing, membranes were incubated with appropriate HRP-
conjugated secondary antibodies (1:5000, CST) for 1 hour at
room temperature. Protein bands were visualized using enhanced
chemiluminescence (ECL, Thermo Scientific) and imaged with a
ChemiDoc ™" XRS+ System (Bio-Rad, USA). Band intensities were
quantified using Image] software (v2.3.0, NIH, USA) and
normalized to B-actin.

Cell functional assays

Cell viability was assessed using the Cell Counting Kit-8 (CCK-
8, Dojindo, Japan) according to the manufacturer’s instructions.
Transfected and control SNU-878 cells were seeded into 96-well
plates (5 x 10° cells/well) and incubated for 24, 48, and 72 hours. At
each time point, 10uL of CCK-8 reagent was added per well and
incubated for 2 hours. Absorbance was measured at 450 nm using a
microplate reader (BioTek, USA).

Wound healing assays were conducted to evaluate cell
migratory capacity. Transfected SNU-878 cells were seeded into
6-well plates and grown to ~90% confluency. A straight scratch was
made using a 200uL pipette tip, and detached cells were gently
removed with PBS. Cells were then cultured in serum-free medium
and imaged at 0 and 24 hours under an inverted microscope
(Olympus, Japan). Migration rate was calculated by measuring
the wound area using Image]J software.

Invasion assays were performed using Transwell chambers
(8um pore size, Corning, USA) pre-coated with Matrigel (BD
Biosciences, USA). A total of 1 x 10° transfected cells in serum-
free medium were seeded into the upper chamber, while the lower
chamber was filled with medium containing 10% FBS as
chemoattractant. After 24 hours of incubation at 37 °C, non-
invading cells were removed, and invaded cells on the lower
surface were fixed with 4% paraformaldehyde, stained with 0.1%
crystal violet, and counted under a microscope.

Statistical analysis
All analyses were conducted using R (v4.3.0) and SPSS 27.0.

Student’s t-test or Mann-Whitney U test was applied as
appropriate. The Kruskal-Wallis test was used for comparisons
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TABLE 2 GEO microarray chip information.

GSE10143 GSE14520

10.3389/fimmu.2025.1641420

significant. All in vitro experiments, including CCK-8 assays,
wound healing, and Transwell assays, were independently
performed at least three times. Data are presented as mean + SD
from three biological replicates unless otherwise specified.

Results

Platform GPL5474 GPL3921
Species Homo sapiens Homo sapiens
Tissue Liver Liver
Samples in LIHC group 80 225
Samples in Control group / 220
Reference PMID: 31344396 PMID: 39718737

among multiple groups. Spearman correlation assessed variable
relationships. A p-value < 0.05 was considered statistically
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Firstly, to identify immune-related gene signatures in HCC, we
first performed differential expression analyses using the liver
cancer expression datasets GSE10143 and GSE14520 (Table 2).
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FIGURE 1
Identification and functional characterization of IRDEGs in HCC. (A) Volca

no plot showing DEGs in the TCGA-LIHC cohort. Red and blue dots represent

significantly upregulated and downregulated genes, respectively (|log,FC| > 1.5, adj. p < 0.05); gray dots indicate non-significant genes. (B) Venn diagram
showing the overlap between DEGs and known IRGs, identifying 21 IRDEGs for further analysis. (C) Heatmap displaying the expression profiles of the 21
IRDEGs in TCGA-LIHC tumor versus control samples. Red and blue indicate higher and lower expression levels, respectively. (D) Barplot summarizing

GO and KEGG enrichment analysis results of the IRDEGs, including top te
significantly enriched KEGG pathways based on the 21 IRDEGs. Node size
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TABLE 3 Result of GO and KEGG enrichment analysis for DEGs.

10.3389/fimmu.2025.1641420

Ontology ID Description Gene ratio Bg ratio Pvalue P.adjust Qvalue

BP GO0:0019221 cytokine-mediated signaling pathway 7121 492/18614 7.28E-07 1.14E-03 5.71E-04
BP GO:0071276 cellular response to cadmium ion 3/21 31/18614 5.45E-06 4.15E-03 2.08E-03
BP Go:o03039  Posttive regulation of leukocyte cell-cell 5021 273118614 1.10E-05 4.15E-03 2.08E-03

adhesion
BP GO:0045429  Positive regulation of nilric oxide 3021 42/18614 1.38E-05 4.15E-03 2.08E-03
biosynthetic process

BP G0O:0050999 regulation of nitric-oxide synthase activity 3/21 42/18614 1.38E-05 4.15E-03 2.08E-03
CC GO0:0009897 external side of plasma membrane 5/21 426/19518 7.38E-05 5.38E-03 4.27E-03
CC GO0:0000228 nuclear chromosome 3/21 223/19518 1.68E-03 6.14E-02 4.87E-02
CcC GO:0031252 cell leading edge 3/21 422/19518 9.99E-03 1.90E-01 1.51E-01
CcC GO:0000800 lateral element 1/21 12/19518 1.28E-02 1.90E-01 1.51E-01
CcC GO:1990391 DNA repair complex 1/21 22/19518 2.34E-02 1.90E-01 1.51E-01
MF GO:0140375 immune receptor activity 5/21 141/18369 4.57E-07 6.04E-05 3.32E-05
MEF GO:0004896 cytokine receptor activity 4/21 92/18369 3.30E-06 2.18E-04 1.20E-04
MEF GO:0001846 opsonin binding 2/21 21/18369 2.58E-04 1.14E-02 6.25E-03
MF G0:0001848 complement binding 2/21 26/18369 3.98E-04 1.16E-02 6.37E-03
MEF GO:0019838 growth factor binding 3/21 132/18369 4.39E-04 1.16E-02 6.37E-03
KEGG hsa04659 Th17 cell differentiation 5/16 109/8541 1.21E-06 1.98E-04 8.25E-05
KEGG hsa05162 Measles 5/16 139/8541 4.02E-06 3.02E-04 1.26E-04
KEGG hsa05321 Inflammatory bowel disease 4/16 66/8541 5.52E-06 3.02E-04 1.26E-04
KEGG hsa04630 JAK-STAT signaling pathway 5/16 168/8541 1.02E-05 3.10E-04 1.29E-04
KEGG hsa05212 Pancreatic cancer 4/16 7718541 1.02E-05 3.10E-04 1.29E-04

After batch effect correction and normalization using the sva
package, PCA and boxplot visualizations confirmed effective
harmonization across the merged datasets (Supplementary
Figures S1A-D).

In the TCGA cohort, 12,596 DEGs were identified (|log,FC| >
0.25, p < 0.05), with 7,853 upregulated and 4,743 downregulated
(Figure 1A). Similarly, 2,630 DEGs (1,467 up, 1,163 down) were
obtained from the merged GEO datasets (Supplementary Figure
S3A). Venn diagram analysis revealed 1,790 overlapping DEGs
between TCGA and GEO cohorts (Supplementary Figures S3B-C),
which were intersected with a predefined IRG set to yield 21
IRDEGs (Figure 1B; Supplementary Table S3). These included:
BIRC5, MAGEA1, PRAME, BRCA2, SART3, FCGR2A, JUN,
STATS3, IL1B, IL4R, FOLH1, CD69, AKT1, IL2RB, FLT3, EGEFR,
CRP, TNESF10, KLRK1, CXCR4, and ITGB2.

Expression heatmaps in both TCGA (Figure 1C) and GEO
(Supplementary Figure S3D) datasets confirmed consistent
differential expression patterns of the 21 IRDEGs between HCC
and normal tissues. Further statistical comparison validated that
most IRDEGs showed significant differential expression across both
datasets, including FCGR2A (Supplementary Figures S2A, B).

Functional enrichment analyses demonstrated that IRDEGs
were significantly involved in immune- and inflammation-related

Frontiers in Immunology

pathways. GO analysis revealed enrichment in cytokine-mediated
signaling, leukocyte adhesion, and nitric oxide biosynthesis
(Figure 1D; Table 3). Molecular functions such as opsonin
binding, immune receptor activity, and complement binding were
also prominent. KEGG analysis highlighted pathways including
Th17 cell differentiation, JAK-STAT signaling, and pancreatic
cancer. The enrichment network (Figure 1E) and complementary
GO-term networks (Supplementary Figures S3E-G) further
illustrated the functional landscape of IRDEGs and positioned
FCGR2A as a hub gene involved in multiple immune-
regulatory processes.

Prognostic and functional implications of
FCGR2A in HCC

To assess the prognostic significance of FCGR2A in LIHC,
patients from the TCGA-LIHC cohort were stratified into high- and
low-expression groups based on the optimal cutoff value. Kaplan-
Meier analysis revealed significantly poorer OS in the high-
expression group (p < 0.05; Figure 2A). Time-dependent ROC
curves indicated moderate predictive accuracy, with AUCs ranging
from 0.5 to 0.7 at 1-, 3-, and 5-year time points (Figure 2B). A risk
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Nomogram-Predicted Probability of 5-year OS

Prognostic significance and survival prediction value of FCGR2A in hepatocellular carcinoma. (A) Kaplan—Meier survival analysis of FCGR2A in the TCGA-
LIHC cohort. (B) Time-dependent ROC curves of FCGR2A expression for predicting 1-, 3-, and 5-year overall survival. (C) Distribution of FCGR2A
expression, survival time, and survival status in HCC patients. (D, E) Univariate and multivariate Cox regression analyses of clinical variables and FCGR2A
expression in relation to overall survival. (F-H) Calibration plots for a nomogram model integrating FCGR2A expression to predict 1-, 3-, and 5-year

overall survival probabilities in HCC patients.

distribution plot demonstrated increased mortality in patients with
elevated FCGR2A expression (Figure 2C).

Univariate Cox regression analysis identified FCGR2A and clinical
stage as potential prognostic variables (Figure 2D). Multivariate
analysis further confirmed FCGR2A as an independent prognostic
factor for OS (Figure 2E). Calibration curves showed good concordance
between predicted and actual survival probabilities, especially at 1 year
(Figures 2F-H), supporting the model’s predictive validity.

To explore the functional relevance of FCGR2A, we constructed
a PPI network using the GeneMANIA database, which revealed
extensive connections between FCGR2A and immune-regulatory
genes (Supplementary Figure S4A; Supplementary Table S4).
Additionally, multilayered regulatory networks were established,
including transcription factors (Supplementary Figure S4B;
Supplementary Table S5), miRNAs (Supplementary Figure S4C;
Supplementary Table S6), RNA-binding proteins (Supplementary
Figure S4D; Supplementary Table S7), and candidate compounds

Frontiers in Immunology

(Supplementary Figure S4E; Supplementary Table S8). These
findings suggest that FCGR2A may play a multifaceted role in
tumor biology and immune regulation, highlighting its potential as
both a prognostic biomarker and a therapeutic target in LIHC.

Experimental validation of FCGR2A as a
functional promoter in HCC

To validate the tumor-specific expression of FCGR2A at the
protein level, we performed IHC on paired HCC and adjacent
tissues. FCGR2A was predominantly localized to the membrane
and cytoplasm, showing significantly higher expression in tumor
tissues (p < 0.001; Figures 3A,B). Western blot (WB) analysis
further confirmed this upregulation, with tumor tissues displaying
a 5-fold increase in FCGR2A levels compared to adjacent liver (6.24
+ 4.28% vs. 1.20 + 0.97%).
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FCGR2A protein expression in HCC tissues and liver cell lines. (A) Representative IHC staining of FCGR2A in HCC tissues and matched adjacent non-
tumor tissues. (B) Quantitative scoring of IHC staining for FCGR2A expression in tumor and adjacent tissues. (C) Western blot analysis showing the
knockdown efficiency of four siRNA constructs targeting FCGR2A in SNU-878 cells. (D) Densitometric quantification of FCGR2A protein levels

normalized to B-actin after siRNA transfection. ***p < 0.001.

To identify suitable in vitro models, FCGR2A protein
expression was evaluated in normal hepatocytes (THLE-2) and
HCC cell lines (HepG2, Huh-7, and SNU-878). All cancer cell lines
exhibited elevated FCGR2A expression, with the highest level
observed in SNU-878 cells (p < 0.01), which were therefore
selected for subsequent functional assays (Supplementary Figure
$8). The knockdown efficiency of four siRNA constructs targeting
FCGR2A in SNU-878 cells was further confirmed by Western
blotting (Figures 3C, D).

After selecting SNU-878 as the cell model with the highest
FCGR2A expression, functional validation was performed using
siRNA-mediated FCGR2A knockdown. CCK-8 assays showed that
silencing FCGR2A significantly suppressed cell proliferation at 24,
48, and 72 hours (Figures 4A, B). Wound healing assays
demonstrated reduced migratory ability following FCGR2A
inhibition (Figures 4C,D), while Transwell assays revealed
markedly impaired invasion capacity (Figures 4E, F). These
findings collectively support a pro-tumorigenic role of FCGR2A
in HCC progression.

Functional enrichment and co-expression
network analysis of FCGR2A

A total of 589 DEGs were identified from the TCGA-LIHC
dataset under the criteria of |log, fold change| > 1.5 and adjusted p-
value < 0.05, including 430 upregulated and 159 downregulated
genes. A volcano plot was generated to visualize the global
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transcriptional alterations (Figure 5A), and a heatmap illustrating
the top 10 upregulated and downregulated DEGs, along with
FCGR2A, was constructed using the pheatmap R
package (Figure 5B).

To refine the genes closely associated with FCGR2A, we
intersected the DEGs from TCGA-LIHC with the gene set
obtained from the combined GEO datasets, yielding 253
overlapping DEGs (Supplementary Table S9). Pearson correlation
analysis was subsequently performed between FCGR2A and these
overlapping DEGs. The top 20 genes with the highest absolute
correlation coefficients were defined as FCGR2A co-expressed
genes, including CD86, LAIR1, LILRB4, ALOX5AP, CYBB, SYK,
ITGB2, FCGRI1A, HCK, CD53, VSIG4, FPR1, PLAUR, PTPRO,
MNDA, DOCK2, IL2RA, BCAT1, CCR1, and PLEK. Correlation
heatmaps in both the TCGA (Figure 5C) and combined GEO
datasets (Figure 5D) demonstrated consistent, robust positive
correlations (r > 0), supporting the reliability of these co-
expressed relationships.

We further performed expression comparison analysis of the
nine top-ranked hub genes between FCGR2A-high and FCGR2A-
low groups. All genes—MNDA, CCR1, PLEK, FCGR2A, FCGRIA,
HCK, CYBB, CD86, and ITGB2—were significantly upregulated in
the high-expression group (p < 0.001; Figure 5E).

To further characterize the co-expression relationships at the
protein level, we constructed a PPI network of the 20 co-expressed
genes using the STRING database (Supplementary Figure S5A).
Five centrality algorithms—Closeness (Supplementary Figure S5B),
Degree (Supplementary Figure S5C), EPC (Supplementary Figure
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S5D), MCC (Supplementary Figure S5E), and MNC
(Supplementary Figure S5F)—were applied via the CytoHubba
plugin in Cytoscape to identify topological hub genes. A Venn
diagram revealed nine genes commonly ranked among the top 10
by all algorithms (Supplementary Figure S5G), confirming ITGB2,
CD86, CYBB, HCK, FCGRI1A, FCGR2A, PLEK, CCR1, and MNDA
as hub genes closely connected to FCGR2A in LIHC.

Hub gene—based subtyping and immune
microenvironment characterization

To elucidate the immunological implications of FCGR2A and
its co-expressed hub genes, we assessed immune cell infiltration in
the TCGA-LIHC cohort using ssGSEA. A total of 28 immune cell
types were profiled across the FCGR2A-high and -low groups.
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Functional assays of FCGR2A knockdown in liver cancer cells. (A) CCK-8 assay images of SNU-878 cells transfected with si-NC or si-FCGR2A at 24 h,

48 h, and 72 h (B) Quantification of OD450 values from the CCK-8 assay at different time points. (C) Representative wound healing images at 0 h, 24 h,
48 h, and 72 h post-scratch in si-NC and si-FCGR2A groups. (D) Quantitative analysis of wound closure distance. (E) Representative images from Transwell
invasion assay showing cell invasion capacity. (F) Quantification of the number of invading cells per field. * p < 0.05; ** p < 0.01; *** p < 0.001.
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Notably, 24 subsets displayed significantly different infiltration
levels (p < 0.05; Figure 6A), including activated CD4"/CD8" T
cells, ¥ T cells, central/effector memory T cells, macrophages,
dendritic cells, regulatory T cells, natural killer cells, and T helper
subtypes (Th1/Th2/Th17), indicating a substantial shift in the
immune landscape based on FCGR2A expression.

To evaluate internal coordination among immune subtypes,
pairwise correlation heatmaps were generated within each
expression group. In the low-expression group (Figure 6B), strong
positive correlations were observed, most prominently between
effector memory CD8" T cells and Th1 cells (r = 0.823, p < 0.05).
In the high-expression group (Figure 6C), a highly correlated
immune network was also evident, with the strongest link
detected between Tregs and MDSCs (r = 0.894, p < 0.05).

Finally, we evaluated the association between hub gene expression
and immune infiltration using correlation bubble plots. In the low-
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expression group (Figure 6D), CYBB expression showed the strongest
positive correlation with Treg abundance (r = 0.779, p < 0.05), while in
the high-expression group (Figure 6E), HCK was most strongly
correlated with T follicular helper cells (r = 0.817, p < 0.05). These
findings suggest that FCGR2A and its immune-related co-expressed
genes may participate in modulating distinct immune
microenvironments depending on expression status.

Hub gene—based subtyping reveals distinct
immune profiles in HCC

To investigate potential molecular subtypes in HCC, consensus
clustering was performed based on the expression profiles of nine
hub genes (FCGR2A, ITGB2, CD86, CYBB, FCGR1A, HCK,

10.3389/fimmu.2025.1641420

MNDA, PLEK, and CCR1) using the Consensus ClusterPlus
package. The optimal clustering partition divided the TCGA-
LIHC cohort into two subtypes: Subtype A (Cluster 1, n = 137)
and Subtype B (Cluster 2, n = 231), as supported by consensus
heatmaps and CDF curves (Figures 7A-C). A 3D t-SNE projection
further confirmed distinct separation between the two
clusters (Figure 7D).

Expression heatmaps and statistical comparisons demonstrated
that all nine hub genes were significantly differentially expressed
between the two subtypes (Figures 7E, F; p < 0.001 for each gene).
To characterize immunological differences between clusters, we
applied the ssGSEA algorithm to quantify the infiltration levels of
28 immune cell types. Differential analysis revealed statistically
significant differences (p < 0.05) in 27 immune cell subsets,

including key components such as CD8" T cells, regulatory T
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cells, dendritic cells, macrophages, NK cells, and memory T cells
(Supplementary Figure S6A).

Correlation heatmaps showed extensive co-infiltration patterns
within each subtype: in Subtype A, macrophages and MDSCs were
most strongly correlated (r = 0.827), while in Subtype B, the strongest
association was observed between Effector memory CD8" T cells and
Type 1 helper T cells (r = 0.721) (Supplementary Figures S6B, C).
Additionally, gene-immune cell correlation bubble plots revealed that
HCK expression was most strongly correlated with T follicular helper
cells in Subtype A, whereas CD86 exhibited the strongest correlation
with MDSCs in Subtype B (Supplementary Figures S6D, E).

Infiltration Abundance

FIGURE 6

10.3389/fimmu.2025.1641420

Subtype-specific immunotherapeutic
implications and mutation landscape

We next assessed the immunotherapy response potential and

mutational characteristics associated with the two molecular
subtypes. A total of 44 ICGs were evaluated, of which 41 showed
statistically significant expression differences between Subtype A
and Subtype B (Supplementary Table S10). Specifically, TNFSF4,
TNFSF14, and IDO2 exhibited moderate significance (p < 0.01),
while most others, including CD86, PDCD1, CTLA4, and TIGIT,
showed highly significant differences (p < 0.001) (Figure 8A).
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Furthermore, Subtype A exhibited a lower TIDE score,
suggesting reduced immune evasion and potentially greater
benefit from immunotherapy (p < 0.001; Figure 8B). IPS
comparisons based on TCIA data also revealed statistically
significant subtype differences in IPS components, indicating
differential immune activation potential (Figure 8C).

We further analyzed somatic mutation data between High and
Low FCGR2A expression groups. The most frequently mutated
genes included TP53, CTNNBI, and TTN (Supplementary Figure
S7A). Notably, CTNNB1 mutation frequency was significantly
higher in the Low Expression group (p < 0.001; Supplementary
Figure S7D). Functional enrichment of mutated genes revealed
pathway preferences: WNT, RTK-RAS, and Hippo signaling were
dominant in the Low Expression group (Supplementary Figure

consensus matrix k=2

10.3389/fimmu.2025.1641420

S7B), while RTK-RAS, TP53, and WNT pathways were enriched in
the High Expression group (Supplementary Figure S7C).

Finally, genomic instability indicators including MSI and TMB
were compared. MSI scores differed significantly between the two
groups (p < 0.001; Supplementary Figure S7E), suggesting subtype-
specific immunogenomic features potentially relevant to immune
checkpoint blockade responsiveness.

Discussion

HCC is a malignancy with pronounced immune heterogeneity.
Despite the increasing clinical application of ICIs in recent years, their
efficacy remains limited to a subset of patients, indicating the
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existence of complex immune evasion mechanisms and therapeutic
resistance within the HCC immune microenvironment. This study
presents a systematic research strategy that integrates IRDEG
screening and functional interpretation, bridging data mining with
functional validation. By integrating multiple transcriptomic datasets
of HCC, we identified 21 IRDEGs closely associated with immune
regulation and established a prognostic model centered on FCGR2A,
achieving high predictive accuracy (AUC > 0.9). These findings offer
theoretical support for biomarker discovery and individualized
therapeutic strategies in HCC immunotherapy. Among the
identified IRDEGs, several genes such as BIRC5, MAGEAIL, and
PRAME have been previously implicated in immune regulation
across multiple solid tumors. For instance, Survivin encoded by
BIRC5 not only modulates cell cycle progression but also
contributes to immune escape by upregulating PD-L1 expression
(45, 46);MAGEA1 and PRAME, as classical cancer-testis antigens,
possess strong immunogenicity and have been recognized as effective
targets for TCR-T cell therapies under specific HLA contexts (47, 48).
These genes exhibit dual properties—oncogenicity and antigenicity—
which may render them preferentially activated under immune-
suppressive conditions, thereby promoting tumor progression and
immune evasion simultaneously (49). Thus, the expression profile of
IRDEGS not only holds prognostic value but may also reflect critical
immune selective pressures shaping the tumor microenvironment.
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Functional enrichment analysis revealed that IRDEGs are
significantly enriched in cytokine-mediated signaling pathways,
including classical inflammatory cascades such as JAK/STAT and
NF-kB, and crosstalk with oncogenic pathways such as PI3K/AKT
and RAS/MAPK (50). This signaling interplay suggests a potential
mechanism by which immune and proliferative cues jointly shape the
HCC phenotype. Based on consensus clustering, we further stratified
HCC patients into two immune subtypes: an immune-inflamed
phenotype enriched for immune response and chemotaxis signals,
and an immune-excluded phenotype characterized by
immunosuppressive pathways such as Wnt/B-catenin and TGF-.
This classification aligns with previously reported immune
phenotypes in liver cancer and provides a conceptual framework
for explaining heterogeneous responses to ICIs while informing
combination treatment strategies (51, 52). Our FCGR2A-centered
classification complements existing immune subtyping frameworks
by providing a molecularly grounded, gene-specific perspective that
links immune activation patterns with clinical outcomes, thereby
enhancing its potential translational relevance. FCGR2A emerged as
a central node in the PPI network, interacting with multiple immune-
related proteins such as SYK, ITGB2, and FCGR3A (53). Previous
studies have shown that FCGR2A, a low-affinity Fcy receptor, plays a
key role in ADCP mediated by macrophages and regulates myeloid
cell polarization via Fc signaling pathways (54, 55). We validated the
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expression pattern and biological functions of FCGR2A through THC
and in vitro assays, demonstrating its significant upregulation in HCC
tissues and its capacity to promote tumor cell proliferation,
migration, and invasion. Given its upstream interaction with SYK
and the established downstream activation of PI3K/AKT and NF-kB
signaling, it is plausible that FCGR2A may drive tumor progression
through these canonical immune-related pathways. This mechanistic
axis represents a promising direction for further exploration to
delineate how FCGR2A integrates immune recognition with
oncogenic signaling in HCC. These findings suggest that FCGR2A
may represent an adaptive response to immune pressure and
function as a central mediator linking immune recognition, signal
transduction, and tumor cell behavior.

From a translational perspective, FCGR2A has potential as both a
diagnostic biomarker in immune pathology and a therapeutic target.
Recent advances in antibody Fc engineering—such as enhancing
FcyR binding affinity—have been employed to improve ADCC, and
in this context, modulating FCGR2A expression or function may
provide a novel entry point to boost ICI responsiveness in HCC (56).
Furthermore, the prognostic model incorporating FCGR2A
demonstrated excellent risk stratification capacity (AUC > 0.9), and
could be integrated with traditional staging systems such as BCLC or
TNM to form a dual-layer molecular-clinical predictive framework,
thereby enhancing the precision of patient stratification and
therapeutic decision-making (57). Despite the comprehensive
mechanistic and experimental validation in this study, several
limitations remain. First, all bioinformatic analyses relied on
publicly available datasets and lack validation in large-scale, multi-
center cohorts. Future work will aim to expand these analyses across
additional international datasets and prospective clinical samples to
further validate the robustness and generalizability of our findings.
Second, the IHC validation in this study was based on a relatively
modest number of patient samples, and the in vitro functional assays
were performed using a single HCC cell line (SNU-878). These
factors may limit the generalizability of our experimental findings.
Third, the cell-type-specific expression patterns and signaling roles of
FCGR2A (e.g., in tumor-associated macrophages vs. tumor cells)
warrant further investigation using single-cell and spatial
transcriptomic technologies. Integrating these multi-resolution
datasets could clarify whether FCGR2A-driven immune
modulation is predominantly immune-cell-intrinsic or tumor-cell-
associated. Finally, while in vitro assays have preliminarily confirmed
its functional role, causal relationships and immunotherapeutic
implications require further validation in organoid or animal models.

In conclusion, this study systematically delineates the role of
FCGR2A in HCC immune regulation and tumor progression
through multi-omics analysis, network modeling, and biological
validation. Our findings establish FCGR2A as a key
immunoregulatory molecule and propose a closed-loop strategy
for biomarker discovery—from data mining to functional
confirmation. Collectively, this study integrates multi-omics and
functional validation to define FCGR2A as a mechanistically
interpretable biomarker linking immune activation with clinical
outcomes, offering potential guidance for personalized
immunotherapy and advancing precision oncology in HCC.
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