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Glaucoma, a leading cause of irreversible blindness, is characterized by retinal
ganglion cell (RGC) degeneration and optic nerve damage. While elevated
intraocular pressure (IOP) is a major risk factor, emerging evidence highlights
neuroinflammation as a critical driver of disease progression. Glial cells,
particularly microglia, astrocytes, and Muller cells, are central to this
inflammatory process, orchestrating immune responses through the release of
cytokines, chemokines, and complement proteins. Microglia and astrocytes
contribute to early inflammatory amplification through tumor necrosis factor-
alpha (TNF-a), complement, and Toll-like receptor 4 (TLR4) pathways, while
Muller cells further promote tissue damage via ATP/P2X7R signaling and
senescence-associated mechanisms. Leukocyte infiltration, triggered by glial-
derived chemokines and matrix metalloproteinases (MMPs), underscores the
intersection of innate and adaptive immunity in glaucoma. Importantly,
preclinical studies demonstrate that targeting neuroinflammatory pathways
confers RGC protection, thus modulating glial activation and immune signaling
represents a promising therapeutic strategy for glaucoma, particularly in IOP-
refractory cases. This review synthesizes current knowledge on the role of glial
cells in initiating and perpetuating immune responses that exacerbate RGC loss,
and details how activated microglia and astrocytes release pro-inflammatory
mediators and upregulate pathogenic signaling pathways.

glaucoma, neuroinflammation, microglia, astrocytes, Miller cells, TNF-q,
complement, TLR4

1 Introduction

Glaucoma, a progressive optic neuropathy, involves retinal ganglion cell (RGC)
apoptosis and axonal degeneration (1). Its pathogenesis is multifactorial, driven by
elevated intraocular pressure (IOP), aging, oxidative stress, and genetic predisposition,
yet mounting evidence identifies neuroinflammation and immune dysregulation as pivotal
contributors to disease progression (2, 3). The lamina cribrosa, the principal site of injury,
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exhibits marked glial activation and inflammatory remodeling in
both human and experimental models, where inhibition of glial
activation and cytokine signaling preserves RGC integrity and optic
nerve structure (4, 5). Clinically, optic disc hemorrhages and
peripapillary chorioretinal atrophy may reflect secondary
manifestations of glia-driven neuroinflammation (6, 7).

Studies have shown that activation of resident glial cells in the
retina, including microglia, astrocytes, and Miiller cells, and
infiltration of peripheral immune cells such as T lymphocytes, B
lymphocytes, and regulatory T cells (Tregs), play pathogenic roles
and are closely associated with RGC loss (8-10). Activated
microglia release tumor necrosis factor-alpha (TNF-a),
interleukin (IL)-1B, and complement components that propagate
(8, 9).
Astrocytes amplify these immune responses through Toll-like

inflammatory cascades and sensitize RGCs to injury

receptor (TLR) activation, NF-«xB signaling, and chemokine
secretion, whereas Miiller cells contribute to retinal immune
modulation by releasing ATP, IL-6, and matrix
metalloproteinases (MMPs), which facilitate leukocyte infiltration
and tissue remodeling. This coordinated glia—immune axis
establishes a self-perpetuating inflammatory loop that drives
chronic neurodegeneration (8, 11). Notably, pharmacological
modulation of these pathways demonstrates therapeutic promise.
For example, rapamycin exerts neuroprotective effects not solely
through inhibition of microglia activation but also by suppressing
mTOR-dependent immune activation and cytokine release,
underscoring the immunoregulatory dimension of glial targeting
(12-14). The convergence of glial activation and immune signaling
thus represents a central mechanism linking ocular hypertension to
neurodegenerative pathology.

In summary, this review synthesizes current advances on how
glial cells—microglia, astrocytes, and Miiller cells—mediate
immune modulation in glaucomatous neurodegeneration. It
further highlights the molecular pathways by which glial-derived
cytokines, chemokines, and complement proteins orchestrate
retinal immune responses, contributing to RGC loss and optic
nerve damage.

2 Central nervous system immune
cells and glaucoma

Glial cells in the retina and optic nerve head (ONH) are broadly
classified into microglia (the resident immune cells of the central
nervous system (CNS) and macroglia, which include astrocytes and
Miiller cells (15, 16). Microglia continuously survey the
microenvironment, respond rapidly to injury, and orchestrate
immune responses. In contrast, astrocytes and Miiller cells
maintain structural integrity, regulate extracellular ion
homeostasis, and provide metabolic support to neurons (17).
Under glaucomatous stress, these glial cells undergo activation
and phenotypic shifts that transform them into neurotoxic
effectors, contributing to progressive RGC loss (11).
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2.1 Microglia

Microglia are resident immune cells within the retina that enter
through the pars plana of the ciliary body and the optic nerve head
(18, 19). Under physiological conditions, these cells play a crucial role
in preserving retinal equilibrium by clearing cellular waste through
phagocytic mechanisms (20, 21). Progressive loss of RGCs is a
pathological hallmark of glaucoma, with microglia actively
participating in RGC damage and immune-inflammatory responses
(22). Importantly, alterations in microglial morphology and gene
expression profiles emerge prior to observable RGC degeneration
and measurable declines in visual function loss in glaucoma (23). As
the disease advances, microglia transition into an activated state,
adopting a neurodegenerative phenotype that promotes neuronal
toxicity, ultimately exacerbating RGC injury and apoptosis (24, 25).
Since the optic nerve constitutes a critical component of the CNS,
research by Liu et al. (26) demonstrated that infrared stimulation of the
CNS results in microglial activation, enhanced phagocytic activity, and
release of multiple pro-inflammatory factors, including IL-10,, IL-1f3,
IL-6, reactive oxygen species (ROS), and TNF-o (27). Such
modifications foster a pro-inflammatory CNS microenvironment
that hastens RGC depletion. Retinal gap junctions (GJs) serve as vital
neuroprotective structures for RGCs. In a microbead-induced ocular
hypertension (OHT) murine glaucoma model, Kumar et al. (28)
observed that GJ inhibition occurs concurrently with microglial
activation and RGC degeneration, implying a causative relationship
between microglial reactivity and RGC loss.

2.2 Astrocytes

Astrocytes, the predominant non-neuronal glial population within
the retinal nerve fiber layer, ganglion cell layer, and optic nerve, are
indispensable for maintaining retinal homeostasis by restraining RGC
and axonal degeneration (29). Astrocytic injury has been shown to
induce degeneration of RGCs and their axons, contributing to
glaucomatous vision loss (30). Additionally, deformation and
remodeling of the lamina cribrosa (LC), the principal structural
component of the optic nerve head, can damage both the traversing
optic nerve fibers and capillaries, thus acting as a critical pathological
factor in glaucoma progression (31). Disruption of astrocytic integrity
precipitates RGC loss and axonal damage, thereby driving
glaucomatous vision decline (32, 33), indicating that astrocytic
dysfunction has direct consequences for optic nerve stability and
may initiate or exacerbate glaucomatous pathology. Under
pathological stress, astrocytes can undergo a phenotypic shift toward
a neurotoxic, pro-inflammatory state (34). This phenotypic transition
is driven by microglia-derived mediators, notably interleukin (IL)-10,
tumor necrosis factor (TNF)-o, and complement component Clq (35).
Given the central role of activated microglia in glaucoma pathogenesis,
microglia-driven astrocytic polarization is likely a key driver of RGC
apoptosis and optic nerve injury (36). Joshi et al. (37) demonstrated
that mitochondrial fragments released by microglia or in vitro
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preconditioning with IL-18 induces a neurotoxic astrocytic phenotype
detrimental to RGC viability.

2.3 Muller cells

Miiller cells, the principal macroglial cells of the retina extending
across its entire thickness, are indispensable for maintaining retinal
homeostasis but exhibit profound dysfunction in glaucomatous
pathology, with their presence and activation confirmed in human
and experimental glaucoma models (38, 39). A hallmark of their
reactive state is the upregulation of glial fibrillary acidic protein
(GFAP), prominently observed in the glaucomatous optic nerve head
(40). Pathological accumulation of extracellular ATP, a common
feature in glaucoma, activates Miiller cells via purinergic P2 receptors
(P2Rs), initiating a feed-forward loop of additional ATP release. Given
that RGCs express the high-threshold purinergic receptor P2X7R
(32, 41), Miiller cell-derived ATP can bind to RGC P2X7R, eliciting
sustained calcium influx that perturbs intracellular calcium
homeostasis (42, 43). This calcium overload promotes the opening of
the mitochondrial permeability transition pore (mPTP), leading to
mitochondrial depolarization, cytochrome c release, and the activation
of calcium-dependent proteases such as calpains, ultimately
culminating in caspase activation and apoptotic RGC death (44, 45).
Miiller-derived ATP promotes RGC injury via P2X7R-mediated
calcium overload and apoptosis (41, 46). Miiller-microglia crosstalk
further amplifies retinal inflammation. In chronic ocular hypertension
models, reactive Miiller cells activate microglia through ATP/P2X7R
signaling, stimulating the production of pro-inflammatory cytokines
such as TNF-a and IL-6 (8). These cytokines, in turn, act on Miiller
cells to intensify inflammatory responses, with NF-kB signaling serving
as a central mediator (47). The anti-inflammatory SIX1 gene is
downregulated in glaucomatous Miiller cells (48), suggesting its loss
potentiates inflammatory cascades. Age-related mechanisms further
link Miiller cells to glaucoma. Epidemiological data associate glaucoma
prevalence with aging (49), while the glaucoma-risk gene SIX6,
overexpressed in glaucomatous Miiller cells and astrocytes, drives
senescence via pl6INK4 upregulation (50, 51). These converging
inflammatory, neurotoxic, and senescence-associated pathways
underscore Miiller cells as central effectors in glaucoma pathogenesis,
irrespective of whether the initiating insult arises from RGCs, the optic
nerve, or systemic aging processes (52, 53). Notably, glial cells operate
not in isolation but through dynamic crosstalk. These interactions
exemplify how glial communication drives a feed-forward
neuroinflammatory circuit that accelerates RGC injury and optic
nerve damage (54, 55). Recognizing this network-level integration is
key to identifying therapeutic strategies that target glial synergy rather
than isolated cell types.
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3 Mechanistic role of glial cells in
glaucoma pathogenesis

3.1 Activation of astrocytes, microglia, and
Muller cells

Astrocytes and microglia, the principal glial cell populations
within the retina and ONH, undergo rapid activation during the
earliest stages of glaucomatous pathology (56, 57). Astrocytes,
concentrated within the retinal nerve fiber layer and ganglion cell
layer, are especially abundant at the lamina cribrosa, where they
provide essential structural and metabolic support for RCGs (58).
However, it remains debated whether glial activation serves as an
initiating insult or a downstream effector in glaucoma pathogenesis.
Evidence suggests that glial reactivity is not sufficient by itself to
induce glaucomatous neurodegeneration, as substantial glial
activation is also observed in certain ocular inflammatory models
without subsequent RGC loss or optic nerve damage. Instead,
elevated IOP and aging—both established glaucoma risk factors—
appear to be critical upstream modulators that sensitize glial cells
toward a pathogenic phenotype (11, 59). Notably, prior to
detectable RGC axon damage, the expression of genes and
proteins related to astrocytic activation, including pattern
recognition receptor (PRR)-associated adaptor proteins and
effector molecules, is markedly upregulated (60, 61). This includes
enhanced complement deposition, epidermal growth factor
receptor (EGFR) expression, and increased levels of pro-
inflammatory mediators such as inducible nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2) (62). Activated microglia
similarly exhibit heightened expression of inflammatory cytokines,
complement components, and major histocompatibility complex
(MHC) molecules (63), while facilitating the recruitment of
circulating immune cells into the ONH, thereby amplifying
neuroinflammatory cascades (64). Miiller cells, which span the
entire retinal thickness, are also activated in response to
intraocular pressure elevation and neurodegenerative stress,
contributing to the early pro-inflammatory milieu through ATP
release and P2X7R signaling cascades. Their activation promotes
microglial reactivity and amplifies retinal inflammation via NF-xB-
dependent pathways (8). Neuroinflammation driven by glial cells
activation in the glaucomatous ONH may lower neuronal stress
thresholds and promote neuronal injury (65, 66), culminating in
glial scar formation and inhibition of RGC axonal regeneration
(50). Although transient or moderate glial activation can confer
neuroprotection, through trophic factor release and metabolic
support, prolonged or excessive activation transitions these cells
into chronic inflammatory phenotypes, thereby accelerating
progressive neurodegeneration (67).
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3.2 Inflammatory signaling pathways
activated by glial cells

3.2.1 TLR-mediated neuroinflammatory signaling

Toll-like receptors (TLRs), a pivotal subset of pattern
recognition receptors (PRRs), serve as sentinels of the innate
immune system by recognizing pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs) (54, 68). Distinct TLR family members display ligand
specificity; for example, TLR3 is activated by viral double-stranded
RNA, whereas TLR4 senses endogenous stress signals such as heat
shock proteins (HSPs) (69, 70). In the central nervous system,
microglia express the full complement of TLRs, while astrocytes
selectively express TLR2, TLR3, TLR4, TLR5, and TLRY, each
attuned to discrete PAMP or DAMP signatures (71, 72). In
glaucomatous retina, TLR expression is markedly elevated (73). In
vitro studies reveal that both HSPs and oxidative stress act as potent
inducers of TLR expression, thereby amplifying the release of pro-
inflammatory cytokines and immunostimulatory mediators that
activate both innate and adaptive immune pathways (74, 75).
Notably, tenascin-C, an endogenous ligand for TLR4, is
upregulated in glaucomatous ONH and has been shown to
activate TLR4 signaling in arthritis (76, 77). It is hypothesized
that tenascin-C may initiate inflammation via TLR4 prior to DAMP
release by injured RGCs (78, 79). TLR activation converges on two
principal signaling axes. The myeloid differentiation primary
response 88 (MyD88)-dependent pathway activates nuclear
factor-xB (NF-xB) and activator protein-1 (AP-1), driving
transcriptional upregulation of TNF-q, IL-1, IL-6, and a spectrum
of chemokines (80, 81). Alternatively, the Toll/IL-1 receptor (TIR)-
domain-containing adaptor-inducing interferon-f (TRIF)-
dependent pathway predominantly engages interferon regulatory
factors (IRFs) (82). Caffeic acid phenethyl ester suppresses glial
activation and migration, inhibits NF-kB-mediated inflammation,
and protects RGCs from degeneration (12).

3.2.2 TNF-o mediated neuroinflammatory
signaling

TNF-o, a central pro-inflammatory cytokine in
neurodegeneration, is secreted by both astrocytes and microglia,
with astrocytes constituting the predominant source in the ONH
(83, 84). In glaucomatous retina and ONH, TNF-o and its primary
receptor TNF receptor 1 (TNF-R1) are markedly upregulated, with
elevated expression detected in RGCs and their axons (85). Despite
some evidence suggests that TNF-o may exert transient
neuroprotective effects during the initial stages of optic nerve
injury, the preponderance of experimental data implicates it in
promoting RGC death through TNF-R-dependent caspase
activation, mitochondrial dysfunction, and oxidative stress (86).
Binding of TNF-o. to TNF-R1 activates the TNF receptor-associated
death domain (TRADD), the TNF receptor-associated factor
(TRAF) superfamily, and various kinases, culminating in caspase-
mediated apoptosis in RGCs (87, 88). Additionally, soluble TNF-o.
may promote CP-AMPAR (Ca®'-permeable AMPA receptor)
expression in RGCs, exacerbating excitotoxicity (89, 90). TNF-o
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can also induce RGC death via the FasL pathway, as intraocular
injection of TNF-a. leads to RGC loss, which is attenuated by FasL
inhibition (91). Pharmacological or genetic TNF-o. inhibition
mitigates microglial activation, axonal degeneration, and RGC
loss (92, 93). In corneal chemical injury models, TNF-o. blockade
reduces monocyte infiltration into the retina and microglial
activation, thereby decreasing the incidence of secondary
glaucoma and RGC death (94). TNF-o. also activates c-Jun N-
terminal kinase (JNK), NF-kB, and extracellular signal-regulated
kinase (ERK) pathways, further potentiating glia-mediated
inflammation via IL-1 upregulation (95, 96) (Figure 1).

3.2.3 Complement activation

Complement activation constitutes another key early
inflammatory event (97). Elevated complement levels are detected
in glaucomatous retinas, particularly at the ONH and inner retinal
layers (98, 99). Activation of retinal astrocytes correlates with
increased Clq expression in RGCs (100). In a genetic model of
glaucoma, Shinozaki et al. (30) reported that elevated IOP was
accompanied by retinal Clq upregulation and RGC apoptosis.
RGCs can sense damage and activate Cl, triggering a cascade that
activates C3 and C5 and recruits immune cells to the injury site
(101, 102). Importantly, the role of C3 in glaucoma appears to be
context dependent, showing a duality between early neuroprotection
and late-stage neurotoxicity (103). Complement factors have dual
roles in glaucoma (104). Clqa is expressed in ONH microglia and
RGC dendrites; its inhibition reduces dendritic and synaptic loss in
glaucoma (105). Moreover, membrane attack complexes (MACs)
accumulate in the ONH and RGCs, and MAC inhibition reduces
RGC apoptosis (104). Recent evidence suggests that in the early phase
of disease, astrocyte-derived C3 can signal through the epidermal
growth factor receptor (EGFR) pathway, promoting astrocytic
survival responses and metabolic support to stressed axons (106).
This transient EGFR-C3 interaction may act as a compensatory
mechanism, particularly under acute intraocular pressure (IOP)
elevation, to preserve tissue integrity (107, 108). However, with
sustained or chronic activation, persistent C3 cleavage leads to
excessive production of downstream complement fragments (C3b,
C5b-9) and ultimately the formation of MAC (109, 110). MAC
deposition on RGC somas and axons contributes to
neurodegeneration by inducing membrane pore formation and
triggering inflammatory cell recruitment (111). Although Harder
et al. (106) suggest that early astrocytic C3/EGFR signaling can be
beneficial, other studies indicate that in chronic glaucoma, prolonged
complement activity becomes detrimental. This switch depends on
the timing of activation, the cellular source (astrocyte-derived C3 and
microglia-driven complement cascade), and the local inflammatory
milieu, which collectively determine whether complement exerts
neuroprotective or neurotoxic effects (112-114). Ischemia-
reperfusion increases retinal complement expression and
deposition, while C3 knockout reduces optic nerve damage and
increases RGC survival (115, 116). Bosco et al. (117) demonstrated
that intravitreal AAV2.CR2-Crry injection reduces retinal C3d
deposition and protects RGC axons and soma under chronic
ocular hypertension.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1640110
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zong et al. 10.3389/fimmu.2025.1640110
= Pro-inflammato 5
y mediators
| e |L-1a (Neurotoxic
O & — [Theieles
' “i%: eI eROS phenotype)
Microglia
IL1-a @@
C1q
£ -1 LP2x7R
(] \ (@)
ATP
Astrocytes
(activated)
! Optic nerve Pro-inflammatory
/ Glaucoma damage responses
. RGCs
PS AP /—> loss
L SIX1 gene
— 3 @ P2X7R — /
SIX6 gene 4 . °
| activate
Miiller cells \ ° °
TNF-a IL-6
y
FIGURE 1

Glail activation and immune crosstalk in glaucomatous optic nerve degeneration.

3.2.4 EGFR/INOS/COX-2 pathways

EGEFR expression and tyrosine phosphorylation are elevated in
activated ONH astrocytes, promoting the production of iNOS,
COX-2, and prostaglandins (PGs), thereby affecting RGC survival
and ONH structure (118, 119). In high IOP mouse models, both
neuronal nitric oxide synthase (nNOS) and iNOS are elevated in
astrocytes at the ONH and retinal layers (120). Neufeld et al. (121)
linked axonal damage to excessive nitric oxide (NO) production.
While eNOS and nNOS are constitutively expressed in normal
ONH astrocytes and vasculature, iNOS is upregulated by day 4 of
elevated IOP and persists for months. Aminoguanidine, an iNOS
inhibitor, significantly reduces RGC loss and may offer
neuroprotection in glaucoma (122). Zhang et al. (119, 123)
showed that while COX-2 is undetectable in normal ONH, it
becomes detectable within 24 hours in cultured explants and
peaks at 3 days. EGF induces COX-2 expression and PGE2
synthesis in astrocytes in a time-dependent manner, which is
blocked by EGFR inhibitor AG1478. Downstream, ERK and p38
pathways also regulate COX-2/PGE2 production via EGFR
signaling. COX-2 oxidizes arachidonic acid to produce PGs;
PGD2, PGE2, and PGI2 may exert neuroprotective effects via
DPI1, EP2/EP4, and IP receptors, whereas PGE2 and PGF2a. can
induce neurotoxicity via EP1 and FP receptors (123, 124). Although
substantial evidence implicates the EGFR/INOS/COX-2 axis in
glaucomatous neuroinflammation, the temporal dynamics and
context-dependent roles of individual inflammatory mediators
across disease stages remain incompletely understood, warranting
further investigation.
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3.2.5 JAK/STAT-mediated inflammatory signaling

The Janus kinase/signal transducer and activator of transcription
(JAK/STAT) pathway is a key regulator of glial-mediated
neuroinflammation and has been increasingly implicated in
glaucomatous neurodegeneration (125). Upon cytokine binding—
particularly IL-6, IL-10, and interferons—glial cell-expressed
receptors activate JAK kinases, leading to phosphorylation and
nuclear translocation of STAT proteins, which then drive
transcription of pro- or anti-inflammatory genes depending on the
cellular context (126). In glaucomatous retina, STAT3 is the most
prominently activated STAT protein in astrocytes and Miiller cells
and is responsible for upregulating genes involved in gliosis (GFAP),
cellular stress responses, and cytokine amplification (IL-6, SOCS3).
Notably, elevated STAT3 phosphorylation has been documented in
the optic nerve head of both rodent models and human glaucoma
tissues, suggesting a conserved role in glial activation and RGC injury
(127, 128). Inhibition of JAK2 or STAT3 pharmacologically (with
AG490 or Stattic) mitigates gliosis, preserves RGC function, and
reduces optic nerve damage in experimental models of chronic ocular
hypertension (127). However, the JAK/STAT pathway exhibits dual
roles: transient STAT3 activation may promote glial neuroprotective
programs, while sustained or excessive activation promotes gliosis
and neurotoxicity (11, 126). Importantly, crosstalk with NF-xB and
PI3K/AKT pathways further integrates STAT3 into a complex
signaling hub that fine-tunes glial responses under stress conditions
(129). Thus, therapeutic targeting of the JAK/STAT pathway requires
precise temporal and cell-specific modulation to avoid disrupting
beneficial glial responses.
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3.3 Leukocyte infiltration and RGC death
triggered by glial activation

3.3.1 Immune cells infiltration in glaucoma
Astrocyte-derived matrix metalloproteinases (MMPs)
may degrade the basement membrane and compromise the glial
lamina at the glaucomatous ONH (130). Leukocyte transendothelial
migration is among the earliest detectable changes in DBA/2]
glaucoma mouse models (131). In healthy optic nerves, CD163"*
macrophages are sparsely distributed along axonal septa, whereas
both early- and late-stage glaucoma show increased infiltration of
CD163" macrophages into the nerve bundles (132). The
accumulation and activation of macrophages and microglia
within the optic nerve have been documented across multiple
glaucoma models and are considered pivotal contributors to early
disease pathogenesis (103, 133, 134). Transcriptomic profiling by
Howell and Johnson revealed early-stage upregulation of selectins,
adhesion molecules, and chemokines in glaucomatous ONH, which
collectively facilitate leukocyte recruitment prior to overt axonal
injury. Experimental depletion of monocytes via targeted
irradiation prevents optic nerve damage, whereas restoration of
injury following endothelin-2 (ET-2) administration underscores
the causal role of immune cell infiltration in glaucomatous
neurodegeneration (135). Glycosylation-dependent cell adhesion
molecule 1 (GlyCAM-1) may facilitate monocyte trafficking to the
ONH (136). In addition to macrophages, T lymphocytes have
emerged as critical contributors to glaucomatous immune
pathology (137). Glial cells upregulate MHC class II molecules in
glaucomatous human and experimental retinas, enabling antigen
presentation and promoting T-cell activation (11, 137, 138). Glia-
derived chemokines such as CCL2 and CXCL10 recruit T cells to
the ONH, where infiltrating T cells release IFN-y, TNF-a, and other

10.3389/fimmu.2025.1640110

pro-inflammatory mediators that further activate resident glial
populations. This reciprocal amplification loop—where glial
cytokines attract T cells, and T cells in turn enhance glial
reactivity—forms a self-sustaining inflammatory circuit that
exacerbates RGC injury (120, 137). Within the CNS, TNF-o
activates endothelial cells, promoting integrin-dependent
leukocyte migration (139). Astrocytes, which express multiple
integrin isoforms, exhibit elevated perivascular integrin expression
in response to elevated IOP. This upregulation facilitates
extracellular matrix (ECM)-cytoskeleton coupling and promotes
cellular migration, adhesion, differentiation, and pro-inflammatory
signaling (140, 141).

3.3.2 RGC death triggered by glial activation

The membrane-bound form of Fas ligand (FasL) has been
identified as a key effector in RGC apoptosis in glaucomatous
mouse models (91). Krishnan et al. (21) found that activated
microglia release TNF-o, which upregulates FasL expression on
microglia in glaucomatous retinas, enhancing FasL-Fas binding to
RGCs and thereby directly triggering apoptosis and exacerbating
glaucoma progression. Moreover, microglial activation is associated
with upregulation of the apolipoprotein E (ApoE) gene and the
galectin-3 (Lgals3) gene (142). Knockout of ApoE in glaucomatous
mouse models prevented RGC loss and suppressed the expression
of neurodegenerative genes including Lgals3, indicating that ApoE-
related microglial activation contributes to disease progression
(142). The ApoE-Lgals3 signaling axis thus represents a potential
therapeutic target for glaucoma. Importantly, ApoE also serves as
an endogenous ligand for the microglial receptor TREM2,
activating the DAP12-SYK signaling cascade that drives
metabolic reprogramming, proliferation, and a disease-associated
microglial (DAM) phenotype (143-145). In this context,

TABLE 1 Glial cell-mediated immune mechanisms and their roles in glaucomatous neurodegeneration.

Key
o : . immune . q Downstream effects on Functional
Activation stimuli ; Signaling pathways )
mediators retina/ONH consequences
released
TLR4-MyD88/NF-KB,
Elevated IOP, oxidative TNF-o, IL-1B, TNF-0; Fix oL éX3(‘I<R1 Cytokine amplification, complement Early RGC apoptosis, immune
Microglia stress, RGC-derived IL-6, Clq, C3, ? activation, MHC II upregulation, cell infiltration, synaptic
CX3CL1, ApoE-TREM2/ . -
DAMPs ROS leukocyte recruitment stripping
Lgals3
Mi ial kil
(T;r;)ilanf);tao) nes IL-6, CXCL10, TLR4-NF-kB, EGFR- Upregulation of adhesion molecules, Glial scar formation, RGC
Astrocytes itoch ? drial f) " TNF-a, iNOS, iNOS-COX-2, STAT3, basement membrane degradation (via excitotoxicity, leukocyte
mitochondrial fragments, .
K 8 COX-2, C3 JNK/ERK MMPs), antigen presentation (MHC II) transmigration
tenascin-C
Miiller ATP, hypoxia, aging, ATP, IL-6, P2X7R-Ca** overload- In.du'ction of microglial reactivity, glia— RGC mifochondrial ‘
. ] mPTP, NF-kB, STAT3, glia inflammatory loops, senescence- dysfunction, apoptosis, age-
Cells inflammatory cytokines MMPs, ROS K i i i ;
SIX6-p16INK4 pathway associated inflammation linked degeneration
TNEF-o, IL-6, Sustained infl tion,
Glial-glial and glial- . TNF-0-TNE-R1, CXCLI2-  Positive feedback loop in inflammation, | oo neuromfiammation
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IOP, intraocular pressure; RGC, retinal ganglion cell; ONH, optic nerve head; DAMPs, damage-associated molecular patterns; ROS, reactive oxygen species; TLR, Toll-like receptor; NF-xB,
nuclear factor kappa-light-chain-enhancer of activated B cells; MHC, major histocompatibility complex; EGFR, epidermal growth factor receptor; iNOS, inducible nitric oxide synthase; COX-2,
cyclooxygenase-2; MMPs, matrix metalloproteinases; mPTP, mitochondrial permeability transition pore.
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upregulated Lgals3 reinforces the TREM2-ApoE axis, amplifying
pro-inflammatory gene expression and promoting phagocytic
activity that, while initially protective, becomes maladaptive
and neurotoxic (146). Concurrently, these changes are associated
with the downregulation of the homeostatic CX3CR1-CX3CL1
axis, which ordinarily restrains microglial overactivation
(147, 148). The combined effect is a shift toward chronic
microglial activation and synaptic toxicity, accelerating RGC
degeneration. These intersecting pathways highlight a mechanistic
bridge between ApoE-Lgals3 and canonical TREM2/CX3CR1
signaling in shaping microglial responses during glaucomatous
neurodegeneration (149).

Extracellular ATP serves as a potent astrocytic activator
(150, 151). At high concentrations, ATP activates purinergic
receptor P2X7R, a high-threshold subtype of the P2 receptor
(P2R) family, which induces pro-inflammatory responses in
astrocytes (152, 153). P2X7R activation triggers the release of
chemokines, cytokines, and ROS, thereby amplifying RGC injury,
and also stimulates cytokine production in Miiller cells (154, 155).
Furthermore, chemokine signaling pathways contribute to
astrocyte-mediated neurotoxicity. Enhanced CXCR4 activation in
astrocytes or microglia facilitates glutamate release from astrocytes,
provoking excitotoxic injury and promoting RGC degeneration and
necrosis (30). In normal-tension glaucoma (NTG) mouse models,
retinal astrocytes exhibit upregulation of CXCL-12, the endogenous
agonist of CXCR4 (156). Collectively, these findings underscore
astrocytes as both immune effectors and direct mediators of neuronal
injury, positioning astrocytic activation and phenotypic modulation as
central mechanisms in glaucoma pathogenesis (Table 1).

4 Conclusion

Glial activation and immune modulation are central drivers
of glaucomatous neurodegeneration, operating through tightly
interlinked inflammatory networks within the optic nerve head.
Activated microglia, astrocytes, and Miiller cells release
cytokines, chemokines, complement components, and ROS
which lead to RGC injury and recruit peripheral immune cells,
further amplifying tissue damage. These responses are further
shaped by key signaling pathways, including TLR4-NF-xB, TNF-
o-FasL, complement C3/C5-MAC formation, and EGFR/iNOS/
COX-2 cascades, as well as age-related senescence programs.
Chronic or excessive activation transforms initially protective
glial responses into maladaptive, neurotoxic states, driving
progressive RGC apoptosis, lamina cribrosa remodeling, and
irreversible vision loss.

Future therapeutic strategies should prioritize temporally
targeted modulation of glial activation, inhibition of pathogenic
inflammatory pathways, and disruption of maladaptive glia-
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immune interactions. Integrating longitudinal biomarker profiling
with advanced imaging could enable stage-specific interventions,
particularly in early glaucoma when neuroprotection is most
feasible. Moreover, the convergence of neuroinflammatory
mechanisms in glaucoma with other central nervous system
disorders suggests that repurposing or co-developing glia-targeted
agents may accelerate translational progress. Such approaches hold
the potential to expand treatment paradigms beyond intraocular
pressure control, offering new avenues for preserving vision.
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