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Unraveling porcine dendritic-cell
diversity: welcome tDC and DC3
Ambre Baillou1,2, Gaël Auray1,2†, Francisco Brito1,2,
Marius Botos1,2, Alizée Huber1,2, Artur Summerfield1,2‡

and Stephanie C. Talker1,2*‡

1Institute of Virology and Immunology, Bern, Switzerland, 2Department of Infectious Diseases and
Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
Dendritic cells (DC) are professional antigen presenting cells playing a major role in

orchestrating adaptative immune responses. To adapt to various immune

challenges, such as different classes of pathogens, specialized subsets of DC have

evolved across species. To date, DC are classified as conventional DC (cDC1, cDC2)

and plasmacytoid DC (pDC), with the more recent addition of DC3 and transitional

DC (tDC) that were discovered in human and mouse thanks to high-dimensional

phenotyping and single-cell sequencing technologies. Here, by combining flow

cytometry and RNA-seq on the bulk- and single-cell level, we identified the porcine

equivalent of tDC in blood as CD14-CADM1-CD172a+CD4- cells expressing both Flt3

and CD123 (IL-3RA). This new subset forms a well-defined cluster when mapped

onto scRNA-seq data of enriched DC and shares transcriptomic features and

abundance with porcine blood cDC2 and pDC. Moreover, we describe putative

porcineDC3 as transcriptionally overlapping cells in-between cDC2 andmonocytes.

With the core functions of tDC and DC3 remaining to be elucidated, our datasets

provide a valuable resource for cross-species research on DC heterogeneity in

various lymphoid and non-lymphoid tissues.
KEYWORDS

transitional dendritic cells, tDC, DC3, pig, blood, single-cell transcriptomics, bulk
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1639553/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1639553/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1639553&domain=pdf&date_stamp=2025-10-29
mailto:stephanie.talker@unibe.ch
https://doi.org/10.3389/fimmu.2025.1639553
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1639553
https://www.frontiersin.org/journals/immunology


Baillou et al. 10.3389/fimmu.2025.1639553
GRAPHICAL ABSTRACT
Introduction

Dendritic cells (DC) are best known as instructors of T-cell

immunity through antigen presentation and co-stimulation. Their

response enables the system to adapt to various challenges and

simultaneously ensures tolerance to harmless antigens. To fulfill

these diverse roles, the DC system comprises phenotypically and

functionally distinct cell subsets that have been extensively studied

across tissues in humans (1, 2), mice (1, 3) and pigs (4, 5) among other

species (6–10). Traditionally, DC have been broadly divided into two

lineages: plasmacytoid DC (pDC), primarily known as IFN type 1

producers in response to viral infection, and conventional DC (cDC)

which are highly efficient in stimulating T-cell responses. Conventional

DC were further divided into type 1 cDC (cDC1) and type 2 cDC

(cDC2), with cDC1 appearing specialized in the induction of Th1- and

cytotoxic T-cell responses, and cDC2 preferentially promoting Th2/

Th17 responses (3). Subsets of cDC are broadly distributed across both

lymphoid and non-lymphoid tissues and are also detectable in the

circulation, with cDC2 more abundant than cDC1, particularly in

mucosal and peripheral tissues. In contrast, pDC are rare in peripheral

tissues and primarily localized in lymphoid organs and blood.

Over the last decade, high-dimensional and high-throughput

approaches, such as single-cell RNA sequencing (scRNA-seq) (1),

have revealed an astonishing heterogeneity and plasticity of cDC2

(1, 11, 12), with cDC2 subsets likely arising from distinct

ontogenetic lineages (13–15) and being shaped by signals in their

microenvironment (16). Moreover, highly pro-inflammatory cDC2
Frontiers in Immunology 02
have been identified as a separate DC lineage, namely type 3 DC

(DC3), overlapping with monocytes both phenotypically and

transcriptionally and putting traditional monocyte markers like

CD14 into question (12, 14, 17, 18).

Furthermore, the phenotypic definition of pDC was challenged,

when putative pre-DC were discovered with scRNA-seq in humans

and mice and shown to contaminate traditional pDC gates (19–21).

Indeed, these putative pre-DC, shown to derive from pro-pDC and

now classified as transitional DC (tDC), appear to be competent

antigen presenters that have likely biased several in vitro assays

involving pDC, as discussed elsewhere (19, 20, 22, 23). A murine

coronavirus infection model has suggested the involvement of tDC in

viral responses, with the intriguing hypothesis that tDC are in a

delicate balance with antiviral pDC and enhance pro-inflammatory

responses by IL-1b production (24). Notably, cDC2-like cells were

shown to differentiate from tDC, and may be termed tDC2 as

suggested by Sulczewski et al. (24). These tDC2 very much

resemble ESAM+ cDC2 and CD5+ cDC2 in mouse and human,

respectively, and were shown to replenish the DC2 pool in mouse

models with impaired pre-DC2 development (24–26). This further

complicates the picture of DC2 heterogeneity, now encompassing

pre-cDC-derived cDC2 subsets (15), pro-DC3-derived DC3

(monocyte-like) (18), and pro-pDC-derived tDC2 (pDC-like) (24).

We have previously described phenotype and bulk transcriptome

of porcine blood cDC1, cDC2 and pDC, with key gene expression

confirming a gating strategy based on CD14, CD172a, CADM1 and

CD4 (4). Accordingly, porcine cDC1 can be identified as CD14-
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CD172alowCADM1+CD4-, cDC2 as CD14-CD172a+CADM1+CD4-,

and pDC as CD14-CD172a+CADM1-CD4+. Notably, using this

marker combination, one additional subset was apparent, expressing

CD172a, but lacking expression of all other markers (CD14-CADM1-

CD172a+CD4-). By performing scRNA-seq on Flt3+ DC enriched from

porcine blood, we now confirm the existence of this novel subset and

identify it as porcine tDC. Moreover, we describe putative DC3 as cells

co-expressing both cDC2 markers (FLT3, FCER1A, CD1.1) and

monocyte markers (CSF1R, CD14, CD163, C5AR1).
Results

Phenotype of putative porcine tDC

In a previous study, we characterized mononuclear phagocyte

(MP) subsets in porcine blood by flow cytometry, identifying cDC1
Frontiers in Immunology 03
as CD14-CD172alowCADM1+, cDC2 as CD14-CD172a+CADM1+,

pDC as CD14-CD172a+CADM1-CD4+ and monocytes as CD14+

(4). Here, applying the same staining protocol and gating strategy

(Supplementary Figure S1), we focused our analysis on the

previously undescribed MP subset of CD14-CD172a+ cells lacking

both CADM1 and CD4 expression and being as frequent as pDC in

blood of pigs (Figure 1A). Expression of the conserved DC marker

Flt3 (CD135), together with the almost complete lack of monocyte

markers (CD115/CSF1R and CD163), supported its identification

as a bona fide DC subset (Figure 1B). Notably, it shared phenotypic

markers with both cDC (CD11b/wCD11R1 (27) and CD205,

absence of CD303) and pDC (IL3-RA/CD123, absence of CD1).

Moreover, this subset expressed CD80/86 and a high level of MHC-

II, thus suggesting its involvement in antigen presentation and T-

cell co-stimulation. Taken together, this new DC subset displayed a

phenotypic profile overlapping with both cDC and pDC

phenotypes, and it shared prominent expression of IL3-RA with
FIGURE 1

Phenotypic characterization of a new DC subset in blood of pigs: putative porcine tDC (pptDC). PBMC were isolated from the blood of four pigs and
stained for flow cytometry. (A) Representative gating for mononuclear phagocyte (MP) subsets. Following selection of large cells and doublet
exclusion (see Supplementary Figure S1), CD14+ cells were defined as monocytes and four subsets were distinguished among CD14- cells: cDC1 as
CD172alowCADM1+, cDC2 as CD172a+CADM1+, pDC as CD172a+CADM1-CD4+, and a newly described DC subset as CD172a+CADM1-CD4-. (B)
Yellow histograms show the expression of various molecules on CD172a+CADM1-CD4- cells. Gray histograms show the FMO control.
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pDC, leading us to further address this subset as putative porcine

tDC (pptDC).
Bulk transcriptome confirms identity of
putative porcine tDC

Following phenotypic characterization, we investigated the

transcriptional profile of the newly identified pptDC. To this end,

this subset was MACS/FACS-sorted from the blood of four pigs and

processed for bulk RNA-seq. Resulting data were analyzed

alongside previously generated RNA-seq datasets of the four

other blood MP subsets (cDC1, cDC2, pDC and monocytes) (4).

Principal component analysis (PCA) of the 500 most variable genes

between the five MP subsets (PC1 = 60%, PC2 = 30%) showed that

all samples of the newly described cell subset (pptDC) were

clustering together and away from the four other MP subsets,

supporting the discovery of pptDC as a new and distinct DC

subset (Figure 2A). As further illustrated by a subset-to-subset

correlation analysis, pptDC appeared to be more closely related to

cDC than to pDC, sharing the highest correlation score with cDC2

(Supplementary Figure S2A).

Overall, gene expression was in line with surface protein

expression detected in flow cytometry (Figure 2B). Gene

expression for additional phenotypic markers is shown in

Supplementary Figure S2B. Both pptDC and pDC expressed

IL3RA (not available in Ensembl pig genome annotation), as

shown by read mapping to the corresponding genomic region

(Supplementary Figure S2C).

To characterize pptDC, we next studied the expression of

conserved key genes known to define the main MP subsets across

species (28, 29), including those we previously reported in pig blood

(4). The updated analysis of the cDC1, cDC2, pDC and monocyte

data (new reference genome) was in accordance with our formerly

published transcriptomic analysis (4), supported also by the subset-

specific expression pattern of these markers (Figure 2C). For

pptDC, the expression of the pan-DC markers FLT3 and BCL11A

was in common with cDC1, cDC2 and pDC. Considerable levels of

monocyte-specific gene expression (e.g. CSF1R, CD14, CD163) were

detected in two out of four pptDC samples (#4, #5 in Figure 2C).

Notably, pptDC expressed transcripts for both IRF4 and IRF8, two

transcription factors (TF) involved in the development of cDC2 and

cDC1/pDC, respectively (3, 28). In addition to markers shared

across DC populations, pptDC showed expression of DC subset-

restricted features, such as XCR1 and ANPEP (cDC1), FCER1A,

CD207 and NOTCH4 (cDC2), and RUNX2, TCF4, BLNK and

SPIB (pDC).

Dendritic cells with a phenotype and transcriptome overlapping

with both cDC2 and pDC are characteristic of the recently identified

tDC in humans (19) and mice (22). These tDC were reported to

originate from progenitors shared with pDC and to differentiate

into cDC2 (24). To further explore if our new DC subset represents

the porcine equivalent of tDC, we analyzed differentially expressed

genes (DEGs) between pptDC and cDC2 or pDC based on pairwise

comparisons (DESeq2). Complete lists of DEGs are provided as
Frontiers in Immunology 04
Data S1. Putative porcine tDC showed expression of SPI1, TCF4,

NOTCH2, CEPBA, KLF3, KLF8, KLF12, ZBTB46, IRF4, IRF8,

STAT5A, RUNX2 and SPIB (Figures 2C, D), which are genes also

found in tDC of humans and mice (22, 24, 30, 31), coding for cDC-

or pDC-specific transcription factors (TF). Notably, Leylek et al.

demonstrated by chromatin accessibility analysis that KLF3, KLF8

and KLF12 were part of the unique TF profile of tDC (30). Among

the gene regulatory network governing DC development, TCF4 and

ID2 are reported as mutual functional antagonists promoting pDC

versus cDC differentiation, respectively (32). We found that both

were expressed in pptDC (Figure 2D), reinforcing their

intermediate nature between cDC2 and pDC. Additionally, this

new subset exhibited a high transcription level of ZBTB16, the gene

encoding PLZF, a TF known to induce ID2 expression (33).

Interestingly, pptDC shared the expression of KLF4 with cDC2,

reported to be required for the differentiation of murine circulating

pDC-like cells (identified as pre-DC2) into a subset of cDC2 (26).

Unlike pDC, pptDC showed low IRF7 gene expression, suggesting

its limited capacity to produce type I IFN, also distinguishing tDC

from pDC in human and mouse (22). Moreover, its high

transcription level of CD200R1, STAT5A and RAB3IL1 in

comparison to cDC2 and pDC is consistent with the spleen tDC

signature described by Sulczewski et al. in mice (24).

Porcine cDC2 and pptDC could be further distinguished from

pDC by their expression of AXL, a human tDC marker (Figure 2D).

Notably, pptDC expressed high levels of both CD2 and CD5, in

contrast to porcine pDC (low levels of CD2 and CD5 transcripts)

and cDC2 (transcription of CD2 but very low levels of CD5

transcripts). These expression patterns were also found for

human tDC, cDC2 and pDC, both transcriptionally and

phenotypically (22). Thus, staining of CD2 and CD5 may be

useful for distinction of porcine DC subsets in flow cytometry.

Finally, we observed a progressive increase of ITGAM, CD83,

LY75, and SLA-DRA expression from pDC via pptDC toward cDC2

(Figure 2D), suggesting gradually increasing antigen presentation

capabilities across those subsets. Taken together, phenotype and

bulk transcriptomic signatures support the idea that the new

porcine DC subset (CD14-CADM1-CD172a+CD4-) represents the

equivalent of tDC described in human and mouse.
Functional specialization of pptDC inferred
from bulk transcriptomics

Further exploration of pptDC-derived transcriptomic data

revealed a unique gene signature related to pathogen recognition,

antigen presentation, T-cell co-stimulation, immunoregulatory

activities and cell adhesion (Figure 2 and Supplementary Figure S3).

Porcine putative tDC expressed relatively low levels of pattern

recognition receptors (PPR) for bacterial components (e.g. TLR4,

TLR5) (Supplementary Figure S3A), however one pptDC sample

(#5) contained high transcript levels for bacterial PRR

(Supplementary Figure S3A), and as shown in Figure 2C, also

appeared enriched for monocyte-related transcripts such as CD14.

Notably, all four pptDC samples stood out by high TLR3 and IFIH1
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(MDA-5) expression (Figure 2E), suggesting a specialization in

sensing double stranded RNA. Transcripts for TLR7, TLR8 and

TLR9 could also be detected in pptDC, even though higher levels

were detected in other DC subsets.
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Similar to cDC2, pptDC expressed a relatively high level of C-type

lectin receptor (CLR)-associated genes, such as MRC1 (CD206),

PLA2R1 (CLEC13C), CD207 and CLEC4F (Supplementary Figure

S3A), suggesting their involvement in mannose-ligand recognition
FIGURE 2

Bulk RNA-seq of DC subsets, including putative porcine tDC (pptDC) in blood of pigs. Bulk RNA-seq was performed on five sorted mononuclear
phagocyte (MP) subsets. (A) First two dimensions of principal component analysis, with different symbols representing individual animals. (B) Gene
expression for markers used in FACS. Bar plots show the number of normalized counts for each gene and MP subset (mean ± standard deviation).
(C) Transcription of key MP subset-defining genes represented by heatmap. Z-scores were calculated from log10-transformed normalized counts of
selected genes. Mean kilo reads for each subset and gene are given to the right of each heatmap. (D) Gene transcription distinguishing putative
porcine tDC (pptDC) from cDC2 and/or pDC. Genes were selected based on pairwise comparisons with DESeq2 (adjusted p-value < 0.05 and |
log2FC| > 1) (see Data S1) and literature research. (E, F) Gene transcription for pattern recognition and antigen presentation. Bar plots show the
number of normalized counts for each gene and MP subset (mean ± standard deviation).
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and phagocytic activities (34). Notably, expression of MRC1 and

CLEC4F was found to be very heterogeneous across pptDC samples.

Similar to cDC1 and pDC, pptDC also contained transcripts for

CLEC12A (MICL) and CLEC12B, two CLR that mostly recognize

endogenous ligands such as damage-associated molecular patterns (35,

36), thus suggesting a role in clearing dying cells.

Looking at gene expression related to antigen presentation and

T-cell modulation (Supplementary Figure S3B), pptDC stood out by

expressing the highest levels of certain genes that may promote T-

cell activation by enhancing antigen (cross-) presentation (ATG5,

UBE2D1, RAB27A) (37–39), may promote the differentiation of

regulatory T cells (IL4I1) (40, 41) or Th1 cells (DPP4) (42), or may

otherwise be involved in regulating T-cell responses (VSIG10,

CD200) (43, 44). For other genes involved in antigen

presentation, we observed a gradual increase from pDC via

pptDC towards cDC. Indeed, pptDC displayed intermediate

transcription levels of genes encoding MHC-II molecules (e.g.

SLA-DRA, SLA-DOA, SLA-DMB, SLA-DMA), molecules involved

in MHC-II trafficking and antigen processing (PIKFYVE, IFI30,

CIITA, CD74, LY75, TAP2) and co-stimulatory molecules (CD83,

CD40) (Figure 2F, Supplementary Figure S2B, Supplementary

Figure S3B).

Genes encoding cytokines and cytokine receptors

predominantly expressed in pptDC included IL18 and IL17RA

(Supplementary Figure S3C). Notably, alongside cDC1, pptDC

prominently expressed the beta chain of the IL-6 receptor

(IL6ST), reported to function in signal transduction for various

cytokines (45). When compared to pDC, pptDC contained fewer
Frontiers in Immunology 06
transcripts for type I interferons (IFN-OMEGA-6) and related

receptors (IFNAR1 and IFNAR2), reinforcing the hypothesis of

their limited involvement in type I IFN responses.

Looking at chemokines and chemokine receptors, pptDC were

found to express considerable levels of XCR1 (Supplementary

Figure S3D). Notably, this key marker for cDC1 is involved in

antigen cross-presentation and CD8+ T-cell priming (46, 47).

Moreover, pptDC contained the highest number of CCR7 and

CXCR5 transcripts among cDC subsets, however at low levels

(mean reads of 200 and 300, respectively). While CCR7 is a well-

known marker for DC activation (48), expression of CXCR5 is

expected to cause migration to the CXCL13-rich parafollicular areas

of the lymph node to possibly stimulate follicular Th cells (49).

Finally, several genes encoding integrin chains showed

highest expression in pptDC such as ITGB3, ITGAV and ITGA6

(Supplementary Figure S3E), as well as genes encoding Fc receptors

(e.g. FCRL4) (Supplementary Figure S3F), metalloproteinases (e.g.

MME and MMP9) (Supplementary Figure S3G) and semaphorins

(e.g. SEMA4F, SEMA4C, PLXNA4) (Supplementary Figure S3H).
Heterogeneity of porcine blood DC
revealed by scRNA-seq

To get a more unbiased view on the heterogeneity of porcine

blood DC subsets, we performed scRNA-seq (10x Genomics) on

Flt3+ DC enriched from blood of three pigs (Figure 3A). Clustering

of cells with a resolution of 0.6 (Leiden algorithm) resulted in the
FIGURE 3

Heterogeneity of DC in blood of pigs revealed by scRNA-seq. (A) DC were sorted from PBMC of three pigs and subjected to 10x Genomics scRNA-
seq. Data from approximately 10,000 DC per sample was analyzed. (B) Clustering with a resolution of 0.6 resulted in 13 clusters visualized by UMAP
plot. (C) Feature plots showing the expression of FLT3, CSF1R and CD34. (D) Violin plots showing the level of FLT3, CSF1R and CD34 expression
across all clusters.
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identification of thirteen distinct clusters (Figure 3B). Complete lists

of cluster-defining marker genes, as determined by Seurat’s

FindAllMarkers() function, are listed in Data S3. Three clusters

(c7, c8, c9) were excluded due to quality issues (Supplementary

Figure S4A), as were clusters containing B cells (c13) and NK cells

(c11) (Supplementary Figures S4B, S4C).

Eight FLT3-expressing clusters (c1, c2, c3, c4, c5, c6, c10, and

c12) were analyzed in further detail. Notably, cluster 5 appeared to

contain monocytic cells alongside DC (DEG including CSF1R,

C5AR1, CD14, CD163, SIRPA and CD68), and cluster 10

appeared to be comprised of DC progenitors (DEG including

CD34, MEIS1, DACH1, ERG, KIT, IKZF2 and MECOM) (15)

(Figures 3C, D, Data S3). As shown in Figures 4A–C, expression

of subset-specific key genes clearly identified cluster 6 as cDC1

(BATF3, XCR1, RAB7B, ANPEP, IRF8), cluster 1 as cDC2 (FCER1A,

FCGR2B, CD207, SIRPA, IRF4) and clusters 2 and 12 as pDC (CD4,

SPIB, BLNK, TCF4, RUNX2, IRF8). Cells in clusters 3 and 4

expressed IRF4, IRF8, XCR1, ANPEP, FCER1A, RUNX2, SPIB,

TCF4 and BLNK (Figure 4B), thus sharing subset-specific markers

with cDC1, cDC2 and pDC, as observed with bulk RNA-seq of

pptDC described above (Figure 2C).

A heatmap of the top 15 (adjusted p-value) DEG between the

DC subsets is shown in Figure 4C and the complete gene lists are

given in Data S3. Apart from the genes mentioned above, DEG

included CADM1, CLNK, ID2, SNX22, WDFY4 and DNASEIL3, for

cDC1 (c6), CD1D, ITGAM (CD11b), S100A4, TLR2 and TLR4 for

cDC2 (c1), and IRF7, IFNAR1, NRP1, LRP8 and SYK for pDC (c2,

c12). In line with the bulk RNA-seq analysis (Figure 2, Data S1),

clusters 3 and 4 were enriched for ZBTB7C, ZBTB16, KLF4,

NOTCH2 , DPP4 (CD26), TGFBR3 and SEMA4F , further

supporting the classification of c3 and c4 as pptDC.
Correlation of FCM-based and scRNA-seq
based subset identification

When estimating the proportions of the DC clusters within total

blood DC (Figure 4D), we found that c1 (cDC2) and c2 (pDC) each

represented approximately 30%, c6 (cDC1) represented 7%, and the

pptDC clusters 3 and 4 represented 16% and 14%, respectively.

These results are in accordance with the cell proportions previously

observed by flow cytometry for the RNA-seq analysis of sorted cells

(Figure 1A). Representative flow cytometry data for animals

included in the scRNA-seq analysis is shown in Supplementary

Figure S5. Proportions of DC subsets from scRNA-seq and flow

cytometry showed a moderate correlation, with an R² value of

0.65 (Figure 4E).

To investigate if flow-cytometry defined DC subsets are well

represented in the clustering of the scRNA-seq dataset, we tested for

relative enrichment of the gene signatures from sorted bulk-

sequenced subsets in the scRNA-seq clusters by gene-set

enrichment analysis (GSEA). Different levels of enrichment were

tested (5, 10, 15, 25, 50 and 100%) (see Material and Methods),

allowing us to select 25% for optimal resolution of sc identities

(Supplementary Figure S6). As shown in UMAP plots (Figure 4F)
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and a heatmap (Figure 4G), cDC1-derived gene sets had the highest

enrichment in cluster 6, cDC2-derived gene sets in cluster 1, pDC-

derived gene sets in clusters 2 and 12, and pptDC-derived gene sets

in clusters 3 and 4. This clear allocation of bulk signatures supports

the suitability of the 4-marker sorting strategy for porcine DC

subsets and confirms the cluster identification in the scRNA-

seq dataset.
Putative porcine tDC share transcript
signature with human and murine tDC

For further verification of pptDC identity, we used the GSEA

approach described above to compare the porcine DC signatures to

DC signatures derived from published bulk- and scRNA-seq studies

of human blood (19, 50) and murine spleen (24) (Figures 4H–J).

Two distinct human studies were selected, each utilizing a different

scRNA-seq technology (SMARTSeq2 for Villani et al. (19),

Figure 4H, and 10x Genomics for Lubin et al. (50), Figure 4I and

Supplementary Figure S7). As expected, both human and murine

cDC1, cDC2 and pDC gene signatures showed the highest relative

enrichment in cluster 6 (cDC1), cluster 1 (cDC2) and in clusters 2

and 12 (both pDC), respectively. Notably, human ASDC and

murine tDC (“bulk”) gene sets showed the highest enrichment in

clusters 3 and 4, representing pptDC (Figures 4H–J), thus

supporting the identification of pptDC as porcine equivalents

of tDC.

As expected, cluster 4 (pDC-like pptDC) was more enriched for

human and murine pDC signatures than cluster 3 (cDC2-like

pptDC), whereas cluster 3 displayed greater enrichment for

human and murine cDC2 signatures than cluster 4. However, sc

signatures of murine tDC-subclusters (“tDClow” and “tDChi”) did

not show discriminating enrichment in pptDC clusters 3 or 4

(Figure 4J) but were rather enriched in c3 (cDC2-like pptDC) and

c1 (cDC2).
pptDC span a continuum between pDC-
like and cDC-like profiles

In accordance with the reported origin of tDC from pro-pDC

and their differentiation into cDC2-like cells (14, 15, 24, 26, 50), we

found that transcripts for several TF involved in DC fate decisions

(28) were sequentially increased or decreased from pDC via pptDC

(c4 and c3) towards cDC2 (Figure 5A). Among TF, the most evident

gradual decrease was observed for pDC-associated genes TCF4,

IRF8, IKZF1 and BCL11A, whereas transcription of cDC-associated

genes SPI1 and ID2 increased via c4 and c3. A more abrupt decrease

from c4 to c3 was observed for SPIB, the gene coding for Spi-B, a

transcription factor promoting development of pDC (51). Notably,

RUNX2, NOTCH2, KLF4, KLF12 and JAK2 showed highest

expression in c4, before decreasing again in c3, whereas ZBTB46

and ZBTB16 expression appeared to peak in c3. Lastly, several TF

showed increased expression in both c3 and c4 when compared to

pDC and cDC2 (ZBTB7C, STAT5A, KLF3 and CBFA2T3).
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FIGURE 4

Annotation of DC subsets, including pptDC, in scRNA-seq dataset. (A) Subset annotation of main DC subsets (left) and expression of key genes
visualized in feature plots (right). (B) Dot plot showing DC-subset-defining key genes. (C) Heatmap showing the top 15 differentially expressed genes
(p_val_adj) for main DC clusters, as determined by Seurat’s FindAllMarkers() function. Complete gene lists are available as Data S3. (D) Proportion of
each DC cluster relative to the total selected DC population. (E) Correlation between cell proportions obtained from scRNA-seq (y-axis) and flow
cytometry (x-axis) of the same pigs. Symbols represent individual animals. Black line represents the linear regression model. (F) Enrichment of gene
signatures from bulk-sequenced DC subsets (see Data S1) in single-cell RNA-seq clusters represented by UMAP plots. (G–J) Heatmaps showing
averaged scaled enrichment scores for gene signatures from bulk-sequenced porcine DC subsets (see Data S1) (G), from human blood DC (Villani
et al.) (H), from re-analyzed human blood DC (Lubin et al., for re-analysis see Supplementary Figure S7) (I), and from murine spleen DC (Sulczewski
et al.) (J) (see Data S2). AUC relative scores >= 0.5 are displayed.
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The transcriptomic signature of pptDC clusters (c3 & c4) was

further characterized by comparing them against cDC2 (c1) and

pDC (c2) and against each other. Heatmaps of the top 20 (adjusted

p-value) DEGs are shown in Figures 5B–D. The complete gene lists

are given in Data S3. Notably tDC clusters differed in the expression
Frontiers in Immunology 09
of integrin transcripts (Figure 5E), generally reflecting their

similarity to either pDC (c4: ITGAL, ITGB5) or cDC2 (c3: ITGB2,

ITGAM, ITGAX). In accordance with the adoption of an

increasingly cDC-like phenotype, cDC2-like tDC (c3) showed

higher expression of transcripts related to antigen presentation
FIGURE 5

Transcriptomic delineation of pptDC from pDC and cDC2. Comparison of cDC2 (c1), pDC (focus on c2) and pptDC clusters (c3 and c4). (A) Violin
plots show gene expression for transcription factors involved in the development of different DC subsets. Red lines pass through the mean
expression value for each cluster. (B–D) Heatmaps show the top 20 differentially expressed genes (p_val_adj) in selected DC clusters, as determined
by Seurat’s FindMarkers() function for pairwise comparisons. Complete gene lists are available as Data S3. (E) Feature plots showing the expression of
genes coding for different integrin chains. (F) Expression of genes related to antigen presentation and T-cell modulation. (G, H) Single-cell
classification scoring determined with an ElasticNet model.
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(e.g. SLA-DRA, SLA-DQA1, CD74) and T-cell stimulation (e.g.

CD40, CD83, ALCAM) than pDC-like tDC (c4) (Figure 5F). In

line with bulk RNA-seq, pptDC clusters showed the highest

expression of DPP4 and PECAM1 (two genes involved in T-cell

modulation), when compared to pDC and cDC2.

To further characterize the correlation between pptDC and

cDC2 or pDC, we trained an ElasticNet model computing a

classification score based on the transcriptomic signatures of the

different cell types (Figures 5G, H). According to this model, pptDC

in cluster 4 showed low-to-intermediate scores for both cDC2 and

pDC signatures, while pptDC in cluster 3 were characterized by a

progressive increase in the cDC2 score while exhibiting a low pDC

score (Figure 5G). In line with the differential gene expression

analysis, cDC2 displayed a higher score for cluster 3 than for cluster

4, and pDC showed the reverse pattern (Figure 5H).

Overall, the transcriptome of pptDC spans a continuum

between pDC and cDC profiles, as described for humans and

mice (19, 22, 24, 52). This intermediate transcriptome, together

with the core gene signature resembling human and murine tDC,

justifies identifying pptDC as the porcine equivalents of ASDC/tDC.

Furthermore, these results suggest that porcine tDC may

differentiate into cDC2-like cells, as proposed for their murine

(24, 26) and human (50) counterparts.

To further explore the cellular dynamics between porcine tDC

and cDC2, we performed a trajectory inference (TI) analysis on cells

in clusters 1, 3 and 4 (Supplementary Figure S8). Genes that varied

along the inferred trajectory corresponded to the DC subset-specific

signatures previously identified by differential expression analysis.

Notably, the continuum from tDC to cDC2 was marked by a

gradual increase in the expression of genes associated with

antigen presentation via MHC-II molecules (module 2 in

Supplementary Figure S8C), suggesting a progressive acquisition

of cDC features by tDC differentiating towards cDC2-like cells.
Putative DC3 in porcine blood

In both mouse and human, DC3 have been described as a novel

DC subset sharing dendritic and monocytic markers (12, 14, 17–

19). Interestingly, cluster 5, adjacent to cDC2 (c1), appeared to

contain both monocytic and dendritic cells (Figure 3) and showed

the highest enrichment score when performing GSEA with human

DC3 signatures (Figures 6A, B).

Upon re-clustering of c5, two major clusters were separated

from two smaller clusters (Figure 6C). The small clusters 3 and 4

were annotated as cDC2 (FLT3, FCER1A, CD1.1) and monocytes

(high levels of CD14, LYZ), respectively, while the two major

clusters 1 and 2 were annotated as putative DC3 as they

contained low levels of CD14 and FCER1A transcripts alongside

FLT3 and CSF1R transcripts (Figures 6C, D). Indeed, a significant

proportion of cells in sub-clusters 1 and 2 (putative DC3) were

revealed to co-express FLT3 transcripts alongside transcripts

typically associated with monocytes, such as CSF1R, CD163,

CD14 and C5AR1 (Figure 6E).
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Among putative DC3, c1 stood out by higher transcription of

CD163, C5AR1 and VCAN, while c2 was clearly enriched in S100A4,

S100A6 and CST3 transcripts (Figure 6F). Compared to c1, c2 also

expressed slightly higher levels of MHC-II-related genes.

The current gating strategy for identifying porcine DC subsets is

based on exclusion of CD14+ monocytes (Figure 1) and therefore

likely excludes CD14-expressing DC3. This is illustrated by gradual

gating based on CD14 expression prior to DC gates, as shown in

Figure 6G. Indeed, CD14low (P3) and CD14int (P2) populations

contained approximately 66% and 6% Flt3+ DC, respectively,

mainly falling within the cDC2 gate (CADM1+CD172a+).

The gated Flt3+CADM1+CD172a+ population thus represents a

more heterogenous population, likely containing CD14-expressing

DC3. This hypothesis is further supported by the shared expression

of CADM1 and CD172a (SIRPA) by cDC2 (c1) and putative DC3

(c5) at the transcriptomic level (Figure 6H).
Discussion

We have previously identified porcine cDC1, cDC2 and pDC in

blood of pigs by their expression of key transcripts conserved across

species (4). In this previous work, we found a substantial subset of

CD14-CADM1-CD172a+CD4- cells in the blood of pig with

unknown identity (4). Based on recent insights from human and

mouse, the present study now identifies this unknown DC subset as

the equivalent of tDC by combining flow cytometry, bulk- and

scRNA-seq analyses.

With the current study, we have zoomed into the DC

compartment by performing scRNA-seq on Flt3-enriched PBMC,

revealing both tDC and putative DC3 in blood of pigs. Like their

human and murine counterparts (19, 22, 24, 53), porcine tDC

displayed a distinct transcriptomic signature in-between pDC and

cDC2, whereas putative DC3 clustered in a continuum in-between

cDC2 and monocytes.

Notably, porcine tDC were found to be as frequent as other DC

subsets in blood of pigs, which is in stark contrast to reports from

human and mouse, where tDC only form a minor population of

approximately 1-5% among total DC in blood and spleen (19, 22,

24, 26, 50, 52). The high proportion of tDC in porcine blood is

puzzling and may point towards high frequencies of tDC across

tissues, which would make the pig an attractive model for studying

tDC in various settings, including infection. In fact, tDC are

discussed to play a special role in viral infection. In murine

models of SARS-CoV2 infection, virus-sensing tDC produced

IL-1b and were deemed responsible for shifting the balance

towards inflammation and fatal immunopathology (24).

Upregulation of IL-1b was also observed in human tDC recruited

to skin following experimental injection of UV-killed E. coli (50).

Compared to blood tDC, these tDC had upregulated pro-

inflammatory genes (IL1B, SAT1, AXL), genes related to IFN

signaling (ISG15, IFI44L, IFI27), and chemokine receptors

associated to migration (CXCR4, CX3CR1), while having

downregulated genes coding for HLA molecules.
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FIGURE 6

Putative porcine DC3 co-express FLT3 and CD14. (A, B) Enrichment of gene signatures from human blood DC2 and DC3 (Villani et al. and Lubin
et al.), represented by heatmaps (A) and UMAP plots (B). AUC relative scores >= 0.5 are displayed. (C) Re-clustering of monocyte-like cells in cluster
5, resulting in 4 distinct clusters visualized by UMAP plot (Leiden algorithm, clustering resolution = 0.4). (D) Feature plots show expression of
selected genes reported to distinguish human cDC2, DC3 and monocytes. (E) Scatter plots show co-expression of FLT3 and selected monocytic
markers in clusters 1 and 2. (F) Heatmap shows relative mean gene expression across each cluster for selected genes reported to distinguish
between human cDC2, DC3 and monocytes. (G) Flow-cytometric gating of porcine DC subsets from gradual CD14 expression gates (P1-4). Plots are
representative for all three pigs included in the scRNA-seq analysis. For complete gating strategy see Supplementary Figure S5. (H) Violin plots
showing the expression of genes encoding CADM1 and CD172a (SIRPA) for the cDC2 (c1) and DC3 clusters (c5) in the original scRNA-seq dataset.
Frontiers in Immunology frontiersin.org11

https://doi.org/10.3389/fimmu.2025.1639553
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Baillou et al. 10.3389/fimmu.2025.1639553
Our transcriptomic data support the involvement of porcine

tDC in sensing viral components and in promoting inflammation.

In particular, tDC might be involved in antiviral response by

sensing double-stranded RNA via TLR3 expression. Notably,

apart from porcine tDC, TLR3 is predominantly expressed in

porcine pDC. This is in contrast to human and mouse, where

TLR3 is not expressed at all on pDC (54, 55), representing only one

example of species differences in viral sensing (4).

Porcine tDC expressed higher levels of CD86 and MHC-II

molecules than pDC, both on the mRNA and protein level,

suggesting that tDC are better equipped for T-cell stimulation.

This is in line with murine and human tDC reported to outperform

pDC in inducing allogenic T-cell proliferation (19, 22, 24, 26, 50). In

fact, contaminations with tDC/human ASDC in traditional pDC

gates have likely biased T-cell stimulation assays, erroneously

attributing T-cell stimulatory functions to pDC (19). It remains to

be determined if tDC contribute to stimulation of naive T cells in

secondary lymphoid tissues. In a model of murine influenza

infection, tDC were described to be recruited to the lungs, but

were not found to accumulate in draining lymph nodes (22). While

our data indicate transcription of several TLR and co-stimulatory

molecules, future studies should interrogate TLR responsiveness

and the capacity of porcine tDC for phenotypic maturation

(upregulation of CCR7, MHC-II, CD80/86), as previously

performed for bovine DC and monocyte subsets (8, 56). In

particular, assessment of CCR7 upregulation upon TLR

stimulation will indicate if porcine tDC are capable of migration

to T-cell zones in secondary lymphoid tissues. The transcriptomic

reference datasets generated in the present study will enable detailed

investigations on tDC and their activation signatures across tissues

both in steady-state and infection.

Murine studies have started to dissect the developmental pathway

of tDC using specific knockout (KO) and adoptive cell transfer

approaches, as well as lineage tracing mouse models (15, 24, 26).

Sulczewski et al. demonstrated that murine tDC originate from bone

marrow progenitors shared with pDC (pro-pDC) at steady state (24).

Notably, when knocking out the pre-cDC pathway, pro-pDC could

compensate for the lack of cDC2 by producing cDC2-like cells

(termed tDC2) via the tDC pathway. Moreover, tDC isolated from

human blood converted into CD5+ cDC2 upon CD40L stimulation in

vitro (24) and bone marrow tDC cultured under standard DC

differentiation conditions (i.e. GM-CSF and Flt3-ligand) generated

exclusively DC2 (14). The clustering we observed in our scRNA-seq

dataset alongside the transiently increasing cDC signature would

support the hypothesis that porcine tDC can give rise to cDC2-like

cells in vivo. It is intriguing to speculate that the bridge-like

connection between cDC2-like tDC and cDC2 in our UMAP plot

marks this transition. Recently, Lubin et al. used deuterium-glucose

labeling of dividing cells to study the kinetics of DC subsets and their

progenitors in human blood (50). Their findings support a model in

which ASDC (human tDC) give rise to DC2 in both the bonemarrow

and blood. Indeed, the incorporation of deuterium into DNA is safe

for use in humans and rodents (57, 58), making it a promising tool

for investigating the fate and lifespan of DC in large animal models

in vivo.
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Patterns of expressed transcription factors in porcine tDC were

largely in accordance with murine and human tDC. High expression

of STAT5A in porcine tDC is in line with the idea that tDC need to

counteract differentiation towards pDC, as STAT5 was reported to

inhibit pDC development by suppressing IRF8 (59). By chromatin

accessibility analysis, Leylek et al. demonstrated that KLF3, KLF8 and

KLF12 were part of the unique TF profile of tDC (30). Accordingly,

the distinct expression pattern of KLF3, KLF8 and KLF12 in porcine

tDC distinguished them from cDC2 and pDC. Among the gene

regulatory network governing DC development, TCF4 and ID2 are

reported as mutual functional antagonists promoting pDC versus

cDC differentiation, respectively (32). The expression of both TCF4

and ID2 in porcine tDC aligns with their transitional nature.

To our knowledge, tDC have not yet been described in

mammalian species other than humans and mice. A decade ago,

Vu Manh et al. described a subpopulation of cDC2 (FSChiMHC-

II+CD14-CD4-CADM1-CD172aint) in porcine blood (29). The bulk

transcriptome of this population was suggested to be significantly

contaminated by pDC (TCF4) and cDC1 (XCR1) and was thus

excluded from their analyses. In the light of current knowledge and

our present results, this population likely contained tDC. As did the

FLT3- and XCR1-expressing CADM1- population within CD14-

CD172a+CD1-CD4- cDC reported in another study (60).

Transcriptomic data suggest that CD2 and CD5 can be used in

flow cytometry to discriminate porcine tDC (CD2+CD5+) from

pDC (CD2lowCD5low) and cDC2 (CD2+CD5low). Notably, human

tDC, previously considered as pre-DC, are also reported to differ

from pDC by expression of CD2 and CD5 transcripts (19, 53).

Protein-level analyses are necessary to confirm the suitability of

these markers.

The combination of bulk RNA-seq from sorted DC populations

and scRNA-seq of enriched DC allowed us to confirm the accuracy of

our flow-cytometry based subset identification (cDC1, cDC2, pDC,

tDC). However, scRNA-seq of enriched DC revealed additional

heterogeneity. Unbiased clustering of our scRNA-seq dataset

suggests the presence of two tDC subsets in porcine blood,

spanning a differentiation continuum in-between pDC-like cells and

cDC2-like cells. Similarly, in mice, tDC were classified into two distinct

subpopulations according to their similarity to pDC and cDC2, termed

tDClow (CD11clowLy6chigh) and tDChigh (CD11chighLy6Clow),

respectively (22). The mouse Ly6c gene does not have a pig ortholog,

but transcription of ITGAX, encoding CD11c, appeared to be higher in

porcine cDC2-like tDC. So, although transcriptomic signatures from

murine tDChigh and tDClow were not discriminatory for the two

porcine tDC clusters, CD11c may still be suitable for distinguishing

porcine tDC subsets in flow cytometry. Observed monocyte signatures

(increased transcripts for e.g.CD14) in two out of four investigated tDC

samples are surprising and cannot be explained by the scRNA-seq data,

where monocyte-associated gene expression could not be detected in

the two tDC clusters.

In addition to tDC, our scRNA-seq analyses suggest the presence

of DC3 in porcine blood. Dendritic cells type 3 have been described as

a new DC lineage, originating from monocyte/dendritic-cell

precursors, as opposed to cDC deriving from common dendritic

progenitors (15, 18). As DC3 share phenotype and transcriptome
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with monocytes and cDC2, their clear delineation has proven difficult

in both human and mouse, especially under inflammatory conditions

(61). In fact, CD14, a molecule that has traditionally been used as a

monocyte marker across species, appears to be expressed on DC3 of

all species investigated so far, including pig. Notably, in the gating

strategy employed here to sort porcine DC subsets for bulk RNA-seq,

CD14+ cells were excluded. This has likely reduced DC3

contamination in the cDC2 gate, but also highlights the importance

of scRNA-seq as a tool that is relatively independent of a priori

defined gating strategies. In future studies, the gating strategy for

porcine DC subsets should include Flt3 to account for CD14-

expressing DC3.

When studying rare and poorly defined DC with scRNA-seq,

proper enrichment strategies are crucial and should be based on

extensive phenotypic characterization to not bias investigations on

DC heterogeneity. By enriching DC by Flt3 expression, as performed in

the present study, we expect to have captured the vast majority of DC.

In support of this, similar proportions for main DC subsets were found

in scRNA-seq (Flt3-enriched) and flow cytometry (Flt3-independent

gating strategy employed for bulk RNA-seq of DC subsets). However,

DC subsets expressing low levels of Flt3 (e.g. pDC) may still be missed

by this enrichment strategy, as also discussed for scRNA-seq of Flt3-

enriched cells in bovine lymph node (62).

Taken together, by enriching Flt3+ cells for scRNA-seq, we have

zoomed into the heterogeneous compartment of porcine DC at

unprecedented detail. Apart from discovering tDC as a major DC

subset in porcine blood, we describe putative DC3 as FLT3 expressing

cells that show considerable transcriptional overlap with monocytes.

Several open questions need to be addressed in future studies,

including the functional role of these DC subsets across species, and

the suitability of the pig as a model species for human tDC research.
Material and methods

Animals and isolation of PBMC

Blood was obtained from Swiss Large White pigs (Table 1), kept

under specific-pathogen-free (SPF) conditions (63) at the animal

facility of the IVI (Mittelhäusern, Switzerland), by puncturing the

jugular vein. As anti-coagulant, citrate-based Alsever’s solution

(1.55 mM C6H12O6; 408 mM Na3C6H5O7·2H2O; 1.078 mM NaCl;

43 mM C6H8O7, pH 6.2) was used.

For peripheral blood mononuclear cell (PBMC) isolation, blood

was centrifuged at 1,000 x g for 20 min (room temperature; RT), the

buffy coat was collected, diluted in PBS/EDTA (PBS; 1 mM EDTA)

to a 1:1 ratio (RT) and layered onto Ficoll-paque (1.077 g/L, GE

Healthcare) in Leucosep tubes (Greiner BioOne) for centrifugation

at 800 x g for 25 min (RT). PBMC were collected and washed first

once with cold PBS/EDTA at 350 x g for 10 min (4 °C, Ficoll-paque

removal) and then once reducing the speed to 250 x g (platelet

removal). Remaining, red blood cells were removed from the PBMC

by incubation with cold lysis buffer (10 mM NaHCO3; 1 mM

EDTA; 0.15 M NH4Cl, pH 7.25) for 10 min on ice, followed by two

washes with cold PBS/EDTA at 250 x g for 10 min (4 °C).
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Phenotyping of putative porcine tDC in
blood by flow cytometry

The flow cytometry gating strategy used to identify mononuclear

phagocyte (MP) subsets in pig blood was previously described by our

laboratory (4), defining cDC1 as CD14-CD172alowCADM1+ cells,

cDC2 as CD14-CD172a+CADM1+ cells, pDC as CD14-

CD172a+CADM1-CD4+ cells and monocytes as CD14+ cells. The

same staining panel was used to gate on the newly identified DC

subset as CD14-CD172a+CADM1-CD4- cells in the present study.

Briefly, a four-step four-color staining of PBMC was performed.

Antibodies and porcine recombinant proteins used are listed in

Table 2. Briefly, cells were first stained with the primary antibodies

anti-CD172a (clone 74-22-15A) and anti-SynCAM (TSLC1/

CADM1, clone 3E1), followed by a second incubation with the

corresponding secondary anti-mouse-IgG2b-AF647 and anti-

chicken IgY biotin. A blocking step was then performed with

ChromPure mouse IgG (Jackson Immunoresearch), and cells were

finally incubated with the directly conjugated antibodies anti-CD14-

FITC (clone MIL2) and anti-CD4-PerCP-Cy5.5 (clone 74-12-4), and

with V500-conjugated streptavidin. Based on this staining, the

phenotype of the new DC subset of interest was further

characterized by analyzing the expression of additional cell surface

markers, alongside corresponding FMO (Fluorescence minus one)

controls. Flow cytometry acquisitions were performed on a FACS

Canto II (BD Biosciences) equipped with three lasers (405, 488, and

633 nm) and a Cytek Aurora (Cytek Biosciences) equipped with four

lasers (405 , 488 , 561, and 640 nm), software and were further

analyzed with the Flowjo software (TreeStar, version 10.10.0).
Sorting and bulk RNA sequencing of
putative porcine blood tDC

The newly identified DC subset was sorted from the blood of

four pigs (12- to 24-month-old) for bulk RNA-seq analysis. First, a

T-cell depletion of PBMC was performed using magnetic activated

cell sorting with an anti-CD3 antibody (clone PPT3), anti-mouse

IgG MicroBeads and LD columns (MACS MicroBead Technology,
TABLE 1 Animals used in each experiment.

Experiment
Number of pigs
(Swiss LargeWhite)

Age Sex

Bulk RNA-seq of sorted cDC1, cDC2, pDC and monocytes

(From Auray et al., 2016) n = 3
3–12
months

F

Bulk RNA-seq of sorted pptDC

n = 4
12–24
months

F

scRNA-seq of enriched DC

n = 3
16.5
months

F
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Miltenyi Biotec). The same four-step four-color staining as

described above was performed with the CD3-negative fraction,

but V500-conjugated streptavidin was replaced by APC-AF750

streptavidin, and the DC subset of interest was sorted using

fluorescence-activated cell sorting (FACS; FACSAria III; BD

Biosciences). Finally, cells were resuspended in TRIzol (Life

Technologies) and stored at -80 °C until later RNA extraction

with the Nucleospin RNA kit (Macherey Nagel) as previously

described (4). RNA quantification and quality assessment was

performed with an Agilent 2100 Bioanalyzer (Agilent

Technologies) and a Qubit 2.0 Fluorometer (Life Technologies).

High-quality RNA (approximately 500 ng; RNA integrity number

(RIN) > 8) was used to prepare non-directional paired-end mRNA
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libraries with the TruSeq Sample Preparation Kit (v2, Illumina).

The libraries were sequenced on the Illumina HiSeq2500 platform

using 2 x 100 bp paired-end sequencing cycles, yielding between

26.5 and 30.1 million read pairs per sample. The Illumina BCL

output files with base calls and qualities were converted into FASTQ

file format and demultiplexed with the CASAVA software (v1.8.2).

Raw bulk RNA-seq data for the cDC1, cDC2, pDC and monocytes

(n = 3 pigs) were available from our previous work (4).

For analysis of bulk RNA-seq data, the following bioinformatics

tools were used with their default parameters, unless specified

otherwise. The quality of reads was assessed with fastQC v0.11.9

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and

both low quality bases (Phred score < 30) and Illumina TruSeq2
TABLE 2 List of antibodies and porcine recombinant proteins for phenotyping and FACS.

Experiment Antigen or receptora Clone/Source of mAb Detection/Source

Phenotyping1/FACS for bulk RNA-seq2

Core
CD172a 74-22-15A/Vetmeduni Vienna, Austria

Anti-mouse IgG2b:AF647/Molecular
Probes

CADM1* 3E1/MBL

Anti-chicken IgY:biotin/Jackson
Immunoresearch
+ V500-coupled streptavidin/BD
Horizon1 or
+ APC-AF750-coupled streptavidin/
Thermo Fisher2

CD14 MIL2:FITC/AbD Serotec

CD4 74-12-4:PerCP-Cy5.5/BD Pharmingen

Phenotypic
markers

wC11R1/CD11b MIL4/Serotec Anti-mouse IgG1:RPE/SouthernBiotech

CD1.1 76-7-4/Vetmeduni Vienna, Austria Anti-mouse IgG2a:RPE/SouthernBiotech

CD115/CSF1R
ROS8G11-1/Roslin Institute, University of
Edinburgh, UK

Anti-mouse IgG2a:RPE/SouthernBiotech

CD163 2A10-11/INIA-CSIC, Madrid, Spain Anti-mouse IgG1:RPE/SouthernBiotech

CD205 ZH9F7/CIAD, Hermosillo, Mexico Anti-mouse IgG1:RPE/SouthernBiotech

CD303 102G7/Dendritics, Lyon France Anti-mouse IgG1:RPE/SouthernBiotech

MHC-II/SLA-DQ TH16B/VMRD Anti-mouse IgG2a:RPE/SouthernBiotech

CD16 G7:RPE/AdB Serotec

CD135/Flt3a
His-tagged porcine recombinant protein Flt3L/
In house

Anti-His: PE/Miltenyi Biotec

CD123/IL-3RAa His-tagged porcine recombinant protein IL-3/
In house

Anti-His: RPE/Miltenyi Biotec

T-cell depletion CD3 PPT3-FyH2/University of Bristol, UK
Anti-mouse IgG:magnetic beads/Miltenyi
Biotec

DC enrichment for scRNA-seq

Core
CD172a 74-22-15A/Vetmeduni Vienna, Austria

Anti-mouse IgG2b:AF647/Molecular
Probes

CD135/Flt3a
His-tagged porcine recombinant protein Flt3L/
In house

Anti-His: PE/Miltenyi Biotec

T-cell depletion CD3 8E6-8C8/Kingfisher Biotech
Anti-mouse IgG2a:biotin
+ Magnetic beads:streptavidin/Miltenyi
Biotec
* Anti-mouse CADM1 with pig cross reactivity.
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adapters were trimmed with Trimmomatic v0.39 (64). The reads

were then mapped to the pig reference genome (assembly Sscrofa

11.1) using STAR v2.7.10a (65). The duplicate reads were identified

and removed using MarkDuplicates from the Picard command-line

tools v2.25.1 (https://broadinstitute.github.io/picard/). The

featureCounts program included in the SourceForge Subread

package v2.0.3 (66) was used to count the number of reads

overlapping with each gene identified in the Ensembl pig

annotation release 11.1.111. In summary, (i) a minimum of 93.7%

of reads were mapped to the genome among all samples, yielding

between 29.6 and 57.2 million reads aligned per sample, (ii) between

14.2 and 35.4% of reads were identified as duplicates and (iii) 58.5-

68.9% of reads were assigned to a gene, corresponding to a range of

16.3-33.0 million mapped reads.

The differential gene expression analyses were performed using the

Bioconductor package DESeq2 v1.42.1 (67) in R v4.3.3 (68). Only genes

with |log2FC| > 1 and adjusted p-value < 0.05 were selected as

differentially expressed genes (DEGs). We performed pairwise

comparisons of cell subsets as well as the comparison of each subset

versus all others to define the MP subset-specific transcriptomic

signatures (results are available as Data S1). Principal component

analysis (PCA) was performed with normalized and vst-transformed

counts of the 500 most variable genes across samples. Sample-sample

correlation analysis was based on normalized gene expression data for

each sample (counts()) using the Spearman correlation coefficient with

hierarchical clustering based on Spearman distances.
Enrichment of DC by fluorescence-
activated cell sorting

To enrich DC for scRNA-seq analysis, a four-step protocol

combining cell staining and T-cell depletion was performed on

freshly isolated PBMC from three pigs in parallel. Antibodies and

porcine recombinant proteins used are listed in Table 2. Briefly, 5 x

108 PBMC were first stained with a His-tagged porcine recombinant

protein Flt3L and the primary antibodies anti-CD172a (clone 74-

22-15A) and anti-CD3 (clone 8E6-8C8), followed by a second

incubation step with the corresponding secondary antibodies

anti-His-PE, anti-mouse IgG2b AF647 and anti-mouse IgG2a

biotin. Next, following incubation with Streptavidin MicroBeads

(Miltenyi Biotec), CD3+ cells were depleted using LD columns

(Miltenyi Biotec). Finally, total DC from the three pigs identified as

Flt3+CD172a-/+ cells were sorted in parallel using one FACS Aria II

and two FACS Aria III (all BD Bioscience) at the flow cytometry

and cell sorting core facility at the University of Bern.
Single-cell RNA-seq (10x Genomics)

For scRNA-seq, DC isolated from the blood of three pigs (16.5-

month-old) were analyzed with 10x Genomics. Gel beads-in-emulsion

(GEM) generation and barcoding, reverse transcription, cDNA

amplification and 3’ gene expression library generation steps were all

performed according to the Chromium Next GEM Single Cell 3′
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Reagent Kits v3.1 (Dual Index) User Guide (10x Genomics CG000315,

Rev E) with all stipulated 10x Genomics reagents. Generally, 9-11 μL of

each cell suspension (1 500-1–900 cells/μL) and 32-35 μL of nuclease-

free water were used for a targeted cell recovery of 10,000 cells. GEM

generation was followed by a GEM-reverse transcription incubation, a

clean-up step and 11 cycles of cDNA amplification. The resulting

cDNA was evaluated for quantity and quality using a Thermo Fisher

Scientific Qubit 4.0 fluorometer with the Qubit dsDNA HS Assay Kit

(Thermo Fisher Scientific, Q32851) and an Advanced Analytical

Fragment Analyzer System using a Fragment Analyzer NGS

Fragment Kit (Agilent, DNF-473), respectively. Thereafter, 3′ sc gene
expression libraries were constructed using a sample index PCR step of

14 cycles. The generated cDNA libraries were tested for quantity and

quality using fluorometry and capillary electrophoresis as described

above. The cDNA libraries were pooled and sequenced with a loading

concentration of 300 pM, asymmetric paired-end and dual indexed, on

two shared Illumina NovaSeq 6000 sequencer using a NovaSeq 6000 S4

Reagent Kits v1.5 (200 cycles; Illumina, 20028313). The read set-up was

as follows: read 1: 29 cycles, i7 index: 10 cycles, i5: 10 cycles and read 2:

91 cycles. The quality of the sequencing runs was assessed using

Illumina Sequencing Analysis Viewer (v2.4.7, Illumina) and all base

call files were demultiplexed and converted into FASTQ files using

bcl2fastq conversion software (v2.20, Illumina). The mean reads per

cell and number of cells obtained per sample ranged from 33–896 to

51–718 reads, and from 11–5311 to 14–221 cells, respectively All steps

were performed at the Next Generation Sequencing Platform,

University of Bern.
Analysis of porcine scRNA-seq data

Read alignment, quality control and filtering
The scRNA-seq FASTQ files were processed using Cell Ranger

v7.1.0 (10x Genomics) (69) and reads were aligned to the pig

reference genome (assembly Sscrofa 11.1). Bam files and filtered

expression matrices were generated using the “cellranger_count”

pipeline with default parameters, unless specified otherwise.

Expression matrices were further analyzed in R v4.3.3 (68) using

mainly Seurat v5.1.0 (70) and other R packages (list available in the

GitHub page, see “Code availability” section). Quality-based scRNA-

seq data filtering was performed by excluding low-quality cells and

dead cells (< 500 genes and > 10% of transcripts mapping to

mitochondrial genes), non-expressed genes (genes expressed in < 5

cells across all samples) and cells identified with high probability as

doublet by the scDblFinder package v1.16.0 (71) (doublet score

threshold automatically determined). Percentages of mitochondrial

and ribosomal protein gene expression in cells were calculated based

on ND1, ND2, COX1, COX2, ATP8, ATP6, COX3, ND3, ND4L, ND4,

ND5, ND6, CYTB genes and 61 RPS- and RPL- genes, respectively.

Normalization, dimensionality reduction, data
integration and clustering

The three scRNA-seq samples loaded in a Seurat object (1 layer/

sample) were independently processed for sctransform-based

normalization, including steps of data scaling and highly variable
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gene identification, and for linear dimensionality reduction using

PCA. For further downstream analysis, the optimal number of 50

principal components (PCs) was identified by the elbowplot

method. Cells were then scored for cell cycle phases based on

their expression of S and G2M phase-associated genes listed in

Seurat. Next, data integration of the three datasets was performed

with Harmony v1.2.0 (72) on PCA cell embeddings and selecting

the sample origin (batch effect correction) and the cell cycle phase as

covariates. The resulting Harmony reduction was selected for

identifying nearest neighbors, clustering the cells with the Leiden

algorithm (method = “igraph”, clustering resolution = 0.6), and

performing non-linear dimensionality reduction using UMAP for

cluster visualization.

Differential gene expression analysis
Counts in the RNA assay were log-normalized and scaled, and

layers were joined. The DEGs in each cluster were identified with

the FindAllMarkers() function and pairwise comparisons between

selected clusters were performed with the FindMarkers() function.

Only genes expressed in at least 20% of the cells in one of the

clusters being compared, with |avg_log2FC| > 1 and adjusted p-

value < 0.05 were selected as DEGs. In addition, DEGs from

pairwise comparisons were filtered according to an expression in

at least 20% of the cells in one of the clusters being compared and

80% of the cells in the other one(s).

Cluster correlation analysis
Cluster-cluster correlation values were calculated based on

averaged log-normalized gene expression data for each cluster

using the Spearman correlation coefficient.

Gene set enrichment analysis
Gene set enrichment analyses (GSEA) were performed with the

AUCell package v1.24.0 (73) as previously described by Herrera-

Uribe et al. (74). Briefly, the expression of the specific enriched gene

set in each sorted porcine blood MP subset analyzed by bulk RNA-

seq (as described in preceding methods) was evaluated within cells

of the scRNA-seq dataset, as follows: Ranking of gene expression

from raw gene counts and calculation of area under the curve

(AUC) scores from the top 5, 10, 15, 25, 50 and 100% of expressed

genes in a cell and the gene sets. AUC scores are proportional to the

percentage of genes from a gene set found in the top expressed

genes for a cell defined at different levels. Next, AUC scores and

UMAP coordinates of each cell were overlayed for UMAP

visualization, with manual determination of a threshold value for

each gene set based on AUC score distributions. Heatmap

representation was based on averaged scaled AUC scores

calculated for each cluster, following scaling of individual cell

AUC scores relative to other cells within a single gene set

comparison (rows) but not between gene sets (columns).

For species comparison, GSEA were performed with DC subset

gene signatures from three sources: (i) a published scRNA-seq study

(SMARTSeq2) of human blood DC (19), (ii) a published bulk and

scRNA-seq study of murine spleen DC (10x Genomics) (24), and

(iii) results from re-analysis of a recently published scRNA-seq
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dataset (10x Genomics) of human blood DC (50). The pig orthologs

of human and mouse genes were identified with BioMart (Ensembl)

and selected according to the highest percentage of identity to the

target pig gene. Human and mouse genes without pig orthologs

were removed. The resulting pig-converted- human and murine

gene signatures are provided as Data S2. GSEA were performed as

described above, calculating the AUC scores from the top 25% of

expressed genes in a cell and the gene sets and represented

as heatmaps.

Machine-learning-based cell scoring
The classification score for the different cell clusters was created

with the scikit-learn python module (75) as previously described by

Mayère et al. (76). An ElasticNet model with one versus all

approach was trained using the ElasticNet() function (alpha =

0.05, tol = 0.01) on a random subsample of 450 cells per cluster

in order to avoid gene weighting bias due to overrepresentation of

some clusters. The ElasticNet approach uses a linear regression with

combined L1 (Lasso) and L2 (Ridge) priors as regularizer, allowing

a robust selection of relevant genes defining the cells of interest

(77, 78).

Cluster subsetting
Subsetting was performed using the Seurat’s subset() function.

Non-expressed genes in the new datasets were removed with

DietSeurat() and data were split according to the sample of origin

using the split() function (1 layer/sample). Data were then re-

processed for normalization, dimensional reduction, data

integration and clustering (method = “igraph”) as described

above. Counts in the RNA assay were log-normalized and scaled,

and layers were joined.

Trajectory inference analysis
The trajectory inference analysis of the subsetted dataset was

performed with the Scorpius package v1.0.9 (79). Cells were ordered

according to the inferred linear trajectory using the infer_trajectory

() function and the importance of a gene and its expression with

respect to the modelled dynamic process was assessed with the

gene_importances() function. Next, the top 50 important genes were

assigned into modules according to their expression patterns across

the inferred trajectory with the extract_modules() function, using

the normalized expression values scaled from 0 to 1 with the

scale_quantile() function.
Analysis of published scRNA-seq data
(human DC)

We analyzed the scRNA-seq dataset of human blood DC

recently generated by Lubin et al. (50) (approximately 3,000

cells). DC were sorted by flow cytometry and subjected to 10x

Genomics scRNA-seq. Processed data from the cellranger pipeline

(barcode, feature and matrix files), available under the sample

number GSM8499782 in the National Center for Biotechnology

Information Gene Expression Omnibus database, were analyzed
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with the Seurat pipeline as described above for the porcine data

(quality-based data filtering, sctransform-based normalization

and linear dimensional reduction using PCA). The PCA

reduction was selected for identifying nearest neighbors,

clustering the cells with the Leiden algorithm (method =

“igraph”, clustering resolution = 0.8), and performing non-linear

dimensional reduction using UMAP for cluster visualization.

Next, the differential gene expression analysis was performed as

for the porcine data, using FindAllMarkers() to identify the DEGs

in each cluster.
Identification and replacement of gene
identifiers

Pig gene Ensembl stable identifiers (IDs) without available gene

name/symbol in the pig genome annotation file were replaced in

text and figures by NCBI gene (formerly Entrezgene) accession or

UniProtKB Gene Name symbol if available in the corresponding

databases using the BioMart data mining tool from Ensembl

(https://www.ensembl.org/biomart/martview). A list of replaced

Ensembl IDs is included in Data S1. The human gene names

HLA-DRA and HLA-DOB found in the pig genome annotation

were replaced by SLA-DRA and SLA-DOB respectively, the gene

names of their porcine orthologs. While IL3RA is not currently

annotated in the Ensembl pig genome, it is available in the NCBI

reference. Thus, the porcine genomic sequence for the gene

encoding IL3RA (ENSSSCG00000055271) was identified by

aligning the IL3RA gene sequence from NCBI (gene identifier:

102166116) to the Ensembl pig genome (Sscrofa release 11.1.111)

using the Ensembl BLAT (100% sequence identity). The sequence of

the IL3RA transcript ENSSSCT00000092699, product of the

ENSSSCG00000055271 gene (IL3RA), was utilized to visualize the

read distribution across its corresponding genomic location

(AEMK02000569.1: 775,837-784,610) for each sorted MP subset,

using Integrative Genomics Viewer (IGV) software.
Preparation of figures

Figures were prepared using FlowJo™ v10.10.0 (BD Life

Sciences) (80), R v4.3.3 (68), Rstudio v2024.04.1 (81), Inkscape

v1.3.2 (https://www.inkscape.org), Integrative Genomics Viewer

(IGV) v2.17.4 (82) softwares. FACS scheme was created using

Servier Medical Art, by Servier (http://smart.servier.com).

Bulk RNA-seq data was represented as PCA and heatmaps using

the ggplot2 v3.5.1 (83) and ComplexHeatmap v2.18.0 (84) R packages,

respectively. Heatmaps were prepared following log10 transformation

of normalized counts. Prior to log10 transformation, a pseudocount of

1 was added to the values to avoid zeros.

Visualization of scRNA-seq data was based on feature plots, dot

plots, violin plots, bar plots, scatter plots and heatmaps using the

Seurat v5.1.0 (70), scCustomize v2.1.2 (85), ggplot2 v3.5.1 (83) and
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ComplexHeatmap v2.18.0 (84) R packages. Heatmaps were

generated with scaled and centered data (Seurat ScaleData()

function). For improved contrast in feature plots, feature-specific

contrast levels were calculated based on quantiles (q10, q90) of non-

zero expression.

The cell classification scoring based on a machine learning

model was visualized by scatter plots using the scikit-learn python

module (75).

The trajectory inference analysis was represented as UMAP plot

and heatmap using the Scorpius R package v1.0.9 (79).
Code availability

Scripts used for read alignment to the pig reference genome and

the bulk and scRNA-seq data analyses are available in the following

GitHub public repository: https://github.com/IVI-Immunology/

Porcine_blood_DC_scRNA-seq.
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Raw sequencing data from bulk RNA-seq of pig blood cDC1,

cDC2, pDC and monocytes are available in the European

Nucleotide Archive (ENA) (http://www.ebi.ac.uk/ena) under the

accession number PRJEB15381. Raw sequencing data from bulk

RNA-seq of porcine blood tDC and from scRNA-seq is available in

ENA under the accession number PRJEB101131.
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