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Unraveling porcine dendritic-cell
diversity: welcome tDC and DC3

Ambre Baillou?, Gaél Auray™*, Francisco Brito™?,
Marius Botos™?, Alizée Huber*?, Artur Summerfield**
and Stephanie C. Talker™***

YInstitute of Virology and Immunology, Bern, Switzerland, ?2Department of Infectious Diseases and
Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland

Dendritic cells (DC) are professional antigen presenting cells playing a major role in
orchestrating adaptative immune responses. To adapt to various immune
challenges, such as different classes of pathogens, specialized subsets of DC have
evolved across species. To date, DC are classified as conventional DC (cDC1, cDC?2)
and plasmacytoid DC (pDC), with the more recent addition of DC3 and transitional
DC (tDC) that were discovered in human and mouse thanks to high-dimensional
phenotyping and single-cell sequencing technologies. Here, by combining flow
cytometry and RNA-seq on the bulk- and single-cell level, we identified the porcine
equivalent of tDC in blood as CD14 CADM1 CD172a*CD4" cells expressing both Flt3
and CD123 (IL-3RA). This new subset forms a well-defined cluster when mapped
onto scRNA-seq data of enriched DC and shares transcriptomic features and
abundance with porcine blood cDC2 and pDC. Moreover, we describe putative
porcine DC3 as transcriptionally overlapping cells in-between cDC2 and monocytes.
With the core functions of tDC and DC3 remaining to be elucidated, our datasets
provide a valuable resource for cross-species research on DC heterogeneity in
various lymphoid and non-lymphoid tissues.
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GRAPHICAL ABSTRACT

Introduction

Dendritic cells (DC) are best known as instructors of T-cell
immunity through antigen presentation and co-stimulation. Their
response enables the system to adapt to various challenges and
simultaneously ensures tolerance to harmless antigens. To fulfill
these diverse roles, the DC system comprises phenotypically and
functionally distinct cell subsets that have been extensively studied
across tissues in humans (1, 2), mice (1, 3) and pigs (4, 5) among other
species (6-10). Traditionally, DC have been broadly divided into two
lineages: plasmacytoid DC (pDC), primarily known as IEN type 1
producers in response to viral infection, and conventional DC (¢cDC)
which are highly efficient in stimulating T-cell responses. Conventional
DC were further divided into type 1 ¢cDC (¢DC1) and type 2 ¢cDC
(cDC2), with cDC1 appearing specialized in the induction of Thl- and
cytotoxic T-cell responses, and cDC2 preferentially promoting Th2/
Th17 responses (3). Subsets of cDC are broadly distributed across both
lymphoid and non-lymphoid tissues and are also detectable in the
circulation, with ¢cDC2 more abundant than c¢DCI, particularly in
mucosal and peripheral tissues. In contrast, pDC are rare in peripheral
tissues and primarily localized in lymphoid organs and blood.

Over the last decade, high-dimensional and high-throughput
approaches, such as single-cell RNA sequencing (scRNA-seq) (1),
have revealed an astonishing heterogeneity and plasticity of cDC2
(1, 11, 12), with cDC2 subsets likely arising from distinct
ontogenetic lineages (13-15) and being shaped by signals in their
microenvironment (16). Moreover, highly pro-inflammatory cDC2
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have been identified as a separate DC lineage, namely type 3 DC
(DC3), overlapping with monocytes both phenotypically and
transcriptionally and putting traditional monocyte markers like
CD14 into question (12, 14, 17, 18).

Furthermore, the phenotypic definition of pDC was challenged,
when putative pre-DC were discovered with scRNA-seq in humans
and mice and shown to contaminate traditional pDC gates (19-21).
Indeed, these putative pre-DC, shown to derive from pro-pDC and
now classified as transitional DC (tDC), appear to be competent
antigen presenters that have likely biased several in vitro assays
involving pDC, as discussed elsewhere (19, 20, 22, 23). A murine
coronavirus infection model has suggested the involvement of tDC in
viral responses, with the intriguing hypothesis that tDC are in a
delicate balance with antiviral pDC and enhance pro-inflammatory
responses by IL-1B production (24). Notably, cDC2-like cells were
shown to differentiate from tDC, and may be termed tDC2 as
suggested by Sulczewski et al. (24). These tDC2 very much
resemble ESAM" ¢DC2 and CD5" ¢DC2 in mouse and human,
respectively, and were shown to replenish the DC2 pool in mouse
models with impaired pre-DC2 development (24-26). This further
complicates the picture of DC2 heterogeneity, now encompassing
pre-cDC-derived ¢cDC2 subsets (15), pro-DC3-derived DC3
(monocyte-like) (18), and pro-pDC-derived tDC2 (pDC-like) (24).

We have previously described phenotype and bulk transcriptome
of porcine blood ¢DC1, cDC2 and pDC, with key gene expression
confirming a gating strategy based on CD14, CD172a, CADM1 and
CD4 (4). Accordingly, porcine ¢DC1 can be identified as CD14"

02 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1639553
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Baillou et al.

CD172a°"CADM1"CD4, ¢DC2 as CD14 CD172a"CADMI1*CD4’,
and pDC as CD14'CD172a"CADM1 CD4". Notably, using this
marker combination, one additional subset was apparent, expressing
CD172a, but lacking expression of all other markers (CD14 CADM1
CD172a*CD4). By performing scRNA-seq on Flt3" DC enriched from
porcine blood, we now confirm the existence of this novel subset and
identify it as porcine tDC. Moreover, we describe putative DC3 as cells
co-expressing both ¢DC2 markers (FLT3, FCERIA, CDI.1) and
monocyte markers (CSFIR, CD14, CD163, C5ARI).

Results
Phenotype of putative porcine tDC

In a previous study, we characterized mononuclear phagocyte
(MP) subsets in porcine blood by flow cytometry, identifying cDC1

™

10.3389/fimmu.2025.1639553

as CD14 CD172a°"CADMI1", ¢cDC2 as CD14 CD172a*CADMI1",
pDC as CD14'CD172a"CADM1°CD4" and monocytes as CD14"
(4). Here, applying the same staining protocol and gating strategy
(Supplementary Figure S1), we focused our analysis on the
previously undescribed MP subset of CD14 CD172a" cells lacking
both CADM1 and CD4 expression and being as frequent as pDC in
blood of pigs (Figure 1A). Expression of the conserved DC marker
Flt3 (CD135), together with the almost complete lack of monocyte
markers (CD115/CSF1R and CD163), supported its identification
as a bona fide DC subset (Figure 1B). Notably, it shared phenotypic
markers with both ¢DC (CD11b/wCD11R1 (27) and CD205,
absence of CD303) and pDC (IL3-RA/CD123, absence of CDI).
Moreover, this subset expressed CD80/86 and a high level of MHC-
11, thus suggesting its involvement in antigen presentation and T-
cell co-stimulation. Taken together, this new DC subset displayed a
phenotypic profile overlapping with both ¢cDC and pDC
phenotypes, and it shared prominent expression of IL3-RA with
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FIGURE 1

Phenotypic characterization of a new DC subset in blood of pigs: putative porcine tDC (pptDC). PBMC were isolated from the blood of four pigs and
stained for flow cytometry. (A) Representative gating for mononuclear phagocyte (MP) subsets. Following selection of large cells and doublet
exclusion (see Supplementary Figure S1), CD14™" cells were defined as monocytes and four subsets were distinguished among CD14" cells: cDC1 as
CD172a"°"CADM1*, cDC2 as CD172a*CADML1*, pDC as CD172a*CADM1 CD4", and a newly described DC subset as CD172a*CADM1 CD4 . (B)
Yellow histograms show the expression of various molecules on CD172a*CADM1 CD4" cells. Gray histograms show the FMO control.
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pDC, leading us to further address this subset as putative porcine
tDC (pptDC).

Bulk transcriptome confirms identity of
putative porcine tDC

Following phenotypic characterization, we investigated the
transcriptional profile of the newly identified pptDC. To this end,
this subset was MACS/FACS-sorted from the blood of four pigs and
processed for bulk RNA-seq. Resulting data were analyzed
alongside previously generated RNA-seq datasets of the four
other blood MP subsets (cDC1, cDC2, pDC and monocytes) (4).
Principal component analysis (PCA) of the 500 most variable genes
between the five MP subsets (PC1 = 60%, PC2 = 30%) showed that
all samples of the newly described cell subset (pptDC) were
clustering together and away from the four other MP subsets,
supporting the discovery of pptDC as a new and distinct DC
subset (Figure 2A). As further illustrated by a subset-to-subset
correlation analysis, pptDC appeared to be more closely related to
¢DC than to pDC, sharing the highest correlation score with cDC2
(Supplementary Figure S2A).

Overall, gene expression was in line with surface protein
expression detected in flow cytometry (Figure 2B). Gene
expression for additional phenotypic markers is shown in
Supplementary Figure S2B. Both pptDC and pDC expressed
IL3RA (not available in Ensembl pig genome annotation), as
shown by read mapping to the corresponding genomic region
(Supplementary Figure S2C).

To characterize pptDC, we next studied the expression of
conserved key genes known to define the main MP subsets across
species (28, 29), including those we previously reported in pig blood
(4). The updated analysis of the cDC1, cDC2, pDC and monocyte
data (new reference genome) was in accordance with our formerly
published transcriptomic analysis (4), supported also by the subset-
specific expression pattern of these markers (Figure 2C). For
pptDC, the expression of the pan-DC markers FLT3 and BCLIIA
was in common with ¢cDCI, ¢cDC2 and pDC. Considerable levels of
monocyte-specific gene expression (e.g. CSFIR, CD14, CD163) were
detected in two out of four pptDC samples (#4, #5 in Figure 2C).
Notably, pptDC expressed transcripts for both IRF4 and IRF8, two
transcription factors (TF) involved in the development of cDC2 and
cDC1/pDC, respectively (3, 28). In addition to markers shared
across DC populations, pptDC showed expression of DC subset-
restricted features, such as XCRI and ANPEP (cDC1), FCERIA,
CD207 and NOTCH4 (cDC2), and RUNX2, TCF4, BLNK and
SPIB (pDC).

Dendritic cells with a phenotype and transcriptome overlapping
with both ¢cDC2 and pDC are characteristic of the recently identified
tDC in humans (19) and mice (22). These tDC were reported to
originate from progenitors shared with pDC and to differentiate
into cDC2 (24). To further explore if our new DC subset represents
the porcine equivalent of tDC, we analyzed differentially expressed
genes (DEGs) between pptDC and ¢DC2 or pDC based on pairwise
comparisons (DESeq2). Complete lists of DEGs are provided as
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Data S1. Putative porcine tDC showed expression of SPI1, TCF4,
NOTCH2, CEPBA, KLF3, KLF8, KLF12, ZBTB46, IRF4, IRF8,
STAT5A, RUNX2 and SPIB (Figures 2C, D), which are genes also
found in tDC of humans and mice (22, 24, 30, 31), coding for cDC-
or pDC-specific transcription factors (TF). Notably, Leylek et al.
demonstrated by chromatin accessibility analysis that KLF3, KLF8
and KLF12 were part of the unique TF profile of tDC (30). Among
the gene regulatory network governing DC development, TCF4 and
ID2 are reported as mutual functional antagonists promoting pDC
versus cDC differentiation, respectively (32). We found that both
were expressed in pptDC (Figure 2D), reinforcing their
intermediate nature between ¢cDC2 and pDC. Additionally, this
new subset exhibited a high transcription level of ZBTBI6, the gene
encoding PLZF, a TF known to induce ID2 expression (33).
Interestingly, pptDC shared the expression of KLF4 with ¢DC2,
reported to be required for the differentiation of murine circulating
pDC-like cells (identified as pre-DC2) into a subset of cDC2 (26).
Unlike pDC, pptDC showed low IRF7 gene expression, suggesting
its limited capacity to produce type I IEN, also distinguishing tDC
from pDC in human and mouse (22). Moreover, its high
transcription level of CD200RI, STAT5A and RAB3ILI in
comparison to ¢cDC2 and pDC is consistent with the spleen tDC
signature described by Sulczewski et al. in mice (24).

Porcine ¢cDC2 and pptDC could be further distinguished from
pDC by their expression of AXL, a human tDC marker (Figure 2D).
Notably, pptDC expressed high levels of both CD2 and CD5, in
contrast to porcine pDC (low levels of CD2 and CD5 transcripts)
and ¢DC2 (transcription of CD2 but very low levels of CD5
transcripts). These expression patterns were also found for
human tDC, ¢cDC2 and pDC, both transcriptionally and
phenotypically (22). Thus, staining of CD2 and CD5 may be
useful for distinction of porcine DC subsets in flow cytometry.

Finally, we observed a progressive increase of ITGAM, CD83,
LY75, and SLA-DRA expression from pDC via pptDC toward cDC2
(Figure 2D), suggesting gradually increasing antigen presentation
capabilities across those subsets. Taken together, phenotype and
bulk transcriptomic signatures support the idea that the new
porcine DC subset (CD14 CADM1 CD172a"CD4’) represents the
equivalent of tDC described in human and mouse.

Functional specialization of pptDC inferred
from bulk transcriptomics

Further exploration of pptDC-derived transcriptomic data
revealed a unique gene signature related to pathogen recognition,
antigen presentation, T-cell co-stimulation, immunoregulatory
activities and cell adhesion (Figure 2 and Supplementary Figure S3).

Porcine putative tDC expressed relatively low levels of pattern
recognition receptors (PPR) for bacterial components (e.g. TLR4,
TLR5) (Supplementary Figure S3A), however one pptDC sample
(#5) contained high transcript levels for bacterial PRR
(Supplementary Figure S3A), and as shown in Figure 2C, also
appeared enriched for monocyte-related transcripts such as CD14.
Notably, all four pptDC samples stood out by high TLR3 and IFIH]1
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FIGURE 2

Bulk RNA-seq of DC subsets, including putative porcine tDC (pptDC) in blood of pigs. Bulk RNA-seq was performed on five sorted mononuclear
phagocyte (MP) subsets. (A) First two dimensions of principal component analysis, with different symbols representing individual animals. (B) Gene
expression for markers used in FACS. Bar plots show the number of normalized counts for each gene and MP subset (mean + standard deviation).
(C) Transcription of key MP subset-defining genes represented by heatmap. Z-scores were calculated from logl0-transformed normalized counts of
selected genes. Mean kilo reads for each subset and gene are given to the right of each heatmap. (D) Gene transcription distinguishing putative
porcine tDC (pptDC) from cDC2 and/or pDC. Genes were selected based on pairwise comparisons with DESeq?2 (adjusted p-value < 0.05 and |
log2FC| > 1) (see Data S1) and literature research. (E, F) Gene transcription for pattern recognition and antigen presentation. Bar plots show the
number of normalized counts for each gene and MP subset (mean + standard deviation).

(MDA-5) expression (Figure 2E), suggesting a specialization in Similar to cDC2, pptDC expressed a relatively high level of C-type
sensing double stranded RNA. Transcripts for TLR7, TLR8 and  lectin receptor (CLR)-associated genes, such as MRCI (CD206),
TLRY could also be detected in pptDC, even though higher levels ~ PLA2RI (CLECI13C), CD207 and CLEC4F (Supplementary Figure
were detected in other DC subsets. S3A), suggesting their involvement in mannose-ligand recognition
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and phagocytic activities (34). Notably, expression of MRCI and
CLECH4F was found to be very heterogeneous across pptDC samples.
Similar to ¢DC1 and pDC, pptDC also contained transcripts for
CLECI12A (MICL) and CLECI2B, two CLR that mostly recognize
endogenous ligands such as damage-associated molecular patterns (35,
36), thus suggesting a role in clearing dying cells.

Looking at gene expression related to antigen presentation and
T-cell modulation (Supplementary Figure S3B), pptDC stood out by
expressing the highest levels of certain genes that may promote T-
cell activation by enhancing antigen (cross-) presentation (ATGS5,
UBE2DI1, RAB27A) (37-39), may promote the differentiation of
regulatory T cells (IL411) (40, 41) or Th1 cells (DPP4) (42), or may
otherwise be involved in regulating T-cell responses (VSIGI0,
CD200) (43, 44). For other genes involved in antigen
presentation, we observed a gradual increase from pDC via
pptDC towards c¢DC. Indeed, pptDC displayed intermediate
transcription levels of genes encoding MHC-II molecules (e.g.
SLA-DRA, SLA-DOA, SLA-DMB, SLA-DMA), molecules involved
in MHC-II trafficking and antigen processing (PIKFYVE, IFI30,
CIITA, CD74, LY75, TAP2) and co-stimulatory molecules (CD83,
CD40) (Figure 2F, Supplementary Figure S2B, Supplementary
Figure S3B).

Genes encoding cytokines and cytokine receptors
predominantly expressed in pptDC included ILI8 and ILI7RA
(Supplementary Figure S3C). Notably, alongside cDCI, pptDC
prominently expressed the beta chain of the IL-6 receptor
(IL6ST), reported to function in signal transduction for various
cytokines (45). When compared to pDC, pptDC contained fewer
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transcripts for type I interferons (IFN-OMEGA-6) and related
receptors (IFNARI and IFNAR?2), reinforcing the hypothesis of
their limited involvement in type I IFN responses.

Looking at chemokines and chemokine receptors, pptDC were
found to express considerable levels of XCRI (Supplementary
Figure S3D). Notably, this key marker for cDCI is involved in
antigen cross-presentation and CD8" T-cell priming (46, 47).
Moreover, pptDC contained the highest number of CCR7 and
CXCR5 transcripts among c¢DC subsets, however at low levels
(mean reads of 200 and 300, respectively). While CCR?7 is a well-
known marker for DC activation (48), expression of CXCR5 is
expected to cause migration to the CXCL13-rich parafollicular areas
of the lymph node to possibly stimulate follicular Th cells (49).

Finally, several genes encoding integrin chains showed
highest expression in pptDC such as ITGB3, ITGAV and ITGA6
(Supplementary Figure S3E), as well as genes encoding Fc receptors
(e.g. FCRL4) (Supplementary Figure S3F), metalloproteinases (e.g.
MME and MMP9) (Supplementary Figure S3G) and semaphorins
(e.g. SEMA4F, SEMA4C, PLXNA4) (Supplementary Figure S3H).

Heterogeneity of porcine blood DC
revealed by scRNA-seq

To get a more unbiased view on the heterogeneity of porcine
blood DC subsets, we performed scRNA-seq (10x Genomics) on
Flt3" DC enriched from blood of three pigs (Figure 3A). Clustering
of cells with a resolution of 0.6 (Leiden algorithm) resulted in the

3
O DC clusters Other
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c9: dead/dying
¢10: DC progenitors

FLT3 CSFIR CD34

A LA

61342812710513119 61342812710513119 61342812710513119
Cluster Cluster Cluster

MRS

Expression Level

Heterogeneity of DC in blood of pigs revealed by scRNA-seq. (A) DC were sorted from PBMC of three pigs and subjected to 10x Genomics scRNA-
seq. Data from approximately 10,000 DC per sample was analyzed. (B) Clustering with a resolution of 0.6 resulted in 13 clusters visualized by UMAP
plot. (C) Feature plots showing the expression of FLT3, CSFIR and CD34. (D) Violin plots showing the level of FLT3, CSFIR and CD34 expression

across all clusters.
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identification of thirteen distinct clusters (Figure 3B). Complete lists
of cluster-defining marker genes, as determined by Seurat’s
FindAllMarkers() function, are listed in Data S3. Three clusters
(c7, 8, ¢9) were excluded due to quality issues (Supplementary
Figure S4A), as were clusters containing B cells (c13) and NK cells
(c11) (Supplementary Figures S4B, S4C).

Eight FLT3-expressing clusters (c1, ¢2, ¢3, c4, c5, ¢6, c10, and
c12) were analyzed in further detail. Notably, cluster 5 appeared to
contain monocytic cells alongside DC (DEG including CSFIR,
C5ARI, CDI14, CD163, SIRPA and CD68), and cluster 10
appeared to be comprised of DC progenitors (DEG including
CD34, MEIS1, DACHI, ERG, KIT, IKZF2 and MECOM) (15)
(Figures 3C, D, Data S3). As shown in Figures 4A-C, expression
of subset-specific key genes clearly identified cluster 6 as cDCl
(BATF3, XCRI, RAB7B, ANPEP, IRF8), cluster 1 as cDC2 (FCERIA,
FCGR2B, CD207, SIRPA, IRF4) and clusters 2 and 12 as pDC (CD4,
SPIB, BLNK, TCF4, RUNX2, IRF8). Cells in clusters 3 and 4
expressed IRF4, IRF8, XCR1, ANPEP, FCERIA, RUNX2, SPIB,
TCF4 and BLNK (Figure 4B), thus sharing subset-specific markers
with ¢DCI1, ¢cDC2 and pDC, as observed with bulk RNA-seq of
pptDC described above (Figure 2C).

A heatmap of the top 15 (adjusted p-value) DEG between the
DC subsets is shown in Figure 4C and the complete gene lists are
given in Data S3. Apart from the genes mentioned above, DEG
included CADM1, CLNK, ID2, SNX22, WDFY4 and DNASEIL3, for
¢DC1 (c6), CDID, ITGAM (CD11b), S100A4, TLR2 and TLR4 for
¢DC2 (cl), and IRF7, IFNARI, NRP1, LRP8 and SYK for pDC (c2,
c12). In line with the bulk RNA-seq analysis (Figure 2, Data S1),
clusters 3 and 4 were enriched for ZBTB7C, ZBTB16, KLF4,
NOTCH2, DPP4 (CD26), TGFBR3 and SEMA4F, further
supporting the classification of ¢3 and c4 as pptDC.

Correlation of FCM-based and scRNA-seq
based subset identification

When estimating the proportions of the DC clusters within total
blood DC (Figure 4D), we found that c1 (cDC2) and c2 (pDC) each
represented approximately 30%, c6 (cDC1) represented 7%, and the
pptDC clusters 3 and 4 represented 16% and 14%, respectively.
These results are in accordance with the cell proportions previously
observed by flow cytometry for the RNA-seq analysis of sorted cells
(Figure 1A). Representative flow cytometry data for animals
included in the scRNA-seq analysis is shown in Supplementary
Figure S5. Proportions of DC subsets from scRNA-seq and flow
cytometry showed a moderate correlation, with an R* value of
0.65 (Figure 4E).

To investigate if flow-cytometry defined DC subsets are well
represented in the clustering of the scRNA-seq dataset, we tested for
relative enrichment of the gene signatures from sorted bulk-
sequenced subsets in the scRNA-seq clusters by gene-set
enrichment analysis (GSEA). Different levels of enrichment were
tested (5, 10, 15, 25, 50 and 100%) (see Material and Methods),
allowing us to select 25% for optimal resolution of sc identities
(Supplementary Figure S6). As shown in UMAP plots (Figure 4F)
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and a heatmap (Figure 4G), cDC1-derived gene sets had the highest
enrichment in cluster 6, cDC2-derived gene sets in cluster 1, pDC-
derived gene sets in clusters 2 and 12, and pptDC-derived gene sets
in clusters 3 and 4. This clear allocation of bulk signatures supports
the suitability of the 4-marker sorting strategy for porcine DC
subsets and confirms the cluster identification in the scRNA-
seq dataset.

Putative porcine tDC share transcript
signature with human and murine tDC

For further verification of pptDC identity, we used the GSEA
approach described above to compare the porcine DC signatures to
DC signatures derived from published bulk- and scRNA-seq studies
of human blood (19, 50) and murine spleen (24) (Figures 4H-]).
Two distinct human studies were selected, each utilizing a different
scRNA-seq technology (SMARTSeq2 for Villani et al. (19),
Figure 4H, and 10x Genomics for Lubin et al. (50), Figure 4I and
Supplementary Figure S7). As expected, both human and murine
¢DC1, cDC2 and pDC gene signatures showed the highest relative
enrichment in cluster 6 (cDC1), cluster 1 (cDC2) and in clusters 2
and 12 (both pDC), respectively. Notably, human ASDC and
murine tDC (“bulk”) gene sets showed the highest enrichment in
clusters 3 and 4, representing pptDC (Figures 4H-J), thus
supporting the identification of pptDC as porcine equivalents
of tDC.

As expected, cluster 4 (pDC-like pptDC) was more enriched for
human and murine pDC signatures than cluster 3 (¢cDC2-like
pptDC), whereas cluster 3 displayed greater enrichment for
human and murine cDC2 signatures than cluster 4. However, sc
signatures of murine tDC-subclusters (“4DC" and “tDCM™) did
not show discriminating enrichment in pptDC clusters 3 or 4
(Figure 4]) but were rather enriched in ¢3 (cDC2-like pptDC) and
cl (cDC2).

pptDC span a continuum between pDC-
like and cDC-like profiles

In accordance with the reported origin of tDC from pro-pDC
and their differentiation into cDC2-like cells (14, 15, 24, 26, 50), we
found that transcripts for several TF involved in DC fate decisions
(28) were sequentially increased or decreased from pDC via pptDC
(c4 and c3) towards ¢cDC2 (Figure 5A). Among TF, the most evident
gradual decrease was observed for pDC-associated genes TCF4,
IRF8, IKZF1 and BCL11A, whereas transcription of cDC-associated
genes SPII and ID2 increased via ¢4 and ¢3. A more abrupt decrease
from c4 to c3 was observed for SPIB, the gene coding for Spi-B, a
transcription factor promoting development of pDC (51). Notably,
RUNX2, NOTCH2, KLF4, KLF12 and JAK2 showed highest
expression in c4, before decreasing again in ¢3, whereas ZBTB46
and ZBTBI6 expression appeared to peak in ¢3. Lastly, several TF
showed increased expression in both ¢3 and ¢4 when compared to
pDC and ¢DC2 (ZBTB7C, STAT5A, KLF3 and CBFA2T3).
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The transcriptomic signature of pptDC clusters (c3 & c4) was
further characterized by comparing them against ¢cDC2 (c1) and
pDC (c2) and against each other. Heatmaps of the top 20 (adjusted
p-value) DEGs are shown in Figures 5B-D. The complete gene lists
are given in Data S3. Notably tDC clusters differed in the expression
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of integrin transcripts (Figure 5E), generally reflecting their
similarity to either pDC (c4: ITGAL, ITGB5) or cDC2 (c3: ITGB2,
ITGAM, ITGAX). In accordance with the adoption of an
increasingly cDC-like phenotype, ¢cDC2-like tDC (c3) showed
higher expression of transcripts related to antigen presentation
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(e.g. SLA-DRA, SLA-DQAI, CD74) and T-cell stimulation (e.g.
CD40, CD83, ALCAM) than pDC-like tDC (c4) (Figure 5F). In
line with bulk RNA-seq, pptDC clusters showed the highest
expression of DPP4 and PECAMI (two genes involved in T-cell
modulation), when compared to pDC and cDC2.

To further characterize the correlation between pptDC and
c¢DC2 or pDC, we trained an ElasticNet model computing a
classification score based on the transcriptomic signatures of the
different cell types (Figures 5G, H). According to this model, pptDC
in cluster 4 showed low-to-intermediate scores for both cDC2 and
pDC signatures, while pptDC in cluster 3 were characterized by a
progressive increase in the cDC2 score while exhibiting a low pDC
score (Figure 5G). In line with the differential gene expression
analysis, cDC2 displayed a higher score for cluster 3 than for cluster
4, and pDC showed the reverse pattern (Figure 5H).

Overall, the transcriptome of pptDC spans a continuum
between pDC and cDC profiles, as described for humans and
mice (19, 22, 24, 52). This intermediate transcriptome, together
with the core gene signature resembling human and murine tDC,
justifies identifying pptDC as the porcine equivalents of ASDC/tDC.
Furthermore, these results suggest that porcine tDC may
differentiate into ¢DC2-like cells, as proposed for their murine
(24, 26) and human (50) counterparts.

To further explore the cellular dynamics between porcine tDC
and cDC2, we performed a trajectory inference (TI) analysis on cells
in clusters 1, 3 and 4 (Supplementary Figure S8). Genes that varied
along the inferred trajectory corresponded to the DC subset-specific
signatures previously identified by differential expression analysis.
Notably, the continuum from tDC to ¢DC2 was marked by a
gradual increase in the expression of genes associated with
antigen presentation via MHC-II molecules (module 2 in
Supplementary Figure S8C), suggesting a progressive acquisition
of ¢DC features by tDC differentiating towards ¢cDC2-like cells.

Putative DC3 in porcine blood

In both mouse and human, DC3 have been described as a novel
DC subset sharing dendritic and monocytic markers (12, 14, 17-
19). Interestingly, cluster 5, adjacent to ¢cDC2 (cl), appeared to
contain both monocytic and dendritic cells (Figure 3) and showed
the highest enrichment score when performing GSEA with human
DC3 signatures (Figures 6A, B).

Upon re-clustering of c5, two major clusters were separated
from two smaller clusters (Figure 6C). The small clusters 3 and 4
were annotated as cDC2 (FLT3, FCERIA, CDI1.1) and monocytes
(high levels of CDI4, LYZ), respectively, while the two major
clusters 1 and 2 were annotated as putative DC3 as they
contained low levels of CDI4 and FCERIA transcripts alongside
FLT3 and CSFIR transcripts (Figures 6C, D). Indeed, a significant
proportion of cells in sub-clusters 1 and 2 (putative DC3) were
revealed to co-express FLT3 transcripts alongside transcripts
typically associated with monocytes, such as CSFIR, CDI63,
CDI14 and C5ARI (Figure 6E).
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Among putative DC3, c1 stood out by higher transcription of
CD163, C5AR1 and VCAN, while c2 was clearly enriched in S100A4,
S100A6 and CST3 transcripts (Figure 6F). Compared to cl, c2 also
expressed slightly higher levels of MHC-II-related genes.

The current gating strategy for identifying porcine DC subsets is
based on exclusion of CD14" monocytes (Figure 1) and therefore
likely excludes CD14-expressing DC3. This is illustrated by gradual
gating based on CD14 expression prior to DC gates, as shown in
Figure 6G. Indeed, CD14'" (P3) and CD14™ (P2) populations
contained approximately 66% and 6% Flt3" DC, respectively,
mainly falling within the ¢cDC2 gate (CADM1°CD172a").
The gated Flt3*CADMI17CD172a" population thus represents a
more heterogenous population, likely containing CD14-expressing
DC3. This hypothesis is further supported by the shared expression
of CADMI1 and CD172a (SIRPA) by ¢cDC2 (c1) and putative DC3
(c5) at the transcriptomic level (Figure 6H).

Discussion

We have previously identified porcine cDC1, ¢cDC2 and pDC in
blood of pigs by their expression of key transcripts conserved across
species (4). In this previous work, we found a substantial subset of
CD14°CADM1°CD172a"CD4" cells in the blood of pig with
unknown identity (4). Based on recent insights from human and
mouse, the present study now identifies this unknown DC subset as
the equivalent of tDC by combining flow cytometry, bulk- and
scRNA-seq analyses.

With the current study, we have zoomed into the DC
compartment by performing scRNA-seq on Flt3-enriched PBMC,
revealing both tDC and putative DC3 in blood of pigs. Like their
human and murine counterparts (19, 22, 24, 53), porcine tDC
displayed a distinct transcriptomic signature in-between pDC and
cDC2, whereas putative DC3 clustered in a continuum in-between
¢DC2 and monocytes.

Notably, porcine tDC were found to be as frequent as other DC
subsets in blood of pigs, which is in stark contrast to reports from
human and mouse, where tDC only form a minor population of
approximately 1-5% among total DC in blood and spleen (19, 22,
24, 26, 50, 52). The high proportion of tDC in porcine blood is
puzzling and may point towards high frequencies of tDC across
tissues, which would make the pig an attractive model for studying
tDC in various settings, including infection. In fact, tDC are
discussed to play a special role in viral infection. In murine
models of SARS-CoV2 infection, virus-sensing tDC produced
IL-1B and were deemed responsible for shifting the balance
towards inflammation and fatal immunopathology (24).
Upregulation of IL-13 was also observed in human tDC recruited
to skin following experimental injection of UV-killed E. coli (50).
Compared to blood tDC, these tDC had upregulated pro-
inflammatory genes (IL1B, SATI, AXL), genes related to IFN
signaling (ISGI5, IFI44L, IFI27), and chemokine receptors
associated to migration (CXCR4, CX3CRI), while having
downregulated genes coding for HLA molecules.
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Our transcriptomic data support the involvement of porcine
tDC in sensing viral components and in promoting inflammation.
In particular, tDC might be involved in antiviral response by
sensing double-stranded RNA via TLR3 expression. Notably,
apart from porcine tDC, TLR3 is predominantly expressed in
porcine pDC. This is in contrast to human and mouse, where
TLR3 is not expressed at all on pDC (54, 55), representing only one
example of species differences in viral sensing (4).

Porcine tDC expressed higher levels of CD86 and MHC-II
molecules than pDC, both on the mRNA and protein level,
suggesting that tDC are better equipped for T-cell stimulation.
This is in line with murine and human tDC reported to outperform
pDC in inducing allogenic T-cell proliferation (19, 22, 24, 26, 50). In
fact, contaminations with tDC/human ASDC in traditional pDC
gates have likely biased T-cell stimulation assays, erroneously
attributing T-cell stimulatory functions to pDC (19). It remains to
be determined if tDC contribute to stimulation of naive T cells in
secondary lymphoid tissues. In a model of murine influenza
infection, tDC were described to be recruited to the lungs, but
were not found to accumulate in draining lymph nodes (22). While
our data indicate transcription of several TLR and co-stimulatory
molecules, future studies should interrogate TLR responsiveness
and the capacity of porcine tDC for phenotypic maturation
(upregulation of CCR7, MHC-II, CD80/86), as previously
performed for bovine DC and monocyte subsets (8, 56). In
particular, assessment of CCR7 upregulation upon TLR
stimulation will indicate if porcine tDC are capable of migration
to T-cell zones in secondary lymphoid tissues. The transcriptomic
reference datasets generated in the present study will enable detailed
investigations on tDC and their activation signatures across tissues
both in steady-state and infection.

Murine studies have started to dissect the developmental pathway
of tDC using specific knockout (KO) and adoptive cell transfer
approaches, as well as lineage tracing mouse models (15, 24, 26).
Sulczewski et al. demonstrated that murine tDC originate from bone
marrow progenitors shared with pDC (pro-pDC) at steady state (24).
Notably, when knocking out the pre-cDC pathway, pro-pDC could
compensate for the lack of ¢cDC2 by producing c¢cDC2-like cells
(termed tDC2) via the tDC pathway. Moreover, tDC isolated from
human blood converted into CD5" ¢cDC2 upon CD40L stimulation in
vitro (24) and bone marrow tDC cultured under standard DC
differentiation conditions (i.e. GM-CSF and Flt3-ligand) generated
exclusively DC2 (14). The clustering we observed in our scRNA-seq
dataset alongside the transiently increasing cDC signature would
support the hypothesis that porcine tDC can give rise to cDC2-like
cells in vivo. It is intriguing to speculate that the bridge-like
connection between cDC2-like tDC and ¢DC2 in our UMAP plot
marks this transition. Recently, Lubin et al. used deuterium-glucose
labeling of dividing cells to study the kinetics of DC subsets and their
progenitors in human blood (50). Their findings support a model in
which ASDC (human tDC) give rise to DC2 in both the bone marrow
and blood. Indeed, the incorporation of deuterium into DNA is safe
for use in humans and rodents (57, 58), making it a promising tool
for investigating the fate and lifespan of DC in large animal models
in vivo.
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Patterns of expressed transcription factors in porcine tDC were
largely in accordance with murine and human tDC. High expression
of STAT5A in porcine tDC is in line with the idea that tDC need to
counteract differentiation towards pDC, as STAT5 was reported to
inhibit pDC development by suppressing IRF8 (59). By chromatin
accessibility analysis, Leylek et al. demonstrated that KLF3, KLF8 and
KLF12 were part of the unique TF profile of tDC (30). Accordingly,
the distinct expression pattern of KLF3, KLF8 and KLF12 in porcine
tDC distinguished them from ¢DC2 and pDC. Among the gene
regulatory network governing DC development, TCF4 and ID2 are
reported as mutual functional antagonists promoting pDC versus
cDC differentiation, respectively (32). The expression of both TCF4
and ID2 in porcine tDC aligns with their transitional nature.

To our knowledge, tDC have not yet been described in
mammalian species other than humans and mice. A decade ago,
Vu Manh et al. described a subpopulation of cDC2 (FSCMMHC-
II"CD14 CD4 CADM1 CD172a™) in porcine blood (29). The bulk
transcriptome of this population was suggested to be significantly
contaminated by pDC (TCF4) and ¢DC1 (XCRI) and was thus
excluded from their analyses. In the light of current knowledge and
our present results, this population likely contained tDC. As did the
FLT3- and XCRI-expressing CADM1 ™ population within CD14
CD172a"CD1°CD4" ¢DC reported in another study (60).

Transcriptomic data suggest that CD2 and CD5 can be used in
flow cytometry to discriminate porcine tDC (CD2"CD5") from
pDC (CD2°"CD5"") and ¢DC2 (CD2*CD5""). Notably, human
tDC, previously considered as pre-DC, are also reported to differ
from pDC by expression of CD2 and CD5 transcripts (19, 53).
Protein-level analyses are necessary to confirm the suitability of
these markers.

The combination of bulk RNA-seq from sorted DC populations
and scRNA-seq of enriched DC allowed us to confirm the accuracy of
our flow-cytometry based subset identification (cDCl1, ¢cDC2, pDC,
tDC). However, scRNA-seq of enriched DC revealed additional
heterogeneity. Unbiased clustering of our scRNA-seq dataset
suggests the presence of two tDC subsets in porcine blood,
spanning a differentiation continuum in-between pDC-like cells and
cDC2-like cells. Similarly, in mice, tDC were classified into two distinct
subpopulations according to their similarity to pDC and ¢cDC2, termed
tDC'Y (CD11c"°"Ly6c™e") and tDCME" (CD11cMe"Ly6C'o™),
respectively (22). The mouse Ly6c gene does not have a pig ortholog,
but transcription of ITGAX, encoding CD11c, appeared to be higher in
porcine cDC2-like tDC. So, although transcriptomic signatures from
murine tDC™" and tDC'*™ were not discriminatory for the two
porcine tDC clusters, CD11c may still be suitable for distinguishing
porcine tDC subsets in flow cytometry. Observed monocyte signatures
(increased transcripts for e.g. CDI4) in two out of four investigated tDC
samples are surprising and cannot be explained by the scRNA-seq data,
where monocyte-associated gene expression could not be detected in
the two tDC clusters.

In addition to tDC, our scRNA-seq analyses suggest the presence
of DC3 in porcine blood. Dendritic cells type 3 have been described as
a new DC lineage, originating from monocyte/dendritic-cell
precursors, as opposed to ¢cDC deriving from common dendritic
progenitors (15, 18). As DC3 share phenotype and transcriptome
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with monocytes and cDC2, their clear delineation has proven difficult
in both human and mouse, especially under inflammatory conditions
(61). In fact, CD14, a molecule that has traditionally been used as a
monocyte marker across species, appears to be expressed on DC3 of
all species investigated so far, including pig. Notably, in the gating
strategy employed here to sort porcine DC subsets for bulk RNA-seq,
CD14" cells were excluded. This has likely reduced DC3
contamination in the cDC2 gate, but also highlights the importance
of scRNA-seq as a tool that is relatively independent of a priori
defined gating strategies. In future studies, the gating strategy for
porcine DC subsets should include Flt3 to account for CD14-
expressing DC3.

When studying rare and poorly defined DC with scRNA-seq,
proper enrichment strategies are crucial and should be based on
extensive phenotypic characterization to not bias investigations on
DC heterogeneity. By enriching DC by Flt3 expression, as performed in
the present study, we expect to have captured the vast majority of DC.
In support of this, similar proportions for main DC subsets were found
in scRNA-seq (Flt3-enriched) and flow cytometry (Flt3-independent
gating strategy employed for bulk RNA-seq of DC subsets). However,
DC subsets expressing low levels of FIt3 (e.g. pDC) may still be missed
by this enrichment strategy, as also discussed for scRNA-seq of Flt3-
enriched cells in bovine lymph node (62).

Taken together, by enriching Flt3" cells for scRNA-seq, we have
zoomed into the heterogeneous compartment of porcine DC at
unprecedented detail. Apart from discovering tDC as a major DC
subset in porcine blood, we describe putative DC3 as FLT3 expressing
cells that show considerable transcriptional overlap with monocytes.
Several open questions need to be addressed in future studies,
including the functional role of these DC subsets across species, and
the suitability of the pig as a model species for human tDC research.

Material and methods
Animals and isolation of PBMC

Blood was obtained from Swiss Large White pigs (Table 1), kept
under specific-pathogen-free (SPF) conditions (63) at the animal
facility of the IVI (Mittelhdusern, Switzerland), by puncturing the
jugular vein. As anti-coagulant, citrate-based Alsever’s solution
(1.55 mM CgH,,0g 408 mM Na;CeH;0,-2H,0; 1.078 mM NaCl;
43 mM C4HgOy, pH 6.2) was used.

For peripheral blood mononuclear cell (PBMC) isolation, blood
was centrifuged at 1,000 x g for 20 min (room temperature; RT), the
bufty coat was collected, diluted in PBS/EDTA (PBS; 1 mM EDTA)
to a 1:1 ratio (RT) and layered onto Ficoll-paque (1.077 g/L, GE
Healthcare) in Leucosep tubes (Greiner BioOne) for centrifugation
at 800 x g for 25 min (RT). PBMC were collected and washed first
once with cold PBS/EDTA at 350 x g for 10 min (4 °C, Ficoll-paque
removal) and then once reducing the speed to 250 x g (platelet
removal). Remaining, red blood cells were removed from the PBMC
by incubation with cold lysis buffer (10 mM NaHCOs;; 1 mM
EDTA; 0.15 M NH,Cl, pH 7.25) for 10 min on ice, followed by two
washes with cold PBS/EDTA at 250 x g for 10 min (4 °C).
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Phenotyping of putative porcine tDC in
blood by flow cytometry

The flow cytometry gating strategy used to identify mononuclear
phagocyte (MP) subsets in pig blood was previously described by our
laboratory (4), defining ¢cDCI as CD14'CD172a"°"CADM1" cells,
cDC2 as CD14°CD172a*CADMI1" cells, pDC as CD14"
CD172a*CADM1°CD4" cells and monocytes as CD14" cells. The
same staining panel was used to gate on the newly identified DC
subset as CD14'CD172a"CADM1 CD4" cells in the present study.
Briefly, a four-step four-color staining of PBMC was performed.
Antibodies and porcine recombinant proteins used are listed in
Table 2. Briefly, cells were first stained with the primary antibodies
anti-CD172a (clone 74-22-15A) and anti-SynCAM (TSLC1/
CADML], clone 3El), followed by a second incubation with the
corresponding secondary anti-mouse-IgG2b-AF647 and anti-
chicken IgY biotin. A blocking step was then performed with
ChromPure mouse IgG (Jackson Immunoresearch), and cells were
finally incubated with the directly conjugated antibodies anti-CD14-
FITC (clone MIL2) and anti-CD4-PerCP-Cy5.5 (clone 74-12-4), and
with V500-conjugated streptavidin. Based on this staining, the
phenotype of the new DC subset of interest was further
characterized by analyzing the expression of additional cell surface
markers, alongside corresponding FMO (Fluorescence minus one)
controls. Flow cytometry acquisitions were performed on a FACS
Canto II (BD Biosciences) equipped with three lasers (405, 488, and
633 nm) and a Cytek Aurora (Cytek Biosciences) equipped with four
lasers (405 , 488 , 561, and 640 nm), software and were further
analyzed with the Flowjo software (TreeStar, version 10.10.0).

Sorting and bulk RNA sequencing of
putative porcine blood tDC

The newly identified DC subset was sorted from the blood of
four pigs (12- to 24-month-old) for bulk RNA-seq analysis. First, a
T-cell depletion of PBMC was performed using magnetic activated
cell sorting with an anti-CD3 antibody (clone PPT3), anti-mouse
IgG MicroBeads and LD columns (MACS MicroBead Technology,

TABLE 1 Animals used in each experiment.

Number of pigs

(Swiss Large White) =

Experiment Age

Bulk RNA-seq of sorted cDC1, cDC2, pDC and monocytes

3-12
n=3 F

F A t al., 2016
(From Auray et a ) months

Bulk RNA-seq of sorted pptDC

12-24

n=4 months F
scRNA-seq of enriched DC
s 165 .
n= months

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1639553
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Baillou et al.

TABLE 2 List of antibodies and porcine recombinant proteins for phenotyping and FACS.

Experiment  Antigen or receptor®

Phenotyping®/FACS for bulk RNA-seq?

Clone/Source of mAb

10.3389/fimmu.2025.1639553

Detection/Source

C Anti- IgG2b:AF647/Molecul
ore CD172a 74-22-15A/Vetmeduni Vienna, Austria immonse ' [Molecular
Probes
Anti-chicken IgY:biotin/Jackson
Immunoresearch
CADMI1* 3E1/MBL + V?OO—foupled streptavidin/BD
Horizon or
+ APC-AF750-coupled streptavidin/
Thermo Fisher?
CD14 MIL2:FITC/AbD Serotec
CD4 74-12-4:PerCP-Cy5.5/BD Pharmingen
Phenotypic wC11R1/CD11b MIL4/Serotec Anti-mouse IgG1:RPE/SouthernBiotech
markers
CD1.1 76-7-4/Vetmeduni Vienna, Austria Anti-mouse IgG2a:RPE/SouthernBiotech
ROS8G11-1/Roslin Institute, University of
CD115/CSFIR _ [Roslin Institute, University o Anti-mouse IgG2a:RPE/SouthernBiotech
Edinburgh, UK
CD163 2A10-11/INIA-CSIC, Madrid, Spain Anti-mouse IgG1:RPE/SouthernBiotech
CD205 ZH9F7/CIAD, Hermosillo, Mexico Anti-mouse IgG1:RPE/SouthernBiotech
CD303 102G7/Dendritics, Lyon France Anti-mouse IgG1:RPE/SouthernBiotech
MHC-II/SLA-DQ TH16B/VMRD Anti-mouse IgG2a:RPE/SouthernBiotech
CD16 G7:RPE/AdB Serotec

CD135/FIt3*

In house

CD123/IL-3RA?

In house

T-cell depletion CD3

DC enrichment for scRNA-seq

Core

CD172a 74-22-15A/Vetmeduni Vienna, Austria

CD135/FIt3*

T-cell depletion CD3
* Anti-mouse CADMI with pig cross reactivity.

Miltenyi Biotec). The same four-step four-color staining as
described above was performed with the CD3-negative fraction,
but V500-conjugated streptavidin was replaced by APC-AF750
streptavidin, and the DC subset of interest was sorted using
fluorescence-activated cell sorting (FACS; FACSAria III; BD
Biosciences). Finally, cells were resuspended in TRIzol (Life
Technologies) and stored at -80 °C until later RNA extraction
with the Nucleospin RNA kit (Macherey Nagel) as previously
described (4). RNA quantification and quality assessment was
performed with an Agilent 2100 Bioanalyzer (Agilent
Technologies) and a Qubit 2.0 Fluorometer (Life Technologies).
High-quality RNA (approximately 500 ng; RNA integrity number
(RIN) > 8) was used to prepare non-directional paired-end mRNA
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His-tagged porcine recombinant protein FIt3L/

His-tagged porcine recombinant protein IL-3/

PPT3-FyH2/University of Bristol, UK

His-tagged porcine recombinant protein FIt3L/
In house

8E6-8C8/Kingfisher Biotech

Anti-His: PE/Miltenyi Biotec

Anti-His: RPE/Miltenyi Biotec

Anti-mouse IgG:magnetic beads/Miltenyi
Biotec

Anti-mouse IgG2b:AF647/Molecular
Probes

Anti-His: PE/Miltenyi Biotec

Anti-mouse IgG2a:biotin
+ Magnetic beads:streptavidin/Miltenyi
Biotec

libraries with the TruSeq Sample Preparation Kit (v2, Illumina).
The libraries were sequenced on the Illumina HiSeq2500 platform
using 2 x 100 bp paired-end sequencing cycles, yielding between
26.5 and 30.1 million read pairs per sample. The Illumina BCL
output files with base calls and qualities were converted into FASTQ
file format and demultiplexed with the CASAVA software (v1.8.2).
Raw bulk RNA-seq data for the cDCI1, ¢cDC2, pDC and monocytes
(n = 3 pigs) were available from our previous work (4).

For analysis of bulk RNA-seq data, the following bioinformatics
tools were used with their default parameters, unless specified
otherwise. The quality of reads was assessed with fastQC v0.11.9
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and
both low quality bases (Phred score < 30) and Illumina TruSeq2

frontiersin.org


https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.3389/fimmu.2025.1639553
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Baillou et al.

adapters were trimmed with Trimmomatic v0.39 (64). The reads
were then mapped to the pig reference genome (assembly Sscrofa
11.1) using STAR v2.7.10a (65). The duplicate reads were identified
and removed using MarkDuplicates from the Picard command-line
tools v2.25.1 (https://broadinstitute.github.io/picard/). The
featureCounts program included in the SourceForge Subread
package v2.0.3 (66) was used to count the number of reads
overlapping with each gene identified in the Ensembl pig
annotation release 11.1.111. In summary, (i) a minimum of 93.7%
of reads were mapped to the genome among all samples, yielding
between 29.6 and 57.2 million reads aligned per sample, (ii) between
14.2 and 35.4% of reads were identified as duplicates and (iii) 58.5-
68.9% of reads were assigned to a gene, corresponding to a range of
16.3-33.0 million mapped reads.

The differential gene expression analyses were performed using the
Bioconductor package DESeq2 v1.42.1 (67) in R v4.3.3 (68). Only genes
with |log2FC| > 1 and adjusted p-value < 0.05 were selected as
differentially expressed genes (DEGs). We performed pairwise
comparisons of cell subsets as well as the comparison of each subset
versus all others to define the MP subset-specific transcriptomic
signatures (results are available as Data S1). Principal component
analysis (PCA) was performed with normalized and vst-transformed
counts of the 500 most variable genes across samples. Sample-sample
correlation analysis was based on normalized gene expression data for
each sample (counts()) using the Spearman correlation coefficient with
hierarchical clustering based on Spearman distances.

Enrichment of DC by fluorescence-
activated cell sorting

To enrich DC for scRNA-seq analysis, a four-step protocol
combining cell staining and T-cell depletion was performed on
freshly isolated PBMC from three pigs in parallel. Antibodies and
porcine recombinant proteins used are listed in Table 2. Briefly, 5 x
10® PBMC were first stained with a His-tagged porcine recombinant
protein FIt3L and the primary antibodies anti-CD172a (clone 74-
22-15A) and anti-CD3 (clone 8E6-8C8), followed by a second
incubation step with the corresponding secondary antibodies
anti-His-PE, anti-mouse IgG2b AF647 and anti-mouse IgG2a
biotin. Next, following incubation with Streptavidin MicroBeads
(Miltenyi Biotec), CD3" cells were depleted using LD columns
(Miltenyi Biotec). Finally, total DC from the three pigs identified as
Flt3*CD172a”* cells were sorted in parallel using one FACS Aria IT
and two FACS Aria III (all BD Bioscience) at the flow cytometry
and cell sorting core facility at the University of Bern.

Single-cell RNA-seq (10x Genomics)

For scRNA-seq, DC isolated from the blood of three pigs (16.5-
month-old) were analyzed with 10x Genomics. Gel beads-in-emulsion
(GEM) generation and barcoding, reverse transcription, cDNA
amplification and 3’ gene expression library generation steps were all
performed according to the Chromium Next GEM Single Cell 3’

Frontiers in Immunology

15

10.3389/fimmu.2025.1639553

Reagent Kits v3.1 (Dual Index) User Guide (10x Genomics CG000315,
Rev E) with all stipulated 10x Genomics reagents. Generally, 9-11 pL of
each cell suspension (1 500-1-900 cells/uL) and 32-35 pL of nuclease-
free water were used for a targeted cell recovery of 10,000 cells. GEM
generation was followed by a GEM-reverse transcription incubation, a
clean-up step and 11 cycles of cDNA amplification. The resulting
cDNA was evaluated for quantity and quality using a Thermo Fisher
Scientific Qubit 4.0 fluorometer with the Qubit dsSDNA HS Assay Kit
(Thermo Fisher Scientific, Q32851) and an Advanced Analytical
Fragment Analyzer System using a Fragment Analyzer NGS
Fragment Kit (Agilent, DNF-473), respectively. Thereafter, 3" sc gene
expression libraries were constructed using a sample index PCR step of
14 cycles. The generated cDNA libraries were tested for quantity and
quality using fluorometry and capillary electrophoresis as described
above. The cDNA libraries were pooled and sequenced with a loading
concentration of 300 pM, asymmetric paired-end and dual indexed, on
two shared Illumina NovaSeq 6000 sequencer using a NovaSeq 6000 S4
Reagent Kits v1.5 (200 cycles; Illumina, 20028313). The read set-up was
as follows: read 1: 29 cycles, i7 index: 10 cycles, i5: 10 cycles and read 2:
91 cycles. The quality of the sequencing runs was assessed using
Illumina Sequencing Analysis Viewer (v2.4.7, Illumina) and all base
call files were demultiplexed and converted into FASTQ files using
bcl2fastq conversion software (v2.20, Illumina). The mean reads per
cell and number of cells obtained per sample ranged from 33-896 to
51-718 reads, and from 11-5311 to 14-221 cells, respectively All steps
were performed at the Next Generation Sequencing Platform,
University of Bern.

Analysis of porcine scRNA-seq data

Read alignment, quality control and filtering

The scRNA-seq FASTQ files were processed using Cell Ranger
v7.1.0 (10x Genomics) (69) and reads were aligned to the pig
reference genome (assembly Sscrofa 11.1). Bam files and filtered
expression matrices were generated using the “cellranger_count”
pipeline with default parameters, unless specified otherwise.
Expression matrices were further analyzed in R v4.3.3 (68) using
mainly Seurat v5.1.0 (70) and other R packages (list available in the
GitHub page, see “Code availability” section). Quality-based scRNA-
seq data filtering was performed by excluding low-quality cells and
dead cells (< 500 genes and > 10% of transcripts mapping to
mitochondrial genes), non-expressed genes (genes expressed in < 5
cells across all samples) and cells identified with high probability as
doublet by the scDblFinder package v1.16.0 (71) (doublet score
threshold automatically determined). Percentages of mitochondrial
and ribosomal protein gene expression in cells were calculated based
on NDI, ND2, COX1, COX2, ATP8, ATP6, COX3, ND3, ND4L, ND4,
ND5, ND6, CYTB genes and 61 RPS- and RPL- genes, respectively.

Normalization, dimensionality reduction, data
integration and clustering

The three scRNA-seq samples loaded in a Seurat object (1 layer/
sample) were independently processed for sctransform-based
normalization, including steps of data scaling and highly variable
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gene identification, and for linear dimensionality reduction using
PCA. For further downstream analysis, the optimal number of 50
principal components (PCs) was identified by the elbowplot
method. Cells were then scored for cell cycle phases based on
their expression of S and G2M phase-associated genes listed in
Seurat. Next, data integration of the three datasets was performed
with Harmony v1.2.0 (72) on PCA cell embeddings and selecting
the sample origin (batch effect correction) and the cell cycle phase as
covariates. The resulting Harmony reduction was selected for
identifying nearest neighbors, clustering the cells with the Leiden
algorithm (method = “igraph”, clustering resolution = 0.6), and
performing non-linear dimensionality reduction using UMAP for
cluster visualization.

Differential gene expression analysis

Counts in the RNA assay were log-normalized and scaled, and
layers were joined. The DEGs in each cluster were identified with
the FindAllMarkers() function and pairwise comparisons between
selected clusters were performed with the FindMarkers() function.
Only genes expressed in at least 20% of the cells in one of the
clusters being compared, with |avg log2FC| > 1 and adjusted p-
value < 0.05 were selected as DEGs. In addition, DEGs from
pairwise comparisons were filtered according to an expression in
at least 20% of the cells in one of the clusters being compared and
80% of the cells in the other one(s).

Cluster correlation analysis

Cluster-cluster correlation values were calculated based on
averaged log-normalized gene expression data for each cluster
using the Spearman correlation coefficient.

Gene set enrichment analysis

Gene set enrichment analyses (GSEA) were performed with the
AUCell package v1.24.0 (73) as previously described by Herrera-
Uribe et al. (74). Briefly, the expression of the specific enriched gene
set in each sorted porcine blood MP subset analyzed by bulk RNA-
seq (as described in preceding methods) was evaluated within cells
of the scRNA-seq dataset, as follows: Ranking of gene expression
from raw gene counts and calculation of area under the curve
(AUC) scores from the top 5, 10, 15, 25, 50 and 100% of expressed
genes in a cell and the gene sets. AUC scores are proportional to the
percentage of genes from a gene set found in the top expressed
genes for a cell defined at different levels. Next, AUC scores and
UMAP coordinates of each cell were overlayed for UMAP
visualization, with manual determination of a threshold value for
each gene set based on AUC score distributions. Heatmap
representation was based on averaged scaled AUC scores
calculated for each cluster, following scaling of individual cell
AUC scores relative to other cells within a single gene set
comparison (rows) but not between gene sets (columns).

For species comparison, GSEA were performed with DC subset
gene signatures from three sources: (i) a published scRNA-seq study
(SMARTSeq2) of human blood DC (19), (ii) a published bulk and
scRNA-seq study of murine spleen DC (10x Genomics) (24), and
(iii) results from re-analysis of a recently published scRNA-seq
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dataset (10x Genomics) of human blood DC (50). The pig orthologs
of human and mouse genes were identified with BioMart (Ensembl)
and selected according to the highest percentage of identity to the
target pig gene. Human and mouse genes without pig orthologs
were removed. The resulting pig-converted- human and murine
gene signatures are provided as Data S2. GSEA were performed as
described above, calculating the AUC scores from the top 25% of
expressed genes in a cell and the gene sets and represented
as heatmaps.

Machine-learning-based cell scoring

The classification score for the different cell clusters was created
with the scikit-learn python module (75) as previously described by
Mayere et al. (76). An ElasticNet model with one versus all

approach was trained using the ElasticNet() function (alpha =
0.05, tol = 0.01) on a random subsample of 450 cells per cluster
in order to avoid gene weighting bias due to overrepresentation of
some clusters. The ElasticNet approach uses a linear regression with
combined L1 (Lasso) and L2 (Ridge) priors as regularizer, allowing
a robust selection of relevant genes defining the cells of interest

(77, 78).

Cluster subsetting

Subsetting was performed using the Seurat’s subset() function.
Non-expressed genes in the new datasets were removed with
DietSeurat() and data were split according to the sample of origin
using the split() function (1 layer/sample). Data were then re-
processed for normalization, dimensional reduction, data
integration and clustering (method = “igraph”) as described
above. Counts in the RNA assay were log-normalized and scaled,
and layers were joined.

Trajectory inference analysis

The trajectory inference analysis of the subsetted dataset was
performed with the Scorpius package v1.0.9 (79). Cells were ordered
according to the inferred linear trajectory using the infer_trajectory
() function and the importance of a gene and its expression with
respect to the modelled dynamic process was assessed with the
gene_importances() function. Next, the top 50 important genes were
assigned into modules according to their expression patterns across
the inferred trajectory with the extract_modules() function, using
the normalized expression values scaled from 0 to 1 with the
scale_quantile() function.

Analysis of published scRNA-seq data
(human DC)

We analyzed the scRNA-seq dataset of human blood DC
recently generated by Lubin et al. (50) (approximately 3,000
cells). DC were sorted by flow cytometry and subjected to 10x
Genomics scRNA-seq. Processed data from the cellranger pipeline
(barcode, feature and matrix files), available under the sample
number GSM8499782 in the National Center for Biotechnology
Information Gene Expression Omnibus database, were analyzed
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with the Seurat pipeline as described above for the porcine data
(quality-based data filtering, sctransform-based normalization
and linear dimensional reduction using PCA). The PCA
reduction was selected for identifying nearest neighbors,
clustering the cells with the Leiden algorithm (method =
“igraph”, clustering resolution = 0.8), and performing non-linear
dimensional reduction using UMAP for cluster visualization.
Next, the differential gene expression analysis was performed as
for the porcine data, using FindAllMarkers() to identify the DEGs
in each cluster.

Identification and replacement of gene
identifiers

Pig gene Ensembl stable identifiers (IDs) without available gene
name/symbol in the pig genome annotation file were replaced in
text and figures by NCBI gene (formerly Entrezgene) accession or
UniProtKB Gene Name symbol if available in the corresponding
databases using the BioMart data mining tool from Ensembl
(https://www.ensembl.org/biomart/martview). A list of replaced
Ensembl IDs is included in Data S1. The human gene names
HLA-DRA and HLA-DOB found in the pig genome annotation
were replaced by SLA-DRA and SLA-DOB respectively, the gene
names of their porcine orthologs. While IL3RA is not currently
annotated in the Ensembl pig genome, it is available in the NCBI
reference. Thus, the porcine genomic sequence for the gene
encoding IL3RA (ENSSSCG00000055271) was identified by
aligning the IL3RA gene sequence from NCBI (gene identifier:
102166116) to the Ensembl pig genome (Sscrofa release 11.1.111)
using the Ensembl BLAT (100% sequence identity). The sequence of
the IL3RA transcript ENSSSCT00000092699, product of the
ENSSSCG00000055271 gene (IL3RA), was utilized to visualize the
read distribution across its corresponding genomic location
(AEMKO02000569.1: 775,837-784,610) for each sorted MP subset,
using Integrative Genomics Viewer (IGV) software.

Preparation of figures

Figures were prepared using FlowJo' ™ v10.10.0 (BD Life
Sciences) (80), R v4.3.3 (68), Rstudio v2024.04.1 (81), Inkscape
v1.3.2 (https://www.inkscape.org), Integrative Genomics Viewer
(IGV) v2.17.4 (82) softwares. FACS scheme was created using
Servier Medical Art, by Servier (http://smart.servier.com).

Bulk RNA-seq data was represented as PCA and heatmaps using
the ggplot2 v3.5.1 (83) and ComplexHeatmap v2.18.0 (84) R packages,
respectively. Heatmaps were prepared following log10 transformation
of normalized counts. Prior to log10 transformation, a pseudocount of
1 was added to the values to avoid zeros.

Visualization of scRNA-seq data was based on feature plots, dot
plots, violin plots, bar plots, scatter plots and heatmaps using the
Seurat v5.1.0 (70), scCustomize v2.1.2 (85), ggplot2 v3.5.1 (83) and
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ComplexHeatmap v2.18.0 (84) R packages. Heatmaps were
generated with scaled and centered data (Seurat ScaleData()
function). For improved contrast in feature plots, feature-specific
contrast levels were calculated based on quantiles (q10, q90) of non-
Zero expression.

The cell classification scoring based on a machine learning
model was visualized by scatter plots using the scikit-learn python
module (75).

The trajectory inference analysis was represented as UMAP plot
and heatmap using the Scorpius R package v1.0.9 (79).

Code availability

Scripts used for read alignment to the pig reference genome and
the bulk and scRNA-seq data analyses are available in the following
GitHub public repository: https://github.com/IVI-Immunology/
Porcine_blood_DC_scRNA-seq.
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Nucleotide Archive (ENA) (http://www.ebi.ac.uk/ena) under the
accession number PRJEB15381. Raw sequencing data from bulk
RNA-seq of porcine blood tDC and from scRNA-seq is available in
ENA under the accession number PRJEB101131.
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