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Background: Given the growing interest in the influence of lymph node
metastasis on the prognosis of patients diagnosed with pancreatic head cancer
(PHC). This study aims to evaluate the ability of current four nodal staging
systems predicting long-term outcomes and develop a machine learning
model for predicting the prognosis of patients with resectable PHC.

Materials and methods: Participants with PHC were sourced from the
Surveillance, Epidemiology, and End Results (SEER) database and allocated at
random in a 7:3 ratio to training and internal validation cohort. External validation
in a large-sample, multicenter cohort collected from three Chinese institutions
was performed to verified the robustness of the optimal nodal staging system and
predictive model. The concordance index (C-index), Akaike information criterion
(AIC) and area under the curve (AUC) were calculated to evaluate the predictive
capability and discrimination of different nodal staging systems. The machine
learning procedures based procedure and Cox regression analysis were
implemented for identification of the prognostic factors and construction of
predictive model. The calibration curves, net reclassification improvement (NRI)
and integrated discrimination improvement (IDI) and decision curve analysis
(DCA) were using to assess predictive accuracy and clinical benefits of the
predictive model.

Results: All four nodal staging systems were independent prognostic factors for
overall survival (OS). The log odds of lymph node ratio (LODDS) were verified as
the optimal nodal staging system with highest C-index and AUCs, and lowest
AlCs compared to others, and has better predictive capability than others both in
patients with <12 and > 12 retrieval lymph nodes (RLNs). Then, a predictive model
including T stage, tumor differentiation, chemotherapy, and LODDS was
developed and validated. This model had a higher C-index and AUCs than the
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AJCC staging system. The NRI, IDI, and DCA analysis also indicated that present
model had good predictive capability and clinical utility.

Conclusion: The nodal staging system LODDS is the optimal prognostic factor
for OS in resectable PHC. It could effectively predict OS for resectable PHC
patients without considering the numbers of RLN. The machine learning model
could effectively predict OS for patients with resectable PHC.

pancreatic head cancer, nodal staging systems, machine learning, overall survival,

predictive model

1 Introduction

Pancreatic cancer is emerging as a formidable adversary to
human health (1, 2). Its insidious nature, coupled with the
formidable challenges on early detection and effective treatment,
has led to a substantial and growing burden on societies worldwide
(3, 4). Although radical resection and adjuvant therapy provide the
treatment options, the five-year survival rate for pancreatic cancer is
relatively low compared to other gastrointestinal cancers,
particularly when diagnosed at a late stage (5). The location of
the primary tumor is a critical factor in determining treatment
strategies and influencing outcomes. Studies have reported that
pancreatic head cancer (PHC) account for approximate 75% of
pancreatic cancer, and has a notably poor overall survival (OS)
compared to pancreatic body/tail cancer (6). In the selection of
treatment strategies, radical pancreaticoduodenectomy remains the
only potential curative treatment for patients with PHC (7, 8), but
few patients are suitable for surgical treatment because of distant
metastases or local invasion (9).

The accurate categorization of disease severity is pivotal for
determination of appropriate and effective treatment (10). Recent
studies have proposed various nodal staging systems for overall
survival (OS) prediction (11), among which the most widely
accepted for risk stratification is the N staging system. However,
the N staging system neglects the influence of lymph node dissection.
Currently, novel nodal staging systems was developed and gradually
applied based on ratio of metastatic to retrieval lymph nodes (LNR),
the log odds of lymph node ratio (LODDS) and the log odds of
negative lymph nodes/T stage (LONT) (12, 13). The comparisons of
predictive performance of these nodal staging systems for PHC has
produced a spectrum of inconsistent findings, and previous studies
often grapple with several limitations of methodologies and sample
size that can affect the interpretation of their results. It lacks large
sample and multicenter studies to explore the prognostic value of
different nodal staging systems.

Machine learning procedures that enable computer systems to
learn statistical patterns from data during a training phase. This
model can then be applied to data to autonomously execute tasks
such as clustering, optimization, and prediction, without relying on
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task-specific instructions (14). Recently, machine learning
procedures have gained widespread application and are
extensively used in the construction of prognostic models,
especially in liver cancer (15), gastrointestinal cancer (16), and
cervical cancer (17). In pancreatic cancer, machine learning
procedures are also extensively used to identify pivotal
biomarkers and develop prognostic model. Li et al. constructed a
machine learning histamine-related signatures to reveal the
prognosis of pancreatic cancer (18). Wu et al. developed an
interpretable machine learning model, integrating radiomic
features and clinicopathological factors, to predict the early
recurrence in patients with post-surgery (19).

Herein, we obtained the resectable PHC cohort from the
Surveillance, Epidemiology, and End Results (SEER) database to
compare prognostic performance of the four nodal staging systems.
Another large-sample multicenter resectable PHC cohort was
retrospectively collected from three Chinese institutions to
validate accuracy and generalizability. In addition, based on
optimal nodal staging systems, a novel machine learning model
for PHC was developed, interpreted and validated.

2 Materials and methods

2.1 Patients characteristics, demographics
and study design

The resectable PHC patient characteristics were extracted from
the SEER database of the National Cancer Institute (http://
seer.cancer.gov/). The inclusion and exclusion criteria have been
introduced in detail in our previous study (20). The AJCC staging
was converted from the 7 to the 8" edition based on the tumor
size, number of metastatic lymph nodes (MLNs) and distant
metastasis for subsequent analysis. A large-sample, multicenter
cohort including resectable PHC patients was collected from three
Chinese institutions for external validation. The patients were
follow-up by telephone or outpatient clinic interview. The
variable selection is in accordance with the SEER cohort. This
study was approved by the Ethics Committee of the PLA General
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Hospital. Written informed consent was obtained from all patients.
The Flow diagram of the study population and design was shown
in Figure 1.

Next, in this study, the LNR was defined as the ratio of the
number of MLNs to the number of total retrieval lymph nodes
(RLNs). The LODDS were determined as log [(MLNs + 0.5)/
(negative lymph nodes + 0.5)]. The LONT was calculated as log
odds of negative lymph nodes/T stage. According to the previous
studies, the threshold of LNR was identified as 0.20, while the other
optimal threshold of nodal staging systems was calculated using the
X-tile software (version 3.6.1).

Then, the SEER cohort were randomly divided into the training
and internal validation cohort at a ratio of 7:3 using “caret” package
in R software (version 4.3.3). The training cohort was used to
evaluate performance of different nodal staging systems predicting
OS, and the performance was verified and generalized in the
internal and external validation cohort.

Finally, based on optimal nodal staging systems, a novel
machine learning model to predict OS for PHC was developed,
interpreted and validated. Furthermore, a website calculator was
established to facilitate the application of our predictive model

more conveniently.

2.2 Statistical analyses

R (version 4.3.3) and SPSS (version 26.0) were used to complete
all statistical analyses in the present study. X-tile software (version

Step I: Patient selection

10.3389/fimmu.2025.1639186

3.6.1) is a common and practical approach for exploring optimal
thresholds and thus is used to obtain the optimal cut-off values of
partial nodal staging systems. Continuous variables are reported as
median (interquartile range) and were compared by Student’s t test,
and categorical variables are reported as counts and proportions
and were analyzed by chi-squared test for comparisons among
groups. Univariate Cox regression analysis and 10 machine
learning-based integrative procedures, including random survival
forest (RSF), CoxBoost, stepwise Cox, least absolute shrinkage and
selection operator (Lasso), Ridge, elastic net (Enet), survival support
vector machines (survival-SVMs), generalized boosted regression
models (GBMs), supervised principal components (SuperPC) and
partial least Cox (plsRcox), are implemented for identification of
the prognostic factors. Through comparing these 101 machine
learning combinations, the optimal model can be selected
accordingly. Then, multivariate Cox regression analysis was
carried out for construction of predictive model. Kaplan-Meier
(KM) survival analysis and the log-rank test were performed to
depict the capability of individual variables to discriminate overall
survival (OS). The concordance index (C-index) was calculated to
evaluate the discrimination of these nodal staging systems, Akaike
Information Criterion (AIC) value, and time-dependent receiver
operating characteristic (time-ROC) curves within 60 months were
created to compare their predictive capability. The net
reclassification improvement (NRI) and integrated discrimination
improvement (IDI) were calculated to evaluate the improvement of
the model prediction compared to the AJCC staging system. Finally,
the performance and clinical benefits of predictive model was

Step IV: Comparative Prognostic Performances of the nodal staging systems

Included and Excluded Trai;i_n‘;g‘t;t;hurt | Training cohort Four nodal staging
— t
SEER database 6419 patients N st:Y: ems
Internal validation cohort | Internal validation cohort Z.LNRg
N=1924 .
3.LODDS
External validation cohort | The China cohort 4.LONT

The China database I—PI 670 patients N=670

Subgroup analysis

Step II: The Determination of threshold of nodal staging systems

Step V: Development of the predictive model based on LODDS system

Continuous variables : ‘: Categorical variable |

Event: OS | | Cox regression analysis |

101 machine learning
algorithms

The optimal
predictive model

|_.|

Training cohort
LNR 1,2 |
| Internal validation cohort }-’|
X-tile software LODDS 1,2,3 |
LONT 1,2 Il |

The China cohort | LOOCYV framework

C-index, AUCs,

NRIs, IDIs

Step III: The identification of independent prognostic factors

Step VI: Validation of the predictive model based on LODDS system

Statistically Calibrati
Event: OS significant results | Training cohort Alibration curves
TI:tga ¢ e DCA analysis
Training cohort H Cox regression analysis |—> g | Internal validation cohort Predictive model I—
LNR -_AUCs
P<0.05 LODDS [ The China cohort -
LONT »| Website calcul

FIGURE 1

Flow diagram of the study population and design. LNR, The ratio of metastatic to retrieved nodes; LODDS, The log odds of lymph node ratio;

LONT, The log odds of negative lymph nodes/T stage; OS, Overall survival;

AIC, Akaike information criterion; ROC, Receiver operating characteristic;

NRI, Net reclassification improvement; IDI, Integrated discrimination improvement; DCA, Decision curve analysis.
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evaluated by calibration curve and decision curve analysis (DCA).
The main utilized R packages were “rms”, “nricens”, “
“Cschange”, “timeROC”, and so forth. A two-sided p < 0.05 was

considered statistically significant.

survival”,

3 Results

3.1 Patient demographics and
characteristics

In the SEER cohort, a total of 6419 resectable PHC patients met
the criteria after consulting the CS Schema v0204+, which included
4495 patients in the training cohort and 1924 patients in the
internal validation cohort. In the external validation cohort, 670
resectable PHC patients was collected for validation and
generalization. Among all resectable PHC patients, most of them
were 60-80 years old (66.43%), male (55.15%), Race white (82.69%).
The majority of them with AJCC II stage (43.26%), T2 stage
(62.21%), and N1 stage (40.71%). Furthermore, the most

10.3389/fimmu.2025.1639186

common tumor differentiation was moderate (52.34%). With
regard to the treatment, there were 4801 (74.79%) patients who
received chemotherapy. There was no statistical difference in the
demographics and characteristics between the training and internal
validation cohort. In the external validation cohort, similarly, most
of them were 60-80 years old (49.55%), male (55.67%). Moreover,
the majority of them with AJCC I stage (52.69%), T2 stage (61.94%),
and NO stage (25.52%). In addition, the most common tumor
differentiation was moderate (47.31%). With regard to the
treatment, there were 283 (42.24%) patients who received
chemotherapy. The baseline demographics and characteristics are
shown in Tables 1, 2.

3.2 The determination of threshold of
nodal staging systems

In the present study, the LNR ranged from 0 to 1, the LODDS
ranged from -2.16 to 1.81, and the LONT ranged from 0 to 1.83
(Supplementary Figure 1). Based on the threshold, LNR was grouped

TABLE 1 Baseline demographics and characteristics of patients in SEER cohort.

Variables All patients

n=6419

Internal validation
cohort

n=1924

Training cohort

P value
n=4495

Age, years, 44(0.69)/1464(22.80)/4264(66.43)/ 38(0.85)/1010 (22.67)/2984 6(0.31)/454(23.60)/1280(66.53)/ 0070
<40/40-60/60-80/=80 647(10.08) (66.38)/463(10.30) 184(9.56) ’
Male, N (%) 3283(51.15) 2269(50.48) 1014(52.70) 0.102
Race, N (%) White/Black/Others 5308(82.69)/597(9.30)/514(8.01) 3712(82.58)/411(9.14)/372(8.28)  1596(82.95)/186(9.67)/142(7.38) 0.413
AJCC stage, N (%) 1560(24.31)/2777(43.26)/2082 1100(24.47)/1931(42.96)/1464
460(23.91)/846(43. 1832.12 74
I/II/IIT (32.43) (32.57) 60(23.91)/846(43.97)/61832.12) 0749
T stage, N (%) 1032(16.08)/3993(62.21)/1162 739(16.44)/2798(62.25)/786 293(15.23)/1195(62.11)/376 0.100
T1/T2/T3/T4 (18.10)/232(3.61) (17.49)/172(3.82) (19.54)/60(3.12) ’
N stage, N (%) 1882(29.32)/2613(40.71)/1924 1321(29.39)/1823(40.55)/1351 561(29.16)/790(41.06)/573 0931
NO/N1/N2 (29.97) (30.06) (29.78) ’
Differentiation, N (%), Low/moderate/poor/ 698(10.88)/3360(52.34)/2314 476(10.59)/2355(52.39)/1638 222(11.54)/1005(52.23)/676 0086
Undifferentiated (36.05)/47(0.73) (36.44)/26(0.58) (35.14)/21(1.09) ’
Max tumor size, 3.0(2.5-4.0] 3.0[2.4-4.0] 3.02.5-4.0] 0.730
median (IQR), cm S e S ’
Chemotherapy, yes vs no 4801(74.79) 3362(74.79) 1439(74.79) 0.999
RLNs, median (IQR), count 17[12-24] 17[12-24] 17[12-23] 0.409
MLNSs, median (IQR), count 2[0-4] 2[0-4] 2[0-4] 0.689
NLNs, median (IQR), count 14[9-21] 14[9-21] 14[9-20] 0.476
LNR, N (%),
4420(68.86)/1999(31.14 3086(68.65)/1409(31.35 1334(69.33)/590(30.67 0.590

<0.20/50.20 ( )/1999( ) ( )/1409( ) ( )/590( )
LODDS, N (%), 2411(37.56)/2826(44.03)/1182 1686(37.51)/1980(44.05)/829 725(37.68)/846(43.97)/353 0.99
I/11/11L (18.41) (18.44) (18.35) '
LONT, N (%),

(%) 3318(51.69)/3101(48.31) 2310(51.39)/2185(48.61) 1008(52.39)/916(47.61) 0.758

/1

Data are presented as n (%) or median (IQR).

RLNGs, Retrieval lymph nodes; MLNs, Metastatic lymph nodes; NLNs, Negative lymph nodes; LNR, The ratio of metastatic to retrieved nodes; LODDS, The log odds of lymph node ratio; LONT,

The log odds of negative lymph nodes/T stage.
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TABLE 2 Baseline demographics and characteristics of patients in China

cohort.

Variables

Age, years,
<40/40-60/60-80/>80

Male, N (%)

Race, N (%) White/Black/Others

All patients

n=670

37(5.52)/294(43.88)/332(49.55)/7
(1.05)

373(55.67)

AJCC stage, N (%)
I/11/1I1

T stage, N (%)
T1/T2/T3/T4

N stage, N (%)
NO/N1/N2

Differentiation, N (%), Low/moderate/
poor

Max tumor size,
median (IQR), cm

Chemotherapy, no vs yes
ELNs, median (IQR), count
MLNs, median (IQR), count

NLNs, median (IQR), count

353(52.69)/250(37.31)/67(0.10)

128(19.10)/415(61.94)/101(15.07)/
26(3.89)

458(68.36)/171(25.52)/41(6.12)

112(16.72)/317(47.31)/241(35.97)

3.0[2.5-4.0]

283(42.24)
11[10-15]
0[0-1]

11[9-14]

LNR, N (%),

612(91.34)/58(8.66
<0.20/>0.20 (91.34)/58(8.66)

LODDS, N (%),

N 464(69.25)/179(26.72)/27(4.03)

LONT, N (%),

I 416(62.09)/25437.91)

RLNS, Retrieval lymph nodes; MLNs, Metastatic lymph nodes; NLNs, Negative lymph nodes;
LNR, The ratio of metastatic to retrieved nodes; LODDS, The log odds of lymph node ratio;
LONT, The log odds of negative lymph nodes/T stage; OS, Overall survival.

into LNR1 (LNR < 0.20) and LNR2 (LNR > 0.20), LODDS was
classified into LODDSI1 (-2.16 < LODDS < -1.01), LODDS2 (-1.01 <
LODDS <-0.29), and LODDS3 (LODDS > -0.29), LONT was divided
into LONT1 (LONT < 0.58) and LONT2 (LONT > 0.58).

3.3 The identification of independent
prognostic factors

In univariate Cox regression analysis, the interaction variables
showed a statistically significant for age, AJCC staging, T stage,
maximum tumor size, N stage, tumor differentiation,
chemotherapy, MLNs, NLNs, LNR, LODDS, LONT (all p value <
0.05, Table 3). No statistically significant results were observed if
stratified for sex and race (all p value > 0.05, Table 3). To avoid
losing prognostic information and collinear contradiction, we
performed four times multivariate Cox regression analysis. The
results revealed four nodal staging systems could be deemed as
independent prognostic factors (p value < 0.001, Supplementary
Table 1). The KM curves depicted that all four nodal staging
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systems managed to significantly discriminate the OS of PHC
patients (Supplementary Figure 2).

3.4 Comparative prognostic performances
of the four nodal staging systems for OS
prediction

Comparisons of discriminability among four nodal staging
systems were performed in the all cohorts. In the training cohort,
LODDS has the highest C-index among all nodal staging systems,
which is 0.589 (95% CI 0.578-0.600) and has best predictive capability
than the N stage (C-index: 0.578, 95% CI 0.567-0.590, p = 0.005),
LNR (C-index: 0.569, 95% CI 0.559-0.579, p < 0.001), and LONT (C-
index: 0.559, 95% CI 0.549-0.569, p < 0.001). In the internal validation
cohort, LODDS also has the highest C-index among all nodal staging
systems, which is 0.590 (95% CI 0.573-0.607) and has best predictive
capability than the N stage (C-index: 0.567, 95% CI 0.549-0.584, p <
0.001), LNR (C-index: 0.555, 95% CI 0.540-0.570, p < 0.001), and
LONT (C-index: 0.573, 95% CI 0.558-0.589, p = 0.06). Similarly, in
the external validation cohort, the LODDS has the highest C-index,
which is 0.596 (95% CI 0.573-0.620), compare to the N stage (C-
index: 0.575, 95% CI 0.551-0.599, p = 0.011), LNR (C-index: 0.546,
95% CI 0.529-0.563, p < 0.001), and LONT (C-index: 0.504, 95% CI
0.480-0.527, p < 0.001). The detailed information is shown in Table 4,
Figures 2A-C. Next, we calculated the AIC values to verified the
optimal predictive performance. The results showed that the LODDS
has the lowest AIC value than others in all cohorts (Table 4). Then, the
time-dependent area under the curves (AUCs) of the nodal staging
systems for predicting OS within 60 months depict that LODDS has
the highest AUC compared to others (Figures 2D-F). All the results
indicated that LODDS has an excellent performance for lymph nodes
stratification of resectable PHC patients.

3.5 Comparative prognostic performances
of the four nodal staging systems based on
the number of RLNs

According to previous study and AJCC staging system, the
recommended number of RLNs for pathologic examination is 12
(21, 22). The results of C-index and AUC values indicated that
LODDS system has better predictive capability than others both in
patients with < 12 and > 12 RLNs for OS prediction (Supplementary
Table 2), revealing that it was not affected by the number of RLNs.

3.6 Risk stratification ability of LODDS
among clinicopathological characteristics

We subsequently revealed the risk stratification ability using the
LODDS system among clinicopathological characteristics,
including age, gender, tumor differentiation, AJCC staging, T
stage, and chemotherapy, and found that the LODDS system has
a good ability to distinguish the prognosis of PHC patients in
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TABLE 3 Univariable Cox regression analysis for overall survival of TABLE 3 Continued
patients with PHC in training cohort.

Univariable
Univariable Variables P value
Variables P value HR (95%Cl)
HR (95%Cl)
LODDS
Age, years
sl 0.462 1.588(1.458-1.729) <0.001
<40 reference
I vs I 0.818 2.267(2.045-2.513) <0.001
40-60 -0.079 0.924(0.624-1.368) 0.693
LONT
60-80 0.060 1.062(0.721-1.563) 0.762
Mvs 1 -0.396 0.673(0.625-0.725) <0.001
280 0417 1.518(1.018-2.263) 0.040
P values < 0.05 indicate a significant difference between the two groups are given in bold.
Sex MLNS, Metastatic lymph nodes; NLNs, Negative lymph nodes; LNR, The ratio of metastatic to
retrieved nodes; LODDS, The log odds of lymph node ratio; LONT, The log odds of negative
Male vs Female 0.027 1.028(0.955-1.106) 0.466 lymph nodes/T stage; PHC, Pancreatic head cancer.
Race gender, tumor differentiation, AJCC staging, and T stage subgroups
Black vs White -0.018 0.982(0.865-1.116) 0.783 (Supplementary Figure 3).
Others vs White 0.053 1.054(0.921-1.207) 0.446
AJCC stage 3.7 Development, interpretation and
st 0.469 1598(1446-1767) |  <0.001 validation of the predictive model for OS
based on LODDS system
I vs T 0.779 2.179(1.965-2.416) <0.001
T stage Based on the results of univariate Cox analysis, the variables
T2 vs T1 0423 1.526(1.368-1.704) <0.001 (Age, T stage, chemotherapy, tumor differentiation, and LODDS)
were subjected to our machine learning-based integrative procedure
T3 vs T1 0.698 2.011(1.765-2.291) <0.001 . .
to develop a consensus model. We fitted 101 machine learning
T4 vs T1 0.655 1.926(1.571-2.361) <0.001 combinations via the LOOCV framework and further calculated the
MErdimum e 1.009(1.007- C-index of each combination across the training, internal validation
size, cm 0.008 1.010) <0.001 and external validation cohorts.
N s Notably, the optimal model was a combination of stepwise Cox
(direction = both) and survival-SVM with the highest average C-
NI vs NO 0.405 1.499(1.364-1.647) <0.001 index (0.659), and this combination model had a related leading C-
N2 vs NO 0.724 2.062(1.869-2.274) <0.001 index both in internal validation and the external validation cohorts
Tumor differentiation (Figure 3A). Then, a predictive model for OS was developed and
validated via multivariable Cox analysis (Figures 3B, C). Next, the
Moderate vs Low 0.337 1.400(1.219-1.608) <0.001 calibration curves of all cohorts for survival probability depicted
Poor vs Low 0717 2.049(1.780-2.359) <0.001 that the model prediction had good consistency with the actual
Undifferentiated vs observation (Figures 3D-L).
Low 0.946 2.576(1.631-4.068) <0.001 For interpretation of the predictive model, the C-index, NRI,
. and IDI of the predictive model had better predictive capability than
Radiotherapy i .
the AJCC staging system in all cohorts (Table 5), and the AUCs
Yes vs no -0.343 0.709(0.655-0.768) <0.001 were significantly higher in all cohorts compared to those of the
Chemotherapy AJCC staging system (Figures 4A-C). All the results indicate that
the predictive model had favorable discrimination for OS in PHC.
Y -0.653 0.520(0.480-0.564 0.001
e no ( ) - Finally, DCA analysis demonstrated that the clinical utility of the
MLNs, median 0.066 1.068(1.059- <0.001 present model was better, compared with the AJCC staging system
(IQR), count 1.078) in all cohorts (Figures 4D-F).
NLNs, median 0.984(0.980-
(IGR), count -0.016 0.988) <0.001
LNR 3.8 Online access of the predictive model
<0.20/>0.20 0.587 1.799(1.665-1.943) <0.001

To facilitate the application of our machine learning-based

(Continued) ~ nomogram more conveniently, we developed and established a
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TABLE 4 The discriminatory performance of nodal staging systems in predicting overall survival of patients with PHC.

Training cohort Internal validation cohort External cohort
Variables
C-index (95% Cl) AIC C-index (95% Cl) AIC C-index (95% Cl) AIC
N stage 0.578(0.567-0.590) 42739 0.567(0.549-0.584) 15755 0.575(0.551-0.599) 5423.9
LNR 0.569 (0.559-0.579) 42742 0.555(0.540-0.570) 15764 0.546(0.529-0.563) 5445.0
LODDS 0.589(0.578-0.600) 42699 0.590(0.573-0.607) 15706 0.596(0.573-0.620) 5420.4
LONT 0.559(0.549-0.569) 42847 0.573(0.558-0.589) 15755 0.504(0.480-0.527) 54727

LNR, The ratio of metastatic to retrieved nodes; LODDS, The log odds of lymph node ratio; LONT, The log odds of negative lymph nodes/T stage; AIC, Akaike information criterion; PHC,
Pancreatic head cancer.

website calculator (https://vs-prediction.shinyapps.io/OS-PHC- 4 Discussion

prediction-tool/, Figure 5). Clinical physicians can calculate the

corresponding survival probabilities by entering the demographics The accurate evaluation of lymph nodes metastases is pivotal
and characteristics of patients with PHC. for determination of appropriate and effective treatment. Previous
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(A) Of 101 kinds of prediction models via LOOCV framework and further calculated the C-index of each model across all validation datasets. (B) The
nomogram predicting OS of patients with PHC. (C) The coefficient of each variable included in predictive model. (D-L) Calibration curves showing

the probability of 12-, 36-, and 60-month OS of the model prediction and

the observed survival. (D—F) Training cohorts. (G-I) Internal validation

cohort. (J—-L) The China cohort. LODDS, The log odds of lymph node ratio; OS, Overall survival; PHC, Pancreatic head cancer.

studies have proposed various nodal staging systems, but their
predictive value in forecasting the overall survival (OS) of patients
with PHC remains to be determined (23). This study investigated
the current nodal staging systems N stage, LNR, LODDS and
LONT, explored their optimal threshold, and compared their
prognostic performance using the large-sample, multicenter data
from the SEER and the China databases. Differences in prognostic
performance of the nodal staging systems were also investigated in
each subgroup according to clinicopathological characteristics. Our
results proved that the LODDS is the relatively best lymph node
metastasis classification system compared to others. To our
knowledge, this is the first study comparing the current four
nodal staging systems in PHC patients, and further developing a
novel predictive model based on LODDS and clinicopathological
factors to predict the OS of resectable PHC patients.

The oncologic outcomes of PHC are very important in guiding
the selection of treatment methods, and among these, lymph node
metastasis is significantly prognostic factor for predicting survival of
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patients (24). Thus, effectively distinguishing the extent of lymph
nodal metastasis is crucial. The most widely accepted for risk
stratification is the N staging system. The N staging system
stratified patients according to the number of MLN. In the light
of AJCC staging system, the patients without MLN were referred as
NO stage, with 1-3 MLNs were referred as N1 stage, and >4 MLNs
were referred as N2 stage (24). It has been applied to evaluate the
extent of nodal metastasis of various malignant tumors. However,
assessing prognosis solely based on the N staging system or MLN
may be biased due to incomplete lymph node dissection or
inadequate histopathological examination (25, 26). In recent
years, a variety of lymph node staging systems have gradually
emerged. LNR, an indicator reflecting the status of lymph node
burden, holds significant importance in predicting prognosis of
several tumors and less susceptibility to the influence of the number
of RLNs (27, 28). Previous studies suggest that LNR is a promising
biomarker, similarly, our results also verified that LNR may provide
good prognostic stratification (12). The LODDS system has the
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TABLE 5 The NRIs, IDIs, and C-index of the predictive model and AJCC gt staging system in overall survival prediction.

Validation cohort External cohort

Training cohort

Estimated 95%CI P Value Estimated 95%Cl P Value Estimated 95%Cl P Value

NRI (vs AJCC 8% staging system)

For 12-month OS 0.262 0.225-0.360 0.287 0.209-0.362 0223 0.138-0.352
For 36-month OS 0.054 0.009-0.107 0.106 0.046-0.255 0277 0.202-0.412
For 60-month OS 0.108 0.069-0.197 0.141 0.085-0.280 0398 0.153-0.559
IDI (vs AJCC 8" staging system)
For 12-month OS 0.056 <0.001 0.061 <0.001 0.071 <0.001
For 36-month OS 0.064 <0.001 0.076 <0.001 0152 <0.001
For 60-month OS 0.052 <0.001 0.062 <0.001 0.129 <0.001
C-index
Predict model 0.675 0.664-0.686 0.675 0.658-0.693 0.664 0.638-0.691
AJCC 8™ staging system 0.581 0.570-0.592 0.566 0.549-0.584 0518 0.491-0.544
Change 0.094 0.082-0.105 <0.001 0.109 0.088-0.015  <0.001 0.147 0.109-0176  <0.001

P values < 0.05 indicate a significant difference between the two groups are given in bold.

NRI, Net reclassification improvement; IDI, Integrated discrimination improvement; OS, overall survival; CI, Confidence Interval.

advantage of good discrimination in patients with fewer number of
RLNs and those without lymph node metastasis (29). The LODDS
system is proposed to overcome the disadvantage of LNR and used
for prognosis predicting and clinical stratification in tumour (30). It
offers a more nuanced assessment of lymph node involvement than
traditional staging methods. In addition, a new predictive indicator
for assessing the lymph node status, known as LONT, has been
devised for patient stratification. LONT can reflect both the stage of
disease and the extent of lymph node dissection. In previous studies,
LONT has been used for numerous tumors prognosis prediction
with good accuracy (31, 32). Our study showed similar findings in
prognostic performance of these nodal staging systems. They have
all been proven to be independent prognostic factors for OS
prediction of tumors including PHC.

Here, we comprehensively calculated and analyzed the LNR,
LODDS, and LONT values of each participants using multicenter
registry data from SEER and the China databases, and then obtained
different subgroups based their cut-off values. The results of our
analyses, including the C-index, AICs, AUCs within 60 months,
showed that LODDS had best accuracy for predicting survival than
other nodal staging systems in all cohorts. Riediger et al. study found
LNR and LODDS are superior to the classical nodal status in
predicting prognosis in resectable PHC, while LODDS has not
shown advantage over LNR in their series of 409 patients (33). In
our study, we demonstrated the LODDS could be considered as
optimal indicator for nodal risk stratification and OS prediction of
PHC patients. This result can provide additional evidence to prove
the predictive performance of LODDS in patients with resectable
PHC based on a larger-sample, multicenter cohort.

The number of RLNs for pathologic evaluation plays a pivotal
role in assessment of lymph node status. According to previous
studies, the recommended number of RLNs for pathologic

Frontiers in Immunology

evaluation is 12 (22). However, the detection capability for lymph
nodes varies due to the different surgical approaches and strengths
of medical institutions, there is an urgent need for a node staging
system that can evaluate patients without considering the number
of RLNs. Previous studies have proposed the LNR or LODDS may
be superior to N staging system in patients with fewer RLNs (29,
34). This study showed similar findings. The LODDS system yielded
an equivalent C-index and AUCs in patients with < 12 and > 12
RLNs, and higher C-index and AUCs than other nodal staging
systems in patients with < 12 and > 12 RLNs. Therefore, LODDS
could be considered as a more adequate nodal staging system for
PHC because it is almost unaffected by the number of RLNs. The
LODDS can be promising indicator of assessment of lymph nodal
status, and the predictive model based on LODDS can be
reproduced using a simple data collection, making it attractive for
clinical translation and implementation in medical institutions at
different levels.

To construct effective model based on LODDS for clinical
application, the machine learning-based integrative procedure was
implemented in the study. In the current times, machine learning
procedures have gained widespread application and are extensively
used in the construction of prognostic models, especially in various
cancers (18, 19). In pancreatic cancer. Ren et al. constructed a novel 4
pancreatic cancer-related protein signatures model based on machine
learning (35). Lee et al. used the machine learning procedures to
identify and develop the microbiome markers-based model for
diagnosis of pancreatic cancer (36). Additionally, Zhu et al.
developed an interpretable machine learning model for predicting
early liver metastasis after pancreatic cancer surgery (37). In the
present study, we fitted 101 kinds of prediction models via the
LOOCV framework in the training cohort to optimize variable
selection with the highest average C-index. And further validations
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in the internal and external validation cohorts. The advantage of the
comprehensive procedures is that it is based on various machine
learning algorithms and their combinations to fit a model with
consistent performance on the prognosis of PHC. The strategy can
further reduce the dimensionality of variables, making the model
more simplified and translational (38). Furthermore, AUCs, C-index,
NRIs, and IDIs analysis suggested that the predictive model
maintained the favorable discrimination and stable performance for
OS prediction in all cohorts, which indicated great potential for the
clinical application of predictive model. Previous study also
developed many predictive model or risk score for OS prediction of
PHC patients. Among these models, a limited number have been
successfully integrated into clinical practice, and an even smaller
subset has undergone rigorous external validation (20, 39, 40). Shi
et al. established a nomogram to predict the prognosis of pancreatic
cancer patients underlying surgery but did not conduct external
validation (41). In addition, Peng et al. developed a nomogram to
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assess the survival period of postoperative pancreatic cancer patients
and implemented a single center validation (42). In our study, the
prognostic and machine learning analysis demonstrated that our
predictive model was a commendable indicator of OS in PHC and
had a better extrapolation possibility using multicenter registry data.
The calibration curves for survival probability depicted that the
model prediction had good consistency with the actual observation,
and DCA analysis demonstrated that the good clinical utility of the
present model. Finally, a convenient website calculator (https://vs-
prediction.shinyapps.io/OS-PHC-prediction-tool/) to facilitate the
application of our machine learning nomogram. Clinical
physicians can calculate the corresponding survival probabilities
by entering the clinical data embedded within Electronic Health
Record (EHR) systems or accessed via hospital intranet portals. This
facilitates its use in risk stratification, decision-making, and patient
counseling, thereby seamlessly integrating data-driven
prognostication into routine clinical practice.
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The innovation of this study can be highlighted in two main
aspects. Firstly, in the present study, the nodal staging system
LODDS is the optimal prognostic factor with good performance
comparable to the others. The LODDS was applicable regardless of
the numbers of RLN. Second, the machine-learning model could
effectively predict OS for resectable PHC patients.

Several limitations should be acknowledged in the present study.
Firstly, all of the samples from this study were retrospective, and
future availability of LODDS and validation of predictive model
should be performed in prospective cohort. Secondly, the cut-offs
were derived from the SEER cohort, their prognostic value was limited
in the independent external cohort. However, the consistent
performance across distinct populations significantly mitigates the
concern of overfitting and supports the generalizability of these
thresholds. Thirdly, difficulty in immediate calculation of LODDS
restricted clinical application of the LODDS system in real-world
practice. A simple calculator is worth developing in future study. Next,
different demographic characteristics in SEER and Chinese cohorts
may result in limited outcomes. However, the LODDS and predictive
model maintained predictive accuracy across two geographically and
clinically distinct populations, suggesting good generalizability.
Finally, we lacked some routinely clinicopathological characteristics
such as serological indicators, RO resection rate and so forth. The
absence of this information may have affected the factors needed in
our model. Further verification and more clinicopathological
characteristics collection are needed to optimize its application.

5 Conclusion

In conclusion, nodal staging system LODDS is an optimal
prognostic indicator that can reflect the lymph nodal status with
good performance. It could effectively predict OS for resectable
PHC patients without considering the numbers of RLN. The
machine learning model showed good predictive ability and could
assist clinicians in formulating individualized treatment strategies.
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