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Jing-Mian Jiao †, Chen-Guang Liu †, Dan Zang † and Jun Chen*

Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer,

accounting for approximately 85% of all cases, and is associated with a poor

prognosis. Despite significant advancements in treatment modalities, therapeutic

efficacy remains suboptimal, underscoring the urgent need for novel strategies.

In recent years, increasing attention has been directed toward the pivotal role of

gut microbiota-host interactions in the treatment of NSCLC. This review

systematically examines the influence of current NSCLC therapies on gut

microbiota and metabolism, explores the relationship between the

microbiome and therapeutic response, and highlights the critical functions of

probiotics, microbial metabolites, fecal microbiota transplantation (FMT), and

dietary interventions in NSCLC management. By elucidating the mechanisms

through which gut microbiota and their metabolites modulate treatment

efficacy, we investigate the potential of exogenous interventions targeting the

gut ecosystem to enhance therapeutic outcomes and mitigate adverse effects.

Modulating the intestinal microbiota represents a promising clinical avenue and

offers a new frontier for the development of future NSCLC treatment strategies.
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1 Introduction

The human microbiome comprises a diverse and dynamic community of

microorganisms—including bacteria, fungi, viruses—their genetic material, and

metabolic byproducts. The resident microbiota is an essential component of host health

and homeostasis (1). Most microbiome research to date has focused on bacterial

populations, which constitute a major proportion of these resident microbes (2). In the

gut, Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria dominate the bacterial

composition (3–5). The gut microbiota plays a pivotal role in regulating host immunity and

metabolism through the production of numerous metabolites that function as signaling

molecules and metabolic substrates, linking dysbiosis with inflammation and tumorigenesis

(6–8).
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The cross-link between gut microbiota and lung cancer is a

complex multifactorial relationship (5). Studies have shown that in

patients with lung cancer, the abundance of Bacteroidetes,

Fusobacteria, Cyanobacteria, and Spirochaetes increases in both

pulmonary and intestinal microbiomes, while Firmicutes are

significantly reduced (4, 9). Research on both gut and respiratory

tract microbiota has revealed notable dysregulation in NSCLC,

which is further associated with distant metastasis (DM) (10).

The pathogenic contribution of the gut microbiome and its

specific metabolites to NSCLC lies in their modulation of chronic

inflammation and immune dysregulation (11). A study combining

serum metabolomics and fecal microbiome profiling identified

potential biomarkers in patients with early-stage NSCLC. The

metabolomic analysis revealed elevated levels of sphingolipids

(e.g. D-erythrosphingosine 1-phosphate, palmitoylsphingomyelin),

fatty acyls (e.g., Avocadyne 1-acetate, 12(S)-HETE, 20-

carboxyleukotriene B4, thromboxane B3, 6-keto-prostaglandin

F1a, decanoic acid, tetracosanoic acid), and glycerophospholipids

in these patients (12).

Substantial progress has been made in NSCLC treatment in

recent years, particularly in early screening, minimally invasive

procedures, radiotherapy, targeted therapies, and immunotherapy.

These advances have significantly improved patient survival rates

(13). However, several challenges persist, including the emergence of

drug resistance, treatment-associated toxicity, high costs,

underrepresentation of minority groups in clinical trials, and

limited access to diagnostic and therapeutic resources. These issues

highlight the urgent need for novel therapeutic strategies to expand

treatment options (14). Manipulating the gut microbiota has emerged

as a promising strategy to enhance NSCLC treatment efficacy.

Microbiome modulation may augment immunotherapeutic

responses, mitigate adverse treatment effects such as microbial

dysbiosis, and serve as a predictive biomarker for personalized

therapy and disease prevention (15).

This review provides a comprehensive overview of how various

NSCLC treatment modalities influence the gut microbiota and its

metabolic profile. It further emphasizes the mechanisms and

potential of microbiota-targeted interventions in improving

clinical outcomes. Understanding the intricate relationship

between gut flora, its metabolites, and NSCLC treatment holds

substantial theoretical and clinical relevance, offering new insights

into disease pathogenesis and therapeutic innovation.
2 Alterations in gut microbiota and
metabolism induced by standard
NSCLC treatments

Intestinal microbiota not only directly participates in the

regulation of host tumor immunity but also indirectly influences

tumor progression and therapeutic outcomes through the

production of metabolic products. Within the gut microbiome,

metabolites such as short-chain fatty acids disrupt the intestinal

barrier, thereby affecting both innate and adaptive immunity, which

triggers and exacerbates systemic immune dysregulation. Chronic
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inflammation, immune imbalance, and the activation of cancer-

associated signaling pathways by specific bacterial strains are

considered key mechanisms underlying the ecological imbalance

and the immunosuppressive microenvironment (16). In patients

with non-small cell lung cancer (NSCLC), the evolution and

composition of the gut microbiota are closely linked to the

efficacy and adverse effects of treatments such as chemotherapy,

radiotherapy, immunotherapy, and targeted therapy, with microbial

changes playing a crucial role in predicting both therapeutic

outcomes and treatment-related side effects (17, 18).
2.1 Chemotherapy

Chemotherapeutic agents are known to alter the composition of

the gut microbiota, and several studies have confirmed significant

shifts in specific microbial populations during NSCLC

chemotherapy (19–23). Platinum-based drugs exert antitumor

effects by inhibiting DNA replication and targeting cellular

membranes and mitochondria, forming intra-strand platinum-

DNA adducts that lead to double-strand breaks (DSBs) (24).

These agents may exert their tumor-suppressive effects through

microbiota-dependent pathways, with their efficacy partly relying

on the intra-tumoral generation of reactive oxygen species (ROS),

which decreases in response to reduced DNA damage. Particularly,

an increase in Bifidobacterium species has been observed during

platinum-based treatment of NSCLC (Table 1, Figure 1) (25).

Pemetrexed, a multitargeted antifolate, inhibits several folate

pathway enzymes—thymidylate synthase, dihydrofolate reductase,

and glycinamide ribonucleotide formyltransferase—which are

involved in purine and pyrimidine nucleotide synthesis for DNA

and RNA production (26–28). In mouse models, pemetrexed

treatment altered the gut microbiota, significantly increasing the

relative abundance of Enterococcaceae, Lactobacillaceae, and

Streptococcaceae (19). Paclitaxel was found to decrease the overall

abundance of gut microbiota in lung cancer-bearing mice, with a

significant disruption in the Bacteroidetes/Firmicutes ratio (p <

0.01) (29).
2.2 Radiotherapy

For patients with locally advanced NSCLC, concurrent

chemoradiotherapy (CCRT) is a standard treatment. Recent

studies have shown that alpha diversity of gut microbiota is

significantly associated with therapeutic response, indicating that

dysbiosis is a key environmental factor affecting prognosis. One

study explored dynamic changes in gut microbiota and their

predictive value for progression-free survival (PFS) following

CCRT in NSCLC patients. It was observed that the abundance of

Bacteroidetes and Proteobacteria increased, while Firmicutes

decreased after treatment. Patients with longer PFS demonstrated

significantly greater diversity in fungi, archaea, and viruses

compared to those with shorter PFS. Key metabolic pathways

affected included fatty acid metabolism, arginine biosynthesis,
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lipopolysaccharide biosynthesis, and ascorbate and aldarate

metabolism (Table 1, Figure 1) (30, 31).
2.3 Immunotherapy with immune
checkpoint inhibitors

2.3.1 Immunotherapy
Programmed death ligand 1 (PD-L1) signaling plays a role in

maintaining gut mucosal tolerance. However, the direct link between

host microbiota and tumor PD-L1 expression remains unclear (32).

Treatment of NSCLC with immune checkpoint inhibitors (ICIs),

including anti–PD-1/PD-L1 and anti–CTLA-4 agents, induces

significant shifts in gut microbiota and metabolic profiles.

Metagenomic sequencing has revealed correlations between

microbial characteristics and clinical features such as PFS and PD-

L1 expression levels (33). One study characterized the microbiome

from bronchoscopic tumor biopsies of NSCLC patients undergoing

ICIs therapy using 16S rRNA sequencing, revealing high levels of

Firmicutes, Bacteroidetes, and Proteobacteria (29) The phase II

CAVE-LUNG clinical trial examined the effects of cetuximab plus

avelumab in chemotherapy-refractory NSCLC patients and identified

increased expression of AgathobacterM104/1 and Blautia SR1/5 after

treatment (P=0.016 and P=0.0008, respectively) (Table 1, Figure 1)

(34). One study analyzing gut microbiota in NSCLC patients

receiving atezolizumab-based immunotherapy found that microbial

composition and diversity changed over the course of treatment,

aiding the development of predictive biomarkers and microbiota-

based biotherapeutics. Genera such as Clostridium, Lachnospiraceae,

and Ruminococcaceae have been identified as potential biomarkers of

therapeutic response (35). The therapeutic efficacy of ICIs is

markedly enhanced in patients demonstrating durable clinical
Frontiers in Immunology 03
benefit as well as in those with tumors expressing PD-L1, with

numerous studies underscoring this correlation (36).

2.3.2 irAEs
The complex interplay among the tumor microenvironment,

gut microbiota, host factors, and responses to immune checkpoint

inhibitors (ICIs), as well as the development of ICI-related immune-

related adverse events (irAEs), remains largely unknown. Emerging

evidence suggests that the gut microbiota may play a critical role in

modulating tumor responses to ICIs (37). ICIs exert their

therapeutic effect by activating T cells, a process frequently

accompanied by autoimmune phenomena collectively termed

“immune-related adverse events (irAEs).” These irAEs exhibit

pleiotropic manifestations that can affect virtually any organ

system, including the skin, colon, endocrine glands, joints, heart,

and lungs. Importantly, the gut microbiota has been proposed as a

potential biomarker for predicting irAEs. A recent study integrating

gut microbiota metabolites, molecular modeling, and species-level

variation identified signatures that shaped long-term therapeutic

efficacy and adverse outcomes in lung cancer survivors. Patients

who developed irAEs exhibited reduced abundance of Roseburia

faecis, Roseburia intestinalis, Bacteroides stercoris, Lactobacillus

mucosae, and Akkermansia muciniphila (38). These findings

suggest that the gut microbiome may serve both as a risk factor

and a protective factor for irAEs. Notably, checkpoint inhibitor-

induced colitis remains the most frequently reported irAE (39).

The gut microbiota has also been demonstrated to play a pivotal

role in shaping the tumor immune microenvironment, thereby

influencing the efficacy of ICIs (40). Alterations in gut microbial

composition and function are associated with an increased risk of

irAEs, and predictive models of such risks have been developed. For

example, advanced machine learning approaches have been
frontiersin.or
TABLE 1 Alterations in gut microbiota and metabolism induced by NSCLC treatments.

Treatments Interventions Mechanism Gut
bacteria/
metabolites

Outcome References

Chemotherapy Platinum-based drugs relying on the intra-tumoral generation of reactive oxygen
species(ROS)decreases in response to reduced DNA damage

Bifidobacterium
species

increasing (22)

Radiotherapy CCRT Regulation of dendritic cell antigen presentation and radiation-
induced anti-tumor immune response

Bacteroidetes and
Proteobacteria
Firmicutes

increasing
decreasing

(30)

Immunotherapy cetuximab plus
avelumab

Butyrate, through the activation of innate and adaptive
immunity, is a key modulator of host immune reactivity under
pathological conditions

Agathobacter
M104/1 and
Blautia SR1/5

increasing (34)

Targeted
Therapy

EGFR-TKIs Reduction in the number of goblet cells leads to impaired
mucus secretion and disruption of the mucosal barrier

Proteobacteria
Firmicutes and
Bacteroidetes

decreasing
increasing

(46)

Adjunctive
Treatments

Antibiotics impaired T-cell immunity Bacteroidetes decreasing (56)

Analgesic Drugs activation of the mu-opioid receptor (MOR) by opioid ligands
has been found to disrupt tight junction protein (ZO-1)
coordination through activation of toll-like receptors (TLR) 2
and 4, thereby affecting intestinal epithelial integrity

Bacteroidetes decreasing (63)
g
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employed to identify gut microbial signatures capable of predicting

irAE occurrence (39). A random forest classifier constructed from

14 microbial features exhibited strong discriminatory power

between irAE and non-irAE groups. Functional analyses revealed

that the gut microbiota of non-irAE patients was characterized by

increased menaquinone biosynthesis, accompanied by upregulation

of the rate-limiting enzymes menH and menC. Targeted

metabolomic profiling further confirmed significantly higher

serum menaquinone levels in non-irAE patients compared to

those who developed irAEs (41). Collectively, these findings

highlight the dual role of gut microbiota in shaping both

therapeutic efficacy and toxicity of ICIs. Future research
Frontiers in Immunology 04
integrating metagenomic, metabolomic, and functional analyses

will be critical to unravel the mechanistic underpinnings of these

associations and to enable the development of microbiome-based

biomarkers and therapeutic strategies for optimizing NSCLC

treatment outcomes.
2.4 Targeted therapy

Targeted therapy using tyrosine kinase inhibitors (TKIs) has

become a cornerstone in NSCLC treatment alongside chemo- and

radiotherapy (42). Studies examining the gastrointestinal
FIGURE 1

Impact of NSCLC treatments and adjunctive therapies on gut microbiota and metabolism. Common treatment modalities for non-small cell lung
cancer (NSCLC), exert direct or indirect effects on the gut microbiota. These alterations highlight the dynamic and reciprocal relationship between
NSCLC therapies and gut microbiota composition.
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microbiome in patients with Epidermal Growth Factor Receptor

(EGFR)-wild-type versus EGFR-mutant NSCLC revealed a

predominance of Proteobacteria, implicating its role in disease

mechanisms (43). In EGFR-mutant patients treated with EGFR-

TKIs, lower levels of Proteobacteria and higher levels of

Bacteroidetes and Firmicutes were observed (44). Despite the

efficacy of second-generation TKIs such as afatinib, clinical trials

have reported grade ≥3 diarrhea in over 25% of patients, with about

15% discontinuing treatment due to severe diarrhea, compromising

therapeutic outcomes (45). Mouse models have shown significant

increases in Peptostreptococcus, Staphylococcus, Escherichia-

Shigella, and Akkermansia following afatinib treatment (Table 1,

Figure 1) (46). A study investigating the gut microbiota profile in

fecal samples from a lung-specific conditional EGFR mutant

transgenic mouse model of lung tumorigenesis demonstrated that

Lactobacillus, a genus of bacteria known for producing short-chain

fatty acids (SCFAs), may serve as a predictive factor for tumor

initiation and progression in EGFR mutation-induced lung

adenocarcinoma models (47).
3 Effects of adjunctive treatments on
gut microbiota and metabolic
alterations

3.1 Antibiotics

Antibiotics have a significant impact on gut microbiome health,

often leading to dysbiosis or the proliferation of harmful flora that

can undermine the effectiveness of therapies such as

immunotherapy for NSCLC. Antibiotic use has been associated

with poor responses to combination therapies, including

immunotherapy (48–54). Analysis of bacterial phyla has shown

that antibiotic treatment for up to 4 weeks prior to immunotherapy

increases the abundance of Bacteroidetes. Systemic use of antibiotics

has been linked to an increased Bacteroidetes/Firmicutes ratio,

correlating with poorer immunotherapy outcomes (55). Broad-

spectrum antibiotic-associated gut microbiome dysbiosis,

occurring in patients treated with long-term antibiotics, leads to

impaired T-cell immunity (Table 1, Figure 1) (56). A study

sequencing 16S ribosomal DNA (rDNA) from 69 fecal samples of

advanced NSCLC patients prior to immune checkpoint blockade

(ICB) therapy revealed that antibiotic use was significantly

associated with a decrease in gut microbiota diversity (57). An

analysis of bacterial diversity and differential abundance of fecal

samples from NSCLC patients treated with anti-PD-1/PD-L1

antibodies showed that feces from patients not treated with

antibiotics were enriched in Clostridium perfringens, especially

within the Rumatococcaceae, UCG13, Clostridium spp., and

Agathrobacterium spp. families. In contrast, feces from patients

who received antibiotics were enriched in Hungatella (48). Plasma

citrulline, a marker of intestinal barrier function, decreases early in

NSCLC patients treated with nab-paclitaxel following antibiotic use,

affecting citrulline metabolism and, consequently, intestinal

microbiome metabolism (58). Vancomycin preferentially targets
Frontiers in Immunology 05
Gram-positive bacteria, including butyrate-producing species,

reducing short-chain fatty acid (SCFA) concentrations in fecal

and tissue samples. Vancomycin also eliminates two major

families of SCFA-producing Clostridia: Ruminococcaceae and

Eubacteriaceae (59). However, further studies are required to

determine whether antibiotic use directly alters intestinal flora

and metabolism, and to explore the mechanisms by which

antibiotic use may reduce the efficacy of NSCLC treatments by

modulating intestinal flora and metabolism.
3.2 Analgesic drugs

The gut microbiome plays an important role in modulating

visceral pain, and recent evidence suggests that it may also be

involved in various types of chronic pain, such as inflammatory

pain, headaches, neuropathic pain, and opioid tolerance (60).

Morphine and other opioids disrupt the gut barrier, alter gut flora

and metabolism, and impair function by inhibiting mucus and

bicarbonate secretion, disrupting muscle coordination, and

increasing the risk of bacterial translocation (61). Long-term

morphine use has been shown to significantly alter the gut

microbiome, promoting the growth of Gram-positive pathogens

while reducing biliary isolates (62). Additionally, activation of the

mu-opioid receptor (MOR) by opioid ligands has been found to

disrupt tight junction protein (ZO-1) coordination through

activation of toll-like receptors (TLR) 2 and 4, thereby affecting

intestinal epithelial integrity (Table 1, Figure 1) (63). Therefore, the

rational use of analgesic drugs is also critical in the treatment of

NSCLC, and it has been shown that analgesic drugs alter the gut

microbiota, which in turn is detrimental to the treatment of NSCLC.
3.3 Traditional Chinese medicine as
adjunctive treatment

The fundamental theory of Traditional Chinese Medicine

(TCM) for treating NSCLC focuses on restoring balance through

the principles of ‘strengthening the body’ and ‘eliminating evils’

when the body’s immunity is weak, and the tumor’s growth is overly

strong. “Strengthening the body” refers to enhancing the body’s

anti-cancer immunity, while “eliminating evil” directly inhibits the

growth, proliferation, invasion, and migration of tumor cells. The

clinical manifestations of NSCLC are often characterized by lung qi

and lung yin deficiency. TCM’s core therapeutic paradigm for lung

cancer revolves around the concepts of ‘lung qi deficiency’ and ‘qi-

yin deficiency’, with an emphasis on “supporting the positive and

curtailing the negative” (4, 64). It has been investigated that

combination therapy with monoclonal antibodies remodeled the

composition of the gut microbiota and increased the number of

SCFAs-producing bacteria Muribaculum to sensitize the antitumor

effects of anti-PD-1 therapy and restore the microbial composition

of fecal samples from those who did not respond to anti-PD-1

therapy (65). Polysaccharides derived from Spirulina have been

shown to increase the abundance of Lactobacillus, Allobaculum,
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Alloprevotella, and Olsenella, while reducing Bacteroides and

Acinetobacter levels. These effects may be linked to the inhibition

of lung cancer in mice (66). Fuzi-Li zhong pill (FLP) is a well-

validated TCM formula that has long been used in China for

gastrointestinal disease and adjunctive therapy for depression

(67). Lateralis Radix Praeparata (Fuzi), a traditional Chinese herb,

is known for its relatively low toxicity and has been found to

improve gut dysbiosis in NSCLC, decreasing the abundance of

Proteobacteria while increasing that of Firmicutes (68, 69). Si junzi

Decoction (SJZD) is a traditional Chinese medicine formula widely

used in the treatment of gastrointestinal disorders. Despite its

proven effectiveness, the precise mechanisms by which SJZD

operates remain incompletely understood (70). A study evaluating

the efficacy of SJZD on quality of life, hematological parameters,

and modulation of gut flora in post-surgical NSCLC patients

demonstrated that SJZD had a favorable effect on increasing

microbial abundance and diversity, promoting probiotic

microorganisms, and modulating microbial functions (71).
4 Beneficial intervention strategies for
improving NSCLC treatment
outcomes

4.1 Probiotic supplementation

Probiotics have previously been shown to alter gut microbiota

composition, thereby influencing cancer treatment outcomes. A

study on the anticancer potential of probiotics suggests that gut

probiotics exert tumor-suppressive effects through the gut-lung axis

microecological regulation (72). Probiotics have been positively

associated with overall survival (OS) and progression-free survival

(PFS) in NSCLC patients treated with ICIs (73). Further research

has shown that probiotics did not affect PFS but identified two

dynamic types of gut flora during immunotherapy: one type

exhibited the lowest relative abundance at the response time

point, while the other showed the highest abundance at the

response time point (74). Specific changes in intestinal flora, such

as those induced by Clostridium butyricum, have been found to

influence clinical outcomes in non-squamous NSCLC (NS-NSCLC)

patients receiving bevacizumab combined with platinum

chemotherapy, significantly reducing adverse events in patients

(21). Clostridium butyricum MIYAIRI 588 (CBM588) has been

shown to potentiate the efficacy of PD-1 blockade in NSCLC by

modulating gut microbiota diversity and immune responses.

CBM588 supplementation enhanced IL-10 secretion by lamina

propria monocytes, improved intestinal homeostasis, and

facilitated CD8+ T-cell activation, thereby helping to overcome

resistance to immunotherapy (Table 2, Figure 2) (75, 76).

Live biotherapeutic products (LBPs), as defined by the U.S.

Food and Drug Administration (FDA), are biological agents

intended for disease prevention, treatment, or cure (77). Recently,

LBPs designed to modulate the gut microbiota, such as

Bifidobacterium lactis and Lactobacillus acidophilus, have shown
Frontiers in Immunology 06
potential therapeutic benefits, including in colorectal cancer

[NCT03072641]. Of particular relevance to NSCLC, CJRB-101—

an LBP containing Catenibacterium mitsuokai—has shown

antitumor activity in humanized NSCLC mouse models when

combined with pembrolizumab. Mechanistically, CJRB-101

reprograms M2 macrophages into M1 macrophages co-expressing

CXCL9 and CXCL10, thereby enhancing CD8+ T-cell activation

and augmenting antitumor immune responses (78).
4.2 Supplementation with metabolites

Characterizing the microbiota and metabolomic profiles of

patients provides opportunities to target microbiota-derived

metabolites that modulate the tumor microenvironment (TME)

(79). These metabolites can influence NSCLC progression and

shape the antitumor activity of host immune cells. For example,

the gut microbiota generates short-chain fatty acids (SCFAs), which

not only exert direct antitumor effects but also enhance immune

system function (80).

4.2.1 SCFAs
In immunotherapy for NSCLC patients, specific intestinal flora

can enhance T-cell responses and activate anti-tumor immune
TABLE 2 Specific microbiota or metabolites exert positive effects on
NSCLC treatment.

Gut
bacteria/
metabolites

Mechanism Outcome
message

References

CBM588 Enhancing the ability
of CD8 T cells to
secrete interferon
gamma

Overcoming
the resistance
to PD-1
blockade

(75)

Butyrate Increasing histone 3
lysine 27 acetylation
(H3K27ac) in the
promoter region of
Pdcd1 and CD28 in
human CD8 T cells,
thereby promoting
PD-1/CD28
expression

Enhancing the
efficacy of anti-
PD-1 therapy

(85)

SB Modulating TCR
signaling in cytotoxic
CD8 T cells

Promoting the
efficacy of anti-
PD-1
immunotherapy

(86)

SB activation of the TNF
receptor-associated
factor 6 (TRAF6)-
thioredoxin-
interacting protein
(TXNIP) pathway

affecting the
proliferation
and migration
of A549 cells

(88)

UA inhibits F-actin
formation by
decreasing the
protein level of
TMSB10, thereby

inhibiting the
proliferation,
migration, and
invasion of
A549 cells.

(91)
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mechanisms through metabolites to improve therapeutic efficacy

(81, 82). Studies have demonstrated that the diversity of gut

microbiota and short-chain fatty acids (SCFAs) is closely

associated with the efficacy of immunotherapy (83). Metagenomic

analyses reveal significant differences in metabolic pathways, with

favorable responders exhibiting enhanced SCFA production. In

murine models, fecal microbiota transplantation (FMT) and

SCFA supplementation improved therapeutic outcomes by

promoting effector T-cell activity within tumors (84).

Serum butyrate levels were positively correlated with the

expression of programmed cell death-1 (PD-1) on circulating
Frontiers in Immunology 07
CD8 T cells and Vg9 Vd2 (Vd2) T cells from NSCLC patients.

Butyrate increased histone 3 lysine 27 acetylation (H3K27ac) in the

promoter region of Pdcd1 and CD28 in human CD8 T cells, thereby

promoting PD-1/CD28 expression and enhancing the efficacy of

anti-PD-1 therapy (Table 2, Figure 2) (85). A study found a

significant positive correlation between Streptococcus and CD8 T

cell abundance, with the gut metabolite butyrate promoting the

efficacy of anti-PD-1 immunotherapy by modulating TCR signaling

in cytotoxic CD8 T cells (Table 2) (86). Butyrate supplementation

also promotes the expression of anti-tumor cytokines in cytotoxic

CD8 T cells through the T cell receptor (TCR) signaling pathway
FIGURE 2

Gut microbiota-derived metabolites and probiotics improve NSCLC treatment efficacy. Specific gut microbiota and their metabolites modulate host
immune responses and impact the efficacy of anti-tumor therapies in NSCLC. These findings highlight the therapeutic potential of microbiota-
derived interventions in improving therapeutic outcomes in NSCLC. SB, Sodium butyrate; SP, Sodium propionate; UA, Urolithin A; GPs, Ginseng
polysaccharides.
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(Figure 2) (87). Another study highlighted the potential of sodium

butyrate in inhibiting lung cancer cell growth, triggering apoptosis,

inducing cell cycle arrest, and modulating the immune response

through activation of peripheral blood CD4+ T cells while

selectively inducing IFN-g-R1 in peripheral blood NK cells and

inhibiting CD8+ T cells and NK cells. Sodium butyrate’s mechanism

of action in the tumor microenvironment and its effects on the

immune system offer valuable insights into its potential as an

adjuvant therapy for NSCLC (83). In mice, sodium butyrate was

shown to affect the proliferation and migration of A549 cells

through the activation of the TNF receptor-associated factor 6

(TRAF6)-thioredoxin-interacting protein (TXNIP) pathway,

suggesting that sodium butyrate has an effective therapeutic effect

on lung adenocarcinoma (Table 2) (88). Sodium propionate (SP)

also inhibits the proliferation of lung cancer cells by inducing

apoptosis and cell cycle arrest (11). Lower concentrations of

circulating SCFAs in lung cancer patients may affect the host

immune response (89). A study establishing associations between

the gut microbiome and its metabolites, and SCFAs in NSCLC

patients in early and brain metastatic stages suggests that specific

forms of the gut microbiome and SCFAs may be of value in the

treatment of NSCLC (90).

4.2.2 Other metabolites
Urolithin A (UA), a natural compound produced by the gut

microbiota through the metabolism of the polyphenols ellagitannin

(ET) and ellagic acid (EA), has been found to inhibit epithelial-

mesenchymal transition (EMT) in NSCLC cell lines. UA inhibits F-

actin formation by decreasing the protein level of TMSB10, thereby

inhibiting the proliferation, migration, and invasion of A549 cells.

Contributing to the treatment of NSCLC (Table 2, Figure 2) (91).

Baicalin is a metabolite that modulates the gut microbiota, exerting

its effects through the regulation of short-chain fatty acids (SCFAs).

Baicalin enhances the PD-1 (CD8+ T cell/Treg) balance and

mitigates resistance to anti-PD-1 therapy (92).

The tryptophan–kynurenine (Trp–Kyn) metabolic axis,

primarily regulated by indoleamine 2,3-dioxygenase 1 (IDO1) and

tryptophan 2,3-dioxygenase (TDO), exerts a profound influence on

dendritic cell antigen presentation and T-cell priming through

tryptophan depletion and kynurenine accumulation. This

metabolic reprogramming fosters an immunosuppressive tumor

microenvironment that promotes immune tolerance and facilitates

tumor immune evasion (93, 94). Among the major metabolic

pathways implicated in NSCLC immunomodulation—including

short-chain fatty acid (SCFA) and bile acid metabolism—the

Trp–Kyn axis demonstrates the most direct mechanistic linkage

to impaired antigen presentation and reduced T-cell activation.

Moreover, tumor genotypes such as EGFR and KEAP1 mutations

may further modulate IDO1/TDO activity, influencing immune

resistance and responsiveness to immune checkpoint inhibitors

(ICIs) (95). Consequently, targeting the Trp–Kyn pathway

represents a promising strategy to enhance the efficacy of ICIs

and overcome immune escape in NSCLC (96).
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4.3 Fecal microbiota transplantation

To date, microbiome-metabolite (ME) research in oncology has

primarily focused on the impact of gut microbiota composition on

the efficacy of ICIs. Variations in the relative abundance of

individual microbial strains and overall microbial diversity in

patients undergoing ICI therapy appear to correlate with

treatment outcomes (97). FMT has potential therapeutic benefits,

particularly in converting non-responders to NSCLC treatment into

responders. Fecal transplantation from anti-PD-1-responsive

patients to non-responsive NSCLC patients increased treatment

response rates without increasing toxicity (43, 57, 98). Akkermansia

muciniphila (Akk) has been associated with the clinical benefits of

ICIs in NSCLC patients, and the relative abundance of Akk may

serve as a reliable biomarker for predicting good or poor prognosis

in patients receiving PD-1 blockade immunotherapy, refining

patient stratification in future studies (99). Akk enrichment

modulation enhances immune responses through fecal microbiota

transplantation in patients benefiting from immune checkpoint

blockade (100). In animal experiments, the relative abundance of

Akk predicted clinical response to PD-1 blockade in NSCLC

patients. Mice receiving FMT, negative for Fusobacterium

tachyzoites, exhibited tumor resistance to PD-1 blockade (15).

RNA later preserved stool samples were collected from 65 pre-

treatment (baseline) and post-treatment stage III/IV NSCLC

patients treated with ICI and classified as responders or non-

responders according to RECIST criteria. Mixed and individual

responder and non-responder microbiota were transplanted into a

gnotobiotic mouse model of lung cancer and treated with ICI, while

patient fecal samples were subjected to 16S rDNA and RNA

sequencing, which demonstrated that responding patients had a

different microbial community structure (P=0.004) and a different

bacterial transcriptome (PC2=0.03) at baseline. Taxa significantly

enriched in responders included amplicon sequence variants

(ASVs) belonging to the genera Rumococcus, Akkermansia

muciniphila, and E. faecalis. Transplantation of mixed and

individual responding microbiota into gnotobiotic mice reduced

tumor growth compared to non-responding colonized mice after

ICI use (P=0.023, P=0.019, P=0.008, respectively), showing an

increased tumor CD8 + IFN g + T-cells and CD4+ CXCR3+T-cells

phenotype after ICI treatment. Responding mice were enriched

with ASV belonging to the genera Mycobacterium, Blautia,

Akkermannia and E. faecalis (101). However, many FMT studies

have reported only limited methodological descriptions, details of

mouse cohorts, and statistical methods. One study performed

human-to-germ-free mouse FMT using fecal samples from

NSCLC patients with pathological response or no response after

neoadjuvant ICI treatment, which produced greater anti-tumor

responses in R-FMT mice in combination with anti-PD-L1

therapy compared to NR-FMT, detailed study of the mouse

microbiota after FMT using 16S rRNA amplicon sequencing, and

use of models for the biological variables were classified and

corrected, revealing that the most abundant taxa were shared
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between human inoculum and mice, although low abundance

human taxa were more variable in post-FMT colonized mice.

Multiple Clostridium spp. were also associated with tumor

outcome in individual anti-PD-L1-treated R-FMT mice (102).

Research on Fecal Microbiota Transplantation (FMT) would

benefit from well-designed large-scale studies that incorporate

extensive metadata and standardized bio-sample collection. Such

efforts are crucial to minimize noise in downstream multi-omics

analyses and to ensure robust long-term follow-up to address

potential safety concerns. The results of these studies could guide

targeted experimental designs to explore the underlying

mechanisms of FMT clinical outcomes and may ultimately lead to

the personalized matching of donor and recipient characteristics to

achieve optimal therapeutic success (103). Although FMT may be a

promising therapeutic option, the risk of bacterial translocation

(including antibiotic-resistant bacteria) and sepsis in patients

remains a significant safety concern, and studies have been

conducted that discuss sepsis due to FMT (104–106). The most

feasible translational approach from whole-stool FMT toward safer

and standardized microbiome-based therapies involves progressive

refinement from complex donor-derived consortia to defined

microbial communities and, ultimately, purified microbial

metabolites with validated bioactivity (107, 108). Microbial

ecosystem therapy (MET), comprising selected, well-characterized

commensal strains, represents a key intermediate strategy that

maintains ecological functionality while improving safety and

reproducibility (109, 110). Preserving therapeutic efficacy along

this continuum requires retention of crucial host–microbe

interactions that regulate immune homeostasis (111). Therefore,

future microbiota-targeted interventions should emphasize context-

dependent functionality to achieve both safety and sustained

immunotherapeutic benefit in NSCLC treatment.
4.4 Dietary interventions

Castalagin is a polyphenol that enhances resistance to PD-1. In

their study, Messaoudene et al. reported that oral supplementation

with polyphenol-rich berry camu-camu (CC; Myrciaria dubia)

altered the gut microbial composition, leading to antitumor activity

and a stronger anti-PD-1 response. Castalagin improved the CD8

+/FOXP3+CD4+ ratio in the tumor microenvironment. Moreover,

castalagin induced metabolic changes, resulting in an increase level of

taurine-conjugated bile acids. Ruminococcus-rich NSCLC responders

were found to be able to metabolize castalagin (112, 113). Patients

should be advised to minimize animal meat intake and increase plant

intake where possible, aiming for 30 plants per week. High fiber

intake (>30 g/day) is thought to increase the chances of response to

immunotherapy in NSCLC (114). Methionine regulates tumor

immunity by modulating the activity of cyclic GMP-AMP synthase

(cGAS), so the tumor immune response can be improved by

controll ing dietary methionine intake (115). Ginseng

polysaccharides (GPs) are one of the most abundant constituents of

ginseng, and GPs increase the antitumor response to aPD-1 mAb by

inhibiting the metabolite kynurenine/tryptophan ratio, which
Frontiers in Immunology 09
contributes to the suppression of regulatory T-cells and the

induction of Teff cells following combination therapy, enhancing

the antitumor effects of immunotherapy (116). Specific diets directly

or indirectly alter the intestinal flora and metabolism of NSCLC

patients and increase the clinical efficacy of NSCLC.

In recent years, relevant clinical trials have been conducted

around simulated fasting diets, high-fiber diets, nutritional

supplements and other related trials, which have either

maximized the therapeutic efficacy of NSCLC treatments or

maximized the benefits for patients (117).
5 Role of gut microbiota and
metabolites in NSCLC treatment and
prognosis

5.1 Baseline microbiome as a predictive
biomarker

As previously discussed, immunotherapy plays a crucial role in

the treatment of NSCLC. Numerous studies have collected plasma

and stool samples from patient cohorts prior to initiating

immunotherapy, performing metabolomic and microbiome

analyses (118, 119). The results obtained after enrichment are

referred to as baseline microbiome characteristics. From a

metagenomic perspective, enrichment of Akkermansia may be

indicative of favorable prognosis in patients undergoing PD-1

blockade immunotherapy, offering potential for improved patient

stratification in future studies (99). Akkermansia muciniphila, a

mucin-degrading commensal bacterium, exemplifies the context-

dependent functionality of microbiota-based interventions. Under

conditions of adequate mucin renewal and minimal antibiotic

disturbance, it reinforces gut barrier integrity and immune

regulation (120, 121). However, in states of mucin depletion,

chronic inflammation, or dysbiosis, its activity may shift from

protective to deleterious, aggravating intestinal damage and

immune dysregulation (122). These findings underscore the

necessity of designing microbial consortia and derived metabolites

that maintain host–microbe symbiosis and ensure both safety and

therapeutic efficacy in diseases such as NSCLC (120, 122).

Additionally, metabolomic analyses suggest that patients

enriched with baseline short-chain fatty acids (SCFAs) may derive

long-term benefits from immunotherapy (90). The close link

between microbiota and metabolites at baseline not only provides

novel insights for clinical stratification but also opens new avenues

for clinical translation (86). For instance, some studies have

demonstrated SCFA enrichment via metabolomic profiling and

verified the presence of microbiota producing SCFAs as a baseline

marker for therapeutic efficacy. In parallel, other studies have

enriched baseline microbiota and subsequently identified

corresponding metabolites, confirming the therapeutic benefits of

these metabolites at baseline enrichment (92).

In summary, basel ine microbiome and metaboli te

characteristics have been explored in existing research, and many

clinical trials have since emerged, contributing to this growing field.
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TABLE 3 Therapeutic and prognostic application potential in NSCLC patients.

NCT numbers Title Conditions Intervention Enrollment Outcome message

NCT
06613308

Association Between Microbiome
and the Efficacy and Safety of PD-1/
PD-L1 Blockade in Resectable
NSCLC

NSCLC (Stage
IIA-IIIB)

Neoadjuvant Immunotherapy
combined with chemotherapy
and
Neoadjuvant chemotherapy

20 respiratory and gut
microbiome
samples
relations between respiratory
and gut microbiome

NCT
03068663

Microbiota and the Lung Cancer
(MICA)

NSCLC chemotherapy and surgery
(Pct-chir).
surgery (Pchir).

40 samples of blood, saliva, feces,
lung/tumor tissue, and
bronchoalveolar lavage fluid.

NCT
05027165

Prospective Evaluation of
Immunological, Molecular-genetic,
Image-based and Microbial Analyzes
to Characterize Tumor Response
and Control in Patients With
Inoperable Stage III NSCLC Treated
With Chemoradiotherapy Followed
by Consolidation Therapy With
Durvalumab

NSCLC 15 fractions of radiotherapy 40 Stool and Blood Sample Bank
for Patients

NCT
06221800

Assess Diversity of Gut Microbiome
in Met NSCLC in Correlation to Tx
& Adverse Effects

NSCLC Treatment with PD1/L1
monotherapy
with PD1/L1 and
chemotherapy
and with Tyrosine Kinase
Inhibitor

82 Stool and saliva samples

NCT
05037825

The Gut Microbiome and Immune
Checkpoint Inhibitor Therapy in
Solid Tumors (PARADIGM)

NSCLC, MM,
RCC, and
TNBC; any
stage

anti-PD-1, anti-PD-L1, or anti-
CTLA-4 as a single agent or in
combination with another
checkpoint inhibitor or other
treatment agent

800 Microbiome samples
and Blood samples

NCT
04638751

ARGONAUT: Stool and Blood
Sample Bank for Cancer Patients

advanced-stage
cancer

checkpoint inhibitor therapy
for the first time.

5000 Stool and Blood Sample Bank
for Patients

NCT
04291755

Development and Analysis of a Stool
Bank for Cancer Patients

Cancer Any checkpoint inhibitor 100 Stool, blood, and urine
specimens

NCT
04189679

Identification of a Predictive
Metabolic Signature of Response to
Immune Checkpoint Inhibitors in
Non-Small Cell Lung Carcinoma
(METABO-ICI)

NSCLC 20 treated by an ICI in first
line and 40 treated by an ICI in
second and third line

60 Immune signature in serum
associated to the metabolic
signature
Meta-genomic signature of
intestinal flora

NCT
04682327

Gut Microbiota and Cancer
Immunotherapy Response

NSCLC — 50 Blood samples and stool
samples.

NCT
04333004

Analysis of Gut Microbiota in
Patients With Brain Metastasis of
Non-small Cell Lung Cancer Treated
by Pembrolizumab Combined With
Chemotherapy

NSCLC Pembrolizumab Combined
With Chemotherapy

40 Species and abundance of gut
microbiota

NCT
04136470

BioForte Technology for in Silico
Identification of Candidates for a
New Microbiome-based
Therapeutics and Diagnostics

NSCLC Routine immunotherapy 100 Collection of stool, blood
(PBMC) and biopsy (FFPE)

NCT
05008861

Gut Microbiota Reconstruction for
NSCLC Immunotherapy

NSCLC FMT 20 analyze the effect of FMT on
intestinal flora and
immunophenotype of patients.

NCT
05669846

Responder-derived FMT (R-FMT)
and Pembrolizumab in Relapsed/
Refractory PD-L1 Positive NSCLC

NSCLC FMT with Pembrolizumab 26 OS, PFS and CD8+ TIL and
intra-tumoral myeloid cell
density

NCT
04698161

Establishment of the Human
Intestinal and Salivary Microbiota
Biobank - Oncologic Diseases
(BIOMIS-Onco)

NSLSC — 50 Biological sample collection,
Questionnaire and Medical
examination
F
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5.2 Gut microbiota and metabolites in
NSCLC clinical trials

Numerous clinical trials have focused on the role of gut

microbiota and metabolites in various treatment modalities for

NSCLC, examining their impact on treatment efficacy and

prognosis. These studies underscore the importance of analyzing

dynamic changes in the gut microbiota throughout the course of
Frontiers in Immunology 11
treatment, with specific microbial and metabolic alterations

observed after a certain duration of therapy. By exploring the

modulation of specific microbiota, these studies suggest that

manipulating the microbiome could enhance NSCLC treatment

outcomes. Such findings are poised to drive major breakthroughs in

future NSCLC therapies.

[NCT03068663] A study grouped 40 patients with NSCLC, 20

patients were treated with surgery only, while the other half also
FIGURE 3

Microbiota-based strategies in the prognosis and treatment of NSCLC. Patients undergoing standard treatment modalities—such as immunotherapy,
chemotherapy, radiotherapy, and surgery—provide stool and blood samples, from which gut microbiota and metabolites are analyzed. Subsequent
sequencing and computational analysis identify microbial and metabolic biomarkers associated with treatment response and survival outcomes. As
part of the clinical trial NCT05669846, patients receive anti-PD-1 therapy for 35 days. Fecal microbiota transplantation (FMT) is used to transfer gut
microbes from responders (R) to non-responders (NR), followed by pembrolizumab treatment. This strategy aims to improve immune checkpoint
inhibitor (ICI) efficacy and enhance progression-free and overall survival.
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received chemotherapy. The main aim was to explore changes in the

lung, upper respiratory tract and intestinal microbiota and

potentially find an association between the flora and the

prognosis of patients treated. [NCT06221800] Another study was

conducted to collect data on the dynamics of the gut microbiome of

82 subjects with advanced/metastatic NSCLC (NSCLC) during

treatment with NSCLC. The subjects were classified into 3

groups: anti-PD-1 monotherapy, anti-PD-1 combination

chemotherapy and TKIs. therapy, anti-PD-1 combination

chemotherapy therapy and TKIs therapy and analyzed the

diversity and composition of the gut microbiome of the subjects

during the treatment of NSCLC to provide reference for the efficacy

of NSCLC treatment [NCT05669846]. Suitable patients will be

identified at progression on PD-1 monotherapy or PD-1-

containing regimens and patients will undergo a 35-day screening

assessment. Following enrolment, patients will be serummatched to

suitable donors and patients will receive R-FMT (induction) via

colonoscopy on C1D1 and C3D1. R-FMT (maintenance) by

sigmoidoscopy on C4D1 will be repeated every 9 weeks. All

patients will receive an additional 200mg of pembrolizumab every

3 weeks and patients will be treated until disease progression or

intolerance of toxicity or completion of 2 years of treatment (Table

3, Figure 3).

These clinical trials involve large cohorts and feature robust

experimental design, with open results providing valuable insights

into the relationship between gut microbiota, treatment efficacy,

and patient outcomes. For further details and updates,

clinicaltrials.gov is a useful resource.
6 Conclusion and future directions

As the importance of gut microbiota in disease development

and treatment continues to be unveiled, increasing attention is

being directed toward the role of gut microbiota and its metabolites

in NSCLC therapy (123). NSCLC patients who achieve long-term

survival exhibit distinct gut microbiota compositions. Patients with

favorable prognoses typically possess a more diverse and abundant

gut microbiome, and this diversity is closely linked to the activation

of antitumor immune responses. For instance, high abundances of

Bacteroidetes, Firmicutes, and certain lactobacilli are associated with

improved immune responses and prolonged survival in NSCLC

patients (18, 74). Conversely, a high abundance of Proteobacteria is

associated with reduced efficacy of immunotherapy, and

Helicobacter pylori seropositivity correlates with poorer survival

in NSCLC patients receiving anti-PD-1 therapy (124).

Exogenous interventions hold promise in elucidating the

complex mechanisms by which gut microbiota influence NSCLC

treatment outcomes. First, drugs can induce dysbiosis by altering

gut barrier function, thus affecting the efficacy of cancer treatments

cancer therapy research (125, 126). Furthermore, preliminary

studies on probiotics, fecal microbiota transplantation (FMT),

and specific engineered strains have demonstrated potential to

enhance the response to immunotherapy in NSCLC patients

(127). FMT, by reintroducing beneficial gut microbiota, offers
Frontiers in Immunology 12
hope for treating NSCLC patients who are resistant to

conventional therapies. Despite the challenges in standardizing

FMT protocols, and the inherent individual variability in

microbiome composition and response to interventions, the

ethical considerations surrounding microbiome-based therapies

require significant advancements. The intervention of gut

microbiota remains in the research phase, necessitating further

clinical trials to validate its efficacy (128). As such, exploring how

to manipulate gut microbiota composition to achieve more efficient

and less toxic treatment strategies remains a crucial direction in

cancer treatment research.

The relationship between gut microbiota and treatment

outcomes is multifactorial and complex. Current research primarily

focuses on macro-level microbiome composition, lacking in-depth

investigation into specific microbial populations and their

metabolites. To date, accurately tracking dynamic changes in the

microbiome remains challenging, and a deeper understanding of the

mechanisms by which specific microbes influence therapy is needed.

This review primarily focuses on metagenomic sequencing,

metabolomic profiling, and 16S rRNA sequencing to explore the

specific roles of gut microbiota in NSCLC treatment. Future research

should integrate finer techniques, such as single-cell sequencing and

spatial transcriptomics, to establish connections from the disease and

immune microenvironment perspective (129, 130). Ultimately, gut

microbiota intervention is expected to become a routine component

of NSCLC treatment, providing new therapeutic avenues for cancer

immunotherapy, chemotherapy, and targeted therapy. With

advancements in technology and the progression of clinical trials,

we are optimistic that gut microbiota will become a crucial factor in

NSCLC treatment, driving cancer therapy towards more personalized

and precision-based approaches.
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