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Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer,
accounting for approximately 85% of all cases, and is associated with a poor
prognosis. Despite significant advancements in treatment modalities, therapeutic
efficacy remains suboptimal, underscoring the urgent need for novel strategies.
In recent years, increasing attention has been directed toward the pivotal role of
gut microbiota-host interactions in the treatment of NSCLC. This review
systematically examines the influence of current NSCLC therapies on gut
microbiota and metabolism, explores the relationship between the
microbiome and therapeutic response, and highlights the critical functions of
probiotics, microbial metabolites, fecal microbiota transplantation (FMT), and
dietary interventions in NSCLC management. By elucidating the mechanisms
through which gut microbiota and their metabolites modulate treatment
efficacy, we investigate the potential of exogenous interventions targeting the
gut ecosystem to enhance therapeutic outcomes and mitigate adverse effects.
Modulating the intestinal microbiota represents a promising clinical avenue and
offers a new frontier for the development of future NSCLC treatment strategies.
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1 Introduction

The human microbiome comprises a diverse and dynamic community of
microorganisms—including bacteria, fungi, viruses—their genetic material, and
metabolic byproducts. The resident microbiota is an essential component of host health
and homeostasis (1). Most microbiome research to date has focused on bacterial
populations, which constitute a major proportion of these resident microbes (2). In the
gut, Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria dominate the bacterial
composition (3-5). The gut microbiota plays a pivotal role in regulating host immunity and
metabolism through the production of numerous metabolites that function as signaling
molecules and metabolic substrates, linking dysbiosis with inflammation and tumorigenesis
(6-8).
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The cross-link between gut microbiota and lung cancer is a
complex multifactorial relationship (5). Studies have shown that in
patients with lung cancer, the abundance of Bacteroidetes,
Fusobacteria, Cyanobacteria, and Spirochaetes increases in both
pulmonary and intestinal microbiomes, while Firmicutes are
significantly reduced (4, 9). Research on both gut and respiratory
tract microbiota has revealed notable dysregulation in NSCLC,
which is further associated with distant metastasis (DM) (10).
The pathogenic contribution of the gut microbiome and its
specific metabolites to NSCLC lies in their modulation of chronic
inflammation and immune dysregulation (11). A study combining
serum metabolomics and fecal microbiome profiling identified
potential biomarkers in patients with early-stage NSCLC. The
metabolomic analysis revealed elevated levels of sphingolipids
(e.g. D-erythrosphingosine 1-phosphate, palmitoylsphingomyelin),
fatty acyls (e.g., Avocadyne l-acetate, 12(S)-HETE, 20-
carboxyleukotriene B4, thromboxane B3, 6-keto-prostaglandin
Flo, decanoic acid, tetracosanoic acid), and glycerophospholipids
in these patients (12).

Substantial progress has been made in NSCLC treatment in
recent years, particularly in early screening, minimally invasive
procedures, radiotherapy, targeted therapies, and immunotherapy.
These advances have significantly improved patient survival rates
(13). However, several challenges persist, including the emergence of
drug resistance, treatment-associated toxicity, high costs,
underrepresentation of minority groups in clinical trials, and
limited access to diagnostic and therapeutic resources. These issues
highlight the urgent need for novel therapeutic strategies to expand
treatment options (14). Manipulating the gut microbiota has emerged
as a promising strategy to enhance NSCLC treatment efficacy.
Microbiome modulation may augment immunotherapeutic
responses, mitigate adverse treatment effects such as microbial
dysbiosis, and serve as a predictive biomarker for personalized
therapy and disease prevention (15).

This review provides a comprehensive overview of how various
NSCLC treatment modalities influence the gut microbiota and its
metabolic profile. It further emphasizes the mechanisms and
potential of microbiota-targeted interventions in improving
clinical outcomes. Understanding the intricate relationship
between gut flora, its metabolites, and NSCLC treatment holds
substantial theoretical and clinical relevance, offering new insights
into disease pathogenesis and therapeutic innovation.

2 Alterations in gut microbiota and
metabolism induced by standard
NSCLC treatments

Intestinal microbiota not only directly participates in the
regulation of host tumor immunity but also indirectly influences
tumor progression and therapeutic outcomes through the
production of metabolic products. Within the gut microbiome,
metabolites such as short-chain fatty acids disrupt the intestinal
barrier, thereby affecting both innate and adaptive immunity, which
triggers and exacerbates systemic immune dysregulation. Chronic
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inflammation, immune imbalance, and the activation of cancer-
associated signaling pathways by specific bacterial strains are
considered key mechanisms underlying the ecological imbalance
and the immunosuppressive microenvironment (16). In patients
with non-small cell lung cancer (NSCLC), the evolution and
composition of the gut microbiota are closely linked to the
efficacy and adverse effects of treatments such as chemotherapy,
radiotherapy, immunotherapy, and targeted therapy, with microbial
changes playing a crucial role in predicting both therapeutic
outcomes and treatment-related side effects (17, 18).

2.1 Chemotherapy

Chemotherapeutic agents are known to alter the composition of
the gut microbiota, and several studies have confirmed significant
shifts in specific microbial populations during NSCLC
chemotherapy (19-23). Platinum-based drugs exert antitumor
effects by inhibiting DNA replication and targeting cellular
membranes and mitochondria, forming intra-strand platinum-
DNA adducts that lead to double-strand breaks (DSBs) (24).
These agents may exert their tumor-suppressive effects through
microbiota-dependent pathways, with their efficacy partly relying
on the intra-tumoral generation of reactive oxygen species (ROS),
which decreases in response to reduced DNA damage. Particularly,
an increase in Bifidobacterium species has been observed during
platinum-based treatment of NSCLC (Table 1, Figure 1) (25).
Pemetrexed, a multitargeted antifolate, inhibits several folate
pathway enzymes—thymidylate synthase, dihydrofolate reductase,
and glycinamide ribonucleotide formyltransferase—which are
involved in purine and pyrimidine nucleotide synthesis for DNA
and RNA production (26-28). In mouse models, pemetrexed
treatment altered the gut microbiota, significantly increasing the
relative abundance of Enterococcaceae, Lactobacillaceae, and
Streptococcaceae (19). Paclitaxel was found to decrease the overall
abundance of gut microbiota in lung cancer-bearing mice, with a
significant disruption in the Bacteroidetes/Firmicutes ratio (p <
0.01) (29).

2.2 Radiotherapy

For patients with locally advanced NSCLC, concurrent
chemoradiotherapy (CCRT) is a standard treatment. Recent
studies have shown that alpha diversity of gut microbiota is
significantly associated with therapeutic response, indicating that
dysbiosis is a key environmental factor affecting prognosis. One
study explored dynamic changes in gut microbiota and their
predictive value for progression-free survival (PFS) following
CCRT in NSCLC patients. It was observed that the abundance of
Bacteroidetes and Proteobacteria increased, while Firmicutes
decreased after treatment. Patients with longer PFS demonstrated
significantly greater diversity in fungi, archaea, and viruses
compared to those with shorter PFS. Key metabolic pathways
affected included fatty acid metabolism, arginine biosynthesis,
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TABLE 1 Alterations in gut microbiota and metabolism induced by NSCLC treatments.

10.3389/fimmu.2025.1638942

Treatments Interventions Mechanism Gut Outcome References
bacteria/
metabolites
Chemotherapy Platinum-based drugs relying on the intra-tumoral generation of reactive oxygen Bifidobacterium increasing (22)
species(ROS)decreases in response to reduced DNA damage species
Radiotherapy CCRT Regulation of dendritic cell antigen presentation and radiation- Bacteroidetes and | increasing (30)
induced anti-tumor immune response Proteobacteria decreasing
Firmicutes
Immunotherapy  cetuximab plus Butyrate, through the activation of innate and adaptive Agathobacter increasing (34)
avelumab immunity, is a key modulator of host immune reactivity under M104/1 and
pathological conditions Blautia SR1/5
Targeted EGFR-TKIs Reduction in the number of goblet cells leads to impaired Proteobacteria decreasing (46)
Therapy mucus secretion and disruption of the mucosal barrier Firmicutes and increasing
Bacteroidetes
Adjunctive Antibiotics impaired T-cell immunity Bacteroidetes decreasing (56)
Treatments
Analgesic Drugs activation of the mu-opioid receptor (MOR) by opioid ligands Bacteroidetes decreasing (63)
has been found to disrupt tight junction protein (ZO-1)
coordination through activation of toll-like receptors (TLR) 2
and 4, thereby affecting intestinal epithelial integrity

lipopolysaccharide biosynthesis, and ascorbate and aldarate
metabolism (Table 1, Figure 1) (30, 31).

2.3 Immunotherapy with immune
checkpoint inhibitors

2.3.1 Immunotherapy

Programmed death ligand 1 (PD-L1) signaling plays a role in
maintaining gut mucosal tolerance. However, the direct link between
host microbiota and tumor PD-L1 expression remains unclear (32).
Treatment of NSCLC with immune checkpoint inhibitors (ICIs),
including anti-PD-1/PD-L1 and anti-CTLA-4 agents, induces
significant shifts in gut microbiota and metabolic profiles.
Metagenomic sequencing has revealed correlations between
microbial characteristics and clinical features such as PFS and PD-
L1 expression levels (33). One study characterized the microbiome
from bronchoscopic tumor biopsies of NSCLC patients undergoing
ICIs therapy using 16S rRNA sequencing, revealing high levels of
Firmicutes, Bacteroidetes, and Proteobacteria (29) The phase II
CAVE-LUNG clinical trial examined the effects of cetuximab plus
avelumab in chemotherapy-refractory NSCLC patients and identified
increased expression of Agathobacter M104/1 and Blautia SR1/5 after
treatment (P=0.016 and P=0.0008, respectively) (Table 1, Figure 1)
(34). One study analyzing gut microbiota in NSCLC patients
receiving atezolizumab-based immunotherapy found that microbial
composition and diversity changed over the course of treatment,
aiding the development of predictive biomarkers and microbiota-
based biotherapeutics. Genera such as Clostridium, Lachnospiraceae,
and Ruminococcaceae have been identified as potential biomarkers of
therapeutic response (35). The therapeutic efficacy of ICIs is
markedly enhanced in patients demonstrating durable clinical
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benefit as well as in those with tumors expressing PD-LI, with
numerous studies underscoring this correlation (36).

2.3.2 irAEs

The complex interplay among the tumor microenvironment,
gut microbiota, host factors, and responses to immune checkpoint
inhibitors (ICIs), as well as the development of ICI-related immune-
related adverse events (irAEs), remains largely unknown. Emerging
evidence suggests that the gut microbiota may play a critical role in
modulating tumor responses to ICIs (37). ICIs exert their
therapeutic effect by activating T cells, a process frequently
accompanied by autoimmune phenomena collectively termed
“immune-related adverse events (irAEs).” These irAEs exhibit
pleiotropic manifestations that can affect virtually any organ
system, including the skin, colon, endocrine glands, joints, heart,
and lungs. Importantly, the gut microbiota has been proposed as a
potential biomarker for predicting irAEs. A recent study integrating
gut microbiota metabolites, molecular modeling, and species-level
variation identified signatures that shaped long-term therapeutic
efficacy and adverse outcomes in lung cancer survivors. Patients
who developed irAEs exhibited reduced abundance of Roseburia
faecis, Roseburia intestinalis, Bacteroides stercoris, Lactobacillus
mucosae, and Akkermansia muciniphila (38). These findings
suggest that the gut microbiome may serve both as a risk factor
and a protective factor for irAEs. Notably, checkpoint inhibitor-
induced colitis remains the most frequently reported irAE (39).

The gut microbiota has also been demonstrated to play a pivotal
role in shaping the tumor immune microenvironment, thereby
influencing the efficacy of ICIs (40). Alterations in gut microbial
composition and function are associated with an increased risk of
irAEs, and predictive models of such risks have been developed. For
example, advanced machine learning approaches have been
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Impact of NSCLC treatments and adjunctive therapies on gut microbiota and metabolism. Common treatment modalities for non-small cell lung
cancer (NSCLC), exert direct or indirect effects on the gut microbiota. These alterations highlight the dynamic and reciprocal relationship between

NSCLC therapies and gut microbiota composition.

employed to identify gut microbial signatures capable of predicting
irAE occurrence (39). A random forest classifier constructed from
14 microbial features exhibited strong discriminatory power
between irAE and non-irAE groups. Functional analyses revealed
that the gut microbiota of non-irAE patients was characterized by
increased menaquinone biosynthesis, accompanied by upregulation
of the rate-limiting enzymes menH and menC. Targeted
metabolomic profiling further confirmed significantly higher
serum menaquinone levels in non-irAE patients compared to
those who developed irAEs (41). Collectively, these findings
highlight the dual role of gut microbiota in shaping both
therapeutic efficacy and toxicity of ICIs. Future research
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integrating metagenomic, metabolomic, and functional analyses
will be critical to unravel the mechanistic underpinnings of these
associations and to enable the development of microbiome-based
biomarkers and therapeutic strategies for optimizing NSCLC
treatment outcomes.

2.4 Targeted therapy
Targeted therapy using tyrosine kinase inhibitors (TKIs) has

become a cornerstone in NSCLC treatment alongside chemo- and
radiotherapy (42). Studies examining the gastrointestinal
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microbiome in patients with Epidermal Growth Factor Receptor
(EGFR)-wild-type versus EGFR-mutant NSCLC revealed a
predominance of Proteobacteria, implicating its role in disease
mechanisms (43). In EGFR-mutant patients treated with EGFR-
TKIs, lower levels of Proteobacteria and higher levels of
Bacteroidetes and Firmicutes were observed (44). Despite the
efficacy of second-generation TKIs such as afatinib, clinical trials
have reported grade >3 diarrhea in over 25% of patients, with about
15% discontinuing treatment due to severe diarrhea, compromising
therapeutic outcomes (45). Mouse models have shown significant
increases in Peptostreptococcus, Staphylococcus, Escherichia-
Shigella, and Akkermansia following afatinib treatment (Table 1,
Figure 1) (46). A study investigating the gut microbiota profile in
fecal samples from a lung-specific conditional EGFR mutant
transgenic mouse model of lung tumorigenesis demonstrated that
Lactobacillus, a genus of bacteria known for producing short-chain
fatty acids (SCFAs), may serve as a predictive factor for tumor
initiation and progression in EGFR mutation-induced lung
adenocarcinoma models (47).

3 Effects of adjunctive treatments on
gut microbiota and metabolic
alterations

3.1 Antibiotics

Antibiotics have a significant impact on gut microbiome health,
often leading to dysbiosis or the proliferation of harmful flora that
can undermine the effectiveness of therapies such as
immunotherapy for NSCLC. Antibiotic use has been associated
with poor responses to combination therapies, including
immunotherapy (48-54). Analysis of bacterial phyla has shown
that antibiotic treatment for up to 4 weeks prior to immunotherapy
increases the abundance of Bacteroidetes. Systemic use of antibiotics
has been linked to an increased Bacteroidetes/Firmicutes ratio,
correlating with poorer immunotherapy outcomes (55). Broad-
spectrum antibiotic-associated gut microbiome dysbiosis,
occurring in patients treated with long-term antibiotics, leads to
impaired T-cell immunity (Table 1, Figure 1) (56). A study
sequencing 16S ribosomal DNA (rDNA) from 69 fecal samples of
advanced NSCLC patients prior to immune checkpoint blockade
(ICB) therapy revealed that antibiotic use was significantly
associated with a decrease in gut microbiota diversity (57). An
analysis of bacterial diversity and differential abundance of fecal
samples from NSCLC patients treated with anti-PD-1/PD-L1
antibodies showed that feces from patients not treated with
antibiotics were enriched in Clostridium perfringens, especially
within the Rumatococcaceae, UCGI13, Clostridium spp., and
Agathrobacterium spp. families. In contrast, feces from patients
who received antibiotics were enriched in Hungatella (48). Plasma
citrulline, a marker of intestinal barrier function, decreases early in
NSCLC patients treated with nab-paclitaxel following antibiotic use,
affecting citrulline metabolism and, consequently, intestinal
microbiome metabolism (58). Vancomycin preferentially targets
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Gram-positive bacteria, including butyrate-producing species,
reducing short-chain fatty acid (SCFA) concentrations in fecal
and tissue samples. Vancomycin also eliminates two major
families of SCFA-producing Clostridia: Ruminococcaceae and
Eubacteriaceae (59). However, further studies are required to
determine whether antibiotic use directly alters intestinal flora
and metabolism, and to explore the mechanisms by which
antibiotic use may reduce the efficacy of NSCLC treatments by
modulating intestinal flora and metabolism.

3.2 Analgesic drugs

The gut microbiome plays an important role in modulating
visceral pain, and recent evidence suggests that it may also be
involved in various types of chronic pain, such as inflammatory
pain, headaches, neuropathic pain, and opioid tolerance (60).
Morphine and other opioids disrupt the gut barrier, alter gut flora
and metabolism, and impair function by inhibiting mucus and
bicarbonate secretion, disrupting muscle coordination, and
increasing the risk of bacterial translocation (61). Long-term
morphine use has been shown to significantly alter the gut
microbiome, promoting the growth of Gram-positive pathogens
while reducing biliary isolates (62). Additionally, activation of the
mu-opioid receptor (MOR) by opioid ligands has been found to
disrupt tight junction protein (ZO-1) coordination through
activation of toll-like receptors (TLR) 2 and 4, thereby affecting
intestinal epithelial integrity (Table 1, Figure 1) (63). Therefore, the
rational use of analgesic drugs is also critical in the treatment of
NSCLC, and it has been shown that analgesic drugs alter the gut
microbiota, which in turn is detrimental to the treatment of NSCLC.

3.3 Traditional Chinese medicine as
adjunctive treatment

The fundamental theory of Traditional Chinese Medicine
(TCM) for treating NSCLC focuses on restoring balance through
the principles of ‘strengthening the body’ and ‘eliminating evils’
when the body’s immunity is weak, and the tumor’s growth is overly
strong. “Strengthening the body” refers to enhancing the body’s
anti-cancer immunity, while “eliminating evil” directly inhibits the
growth, proliferation, invasion, and migration of tumor cells. The
clinical manifestations of NSCLC are often characterized by lung qi
and lung yin deficiency. TCM’s core therapeutic paradigm for lung
cancer revolves around the concepts of ‘lung qi deficiency’ and ‘qi-
yin deficiency’, with an emphasis on “supporting the positive and
curtailing the negative” (4, 64). It has been investigated that
combination therapy with monoclonal antibodies remodeled the
composition of the gut microbiota and increased the number of
SCFAs-producing bacteria Muribaculum to sensitize the antitumor
effects of anti-PD-1 therapy and restore the microbial composition
of fecal samples from those who did not respond to anti-PD-1
therapy (65). Polysaccharides derived from Spirulina have been
shown to increase the abundance of Lactobacillus, Allobaculum,
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Alloprevotella, and Olsenella, while reducing Bacteroides and
Acinetobacter levels. These effects may be linked to the inhibition
of lung cancer in mice (66). Fuzi-Li zhong pill (FLP) is a well-
validated TCM formula that has long been used in China for
gastrointestinal disease and adjunctive therapy for depression
(67). Lateralis Radix Praeparata (Fuzi), a traditional Chinese herb,
is known for its relatively low toxicity and has been found to
improve gut dysbiosis in NSCLC, decreasing the abundance of
Proteobacteria while increasing that of Firmicutes (68, 69). Si junzi
Decoction (SJZD) is a traditional Chinese medicine formula widely
used in the treatment of gastrointestinal disorders. Despite its
proven effectiveness, the precise mechanisms by which SJZD
operates remain incompletely understood (70). A study evaluating
the efficacy of SJZD on quality of life, hematological parameters,
and modulation of gut flora in post-surgical NSCLC patients
demonstrated that SJZD had a favorable effect on increasing
microbial abundance and diversity, promoting probiotic
microorganisms, and modulating microbial functions (71).

4 Beneficial intervention strategies for
improving NSCLC treatment
outcomes

4.1 Probiotic supplementation

Probiotics have previously been shown to alter gut microbiota
composition, thereby influencing cancer treatment outcomes. A
study on the anticancer potential of probiotics suggests that gut
probiotics exert tumor-suppressive effects through the gut-lung axis
microecological regulation (72). Probiotics have been positively
associated with overall survival (OS) and progression-free survival
(PFS) in NSCLC patients treated with ICIs (73). Further research
has shown that probiotics did not affect PFS but identified two
dynamic types of gut flora during immunotherapy: one type
exhibited the lowest relative abundance at the response time
point, while the other showed the highest abundance at the
response time point (74). Specific changes in intestinal flora, such
as those induced by Clostridium butyricum, have been found to
influence clinical outcomes in non-squamous NSCLC (NS-NSCLC)
patients receiving bevacizumab combined with platinum
chemotherapy, significantly reducing adverse events in patients
(21). Clostridium butyricurn MIYAIRI 588 (CBMS588) has been
shown to potentiate the efficacy of PD-1 blockade in NSCLC by
modulating gut microbiota diversity and immune responses.
CBM588 supplementation enhanced IL-10 secretion by lamina
propria monocytes, improved intestinal homeostasis, and
facilitated CD8" T-cell activation, thereby helping to overcome
resistance to immunotherapy (Table 2, Figure 2) (75, 76).

Live biotherapeutic products (LBPs), as defined by the U.S.
Food and Drug Administration (FDA), are biological agents
intended for disease prevention, treatment, or cure (77). Recently,
LBPs designed to modulate the gut microbiota, such as
Bifidobacterium lactis and Lactobacillus acidophilus, have shown
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TABLE 2 Specific microbiota or metabolites exert positive effects on
NSCLC treatment.

Gut Outcome References

message

Mechanism

bacteria/
metabolites

CBM588 Enhancing the ability = Overcoming (75)
of CD8 T cells to the resistance
secrete interferon to PD-1
gamma blockade

Butyrate Increasing histone 3 Enhancing the (85)
lysine 27 acetylation efficacy of anti-
(H3K27ac) in the PD-1 therapy
promoter region of
Pdcdl and CD28 in
human CD8 T cells,
thereby promoting
PD-1/CD28
expression

SB Modulating TCR Promoting the (86)
signaling in cytotoxic | efficacy of anti-
CD8 T cells PD-1

immunotherapy

SB activation of the TNF | affecting the (88)
receptor-associated proliferation
factor 6 (TRAF6)- and migration
thioredoxin- of A549 cells
interacting protein
(TXNIP) pathway

UA inhibits F-actin inhibiting the 91)

formation by proliferation,

decreasing the migration, and
invasion of

A549 cells.

protein level of
TMSBI0, thereby

potential therapeutic benefits, including in colorectal cancer
[NCT03072641]. Of particular relevance to NSCLC, CJRB-101—
an LBP containing Catenibacterium mitsuokai—has shown
antitumor activity in humanized NSCLC mouse models when
combined with pembrolizumab. Mechanistically, CJRB-101
reprograms M2 macrophages into M1 macrophages co-expressing
CXCL9 and CXCL10, thereby enhancing CD8" T-cell activation
and augmenting antitumor immune responses (78).

4.2 Supplementation with metabolites

Characterizing the microbiota and metabolomic profiles of
patients provides opportunities to target microbiota-derived
metabolites that modulate the tumor microenvironment (TME)
(79). These metabolites can influence NSCLC progression and
shape the antitumor activity of host immune cells. For example,
the gut microbiota generates short-chain fatty acids (SCFAs), which
not only exert direct antitumor effects but also enhance immune
system function (80).

4.2.1 SCFAs

In immunotherapy for NSCLC patients, specific intestinal flora
can enhance T-cell responses and activate anti-tumor immune
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FIGURE 2

Gut microbiota-derived metabolites and probiotics improve NSCLC treatment efficacy. Specific gut microbiota and their metabolites modulate host
immune responses and impact the efficacy of anti-tumor therapies in NSCLC. These findings highlight the therapeutic potential of microbiota-
derived interventions in improving therapeutic outcomes in NSCLC. SB, Sodium butyrate; SP, Sodium propionate; UA, Urolithin A; GPs, Ginseng

polysaccharides.

mechanisms through metabolites to improve therapeutic efficacy
(81, 82). Studies have demonstrated that the diversity of gut
microbiota and short-chain fatty acids (SCFAs) is closely
associated with the efficacy of immunotherapy (83). Metagenomic
analyses reveal significant differences in metabolic pathways, with
favorable responders exhibiting enhanced SCFA production. In
murine models, fecal microbiota transplantation (FMT) and
SCFA supplementation improved therapeutic outcomes by
promoting effector T-cell activity within tumors (84).

Serum butyrate levels were positively correlated with the
expression of programmed cell death-1 (PD-1) on circulating

Frontiers in Immunology

CD8 T cells and VY9 V&2 (V82) T cells from NSCLC patients.
Butyrate increased histone 3 lysine 27 acetylation (H3K27ac) in the
promoter region of Pdcdl and CD28 in human CD8 T cells, thereby
promoting PD-1/CD28 expression and enhancing the efficacy of
anti-PD-1 therapy (Table 2, Figure 2) (85). A study found a
significant positive correlation between Streptococcus and CD8 T
cell abundance, with the gut metabolite butyrate promoting the
efficacy of anti-PD-1 immunotherapy by modulating TCR signaling
in cytotoxic CD8 T cells (Table 2) (86). Butyrate supplementation
also promotes the expression of anti-tumor cytokines in cytotoxic
CD8 T cells through the T cell receptor (TCR) signaling pathway
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(Figure 2) (87). Another study highlighted the potential of sodium
butyrate in inhibiting lung cancer cell growth, triggering apoptosis,
inducing cell cycle arrest, and modulating the immune response
through activation of peripheral blood CD4" T cells while
selectively inducing IFN-y-R1 in peripheral blood NK cells and
inhibiting CD8" T cells and NK cells. Sodium butyrate’s mechanism
of action in the tumor microenvironment and its effects on the
immune system offer valuable insights into its potential as an
adjuvant therapy for NSCLC (83). In mice, sodium butyrate was
shown to affect the proliferation and migration of A549 cells
through the activation of the TNF receptor-associated factor 6
(TRAF6)-thioredoxin-interacting protein (TXNIP) pathway,
suggesting that sodium butyrate has an effective therapeutic effect
on lung adenocarcinoma (Table 2) (88). Sodium propionate (SP)
also inhibits the proliferation of lung cancer cells by inducing
apoptosis and cell cycle arrest (11). Lower concentrations of
circulating SCFAs in lung cancer patients may affect the host
immune response (89). A study establishing associations between
the gut microbiome and its metabolites, and SCFAs in NSCLC
patients in early and brain metastatic stages suggests that specific
forms of the gut microbiome and SCFAs may be of value in the
treatment of NSCLC (90).

4.2.2 Other metabolites

Urolithin A (UA), a natural compound produced by the gut
microbiota through the metabolism of the polyphenols ellagitannin
(ET) and ellagic acid (EA), has been found to inhibit epithelial-
mesenchymal transition (EMT) in NSCLC cell lines. UA inhibits F-
actin formation by decreasing the protein level of TMSB10, thereby
inhibiting the proliferation, migration, and invasion of A549 cells.
Contributing to the treatment of NSCLC (Table 2, Figure 2) (91).
Baicalin is a metabolite that modulates the gut microbiota, exerting
its effects through the regulation of short-chain fatty acids (SCFAs).
Baicalin enhances the PD-1 (CD8" T cell/Treg) balance and
mitigates resistance to anti-PD-1 therapy (92).

The tryptophan-kynurenine (Trp-Kyn) metabolic axis,
primarily regulated by indoleamine 2,3-dioxygenase 1 (IDO1) and
tryptophan 2,3-dioxygenase (TDO), exerts a profound influence on
dendritic cell antigen presentation and T-cell priming through
tryptophan depletion and kynurenine accumulation. This
metabolic reprogramming fosters an immunosuppressive tumor
microenvironment that promotes immune tolerance and facilitates
tumor immune evasion (93, 94). Among the major metabolic
pathways implicated in NSCLC immunomodulation—including
short-chain fatty acid (SCFA) and bile acid metabolism—the
Trp-Kyn axis demonstrates the most direct mechanistic linkage
to impaired antigen presentation and reduced T-cell activation.
Moreover, tumor genotypes such as EGFR and KEAP1 mutations
may further modulate IDO1/TDO activity, influencing immune
resistance and responsiveness to immune checkpoint inhibitors
(ICIs) (95). Consequently, targeting the Trp-Kyn pathway
represents a promising strategy to enhance the efficacy of ICIs
and overcome immune escape in NSCLC (96).
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4.3 Fecal microbiota transplantation

To date, microbiome-metabolite (ME) research in oncology has
primarily focused on the impact of gut microbiota composition on
the efficacy of ICIs. Variations in the relative abundance of
individual microbial strains and overall microbial diversity in
patients undergoing ICI therapy appear to correlate with
treatment outcomes (97). FMT has potential therapeutic benefits,
particularly in converting non-responders to NSCLC treatment into
responders. Fecal transplantation from anti-PD-1-responsive
patients to non-responsive NSCLC patients increased treatment
response rates without increasing toxicity (43, 57, 98). Akkermansia
muciniphila (AKk) has been associated with the clinical benefits of
ICIs in NSCLC patients, and the relative abundance of Akk may
serve as a reliable biomarker for predicting good or poor prognosis
in patients receiving PD-1 blockade immunotherapy, refining
patient stratification in future studies (99). Akk enrichment
modulation enhances immune responses through fecal microbiota
transplantation in patients benefiting from immune checkpoint
blockade (100). In animal experiments, the relative abundance of
Akk predicted clinical response to PD-1 blockade in NSCLC
patients. Mice receiving FMT, negative for Fusobacterium
tachyzoites, exhibited tumor resistance to PD-1 blockade (15).
RNA later preserved stool samples were collected from 65 pre-
treatment (baseline) and post-treatment stage III/IV NSCLC
patients treated with ICI and classified as responders or non-
responders according to RECIST criteria. Mixed and individual
responder and non-responder microbiota were transplanted into a
gnotobiotic mouse model of lung cancer and treated with ICI, while
patient fecal samples were subjected to 16S rDNA and RNA
sequencing, which demonstrated that responding patients had a
different microbial community structure (P=0.004) and a different
bacterial transcriptome (PC2=0.03) at baseline. Taxa significantly
enriched in responders included amplicon sequence variants
(ASVs) belonging to the genera Rumococcus, Akkermansia
muciniphila, and E. faecalis. Transplantation of mixed and
individual responding microbiota into gnotobiotic mice reduced
tumor growth compared to non-responding colonized mice after
ICI use (P=0.023, P=0.019, P=0.008, respectively), showing an
increased tumor CD8 ™ IFN y * T-cells and CD4" CXCR3"T-cells
phenotype after ICI treatment. Responding mice were enriched
with ASV belonging to the genera Mpycobacterium, Blautia,
Akkermannia and E. faecalis (101). However, many FMT studies
have reported only limited methodological descriptions, details of
mouse cohorts, and statistical methods. One study performed
human-to-germ-free mouse FMT using fecal samples from
NSCLC patients with pathological response or no response after
neoadjuvant ICI treatment, which produced greater anti-tumor
responses in R-FMT mice in combination with anti-PD-L1
therapy compared to NR-FMT, detailed study of the mouse
microbiota after FMT using 16S rRNA amplicon sequencing, and
use of models for the biological variables were classified and
corrected, revealing that the most abundant taxa were shared
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between human inoculum and mice, although low abundance
human taxa were more variable in post-FMT colonized mice.
Multiple Clostridium spp. were also associated with tumor
outcome in individual anti-PD-L1-treated R-FMT mice (102).
Research on Fecal Microbiota Transplantation (FMT) would
benefit from well-designed large-scale studies that incorporate
extensive metadata and standardized bio-sample collection. Such
efforts are crucial to minimize noise in downstream multi-omics
analyses and to ensure robust long-term follow-up to address
potential safety concerns. The results of these studies could guide
targeted experimental designs to explore the underlying
mechanisms of FMT clinical outcomes and may ultimately lead to
the personalized matching of donor and recipient characteristics to
achieve optimal therapeutic success (103). Although FMT may be a
promising therapeutic option, the risk of bacterial translocation
(including antibiotic-resistant bacteria) and sepsis in patients
remains a significant safety concern, and studies have been
conducted that discuss sepsis due to FMT (104-106). The most
feasible translational approach from whole-stool FMT toward safer
and standardized microbiome-based therapies involves progressive
refinement from complex donor-derived consortia to defined
microbial communities and, ultimately, purified microbial
metabolites with validated bioactivity (107, 108). Microbial
ecosystem therapy (MET), comprising selected, well-characterized
commensal strains, represents a key intermediate strategy that
maintains ecological functionality while improving safety and
reproducibility (109, 110). Preserving therapeutic efficacy along
this continuum requires retention of crucial host-microbe
interactions that regulate immune homeostasis (111). Therefore,
future microbiota-targeted interventions should emphasize context-
dependent functionality to achieve both safety and sustained
immunotherapeutic benefit in NSCLC treatment.

4.4 Dietary interventions

Castalagin is a polyphenol that enhances resistance to PD-1. In
their study, Messaoudene et al. reported that oral supplementation
with polyphenol-rich berry camu-camu (CC; Myrciaria dubia)
altered the gut microbial composition, leading to antitumor activity
and a stronger anti-PD-1 response. Castalagin improved the CD8
+/FOXP3+CD4+ ratio in the tumor microenvironment. Moreover,
castalagin induced metabolic changes, resulting in an increase level of
taurine-conjugated bile acids. Ruminococcus-rich NSCLC responders
were found to be able to metabolize castalagin (112, 113). Patients
should be advised to minimize animal meat intake and increase plant
intake where possible, aiming for 30 plants per week. High fiber
intake (>30 g/day) is thought to increase the chances of response to
immunotherapy in NSCLC (114). Methionine regulates tumor
immunity by modulating the activity of cyclic GMP-AMP synthase
(cGAS), so the tumor immune response can be improved by
controlling dietary methionine intake (115). Ginseng
polysaccharides (GPs) are one of the most abundant constituents of
ginseng, and GPs increase the antitumor response to oPD-1 mAb by
inhibiting the metabolite kynurenine/tryptophan ratio, which
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contributes to the suppression of regulatory T-cells and the
induction of Teff cells following combination therapy, enhancing
the antitumor effects of immunotherapy (116). Specific diets directly
or indirectly alter the intestinal flora and metabolism of NSCLC
patients and increase the clinical efficacy of NSCLC.

In recent years, relevant clinical trials have been conducted
around simulated fasting diets, high-fiber diets, nutritional
supplements and other related trials, which have either
maximized the therapeutic efficacy of NSCLC treatments or
maximized the benefits for patients (117).

5 Role of gut microbiota and
metabolites in NSCLC treatment and
prognosis

5.1 Baseline microbiome as a predictive
biomarker

As previously discussed, immunotherapy plays a crucial role in
the treatment of NSCLC. Numerous studies have collected plasma
and stool samples from patient cohorts prior to initiating
immunotherapy, performing metabolomic and microbiome
analyses (118, 119). The results obtained after enrichment are
referred to as baseline microbiome characteristics. From a
metagenomic perspective, enrichment of Akkermansia may be
indicative of favorable prognosis in patients undergoing PD-1
blockade immunotherapy, offering potential for improved patient
stratification in future studies (99). Akkermansia muciniphila, a
mucin-degrading commensal bacterium, exemplifies the context-
dependent functionality of microbiota-based interventions. Under
conditions of adequate mucin renewal and minimal antibiotic
disturbance, it reinforces gut barrier integrity and immune
regulation (120, 121). However, in states of mucin depletion,
chronic inflammation, or dysbiosis, its activity may shift from
protective to deleterious, aggravating intestinal damage and
immune dysregulation (122). These findings underscore the
necessity of designing microbial consortia and derived metabolites
that maintain host-microbe symbiosis and ensure both safety and
therapeutic efficacy in diseases such as NSCLC (120, 122).

Additionally, metabolomic analyses suggest that patients
enriched with baseline short-chain fatty acids (SCFAs) may derive
long-term benefits from immunotherapy (90). The close link
between microbiota and metabolites at baseline not only provides
novel insights for clinical stratification but also opens new avenues
for clinical translation (86). For instance, some studies have
demonstrated SCFA enrichment via metabolomic profiling and
verified the presence of microbiota producing SCFAs as a baseline
marker for therapeutic efficacy. In parallel, other studies have
enriched baseline microbiota and subsequently identified
corresponding metabolites, confirming the therapeutic benefits of
these metabolites at baseline enrichment (92).

In summary, baseline microbiome and metabolite
characteristics have been explored in existing research, and many
clinical trials have since emerged, contributing to this growing field.
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TABLE 3 Therapeutic and prognostic application potential in NSCLC patients.

NCT numbers

Title

Conditions

Intervention Enrollment

10.3389/fimmu.2025.1638942

Outcome message

NCT Association Between Microbiome NSCLC (Stage Neoadjuvant Immunotherapy 20 respiratory and gut
06613308 and the Efficacy and Safety of PD-1/  IIA-IIIB) combined with chemotherapy microbiome
PD-L1 Blockade in Resectable and samples
NSCLC Neoadjuvant chemotherapy relations between respiratory
and gut microbiome
NCT Microbiota and the Lung Cancer NSCLC chemotherapy and surgery 40 samples of blood, saliva, feces,
03068663 (MICA) (Pct-chir). lung/tumor tissue, and
surgery (Pchir). bronchoalveolar lavage fluid.
NCT Prospective Evaluation of NSCLC 15 fractions of radiotherapy 40 Stool and Blood Sample Bank
05027165 Immunological, Molecular-genetic, for Patients
Image-based and Microbial Analyzes
to Characterize Tumor Response
and Control in Patients With
Inoperable Stage ITII NSCLC Treated
With Chemoradiotherapy Followed
by Consolidation Therapy With
Durvalumab
NCT Assess Diversity of Gut Microbiome | NSCLC Treatment with PD1/L1 82 Stool and saliva samples
06221800 in Met NSCLC in Correlation to Tx monotherapy
& Adverse Effects with PD1/L1 and
chemotherapy
and with Tyrosine Kinase
Inhibitor
NCT The Gut Microbiome and Immune NSCLC, MM, anti-PD-1, anti-PD-L1, or anti- = 800 Microbiome samples
05037825 Checkpoint Inhibitor Therapy in RCC, and CTLA-4 as a single agent or in and Blood samples
Solid Tumors (PARADIGM) TNBC; any combination with another
stage checkpoint inhibitor or other
treatment agent
NCT ARGONAUT: Stool and Blood advanced-stage  checkpoint inhibitor therapy 5000 Stool and Blood Sample Bank
04638751 Sample Bank for Cancer Patients cancer for the first time. for Patients
NCT Development and Analysis of a Stool = Cancer Any checkpoint inhibitor 100 Stool, blood, and urine
04291755 Bank for Cancer Patients specimens
NCT Identification of a Predictive NSCLC 20 treated by an ICI in first 60 Immune signature in serum
04189679 Metabolic Signature of Response to line and 40 treated by an ICI in associated to the metabolic
Immune Checkpoint Inhibitors in second and third line signature
Non-Small Cell Lung Carcinoma Meta-genomic signature of
(METABO-ICI) intestinal flora
NCT Gut Microbiota and Cancer NSCLC — 50 Blood samples and stool
04682327 Immunotherapy Response samples.
NCT Analysis of Gut Microbiota in NSCLC Pembrolizumab Combined 40 Species and abundance of gut
04333004 Patients With Brain Metastasis of With Chemotherapy microbiota
Non-small Cell Lung Cancer Treated
by Pembrolizumab Combined With
Chemotherapy
NCT BioForte Technology for in Silico NSCLC Routine immunotherapy 100 Collection of stool, blood
04136470 Identification of Candidates for a (PBMC) and biopsy (FFPE)
New Microbiome-based
Therapeutics and Diagnostics
NCT Gut Microbiota Reconstruction for NSCLC EMT 20 analyze the effect of FMT on
05008861 NSCLC Immunotherapy intestinal flora and
immunophenotype of patients.
NCT Responder-derived FMT (R-FMT) NSCLC FMT with Pembrolizumab 26 OS, PFS and CD8+ TIL and
05669846 and Pembrolizumab in Relapsed/ intra-tumoral myeloid cell
Refractory PD-L1 Positive NSCLC density
NCT Establishment of the Human NSLSC — 50 Biological sample collection,
04698161 Intestinal and Salivary Microbiota Questionnaire and Medical

Biobank - Oncologic Diseases
(BIOMIS-Onco)

examination
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Microbiota-based strategies in the prognosis and treatment of NSCLC. Patients undergoing standard treatment modalities—such as immunotherapy,
chemotherapy, radiotherapy, and surgery—provide stool and blood samples, from which gut microbiota and metabolites are analyzed. Subsequent
sequencing and computational analysis identify microbial and metabolic biomarkers associated with treatment response and survival outcomes. As
part of the clinical trial NCT05669846, patients receive anti-PD-1 therapy for 35 days. Fecal microbiota transplantation (FMT) is used to transfer gut
microbes from responders (R) to non-responders (NR), followed by pembrolizumab treatment. This strategy aims to improve immune checkpoint

inhibitor (ICl) efficacy and enhance progression-free and overall survival.

5.2 Gut microbiota and metabolites in
NSCLC clinical trials

Numerous clinical trials have focused on the role of gut
microbiota and metabolites in various treatment modalities for
NSCLC, examining their impact on treatment efficacy and
prognosis. These studies underscore the importance of analyzing
dynamic changes in the gut microbiota throughout the course of
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treatment, with specific microbial and metabolic alterations
observed after a certain duration of therapy. By exploring the
modulation of specific microbiota, these studies suggest that
manipulating the microbiome could enhance NSCLC treatment
outcomes. Such findings are poised to drive major breakthroughs in
future NSCLC therapies.

[NCT03068663] A study grouped 40 patients with NSCLC, 20
patients were treated with surgery only, while the other half also

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1638942
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Jiao et al.

received chemotherapy. The main aim was to explore changes in the
lung, upper respiratory tract and intestinal microbiota and
potentially find an association between the flora and the
prognosis of patients treated. [NCT06221800] Another study was
conducted to collect data on the dynamics of the gut microbiome of
82 subjects with advanced/metastatic NSCLC (NSCLC) during
treatment with NSCLC. The subjects were classified into 3
groups: anti-PD-1 monotherapy, anti-PD-1 combination
chemotherapy and TKIs. therapy, anti-PD-1 combination
chemotherapy therapy and TKIs therapy and analyzed the
diversity and composition of the gut microbiome of the subjects
during the treatment of NSCLC to provide reference for the efficacy
of NSCLC treatment [NCT05669846]. Suitable patients will be
identified at progression on PD-1 monotherapy or PD-1-
containing regimens and patients will undergo a 35-day screening
assessment. Following enrolment, patients will be serum matched to
suitable donors and patients will receive R-FMT (induction) via
colonoscopy on CID1 and C3D1. R-FMT (maintenance) by
sigmoidoscopy on C4D1 will be repeated every 9 weeks. All
patients will receive an additional 200mg of pembrolizumab every
3 weeks and patients will be treated until disease progression or
intolerance of toxicity or completion of 2 years of treatment (Table
3, Figure 3).

These clinical trials involve large cohorts and feature robust
experimental design, with open results providing valuable insights
into the relationship between gut microbiota, treatment efficacy,
and patient outcomes. For further details and updates,
clinicaltrials.gov is a useful resource.

6 Conclusion and future directions

As the importance of gut microbiota in disease development
and treatment continues to be unveiled, increasing attention is
being directed toward the role of gut microbiota and its metabolites
in NSCLC therapy (123). NSCLC patients who achieve long-term
survival exhibit distinct gut microbiota compositions. Patients with
favorable prognoses typically possess a more diverse and abundant
gut microbiome, and this diversity is closely linked to the activation
of antitumor immune responses. For instance, high abundances of
Bacteroidetes, Firmicutes, and certain lactobacilli are associated with
improved immune responses and prolonged survival in NSCLC
patients (18, 74). Conversely, a high abundance of Proteobacteria is
associated with reduced efficacy of immunotherapy, and
Helicobacter pylori seropositivity correlates with poorer survival
in NSCLC patients receiving anti-PD-1 therapy (124).

Exogenous interventions hold promise in elucidating the
complex mechanisms by which gut microbiota influence NSCLC
treatment outcomes. First, drugs can induce dysbiosis by altering
gut barrier function, thus affecting the efficacy of cancer treatments
cancer therapy research (125, 126). Furthermore, preliminary
studies on probiotics, fecal microbiota transplantation (FMT),
and specific engineered strains have demonstrated potential to
enhance the response to immunotherapy in NSCLC patients
(127). FMT, by reintroducing beneficial gut microbiota, offers
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hope for treating NSCLC patients who are resistant to
conventional therapies. Despite the challenges in standardizing
FMT protocols, and the inherent individual variability in
microbiome composition and response to interventions, the
ethical considerations surrounding microbiome-based therapies
require significant advancements. The intervention of gut
microbiota remains in the research phase, necessitating further
clinical trials to validate its efficacy (128). As such, exploring how
to manipulate gut microbiota composition to achieve more efficient
and less toxic treatment strategies remains a crucial direction in
cancer treatment research.

The relationship between gut microbiota and treatment
outcomes is multifactorial and complex. Current research primarily
focuses on macro-level microbiome composition, lacking in-depth
investigation into specific microbial populations and their
metabolites. To date, accurately tracking dynamic changes in the
microbiome remains challenging, and a deeper understanding of the
mechanisms by which specific microbes influence therapy is needed.
This review primarily focuses on metagenomic sequencing,
metabolomic profiling, and 16S rRNA sequencing to explore the
specific roles of gut microbiota in NSCLC treatment. Future research
should integrate finer techniques, such as single-cell sequencing and
spatial transcriptomics, to establish connections from the disease and
immune microenvironment perspective (129, 130). Ultimately, gut
microbiota intervention is expected to become a routine component
of NSCLC treatment, providing new therapeutic avenues for cancer
immunotherapy, chemotherapy, and targeted therapy. With
advancements in technology and the progression of clinical trials,
we are optimistic that gut microbiota will become a crucial factor in
NSCLC treatment, driving cancer therapy towards more personalized
and precision-based approaches.
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