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Background: Air pollution may crosstalk with immune system to promote
hepatocellular carcinoma (HCC) development, but its precise mechanisms and
prognostic significance remain unclear.

Objective: This study aims to construct a prognostic signature for HCC based on
air pollutant-related immune genes (APIGs).

Methods: We obtained mRNA-seq and scRNA of HCC from GEO, TCGA and
ICGC. AP-related target genes were retrieved from several online databases.
APIGs were obtained using WGCNA, differential gene expression analysis and
immune infiltration analysis. Molecular subtypes were conducted based on APIG
expression to characterize immune features. A total of 101 combinations of 10
machine learning algorithms were used to construct an APIG-based prognostic
signature (APIGPS). Furthermore, we performed gRT-PCR, survival analyses,
functional enrichment, immune infiltration and single-cell analyses.
Subsequently, LASSO, RF, and RFE-SVM were employed to identify diagnostic
genes, followed by pan-cancer analysis.

Results: We identified 19 APIGs. HCC samples were divided into 3 subtypes, with
C1 exhibiting a pro-tumor immune microenvironment and poorer prognosis.
APIGPS constructed by 7 APIGs (CDC25C, MELK, ATG4B, SLC2A1, CDC25B,
APEX1, GLS), demonstrated robust predictive ability independent of clinical
features. The biological pathway differences between APIGPS-based high- and
low-risk groups involved immune responses and cell proliferation and migration.
APIGPS genes had stable binding to 7 APs and were mainly expressed in
macrophages, with HRG exhibiting higher macrophage abundance. CDC25C
was identified as the hub gene after intersecting diagnostic genes and APIGPS
genes. CDC25C was associated with survival of 10 cancers, MSI in 10 cancers,
TMB in 21 cancers, and immune cell abundance in 13 cancers.
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Conclusions: We identified key APIGs and constructed a robust APIG-based
prognostic signature for HCC. CDC25C was a key target through which APs
impact HCC and multiple other cancers.
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Introduction

The acceleration of global industrialization has exacerbated air
pollution, contributing to the onset and progression of various
cancers. Air pollutants (APs) and other extrinsic factors account for
70% to 90% of lifetime risk of cancers (1). In 2019, air pollution-
related neoplasms caused an estimated 387.45 million death cases
globally. And the number of death cases were expected to rise to
559.02 million by 2025 (2). Exposure to pollutants such as PM, s,
nitrogen dioxide (NO,), SO, and ozone (O3) has been strongly
associated with the incidence and mortality of multiple cancers,
including lung, kidney, colon, bladder cancers, and hepatocellular
carcinoma (HCC). However, their exact mechanisms, especially for
HCC, remain incompletely understood (3-5).

Air pollution may influence HCC development and prognosis
by modulating immune system function. The prognosis for HCC
remains poor, with a 5-year survival rate ranging from 13% to 36%
from early to advanced stages (6). Among chronic hepatitis B
patients treated with nucleotide/nucleoside analogue therapy, air
pollution has been associated with an increased risk of developing
HCC (7). For every 5.0 ug/m’ increase in PM2.5, the hazard ratio
for HCC all-cause mortality increased by 1.18 (8). Studies in both
animal models and humans suggest that inhalation of APs—such as
nitrogen oxides and volatile organic compounds—is associated with
hepatic dysfunction. Air pollution may also promote inflammatory
responses through immune system crosstalk, enhancing the
secretion of pro-inflammatory cytokines such as TNF-o, IL - 6,
and IL - 1B (9). However, the precise mechanisms by which air
pollution drives HCC via immune modulation remains elusive
Based on these studies, we hypothesize that air pollution
contributes to HCC progression by modulating tumor immune
responses, and that specific air pollutant-related immune genes
(APIGs) could serve as valuable diagnostic and prognostic
biomarkers. To investigate this, we sought to identify key APIGs
and elucidate their biological functions, prognostic significance, and
potential therapeutic relevance in HCC.

In this study, we obtained AP-related target genes through
network toxicology, and obtained APIGs using weighted gene co-
expression network analysis (WGCNA), differential gene
expression analysis and immune infiltration analysis. Machine
learning algorithms were used to construct a prognostic signature
(APIGPS) and validate its predictive performance. Based on the
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APIGPS, we performed nomogram construction, qRT-PCR,
immune infiltration, tumor mutation burden, drug sensitivity,
and single-cell analyses. To further explore the potential link
between APs and HCC pathogenesis, we further identified
diagnostic biomarkers to obtain potential hub genes with both
diagnostic and prognostic utility, and performed pan-
cancer analysis.

Methods
Data collection and processing

Figure 1 presents the research flowchart. We obtained HCC
RNA-seq, scRNA-seq, and clinical information from The Cancer
Genome Atlas (TCGA; 374 HCC cases; https://
portal.gdc.cancer.gov/vl) and the Gene Expression Omnibus
(GEO)as the training set. The International Cancer Genome
Consortium (ICGC; 233 HCC cases; https://docs.icgc-argo.org/
docs/data-access/icgc-25k-data) was used as an external validation
set(). We obtained 16206 immune-related genes from GeneCards
(www.genecards.org; search term: immune system, score: 1, type:
coding; Supplementary Table SI).

Chemical structures of 7 APs were retrieved from the PubChem
database (https://pubchem.ncbinlm.nih.gov/). First, we assessed
their carcinogenicity using ADMETLAB 3.0 (https://admetlab3.
scbdd.com) and ProTox3 (https://tox.charite.de/protox3). If the
result from either database was above 0.5, we considered it
indicative of carcinogenicity. Then we obtained human target
genes for these compounds using four databases: the SuperPred
database (https://prediction.charite.de/; Species: Human;
Probability > 50%), Swiss Target Prediction database (http://www.
swisstargetprediction.ch/; Species: Human), STITCH database
(http://stitch.embl.de/; Organism: Human; score > 0.5), and the
SEA database (https://sea.bkslab.org/; Species: Human; P < 0.05).

Weighted gene co-expression network
analysis

Weighted Gene Co-expression Network Analysis (WGCNA)
was used to construct gene co-expression networks, identify gene
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FIGURE 1

Research flowchart. We utilized multiple databases to obtain AP targets and immune-related targets. Through WGCNA, differential gene expression
analysis, and immune infiltration analysis, we identified APIG. Based on these APIG, we constructed the APIGPS and conducted qRT-PCR validation
(*=P < 0.05; **=P < 0.01; ***=P < 0.001), survival analysis, immune infiltration assessment, drug sensitivity analysis, tumor mutation burden,
nomogram, single-cell analysis, and potential functional enrichment analysis. Subsequently, diagnostic biomarkers were screened based on AP
targets and intersected with APIGPS to identify hub gene, followed by pan-cancer analysis.

modules with highly coordinated expression patterns, and evaluate
module-phenotype relationships. To identify immune genes
significantly associated with HCC, we first removed genes with a
standard deviation of expression level < 0.5. The optimal soft
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threshold was determined with a scale-free R* of 0.9. We then
converted the adjacency matrix into a topological overlap matrix,
and calculated the corresponding dissimilarity (1-TOM).
Subsequently, gene modules were identified using dynamic tree
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cutting and hierarchical clustering (cut height = 0.1, minimum
module size = 100).

Identification of APIGs

We conducted differential gene expression analysis on the
16206 immune-related genes to obtain differentially expressed
genes (DEGs) with |log, fold change (FC)| > 1 and FDRq < 0.05.
APIGs were obtained by intersecting the identified module genes,
DEGs, and AP target genes. To evaluate their correlations with the
immune features of HCC, we used the CIBERSORT algorithm
(https://CIBERSORT stanford.edu/) to estimate the infiltration
abundance of 22 immune cells in HCC. CIBERSORT uses a
deconvolution algorithm to infer cell-type abundances from a
complex tissue based on a signature matrix of gene expression
profiles. Subsequently, Pearson test was used to assess the
correlation between APIGs and the abundance of 22 immune
cells. |r| > 0.3 and p < 0.05 denotes a potential correlation.

Clustering analysis

Based on the expression of APIGs, clustering analysis was
conducted to identify molecular subtypes. We used the
“ConsensusClusterPlus” R package with Partitioning Around
Medoids (PAM) algorithm and Euclidean distance; 80% of the
samples were resampled for 10 repetitions. The optimal number of
clusters (k) was determined by cumulative distribution function
(CDF) plot and average cluster consensus. Principal component
analysis (PCA) was conducted to visualize the spatial distribution of
subtypes by projecting gene expression data onto principal
components (PCs) for dimensionality reduction.

Functional and pathway enrichment
analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted using the
“clusterprofiler” R package. We also performed gene set variation
analysis (GSVA) to evaluate differentially enriched pathways across
samples. Additionally, GeneMANIA (https://genemania.org/) was
used for functional network-based enrichment analysis.

Construction and validation of APIGPS

We used the “sva” R package to remove batch effects in the
TCGA and ICGC sets, and then performed univariate COX analysis
on the TCGA set to obtain APIGs significantly associated with
HCC survival.

Using 10-fold cross-validation, 10 machine learning algorithms—
least absolute shrinkage and selection operator (LASSO), Ridge,
StepCox, CoxBoost, random survival forest (RSF), generalized
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boosted regression modeling (GBM), survival support vector
machine (survival-SVM), supervised principal components
(SuperPC), elastic net (Enet), and partial least squares regression
for Cox (plsRcox)—were applied to screen variables to construct 101
APIGPS models. HCC samples with fewer than 20 days of survival
and models with fewer than 5 genes were excluded. The optimal
model was determined based on the average C-index value. HCC
patients were then stratified into high-risk group (HRG) and low-risk
group (LRG) according to risk scores calculated through linear
combination formula. Subsequently, we performed univariate and
multivariate COX analysis, K-M survival analysis, clinical ROC curve,
temporal ROC curve, and risk curve using “survival”, “survminer”,
and “timeROC” R package to further assess the predicative
performance of APIGPS. p < 0.05 and the area under the curve
(AUC) > 0.5 were considered significant.

Correlations with clinical features and
nomogram construction

To evaluate the associations between APIGPS and clinical
features, we performed chi-square tests followed by K-M survival
analysis. Subsequently, we constructed a nomogram using the “rms”
R package and evaluated the associations between the nomogram
score and HCC survival. C-index value was used to evaluate the
consistency of the predicted values and the observed values.
Univariate and multivariate COX analyses were used to assess the
independent predictive performance of the nomogram, ultimately
providing a tool for individualized survival prediction in different
HCC patients.

Immune-related and drug sensitivity
analyses

We used CIBERSORT to compare the differences in the
infiltration abundance of 22 immune cells between the HRG and
LRG. To further validate these differences and evaluate the
correlation between APIGPS and immune cell infiltration, we
applied 6 additional algorithms, including QUANTISEQ, TIMER,
MCPCOUNTER, CIBERSORT-ABS, EPIC, and XCELL. To
evaluate immune microenvironment differences between the HRG
and LRG, we performed single-sample gene set enrichment analysis
(ssGSEA) using the “GSVA” R package, assessing the enrichment
scores of 29 immune traits (16 immune cells and 13 immune
functions). Based on predefined gene sets, ssGSEA ranks genes
according to their expression levels and calculates enrichment
scores for individual samples by evaluating the cumulative
distribution and weighted enrichment of genes within the set,
allowing quantification of the relative activity of specific immune
cells in samples.

Next, we utilized the Tumor Immune Dysfunction and
Exclusion (TIDE) (http://tide.dfci.harvard.edu/) to assess the
immune escape ability of HRG and LRG, where higher scores
correlate with poorer response to immunotherapy. Additionally,
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we obtained the Immuno-Phenoscore (IPS) for HCC patients from
the TCIA database, with higher score indicating greater
immunotherapy sensitivity. Finally, we leveraged TISIDB (https://
cis.hku.hk/TISIDB/index.php) to obtain immune checkpoint genes
and assess their differential expression between HRG and LRG, as
well as their association with APIGPS in the context of
immunotherapy response.

To identify highly sensitive drugs in the HRG and LRG, we used
the “oncoppredict” R package to evaluate their sensitivity to 198
FDA-approved drugs. Drug sensitivity was quantified by half
maximal inhibitory concentration (IC50), with lower values
indicating higher sensitivity.

Tumor mutational burden analysis

To investigate the link between AP target mutations and
APIGPS, we conducted mutation analysis on the 7 AP target
genes. Based on the cutoff value, the patients were divided into
TMB-high and TMB-low groups, which were then combined with
APIGPS for survival analysis. The “maftools” package was used to
visualize the top 20 genes with the highest mutation frequencies.

Single cell analysis

We obtained scRNA-seq data from GEO (GSE210679 and
GSE149614) for 11 HCC cases. Data preprocessing was
performed using the “Seurat” R package; the percentage of
mitochondrial genes was calculated using PercentageFeatureSet.
Quality control criteria were: nFeature = 500 - 6000, nCount =
2000 - 40000, and percent.mt < 25. Batch effects were corrected
using the “Harmony” package, and PCA were used for dimension
reduction, respectively. The top 10 PCs were used for cell clustering
via “FindNeighbors” and “FindClusters” functions. Visualization
was realized by Uniform Manifold Approximation and Projection
(UMAP). Cell type annotation was performed using the “SingleR”
package with reference to five human hematopoietic datasets from
the “celldex” package (BlueprintEncodeData,
MonacolmmuneData, and NovershternHematopoieticData).
Furthermore, we performed cell-cell communication analysis
using the “CellChat” package, based on ligand-receptor pairs
from the CellChat database. Finally, we performed pseudotime
trajectory analysis of macrophages using the “monocle” R
package, and calculated gene set scores using the
AddModuleScore function from the Seurat package.

Molecular docking
We obtained protein structures of APIGPS genes from the

Alphafold (https://alphafold.ebi.ac.uk/) and PDB (https://
www.rcsb.org/) databases. Molecular docking analysis was
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performed using the CB-Dock2 (https://cadd.labshare.cn/), which
predicts binding affinity based on structural complementarity.
Lower binding energy indicates stronger, more stable
binding affinity.

Identification of hub genes

To further identify key markers with dual diagnostic and
prognostic values, we used LASSO, SVM-RFE and RF to screened
APIGPS genes based on 10-fold cross-validation. AUC was used to
evaluate the diagnostic performance of these genes. LASSO
incorporates L1 regularization and the tuning parameter A
(lambda) to control penalty strength. LASSO can shrink the
coefficients of redundant features to zero to produce sparse
modeling in high-dimensional datasets, which can help identify
the most predictive features in disease prediction. SVM-RFE is a
feature selection algorithm that combines Support Vector Machine
and Recursive Feature Elimination. Its core idea is to use the weight
coefficients in the SVM model to rank features and eliminate the
least important features iteratively, thus progressively optimizing
the feature subset and ultimately the most critical features for
improving classification performance. By combining random data
sampling and random feature selection, RF constructs multiple
decision trees and combines their predictions to select feature genes
for disease prediction.

Pan-cancer analysis of the hub gene

Given the widespread impact of APs on the survival of various
cancers, we performed pan-cancer analysis using mRNA-seq data of
33 cancers retrieved from the UCSC database (https://
xena.ucsc.edu/). We examined the expression level of the hub
gene in 33 cancers and the association with immune infiltration,
pan-cancer survival, tumor mutational burden (TMB), and
microsatellite instability (MSI).

gRT-PCR and immunohistochemistry

The cell lines (THLE - 2, HepG2) were purchased from the
Institute of Cell Research, Chinese Academy of Sciences. Total RNA
was isolated using Trizol reagent following the manufacturer’s
instructions (Invitrogen, 1596 - 026). cDNA was synthesized
using a reverse transcription kit (Fermentas, #K1622).
Quantitative real-time PCR (qRT-PCR) was conducted with the
SYBR Green kit (Thermo, #K0223). GAPDH served as the internal
control for normalization. The primer sequences are provided in
Supplementary Table Sé6.

Immunohistochemical (IHC) results for normal people and
HCC patients were obtained from the Human Protein Atlas
(HPA) database (https://www.proteinatlas.org/).
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Statistical analysis

All statistical analyses were performed using R software
(Version 4.3.2; the R Foundation, St. Louis, MO, USA). Chi-
square test was used for categorical data; t-test or Wilcox test was
used for continuous data. Cytoscape (v3.8.2) was used to visualize
the interaction network. HR > 1 was considered a risk factor; HR < 1
indicated a protective factor. Unless otherwise specified, p < 0.05
with a confidence interval of 95% was considered significant.

Results
Toxicity and target genes of air pollutants

The 7 Aps analyzed exhibited high carcinogenicity in both
toxicity prediction platforms. Target genes were identified from
four databases as follows: 82 for benzene, 70 for carbon monoxide
(CO), 92 for nitric oxide (NO), 87 for nitrogen dioxide (NO,), 88
for ozone (03), 92 for sulfur dioxide (SO,), and 102 for toluene.
After intersection, a total of 257 AP-related target genes were
identified (Supplementary Tables S1, S2).

Identification of APIGs associated with
HCC

We performed WGCNA using the TCGA set to identify
immune genes most associated with HCC. Based on the optimal
power value of 11 (Figures 2A, B), we identified 9 co-expression
modules (Figure 2C). Among these modules, the turquoise module
(containing 1636 genes) had the highest correlation with HCC
(r=0.59, p=le-41; Figure 2D). And the gene significance and
module membership for the turquoise module showed a
significant correlation (r=0.47, p=1.1e-90; Supplementary Table
S3; Figure 2E).

Subsequently, differential gene expression analysis of 16206
immune genes identified 4118 DEGs (Supplementary Table S4;
Figure 2F). Intersecting these DEGs with 1636 genes in the
turquoise module yielded1197 immune genes associated with HCC.

These 1197 immune genes were further intersected with the 257
AP target genes, resulting in 25 genes (Figures 2G, H). We then
assessed their correlation with immune cell infiltration and finally
obtained 19 APIGs (Supplementary Table S5; Figure 2I).

Molecular subtyping based on APIGs
Based on the expression of APIGs and CDF curve, HCC
samples were divided into 3 subtypes (Supplementary Figures

SIA, B). PCA showed distinct separation among the subtypes
(Supplementary Figure S1C). Among them, C1 subtype exhibited
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a tumor-promoting immune phenotype, characterized by
significantly higher macrophage (M@) abundance as confirmed by
both ssGSEA and CIBERSORT analyses (Figures 3A, B). In
contrast, C2 and C3 subtypes exhibited features of an
immunosuppressive microenvironment, such as higher abundance
of resting memory CD4" T cells and monocytes, yet displayed a
more favorable immune microenvironment than CI. Consistently,
all 7 immune infiltration algorithms confirmed the significant
differences in M@ abundance between C1 and C2/C3 subtypes
(Figure 3C). As expected, the K-M curve indicated that the C1
subtype had significantly lower overall survival compared to C2 and
C3 subtypes (Figure 3D). These findings suggest that AP-related
immune alterations may drive distinct immune subtypes in HCC.

Construction of APIGPS through machine
learning

Univariate COX analysis identified 18 APIGs significantly
associated with HCC prognosis (Figure 4A; Supplementary Table
S6). Subsequently, based on 10-fold cross validation, 101
combinations of 10 machine learning algorithms were employed
to construct APIGPS models. Among them, APIGPS constructed by
Lasso+CoxBoost had the highest average C-index (0.729;
Figure 4B), and incorporated 7 APIGs (CDC25C, MELK, ATG4B,
SLC2A1, CDC25B, APEX1, GLS). K-M survival analysis indicated
that low expression of these genes was associated with better HCC
survival (Supplementary Figures S2A-G). Additionally, gqRT-PCR
confirmed their significant upregulation in HCC samples
(Figure 4C; Supplementary Table S7), which was further
supported by IHC results (Supplementary Figures S3A-G).

Evaluation and validation of APIGPS

To assess the performance of the constructed APIGPS, we
calculated risk scores for patients and divided them into HRG
and LRG. PCA demonstrated clear separation between HRG and
LRG (Figure 4D). Notably, increasing APIGPS risk scores
correlated with progressively higher mortality rates
(Supplementary Figures S4A, B). K-M curve showed that HRG
had significantly worse survival than LRG (Figure 4E). Time-
dependent ROC curves suggested that the APIGPS had good
predictive accuracy for 1-year (AUC = 0.791), 3-year (AUC =
0.676), and 5-year (AUC = 0.646) survival (Figure 4F).
Importantly, APIGPS outperformed other clinical features in
prognostic accuracy (Figure 4G). Univariate (HR = 3.958, 95%CI:
2.527 - 6.193, P<0.001; Supplementary Figure S4C) and multivariate
COX regression analyses (HR = 3.113, 95%CI:1.904-5.091, P<0.001;
Supplementary Figure S4D) confirmed the independent prognostic
value of APIGPS. Furthermore, APIGPS exhibited potential
associations with molecular subtyping (Supplementary Figure S5).
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FIGURE 2

Identification of APIG. (A) The selection of soft threshold B. (B) Mean connectivity for HCC. (C) Cluster dendrogram of WGCNA analysis. (D) Module-
trait heatmap indicating the correlation between modules and HCC. (E) The correlation between module membership and gene significance in the
turquoise module for HCC. (F) Volcano plot of DEGs. (G) Venn diagram of DEGs, module genes, and AP-target. (H) Correlation plot of APIG.

(1) Correlation analysis between genes and immune infiltration (*=P < 0.05; **=P < 0.01; ***=P < 0.001).
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(Supplementary Figure S6F), univariate (Supplementary Figure

APIGPS in the external validation set. The results of the ROC  S6E) and multivariate (Supplementary Figure S6B) COX
curve (Supplementary Figures S6A, B), K-M analysis regression analyses, and signature genes expression
(Supplementary Figure S6H), risk curve (Supplementary Figure  (Supplementary Figure S6I) in the validation set were all
S6C), PCA (Supplementary Figure S6G), scatter plot  consistent with the training set.
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FIGURE 3

Molecular subtyping and immune traits. (A) Differences in the infiltration abundance of 22 immune cells between the three subtypes (*P < 0.05;
**P < 0.01; ***P < 0.001). (B) Differences in the infiltration abundance of 29 immune traits between the three subtypes (*P < 0.05; **P < 0.01;
***pP < 0.001). (C) 7 immune infiltration algorithms for the three subtypes. (D) Survival analysis of the three subtypes.

Clinical correlations and the nomogram
based on APIGPS

We evaluated the correlations between APIGPS and clinical
features and observed significant differences in T-stage, Stage, and

Frontiers in Immunology

Grade between HRG and LRG (Supplementary Figure S7A). K-M
analysis revealed that the prognostic value of APIGPS was
independent of clinical features: patients in the LRG consistently
had better survival across early and late stage (Supplementary
Figures S7B-D).
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Construction and Validation of APIGPS. (A) Univariate COX analyses associated with survival. (B) Construction of APIGPS using integrated machine
learning. (C) gRT-PCR of the signature genes (*=P < 0.05; **=P < 0.01; ***=P < 0.001). (D) PCA based on EIGPS. (E) K-M survival curves based on
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To enable personalized prognostic prediction for HCC patients,
we constructed a nomogram based on APIGPS (Supplementary
Figure S8A). The nomogram accurately predicted 1-, 3-, and 5-year
0.736, 95% CI: 0.685 - 0.787; Supplementary
Figure S8B). Mortality gradually increased with higher nomogram

survival (C-index
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scores (Supplementary Figure S8C). Both univariate (HR = 2.061, 95%
CI:1.712-2.48, P<0.001; Supplementary Figure S8D) and multivariate
(HR = 1.9, 95%CI:1.428-2.53, P<0.001; Supplementary Figure S8E)
COX regression analyses confirmed the nomogram’s independent
prognostic utility (AUC = 0.832; Supplementary Figure S8F).
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Immune infiltration analysis based on
APIGPS

CIBERSORT analysis indicated that the abundance of M¢ and
activated memory CD4" T cells were significantly higher in HRG
than in LRG, while the abundance of resting memory CD4" T cells,
monocytes, and M1-like macrophage (M1)were significantly higher
in LRG than in HRG (Figures 5A, B). Consistently, ssGSEA showed
higher activity or abundance of immature dendritic cells (iDCs),
Mo, MHC class I, CD4" T helper cells, and tumor-infiltrating
lymphocytes (TILs)in the HRG than in LRG (Figure 5C). Results
from 7 immune infiltration algorithms further supported an
elevated abundance of multiple tumor-promoting immune
features in the HRG (Figure 5D). For instance, M@ abundance
was significantly elevated across multiple algorithms, and was
significantly positively correlated with APIGPS (Figure 5E).
Furthermore, all of these algorithms showed that M¢ abundance
was elevated in HRG. Survival analysis demonstrated that higher
M¢ abundance was associated with worse survival (Figure 5F).

Single cell analysis based on APIGPS

After quality control, we obtained 33694 genes and 43918 cells;
after outlier removal, we retained 25190 genes and 34202 cells for
normalization and dimensionality reduction (Supplementary
Figure S9A). The top 10 PCs were selected according to the elbow
plot (Supplementary Figure S9B). We identified 18 clusters with 0.5
as the best resolution (Figure 6A; Supplementary Figures S9C, D).
Cell type annotation revealed cell types, including adipocytes, B
cells, CD8" T cells, endothelial cells, fibroblasts, hepatocytes, M,
monocytes and T cells (Figure 6B). APIGPS genes were mainly
expressed in M@ (Figure 6C). Cell-cell communication analysis
showed that interactions between M@ and endothelial cells
exhibited the highest interaction number and strength
(Figures 6D, E; Supplementary Tables S8 and S9), with PPIA-BSG
ligand-receptor pairs playing a mediating role (Figure 6F).
Subsequently, we extracted macrophage subsets and identified
distinct macrophage clusters (Figure 6G). Using the
AddModuleScore function, we calculated APIGPS scores and
found that cluster 4 exhibited the highest scores (Supplementary
Figure S9E). Pseudotime trajectory analysis revealed three distinct
differentiation paths (Figure 6H), with APIGPS" macrophages
located at the terminal end of the first trajectory (Figure 6I).
Notably, along this trajectory, the APIGPS™ cells showed a
phenotypic shift from high to low M1 polarization scores
(Figure 6]), suggesting a potential inhibitory effect of APIGPS on
M1 polarization.

Macrophage-related immune pathway
enrichment analysis based on APIGPS

To delineate differences in M-related pathways between HRG
and LRG, we performed GO and KEGG analyses. The most
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significant differences in immunological functions and pathways
were leukocyte mediated immunity and chemokine signaling
pathway, respectively (Supplementary Figures S10A, B;
Supplementary Tables S10, S11). GSVA further confirmed
dysregulated M@-related pathways in HRG, such as complement
and coagulation cascades, and Fc gamma receptor (FcyR) mediated
phagocytosis (Supplementary Figure S10C; Supplementary
Table S12).

Immunotherapy-related and drug
sensitivity analyses based on APIGPS

Immunotherapy represents a promising strategy for the
treatment of HCC. The HRG had a significantly higher TIDE
score than the LRG, suggesting its greater immune escape ability
and poorer predicted response to immunotherapy (Figure 7A). The
LRG had a higher IPS for CTLA4-/PD - 1- treatment, suggesting its
better response to PD - 1 inhibitor and CTLA4 inhibitor therapy
(Figure 7B). Immune checkpoint-related genes are closely
associated with the efficacy of immunotherapy, and were more
highly expressed in the HRG (Figure 7C). The expression of
immune checkpoint-related genes can reflect T-cell activation or
exhaustion, and higher expression can indicate either immune
activation or immune suppression. Given our immune infiltration
findings, this likely reflects an immune-suppressive phenotype in
the HRG. Moreover, APIGPS risk scores were positively correlated
with the expression of core clinical immunotherapy targets,
implying that HCC patients with higher risk scores may derive
less benefit from immunotherapy (Figure 7D). Drug sensitivity
analysis indicated that the LRG was more sensitive to Axitinib
and Ribociclib (Figures 7E, F), whereas the HRG showed higher
sensitivity to Afatinib and Cediranib (Figures 7G, H).

Tumor mutational burden analysis based
on APIGPS

After dividing HCC patients into TMB-high and TMB-low
groups, K-M curves showed that TMB-high group had significantly
lower survival rate than TMB-low group (Supplementary Figure
S11A). Mutation rates differed markedly between risk groups, with
55.8% in HRG and 32.35% in LRG (Supplementary Figures S11B,
C). Among the 257 AP-related target genes, TP53 was the most
frequently mutated gene in both HRG and LRG. When combining
TMB status with APIGPS risk, the TMB-high + HRG group had the
worst survival (Supplementary Figure S11D).

Identification of a hub gene with dual
diagnostic and prognostic value
We employed LASSO, SVM-RFE, and RF to screen key genes

from 19 APIGs. LASSO selected 11 genes based on the minimum A
(Figures 8A, B); RF identified 8 genes with an importance score > 5
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FIGURE 5

Immune infiltration analysis of APIGPS. (A) Heatmap of immune infiltration in HRG and LRG. (B) Differences in 22 immune cells in HRG and LRG

(*P < 0.05; **P < 0.01; ***P < 0.001). (C) Differences in 16 immune cells and 13 immune functions in HRG and LRG (*P < 0.05; **P < 0.01; ***P < 0.001).
(D) Heatmap of the differences in the immune infiltration abundance between HRG and LRG based on 7 immune infiltration algorithms. (E) Correlation
between risk scores and immune infiltration abundance based on 7 immune infiltration algorithms. (F) Survival analysis of macrophages.

(Figures 8C, D); SVM-RFE identified 9 genes according to the
minimum error (Figures 8E, F; Supplementary Table S13). After
intersecting these genes with APIGPS genes (Figure 8G), CDC25C
was identified as the hub gene with good diagnostic value (AUC =
0.98; Figure 8H).
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Pan-cancer analysis of the hub gene

To explore broader oncogenic relevance, we conducted a pan-
cancer assessment of CDC25C. CDC25C was highly expressed in all
cancers and was involved in cell cycle-related functions
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(Supplementary Figures S12A, B). In addition, CDC25C was
significantly associated with immune cell abundance in 13 cancers
(Supplementary Figure S12C; Supplementary Table S14), TMB in
21 cancers (Supplementary Figure S12D; Supplementary Table
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S15), and microsatellite instability in 10 cancers (Supplementary
Figure S12E; Supplementary Table S16). High CDC25C expression
was associated with low survival in 9 cancers besides HCC
(Supplementary Figures S13A-I).
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Molecular docking analysis based on
APIGPS

Molecular docking analysis suggested that all AP-APIGPS
interactions had binding energies between -1 to -5, indicating good
binding affinity between 7 APs and 7 APIGPS genes (Figure 9A;
Supplementary Table S17). Among them (Top 3), CDC25C formed
more unstable bindings with carbon monoxide (Figure 9B), nitric
oxide (Figure 9C), and sulfur dioxide (Figure 9D). These findings
further supported the hypothesis that APs may crosstalk with
APIGPS expression, thereby influencing the progression of HCC.

Discussion

The rising mortality and morbidity of air pollution-induced
HCC underscore an urgent public health concern. Recent
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epidemiological evidence suggests that air pollution may interact
with the immune system to promote HCC progression; however,
the exact mechanisms remain unclear. In this study, we intersected
AP-related target genes (derived from network toxicology) with
HCC-related immune genes (identified via WGCNA and
differential gene expression analysis), followed by immune
infiltration analysis, and ultimately identified 19 APIGs for
molecular subtyping. Subsequently, we constructed an APIGPS
containing 7 APIGs, which demonstrated robust predictive
performance. Further analysis revealed that M@ were a major
immune cell phenotype distinguishing HRG and LRG, with HRG
exhibiting poorer response to immunotherapy. Afatinib and
Cediranib were identified as potential sensitive drugs for HRG
patients. Single-cell RNA sequencing showed that APIGPS genes
were predominantly expressed in M¢. TP53 was identified as the
most frequently mutated gene. Using 3 machine learning methods,
we identified diagnostic genes and intersected them with APIGPS,

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1638445
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Pu et al. 10.3389/fimmu.2025.1638445
A 19 18 17 16 15 11 9 9 7 6 6 6 5 4 3 B 0 9 15 17 18 19
w | —
~
c .
© e
g =]
g w©
53 f.
R §
2
o
3 o4
o~
=]
If|l -
oS T T T T T T T T T T
-8 -6 -4 -2 0 10 40
Log(h) L1 Norm
Cc Random forest D
CDK1 °
™ TOP2A] sl
g AURKB { sl
CDC25C{ el
° .I'.lulqlv APEX1] sl
« -l - jmmmmm——————— MELK] )
i ‘_H o “ - SAE1] @) [mportance
CYPIA2{ sl
5 v ATG4B o
| 3 (=) CCONE1q sl
w KIF11] )
o CSNKID] s b
s Gls| —@
CDC25B{ =@
TYMS{ ~@
8 SPHK1{ ~@
e P2RX4]{ ~@
3 SLC2A1{ @
g e . CDK2{ @
5 T T T T
© 100 200 300 400 500 ¢ " ortance "
trees F
E n=9 (0.979)
© -
] =
[S] 8
=)
oy _
g 8 5
g 2 5 g
o .
: 3 2
x
2 . o N
e @ A=Y
- o 8 4
=)
g =
S § n=9 (0.0212)
T T T 3 T T T
5 10 15 ° 5 10 15
Number of Features Number of Features
G H e
RF SVM-RFE I—rI
@ 4
o
APIGPS
©
£o
=
1%
<
3z
N
o
o | —— CDC25C, AUC=0.980
© T T T T T
0.0 0.2 04 0.6 0.8 1.0
1 - Specificity
FIGURE 8

Identification of hub gene using machine learning. (A) LASSO lambda. (B) LASSO coefficient profiles. (C) RF error rate. (D) RF importance ranking of
AP-related targets. (E) SVM-RFE accuracy of AP-related targets. (F) SVM-RFE error of AP-related targets. (F) RF importance ranking of AP-related

targets. (G) Venn diagram of genes identified by 3 machine learning methods. (H) ROC curve of CDC25C.

identifying CDC25C as the hub gene. Finally, molecular docking
analysis confirmed strong binding affinity between 7 APs and 7
APIGPS genes, which further supported the hypothesis that AP
may drive the occurrence and development of HCC through

molecular interactions with APIGPS.

Frontiers in Immunology

To the best of our knowledge, this study is the first to identify
APIGs highly correlated with HCC and constructed a clinically
applicable APIGPS. HCC patients were classified into three
subtypes based on the 19 APIGs, with C1 subtype exhibiting
tumor-promoting immune phenotype, particularly elevated Mo
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Molecular docking. (A) Heatmap of binding energies of molecular docking analysis (lower energy indicates stronger binding affinity). (B) CDC25C and
carbon monoxide. (C) CDC25C and nitric oxide. (D) CDC25C and sulfur dioxide.

abundance, and the poorest prognosis. These findings suggest that
AP exposure may induce distinct HCC subtypes by modulating the
immune microenvironment, thus complicating personalized
treatment strategies. APIGPS demonstrated good predictive
performance; the HRG had poorer prognosis and overlapped
mostly with C1 subtype, suggesting that APIGPS may reflect
subtype-specific molecular and immunological features.
Multivariate COX analysis and ROC curves validated the
independence and robustness of APIGPS in both the training and
external validation set. To aid clinical application, we constructed a
nomogram for better individualized prognosis prediction.
Furthermore, CDC25C showed good diagnostic value and may be
involved in the progression of multiple cancers, making it an
important pan-cancer target for APs.

CDC25C is a cell cycle-regulating phosphatase that primarily
promotes G2/M transition by activating the CDKl/cyclin B
complex (10). Although not traditionally considered an immune
regulator per se, CDC25C is involved in immune modulation by
inducing genomic instability. It is highly expressed in multiple
cancers and correlates with TMB, microsatellite instability, immune
infiltration, and low survival in at least 10 cancers. Overexpression
of CDC25C can counteract the suppression by the ATM/ATR-
CHK1/2 pathway, leading to sustained CDKI1 activation. This
enables DNA-damaged cells to bypass the checkpoints and enter
M phase, promoting genomic instability and mutations in tumor
suppressor genes; it also disrupts the DNA mismatch repair system,
ultimately accelerating tumor cell proliferation (10, 11).
Additionally, such instability produces cytosolic DNA fragments,
which are recognized by cGAS and catalyze the synthesis of the
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second messenger cGAMP. cGAMP binds to and activates STING
protein on the endoplasmic reticulum membrane, inducing its
conformational change and recruiting TBK1 kinase. Activated
TBK1 phosphorylates IRF3, promoting its nuclear translocation
and initiating IFN-0/f} transcription, which rapidly recruits CD8" T
cells and NK cells to elicit anti-tumor effects (12, 13). However,
chronic overexpression of CDC25C upregulates PD-L1 in tumor
cells through the STAT3/IRF1 pathway, and promotes the
recruitment of Tregs, MDSCs and M2-like macrophages (M2) via
chemokines such as CXCL10. These immunosuppressive cells
directly inhibit T cell activity by secreting IL - 10, Argl, and
TGF-B, and enhance angiogenesis, tumor invasion, and immune
escape by secreting factors like VEGF and MMP9 (14-17).
Furthermore, persistent activation of the ATM/ATR signaling
pathway caused by DNA damage repair defects can also
upregulate the expression of immune checkpoints such as PD-L1
and VISTA via the NF-xB or HIF - 1o pathways (17). CDC25C
overexpression has been associated with shorter progression-free
survival in LUAD patients treated with nivolumab (18). Targeted
inhibition of CDC25C induces immunogenic cell death, leading to
the release of damage-associated molecular patterns (19, 20).
Extracellular ATP activates the P2X7 receptor on M@ surface,
inducing NLRP3 inflammasome-dependent IL - 1f release and
upregulating the expression of MHC-II molecules and
costimulatory molecules CD80/CD86, thereby promoting the
cross-presentation of tumor antigens to CD4" T cells (21, 22).
HMGBI, on the other hand, activates the NF-«xB pathway in M¢ via
TLR4/RAGE signaling, promoting the secretion of chemokines
such as CXCL9/CXCL10 and recruitment of effector T cells into
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the tumor microenvironment, while inhibiting M¢ polarization
towards the M2 phenotype (20, 23).

The other 6 APIGs in the APIGPS also act as poor prognostic
factors. ATG4B, a member of C54 peptidases, primarily cleaves the
C-terminus of microtubule-associated protein 1 light chain 3 to
promote the extension and closure of autophagosome membrane
(24). Targeted inhibition of ATG4B can block ATG4B-mediated
autophagic degradation of TBKI (a crucial kinase for antiviral
immunity), enhancing antiviral immune responses and CD8" T
cell infiltration, thereby delaying HCC progression (25, 26).
Additionally, ATG4B closely interacts with SLC2A1, promoting
the Warburg effect in tumor and increasing L-lactate production
and glucose uptake (27). SLC2A1, in turn, facilitates glucose
transport to maintain the Warburg effect, and promotes M
polarization toward the M2 by enhancing efferocytosis and
inflammatory factors secretion such as CD206 and IL - 10 (28).
In liver metastatic lesions, SLC2A1 fosters an immunosuppressive
microenvironment by increasing the proportion of M¢ and their
inhibitory interactions with T cells (29). Furthermore, SLC2A1
interacts with GLS, mediating the transport of glutamine into the
cell. GLS catalyzes the hydrolysis of glutamine to glutamate, the
rate-limiting step in glutamine metabolism, to generate o-
ketoglutarate for the TCA cycle (30). GLS-driven glutaminolysis
increases production of a-ketoglutarate and reactive oxygen
species, which activate the Wnt/B-catenin signaling pathway and
maintain the stemness and survival of cancer stem-like cells (31).
This process contributes to immune suppression by reducing T cell
infiltration and promoting the expression of immune checkpoint
molecules (32). Moreover, excessive glutamine metabolism
mediated by GLS1 drives the polarization of M@ toward the M2
immunosuppressive phenotype and inhibits Th1 and CD8" T cell
differentiation (33). APEX1 is a DNA repair enzyme with apurinic/
apyrimidinic activity. Its redox domain regulates the activity of
several transcription factors such as NF-xB, AP - 1, and STATS3,
enhancing cytokine and chemokine secretion such as TNFo, IL - 6,
and IL - 8, ultimately creating a pro-inflammatory and
immunosuppressive microenvironment (34, 35). Targeted
inhibition of APEX1 or its redox function can enhance the IFNY-
producing Th1 response and suppress HCC cell migration and
proliferation (36, 37). MELK, a serine/threonine protein kinase, is a
cell-cycle modulator essential for mitotic progression (38). MELK
promotes HCC cell migration by upregulating MMP7 expression
and regulates G2/M phase progression via PLK1-CDC25-CDK
signaling, thereby inhibiting apoptosis (38). This process may
further suppress CD8" T cell infiltration by activating
downstream cascades such as CDK4/6 activation, facilitating
tumor immune escape (39). Knockdown of MELK inhibits cell
viability by inducing apoptosis and mitosis in HCC cells, promotes
M1polarization, hinders M2 polarization, induces CD8" T cell
recruitment, and improves sensitivity to radiotherapy (40).
CDC25B and CDC25C belong to the CDC25 phosphatase family.
Unlike CDC25C, CDC25B promotes G2/M transition by
dephosphorylating and activating CDK1 during the G2 phase
(10). CDC25B participates in immune pathways similar to
CDC25C. CDC25B expression correlates with infiltration of B
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cells, CD8" T cells, CD4" T cells, M@, neutrophils, and dendritic
cells in HCC (41).

Immunological features determine the prognosis and
therapeutic response in HCC. We found that APIGPS was
predominantly expressed in M¢, with high M¢ abundance in the
Cl1 subtype and HRG. High expression of M@ aws significantly
associated with poor prognosis, and this immune
microenvironment remodeling may contribute to immunotherapy
resistance, which may also explain the lower abundance of resting
memory CD4" T cells in the C1 subtype. M@ can be categorized into
tissue-resident M¢ and monocyte-derived M@. During early HCC,
tissue-resident M@ accumulate close to tumor cells, promoting
epithelial-mesenchymal transition and tumor invasiveness, while
inducing myeloid-derived suppressor cells and Tregs response to
form an immunosuppressive microenvironment (42). During
tumor progression, tissue-resident M@ were redistributed at the
periphery of the tumor microenvironment, whereas monocyte-
derived M@ dominate the TME. The latter highly express PD-L1,
PD-L2, CD80, and CD86, resulting in resistance to radiotherapy,
chemotherapy, and immune checkpoint blockade (ICB) therapy
(42, 43). Research indicates that M@ suppress endogenous STAT3
in T cells by releasing CSF - 1, chemokines or exosomes, thereby
regulating Treg/Th17 cell balance and continuously recruiting
monocyte-derived M@ into the TME to form a drug-resistant
positive feedback loop (44, 45). Additionally, M@ can capture PD
- 1 antibodies through the Fc-FcyR pathway, leading to resistance to
ICB, which aligns with our GSVA results that the FcyR pathway was
highly expressed in HRG (46). In vivo studies showed that M@ and
Tregs are colocalized in tumor tissues. Depletion of M@ can reverse
the immunosuppression in the TME, restore ICB efﬁcacy, and
promot CD8" T cell infiltration into HCC cells (47, 48). In
addition, Our study revealed that M¢ communicated with
endothelial cells via the PPIA/BSG axis. This process activates
NF-xB through the IL - 6/STAT3 pathway, upregulates PD-L1
expression, and suppresses T cell activity (49). Targeting the PPIA-
CD147 axis can block this cascade, inhibit angiogenesis, and reverse
immune escape in HCC. However, it is noteworthy that there are
alternative pathways to PPIA/BSG-mediated M¢@-endothelial cell
communication, as evidenced by persistent PPIA-induced IL - 8
expression even after BSG knockdown (50). TP53 was the most
frequently mutated gene in both HRG and LRG. TP53 mutation
frequency was associated with abundance of NK cells, M@, and
follicular helper T cells in HCC (51). TP53 gain-of-function
mutation promote M@ recruitment via BRD4-dependent CSF - 1
expression (52). Loss of TP53 increases PD-L1 expression and
reduces CD8" T cell infiltration in HCC samples and mouse
models (53).

GO and KEGG analyses showed that the main differences in
Meo-related pathways between HRG and LRG were leukocyte
mediated immunity and chemokine signaling pathway, which
suggests M@ polarization and reprograming of the immune
microenvironment. M@ belong to myeloid-derived leukocytes and
exhibit high plasticity: classically activated Mlhave pro-
inflammatory and anti-tumor effects, while alternatively activated
M2exert anti-inflammatory and pro-tumor effects. These polarized
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states can interconvert under specific conditions. Cytokines like
IL12, TNE, and IFNG, MAMPs such as LPS, or other Toll-like
receptor agonists can induce polarization toward MI state.
Conversely, 1L4, IL5, IL10, IL13, CSF1, TFGBI, and PGE2 all
promote M@ polarization toward M2 state. It is worth noting that
although targeting M1 polarization is beneficial, the role of M1
polarization appears to be double-edged. M1have been shown to
promote HCC cell motility by secreting IL - 1B, and induce PD-L1
expression via IRF1 and p65, thereby contributing to adaptive
resistance to immunotherapy in HCC (54). However, this
manipulation of M@ phenotypic plasticity raises several concerns.
For instance, can Mlacquire M2-associated properties? Will the
converted cells exhibit stronger tumor-promoting effects?
Moreover, is the simplistic M1/M2 binary classification sufficient
to describe macrophage states in the TME? These questions remain
to be elucidated through further investigation.

Our study first identified APIG and their potential pathways and
mechanisms affecting HCC, constructed a prognostic signature based
on them, and further determined the hub gene. However, this study
also has several critical limitations that must be acknowledged. The
most significant limitation is the lack of comprehensive experimental
validation. Although we performed qRT-PCR to confirm the
expression levels of target genes, this alone is insufficient to
establish causal relationships or mechanistic insights. In vitro
functional experiments, such as siRNA-mediated gene knockdown,
CCK - 8 assays to evaluate cell proliferation, flow cytometry or
immunofluorescence to assess M@ polarization, and Transwell
migration assays are essential to verify the functional roles of the
identified APIGs. Moreover, in vivo studies would provide important
mechanistic and translational validation. The absence of these
validations may currently weaken the biological conclusions of the
study. Second, the specificity of the effect of APs on HCC remains
largely unclear. Clinically, multiple APs often coexist and may
interact synergistically (e.g., ozone, benzene/toluene), making it
challenging to determine the individual contribution of each
pollutant. Further studies are needed to clarify the pollutant-
specific mechanisms driving HCC. Third, the affinity between APs
and M@ and the polarization direction (M1/M2) remain unclear.
More importantly, it is unknown whether AP exposure can actively
trigger M@ repolarization, and how the temporal dynamics of such
polarization evolve. Single-cell and transcriptomics analyses are
recommended to dissect spatiotemporal changes in the immune
microenvironment. Furthermore, although molecular docking
analyses suggested potential binding between APs and target
proteins, these predictions do not confirm causal regulatory
relationships. Future studies should incorporate in vitro or in vivo
AP exposure experiments to examine the dynamic regulation of
APIG expression, and perform transcriptomic profiling under
controlled exposure conditions to elucidate regulatory mechanisms.
In addition, while the APIGPS demonstrates robust performance in
the current datasets, there remains a risk of overfitting due to reliance
on retrospective public cohorts. The generalizability of the model to
broader clinical populations or real-world settings is yet to be
established. Prospective validation in large, multi-center cohorts is
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necessary to assess its clinical applicability. Finally, while this study
suggests APs may impact immunotherapy efficacy in HCC, and green
environment or pollution levels correlate with patient prognosis, the
mechanistic links between APs and immunotherapy warrants
further exploration.

Conclusions

Our study identified 19 APIGs from 7 APs, and selected 7 of
them to construct an APIGPS with good predictive performance.
Among them, CDC25C was the hub gene with diagnostic and
prognostic value, and was associated with the survival outcomes in
10 cancers. Future studies should include experimental validation
using AP extracts, employing techniques such as siRNA, CCK - 8,
flow cytometry, immunofluorescence, Western blotting, and
Transwell assays to further elucidate the molecular mechanisms
and immune regulatory effects of APIGs. Overall, this study
underscores the importance of integrating environmental
exposure factors into cancer research, particularly in
understanding HCC progression and improving individualized
prognosis and treatment strategies.
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