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RNA-sequencing and
transcriptomic data unravels
immune cells and telomere-
related biomarkers in sepsis
Dan Chen1,2†, Xiyi Huang1†, Chun Wang3, Cheng Zheng1

and Yunhao Liu1*

1Department of Environmental Health and Occupational Medicine, School of Public Health, Wuhan
University of Science and Technology, Wuhan, China, 2Department of Intensive Care Unit, The
Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China, 3Huazhong University of Science and Technology, Wuhan, China
Background: Early diagnosis of sepsis is essential to reducing mortality. Immune

cells and telomeres play important roles in sepsis, but their mechanisms were still

unclear. This study aimed to explore the value of immune cells and telomere-

related genes in sepsis.

Methods: In this study, the transcriptomic data with sepsis and control samples

were obtained from public database. Multiple methods including differential

expression analysis, immune infiltration analysis, weighted gene co-expression

network analysis (WGCNA), 101-machine learning algorithm combinations were

used to identify biomarkers which related to the immune cells and telomere.

Afterwards, a nomogram was constructed to assess the clinical predictive value

of biomarkers. In addition, gene set enrichment analysis (GSEA), regulatory

network construction and drug prediction analysis were adopted to

demonstrate the role of biomarkers in sepsis. The key cells were also identified

using a single-cell dataset. Finally, the expression of biomarkers was further

validated in clinical samples by reverse transcription quantitative polymerase

chain reaction (RT-qPCR).

Results: This study obtained a total of 4 biomarkers (MYO10, SULT1B1, MKI67,

and CREB5), and the analysis of nomogram showed that the biomarkers had

good clinical predictive value to sepsis. The enrichment analysis results revealed

that the four biomarkers were enriched in the ribosome pathway. Besides, a

lncRNAs-miRNAs-biomarkers network was constructed for the four biomarkers.

Finally, we obtained a candidate drug (MS-275) and a key cell (CD16+ and CD14+

monocytes) respectively based on drug prediction and cell identification analysis.

In addition, we found that the expression levels of CREB5 and SULT1B1 had

significant changes during the process of key cell differentiation. The RT-qPCR

results showed biomarkers were upregulated in the sepsis group, consistent with

the bioinformatics analysis results.
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Conclusion: This study identified 4 biomarkers, namelyMYO10, SULT1B1,MKI67,

and CREB5 and explored the pathogenesis of sepsis, providing new insights for

potential treatment strategies by integrating transcriptomic data and single-

cell analysis.
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1 Introduction

Sepsis is a life-threatening organ dysfunction caused by a

dysregulated host response to infection. It is characterized by

systemic immune activation, metabolic abnormalities, and multi-

organ dysfunction (1). It causes approximately 11 million deaths

globally each year (2). Although the incidence and mortality rates

have decreased in recent years, sepsis remains a significant health

burden (3). Due to its nonspecific clinical presentation and the

limitations of current diagnostic methods, early diagnosis remains

challenging, making the discovery of novel biomarkers a key focus of

research (4).

The pathogenesis involves complex disorders of immune

regulation. Early intervention targeting excessive inflammation has

shown poor outcomes. Recent studies have revealed that sepsis is often

accompanied by adaptive immune suppression, with functional

exhaustion of immune cells linked to adverse prognoses (5). This

process may be associated with telomere dysfunction: telomere

shortening can trigger cellular senescence and genomic instability,

while excessive activation of immune cells in sepsis may accelerate

telomere attrition. Clinical studies have demonstrated an association

between peripheral blood leukocyte telomere length and survival rates

in patients (6). Given the limited sensitivity of traditional biomarkers,

the functional state of immune cells and telomere length may offer

more precise assessments of disease severity. This study aims to identify

gene markers associated with telomeres and immune cells through

integrated bioinformatics analysis, in order to elucidate their roles in

sepsis progression and uncover novel therapeutic targets.

Single-cell RNA sequencing (scRNA-seq) is a revolutionary

technology that, compared to traditional bulk sequencing methods,

enables multi-omics analysis (genomic, transcriptomic, epigenomic) at

the single-cell level to reveal intercellular heterogeneity (7, 8). Its

advantages include the identification of rare cell subsets, decoding of

cell-cell communication, and tracking of dynamic changes, providing

high-precision data for disease mechanism research (9–11). Machine

learning (ML), which extracts patterns from complex data via

algorithms, has been widely applied in biomedicine, but it faces

challenges in interpretability and multimodal data integration (12,

13). To address these limitations, researchers are continuously

exploring novel ML approaches. For example, “101-machine

learning” is an emerging technique designed to enhance ML

performance and applicability through efficient data processing and
02
model training. In this study, we utilized ML to optimize feature

selection and model training, thereby improving the efficiency and

accuracy of target screening (14).

This study was based on transcriptomic data from public

databases, and 101-machine learning algorithms were employed

to screen for sepsis-related biomarkers. Through in-depth analysis

of their clinical diagnostic value, enriched functions, involved

biological statistics, and interactions with the immune

microenvironment, we explored the functions and regulatory

mechanisms of these genes across different biological levels.

Finally, single-cell analysis techniques were used to elucidate the

cell-type-specific expression and distribution patterns of these genes

in sepsis. These findings lay a solid foundation for developing novel

therapeutic strategies for sepsis and are expected to advance

innovative treatments and personalized medicine in this field.
2 Materials and methods

2.1 Data collection

Three microarray datasets in this study were obtained from the

Gene Expression Omnibus (GEO) database using the “GEOquery”

package (version 4.2.1) (15). Among them, GSE9960 and GSE28750

both used the GPL570 sequencing platform (16). GSE9960

contained 70 peripheral blood mononuclear cell samples,

including 54 sepsis samples as the case samples and 16 normal

controls as the control samples. GSE28750 contained 30 blood

samples, of which 10 sepsis samples were the case samples and the

remaining were normal controls. The scRNA-seq dataset based on

the GPL24676 sequencing platform, GSE167363 contained 12

peripheral blood mononuclear cells samples, including 10 sepsis

case samples and 2 normal control samples (17). The 2086

telomere-related genes (TRGs) were extracted from TelNet

database (http://www.cancertelsys.org/telnet) (18). The analysis

process of this study is shown in Figure 1.
2.2 Differential expression analysis

The PCA in GSE9960 dataset was performed through the

“scatterplot3d” package (v 0.3-42) (19). The differentially
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expressed genes (DEGs) between sepsis and normal samples in

GSE9960 dataset were identified using the “limma” package

(v 3.54.1) (20). The screening criteria were P < 0.05 & |log2Fold

Change (FC)| > 0.5. The top 10 genes up-regulated and down-

regulated in the sepsis samples based on the |log2FC| values were

displayed by volcano plot and heat plot which made use of

“ggplot2” package (v 3.4.1) (21) and “ComplexHeatmap” package

(v 2.14.0) (22), respectively.
2.3 Immune infiltration analysis and
weighted gene co-expression network
analysis

In our study, the relative distribution ratios of 22 immune cells

in each sample in GSE9960 were analyzed by using the cell

identification by estimating relative subsets of RNA transcripts

(CIBERSORT) algorithm (v 0.1.0) (23), and immune cells with a

proportion of 0 over 30% samples were removed in the subsequent

analysis. The differences of immune cells infiltration between the

case and control group were completed through the Wilcoxon rank

sum test (P < 0.05).Module genes highly correlated with immune

cells were selected using the “WGCNA” package (v 1.71) (24).

Sample cluster analysis used the hierarchical clustering (HCLUST)

function to identify and eliminate outliers. Then, we set R2 = 0.85 to

screen for soft thresholds (b). Topology overlap and adjacency

matrices were established based on the gene expression data.

Afterwards, the minimum gene count per module was set to 100

with the altitude of models being set to 0.4, and the modules were

merged according to the standards of the dynamic tree cutting

algorithm. Then, differential immune cell scores were used as the
Frontiers in Immunology 03
phenotype to calculate the correlations between key module and

phenotype. Finally, the modules with the best comprehensive score

from the modules which significantly correlated with phenotype

were obtained as the final module. The genes in final modules

significantly correlated with phenotype were selected as the

immune cell-related genes (ICRGs) (P < 0.05).
2.4 Enrichment analysis of candidate genes
and protein-protein interaction network

The candidate genes in our study were obtained by overlapping

the ICRGs, DEGs and TRGs, which made use of the “ggvenn”

package (v 1.7.3) (23).

The functions of candidate genes were explored by the kyoto

encyclopedia of genes and genomes (KEGG) and gene ontology

(GO) analyses with the “clusterProfiler” package (v 4.2.2) (25) (P <

0.05). Furthermore, the protein level interactions of candidate genes

were analyzed by PPI network using data from the search tool for

the recurring instances of neighboring genes (STRING) database

(confidence > 0.4) (26).
2.5 Construction of 101-machine learning
models and identification of biomarkers

In order to identify feature genes associated with sepsis, the

leave-one-out cross-validation (LOOCV) framework was utilized in

the GSE9960 and GSE28750 datasets that integrated ten different

machine learning algorithms into 101 algorithm combinations. The

input data for machine learning algorithms was the candidate genes,
FIGURE 1

This study analyzes the flowchart.
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and the ten machine learning algorithms comprised RSF and Enet

by the “glmnet” package (v 4.1.4) (27), least absolute shrinkage and

selection operator (LASSO) by the “glmnet” package (v 4.1.4) (27),

Ridge by the “glmnet” package (v 4.1.4) (27), stepwise Cox by the

“caret” package (v 6.0-93) (28), xBoost by the “xgboost” package (v

1.7.3.1) (29), plsRcox by the (v 3.2.2), SuperPC by the “superpc”

package (v 1.12) (30), generalized linear mixed model (GBRM) by

the “gbm” package (v 2.1.8.1) (31), and survival-SVM by the

“e1071” package (v 1.7-13) (32). Subsequently, the receiver

operating characteristic (ROC) curve drawn using the “pROC”

package (v 1.18.0) (33) was used to validate the predictive

performance of the 101-machine learning algorithm combinations

when the minimum and the maximum number of genes in the

model was from 2 to 10. The combination model with the highest

area under the curve (AUC) value of ROC curve was considered as

the optimal model. The genes of the optimal model were considered

as the candidate biomarkers for subsequent analysis.

In this study, ROC curve and expression level analysis were also

performed on the GSE9960 and GSE28750 datasets to identify

biomarkers with sepsis (AUC > 0.7). The expression level analysis

was used by Wilcoxon test, which required that the expression

trends of genes in two datasets were consistent (P < 0.05).
2.6 Gene correlation analysis and
distribution analysis in organs

In this study, the genotype-tissue expression (GTEx) database

was employed mainly for querying the expression levels of

biomarkers in 28 normal tissues and organs of the human body.

Besides, correlations among biomarkers were carried out using

Spearman’s correlation test with the “psych” package (v 2.2.9)

(34) in the GSE9960 datasets.
2.7 Nomogram analysis

To investigate the specific role of biomarkers in the diagnosis of

sepsis, the nomogram based on biomarkers was constructed using

the “regplot” package (v 1.1) (35) in the GSE9960 datasets. The

accuracy of prediction with nomogram was determined by the

calibration curve, which was drawn by the “rms” package (v 6.5.0)

(36). Furthermore, the predicting value of the nomogram was also

appraised by ROC curve.
2.8 Gene set enrichment analysis

In order to explore the biological pathways and functions with

biomarkers, gsea was executed by “clusterProfiler” package in the

GSE9960 datasets (37). Primarily, the Spearman correlation

coefficients between biomarkers and all genes were calculated in the

disease samples of the GSE9960 dataset. The GSEA of biomarkers was

conducted according to the sequencing list of genes which

corresponded to biomarkers (P.adjust < 0.05, |normalized
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enrichment score (NES) |> 1). In this step of analysis, the gene set

from the “org.Hs.eg.dbR” package (v 3.1.0) (38) was employed as the

background gene set.
2.9 Consistent clustering analysis

In order to cluster the sepsis samples into different clusters in

the GSE9960 dataset, the k-means algorithm with 1000 iterations

was executed by “ConsensusClusterPlus” package. In order to

determine the expression of biomarkers and the differences in

immune cell infiltration different subtypes on sepsis, the

expression of biomarkers and immune infiltration analysis was

performed between the different clusters according to the

previously referenced method (P < 0.05).
2.10 Regulating network construction and
drug prediction

LncRNAs can control the expression of mRNAs by binding to

shared miRNAs. So, in this study, the miRTarBase v9.0 database

and TarBase v9.0 database were manipulated based on the

NetworkAnalyst platform to forecast the miRNAs which could

target biomarkers. Then, the final miRNAs were obtained by

crossing over the miRNAs from the two databases. Finally, the

miRNet database was used to predict the lncRNAs which could

target the final miRNAs, and the lncRNA-miRNA-mRNA network

was visualized by Cytoscape software (v 3.9.1) (39).

In addition, this study also employed ChEA3 database to

forecast the transcription factors (TFs) which could target

biomarkers. The biological function (P < 0.05) and the

distribution in the tissues of TFs also were obtained from the

ChEA3 database.

To search for potential therapeutic drugs related to biomarkers

for sepsis, the “enrichR” package (v 3.2) (39) was used based on the

Drug Signatures Database (DSigDB) database to predict genes-drug

interactions (P < 0.05). Afterwards, in order to evaluate the binding

ability between drugs and biomarkers, the drugs which had the

highest significance with biomarkers were selected to perform

molecular docking. The three-dimensional structure with proteins

of biomarkers was retrieved from the Protein Data Bank (PDB)

database (https://www.rcsb.org/) and the three-dimensional

structure with molecular ligands of key active ingredients was

retrieved from the PubChem database. Finally, molecular ligands

and proteins were docked using online website.
2.11 Single-cell RNA-sequencing analysis

The scRNA-seq analysis was conducted using “Seurat” package

(v 5.0.1) (40). To ensure the accuracy of single-cell data, all samples

in the GSE167363 dataset were dealt with the PercentageEigenSet

function of the “Seurat” package. The data processing conditions

were as follows: the number of genes in cells ranges from 300 to
frontiersin.org
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10000, the expression level of genes in cells between 300-2000, the

genes expressing in at least three cells, and the proportion of

mitochondrial genes less than 15% in cells. Then, in light of the

GSE167363 dataset, data were normalized by the “NormalizeData”

function in the “Seurat” package (v 5.0.1), and highly variable genes

(HVGs) were selected by the “FindVariableFeatures” function.

Next, the “ScaleData” function in the “Seurat” package (v 5.0.1)

was applied to scale data before principal components analysis

(PCA). Subsequently, the “JackStraw” function within the “Seurat”

package (v 5.0.1) was applied to execute PCA on HVGs. The

“ElbowPlot” function within the “Seurat” package (v 5.0.1) was

thereafter applied to draw a scree plot of the top 30 principal

components (PCs), aiming to identify PCs that notably contributed

to variation for subsequent analysis (P < 0.05). Afterward, cell

cluster analysis was conducted on cells after dimensionality

reduction utilizing “FindNeighbors” and “FindClusters” functions

(resolution = 0.1, dimension = 30). After that, the cells were

clustered by the uniform tSNE clustering method (41). Marker

genes for cell annotation in this study were obtained from the

literature (15).

To determine the key cell types of sepsis in the GSE167363

dataset, the proportion of different types of cells in different

samples, the differential infiltration of cells, and expression of

biomarkers in different cell types were all considered. So, the cells

that satisfied the following criteria simultaneously as key cells: (1).

high proportion of cells in the sample; (2). cells with different

infiltration ratios between the disease and control; (3). cells with

different expression of biomarkers (P < 0.05). Subsequently, the

secondary clustering analysis on key cells was performed which

referred to the previous method, and the pseudo time analysis was

proceeded by the “Monocle” package (v 2.30.0) (42) to study the

developmental trajectory and differentiation directions of key cell

types. Eventually, the expression of biomarkers during cell

differentiation was observed.
2.12 Reverse transcription quantitative
polymerase chain reaction

The assessment of biomarkers expression was conducted on

clinical tissue samples using RT-qPCR. A total of 5 pairs of blood

samples were obtained from Wuhan Central Hospital Affiliated to

Huazhong University of Science and Technology, including 5 sepsis

and 5 control. All participants needed to sign and fill the informed

consent form, and the ethical approval agency was Ethics

Committee of The Central Hospita l of Wuhan (No.

WHZXKYL2024-164). Firstly, the total RNA of 5 pairs of tissue

samples was derived by TRizol reagent (Ambion, U.S.A). The RNA

concentrations were computered by NanoPhotometer N50.

Secondly, mRNA was reversely transcribed into complementary

DNA (cDNA) utilizing SureScript-First-strand-cDNA-synthesis-

CREB5B test kit (Servicebio, Wuhan, China). Finally, the RT-

qPCR was conducted. The expression levels of biomarkers

between sepsis and control samples were calculated by 2-DDCt. The

internal reference gene was glyceraldehyde-3-phosphate
Frontiers in Immunology 05
dehydrogenase (GAPDH), which was employed to normalize the

results. The results were calculated by GraphPad Prism 5. Detailed

information of primers and machine testing conditions was listed in

Supplementary Table S1.
2.13 Statistical analysis

Bioinformatics analyses were performed utilizing the R

programming language (v 4.2.2). Wilcoxon rank sum test was

used to compare the differences between two groups. P < 0.05

was considered statistically significant.
3 Results

3.1 Identification of candidate genes

The results of PCA showed that the case and control samples in

the GSE9960 dataset were relatively separated, but there were no

outlier samples, indicating good stability of the group samples

(Supplementary Figure S1). So, the DEGs were obtained between

all case and control samples in this dataset. A total of 589 DEGs

were identified, of which 342 were up-regulated and 247 were

down-regulated in the case group (Figures 2A, B). In the immune

infiltration analysis, 15 types of immune cells were remained after

removing cells that did not conform to the criteria (Supplementary

Figure S2). Then, a significant difference was observed in the

infiltration of 10 immune cells between the case and the control

group, including memory B cell, plasma B cell, Macrophage M0,

Monocyte, Neutrophil, resting natural killer (NK) cell, CD+ resting

memory T-cell, naive CD4+ T cell naive, CD8+ T cell CD8+, and

gammadelta T cell. The 10 immune cells were included in

subsequent analysis (Figure 2C).

In WGCNA, no outlier samples were detected and subsequent

analysis was based on all samples (Figure 2D). Afterwards, the soft

threshold was 30 when R2 = 0.85, and a total of 7 co-expression

modules were obtained (Figures 2E, F). The correlation analysis

indicated that the MEyellow module exhibited the strongest

correlation with the immune cell score, and 1,886 ICRGs were

identified (Figure 2G). Ultimately, 32 candidate genes were

obtained by taking the intersection of ICRGs, DEGs, and

TRGs (Figure 2H).
3.2 The analysis of enrichment analysis and
PPI network

The GO enrichment analysis of the candidate genes revealed

that there were 440 significant functions, including nuclear division,

organelle fission, spindle, chromosomal region, protein serine

kinase activity, protein serine/threonine kinase activity, etc.

(Figure 3A) (Supplementary Table S2). Meanwhile, a total of 15

significant functions were enriched in the KEGG analysis which

included oocyte meiosis, progesterone-mediated maturation of
frontiersin.org
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FIGURE 2

Identification of candidate genes in the GSE9960 dataset. (A) Volcano plot showing DEGs between case and control samples in GSE9960 (|logFC| >
1, adjusted P < 0.05). ns means not significant; *means P < 0.05; ** means P < 0.01; *** means P < 0.001; **** means P < 0.0001. Upregulated and
downregulated genes are marked in orange and blue, respectively. (B) Heatmap showing expression profiles of DEGs across samples. (C) Boxplot
comparing immune cell infiltration levels between groups. (D) Sample clustering dendrogram confirming the absence of outliers for WGCNA. (E)
Scale-free topology model fit and mean connectivity across soft-thresholding powers. (F) Gene clustering dendrogram with color-coded modules
identified by WGCNA. (G) Heatmap illustrating module–trait correlations between WGCNA modules and immune cell scores. (H) Venn diagram
showing intersecting genes among DEGs, ICRGs, and TRGs.
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oocytes, cellularsenescence, cell cycle, vral carcinogenesis, etc.

(Figure 3B) (Supplementary Table S3). The PPI network was

established based on the candidate genes, 19 genes had interactive

network relationship. It was worth noting that CDK1 exhibited

interactions with the most genes (Figure 3C).
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3.3 Identification of biomarkers

A total of 36 models were obtained when machine learning

combination models were selected, among which the “RF+Lasso”

model was considered the optimal model due to its highest value of
FIGURE 3

Functional enrichment and interaction analysis of candidate genes. (A) GO enrichment analysis of 32 candidate genes visualized in a circular layout.
(B) KEGG pathway enrichment visualized in a circular plot. (C) PPI network constructed from the candidate genes, with CDK1 identified as the
central hub.
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AUC (Figures 4A–C). At the same time, the 7 genes such as

MYO10, TDRD9, SULT1B1, MKI67, CREB5, BASP1, and CKAP4

in the “RF+Lasso” model were placed in subsequent analysis. The

ROC curve analysis of the7 genes indicated that the AUC values of

MYO10, SULT1B1,MKI67, and CREB5 were greater than 0.7 in the

two datasets (Figures 4D, E). These 4 genes were differentially

expressed between groups in both datasets, and all were up-

regulated in the case group (Figures 4F, G). Therefore, MYO10,

SULT1B1, MKI67, and CREB5 were selected as the biomarkers for

this study. At that time, all 4 biomarkers showed a positive

correlation, and the highest positive correlation occurred between

SULT1B1 and CREB5 (cor = 0.823182574, p = 2.24×10-18)

(Figure 4H). Otherwise, the GTEx database was occupied to

observe the distribution of biomarkers in human tissues and

organs (Figure 4I). The results indicated that CREB5 and

SULT1B1 had the highest expression level in whole blood tissue,

and MKI67 had the highest expression level in cell-Cultured

fibroblasts. Unusually, the levels of expression with MYO10 in all

tissues were similar.
3.4 Construction of nomogram

The nomogram consisted of “points” and “total points”, with

the points representing the points of biomarkers and the latter

representing the total points of all biomarkers. The sum of gene

points indicated that the higher the total score, the higher likelihood

of sepsis in this sample. As shown in the Figure 5A, the point of

MYO10 was the highest indicated that MYO10 had the greatest

impact on the predictive value of sepsis and the result was

significant (P < 0.05). In addition, the P-value of the calibration

curve was 0.111, indicating the accuracy of prediction with the

nomogram was quite well (Figure 5B). Similarly, the AUC in ROC

of the model was 0.872, also indicating good prediction

performance of the model (Figure 5C).
3.5 The enrichment pathway of the
biomarkers

The GSEA revealed the enrichment pathway of the biomarkers.

The results showed that the four biomarkers were all enriched in

ribosome, and 3 biomarkers (MYO10, SULT1B1, CREB5) were

enriched in Fc gamma R-mediated phagocytosis. The common

enrichment pathway of CREB5 and SULT1B1 was the chemokine

signaling pathway. The co-enrichment pathway of CREB5 and

MYO10 was the regulation of actin cytoskeleton (Figures 6A–D).
3.6 Consensus clustering analysis of
biomarkers

As shown in the Figure 7A, the best cluster stability was

achieved when the number of clusters (K) equaled 2.

Consequently, the sepsis samples in the GSE28750 dataset were
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divided into two subgroups, including cluster1 and cluster2. To

obtain the expression trends of biomarkers between cluster1 and

cluster2, the Wilcoxon test was used. The results indicated that the

expression of MKI67, SULT1B1 and CREB5 were significantly

different between two clusters. Specifically, MKI67 was up-

regulated in cluster2, while CREB5 and SULT1B1 were up-

regulated in cluster1 (Figure 7B). To investigate the different

proportion of immune cell infiltration between two clusters, 22

immune cells were included based on the CIBERSORT algorithm

(Supplementary Figure S3). But only 16 immune cells were included

in differential analysis, and only two cells stypes (B cell plasma b and

Neutrophil) showed significant differences between clusters (P <

0.05) (Figure 7C).
3.7 Identification of non-coding RNA and
TFs

By using the NetworkAnalyst platform, a total of 30 miRNAs

were identified for four biomarkers. Among them, 3 miRNAs were

predicted with CREB5, 17 miRNAs were predicted with MKI67, 8

miRNAs were predicted with MYO10, and 2 miRNAs were

predicted with SULT1B1. Specifically, the miRNA which targeted

MYO10 and SULT1B1 was hsa-mir-124-3p. while that targeted

MYO10 and MKI67 was hsa-mir-218-5p. Next, 1,055 lncRNA-

miRNA interactions were obtained by the miRNet database, and

the top 3 lncRNAs related to each miRNA such as which included

MKI67-hsa-mir-484-SNHG12, MKI67-hsa-mir-218-5p-SLFNL1-

AS, and MYO10-hsa-mir-218-5p-ADAMTSL4-AS1 were selected

to construct a network diagram. The lncRNAs-miRNAs-

biomarkers network were exhibited in the Figure 8A, Besides, a

total of 703 TFs were identified for four biomarkers. We selected the

top 30 TFs which had higher correlation with the biomarkers for the

TF-biomarkers network. The network was visualized by Cytoscape

software. The number of TFs predicted with MKI67 was the largest

(Figure 8B). The enrich function of TF mainly included anatomical

structure morphogenesis, animal organ morphogenesis, and

blastoderm segmentation. Finally, we also observed the expression

of TFs in the tissue distribution, and the results displayed that the

expression of TFs were observed in nerve, colon, uterus, skin, and

blood vessel (Figure 8C).
3.8 Drug prediction and molecular docking

A total of 80 drugs were chosen in the DSigDB database.

Subsequently, we selected the top 10 drugs with higher

significance to construct drug-biomarkers network by Cytoscape

software. In the drug-biomarkers network, it could be observed that

Methaneseleninie acid was targeted to theMYO10 andMKI67 while

MS-275 was targeted to theMYO10 and CREB5 (Figure 9A). Due to

its highest saliency with biomarkers and three-dimensional

structure, MS-275 was selected to perform molecular docking

analysis. MYO10 was selected as the gene also because of the

three-dimensional structure for molecular docking analysis. It is
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FIGURE 4

Identification and validation of diagnostic biomarkers for sepsis. (A) Heatmap of AUC values from multiple machine learning models, including RF,
LASSO, and glmBoost. (B) ROC curve evaluating model performance in the GSE9960 dataset. (C) ROC curve evaluating model performance in the
GSE28750 dataset. (D) ROC curves for MYO10, MKI67, CREB5, and SULT1B1 in GSE9960. (E) ROC curves for the same genes in GSE28750.
(F) Expression levels of four genes in sepsis and control groups in GSE9960. ** means P < 0.01; *** means P < 0.001. (G) Expression levels of four
genes in sepsis and control groups in GSE28750. ** means P < 0.01; *** means P < 0.001; ****means P < 0.0001. (H) Correlation heatmap showing
pairwise associations among the four candidate genes. * means P < 0.05; *** means P < 0.001. (I) Violin plots showing tissue-specific expression of
the four genes based on GTEx data.
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generally believed that |total score| > 7.0 kcal/mol indicated a

stronger binding activity. In our study, the total score was -9.4

kcal/mol, indicating that the biomarkers had preferable binding

activity with the target protein (Table 1) (Figure 9B).
3.9 Identification of key cells

After undergoing quality control, 47,080 cells and 20,696 genes

were retained for further analysis (Supplementary Figure S4).

Afterwards, the top 3000 hypervariable genes were selected for

PCA (Figure 10A). In this study, the top 30 principal components

were selected for cluster analysis, and all cells were ultimately

divided into 12 clusters (Figures 10B, C). A total of 6 cells (B

cells, CD16+ and CD14+ monocytes, CD4+memory cells, CD8+ T

cells, Megakaryocyte progenitors, NK cells) were annotated based

on the expression of marker genes in different cell clusters

(Figure 10D). Simultaneously, the expressions of marker genes
Frontiers in Immunology 10
were shown in the six cell types (Figure 10E). To further

demonstrate the expression of marker genes in each cell cluster,

we generated a heatmap of the top 5 marker genes with the highest

expression levels in each cluster (Supplementary Figure S5), aiming

to more intuitively reflect the gene expression characteristics of

different cell clusters. The cell proportion bar stack graph shows the

high specificity of the marker gene, confirming the accuracy of the

annotation (Figure 10F). To identify the key cell type in this study,

we analyzed the expression levels of biomarkers in different cells.

The results showed that compared with other immune cell types, all

four biomarkers exhibited high expression in CD16+ and CD14+

monocytes (Figure 10G). We further compared the infiltration

differences of each cell type between the sepsis group and the

control group using the Wilcoxon test (P < 0.05), and found that

there were significant differences in CD4+ memory cells, B cells,

CD16+ and CD14+ monocytes, and CD8+ T cells between the two

groups (Figure 10H). By synthesizing the evidence from both the

above-mentioned biomarker expression profiles and cell infiltration
FIGURE 5

Diagnostic nomogram construction and validation for sepsis. (A) Nomogram constructed using four candidate genes to predict sepsis probability.
(B) Calibration curve comparing predicted and observed outcomes. (C) ROC curve assessing the diagnostic performance of the nomogram.
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differences, we finally identified CD16+ and CD14+ monocytes as

the key cells. After secondary clustering, key cells were divided into

seven clusters of key cells (Supplementary Figure S6). In pseudo-

time analysis, a total of 5 underwent distinct states of CD16+ and

CD14+ monocytes were discovered, and the expression of the cell

was reduced over time in the disease group (Figure 11A).
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During the process of cell differentiation, MKI67 and MYO10

showed no significant changes, while the expression level of CREB5

first decreased and then increased, mostly distributed in the state 1

stage, which was the early stage of differentiation. The expression

levels of SULT1B1 first decreased and then stabilized, mostly

distributed in the state 1 stage. The results indicated that the
FIGURE 6

KEGG pathway enrichment analysis for MYO10, SULT1B1, MKI67, and CREB5. Pathway enrichment analysis based on GSEA for MYO10 (A), SULT1B1
(B), MKI67 (C), and CREB5 (D).
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development of diseases might be closely related to CREB5 and

SULT1B1 (Figure 11B).
3.10 The expression analysis of biomarkers
in the clinical samples

As shown in the Figure 12, The RT-qPCR results showed the

expression of MYO10, SULT1B1, MKI67, and CREB5 had

significant differences between controls and sepsis samples (P <

0.05). The expression of 4 biomarkers were all upregulated in the

sepsis group which were consistent in the results with the

bioinformatics analysis results, indicating that preliminary results

were reliable in our study.
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4 Discussion

Sepsis is typically triggered by infection, leading to an excessive

reaction of the body’s immune system that damages its own tissues

and organs. Immune cells play a critical role in the onset and

development of sepsis. In sepsis, immune cell phenotypes influence

susceptibility and mortality, and telomere shortening is closely

associated with the pathological processes of sepsis—such

shortening may induce a phenotype resembling accelerated aging

in survivors (43, 44). Mendelian randomization studies have

confirmed a potential causal relationship between genetically

predicted telomere shortening and increased sepsis susceptibility

(42). In-depth research on the association between immune cells

and telomeres can provide new directions for deciphering the
FIGURE 7

Consensus clustering of sepsis subtypes and associated immune characteristics. (A) Consensus matrix heatmap identifying two stable clusters (k = 2)
among sepsis samples. (B) Expression levels of CREB5, MKI67, MYO10, and SULT1B1 in the two clusters. ns means not significant; ** means P < 0.01;
**** means P < 0.0001. (C) Comparison of immune cell infiltration levels between the two clusters. ns means not significant; * means P < 0.05; ***
means P < 0.001.
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pathological mechanisms of sepsis and improving its diagnosis and

treatment. In this study, 34 candidate genes were obtained through

steps including differentially expressed gene screening, WGCNA

analysis, and intersection gene acquisition. Subsequently, four

biomarkers were identified using 101-machine learning

algorithms, ROC curve analysis, and gene expression profiling.
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The potential mechanisms of the four biomarkers (MYO10,

SULT1B1, MKI67, CREB5) identified in this study in sepsis can be

preliminarily interpreted through their known functions and

related pathways. MYO10, It is a key regulator of mitosis and

genome stability (45). Although not yet directly implicated in sepsis,

it may participate in the disease process by influencing immune-cell
FIGURE 8

Regulatory network analysis of candidate genes. (A) lncRNA–miRNA–mRNA regulatory network constructed for MYO10, MKI67, CREB5, and
SULT1B1. (B) Transcription factor regulatory network associated with the four candidate genes. (C) GO functional annotation of regulatory modules.
FIGURE 9

Drug–gene interaction network and molecular docking analysis. (A) Drug–gene interaction network for MYO10, MKI67, and CREB5. (B) Molecular
docking model of a representative small molecule and its target protein.
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proliferation and the SHH/WNT signaling pathways (45). For

example, abnormal activation and apoptotic imbalance of

immune cells in sepsis may be related to its regulation of the
Frontiers in Immunology 14
mitotic checkpoint, while dysregulation of the SHH/WNT pathway

may further exacerbate endothelial barrier damage or organ repair

disorders, suggesting the potential role ofMYO10 in sepsis-induced

multiple organ dysfunction (46–48). SULT1B1, a critical enzyme in

sulfur metabolism and hormone modification (49), may affect

common metabolic disorders in sepsis patients (such as non-

thyroidal illness syndrome) by regulating thyroid hormone

metabolism. Its sulfonation reaction may also modify
FIGURE 10

Single-cell RNA-seq analysis reveals immune cell composition in sepsis. (A) Highly variable genes identified based on expression dispersion. (B) PCA
of variable genes across single cells. (C) t-SNE projection of cell clusters based on top principal components. (D) Annotated t-SNE plot showing
major immune cell types. (E) Dot plot showing expression of marker genes across annotated cell types. (F) Cell type composition in control and
sepsis groups. (G) Expression levels of MYO10, SULT1B1, MKI67, and CREB5 across immune cell types. (H) Comparison of immune cell proportions
between control and sepsis samples.ns means not significant, * means P < 0.05.
TABLE 1 Title.

Biomarkers-drug Total score Center

MYO10-(MS-275) -9.4 12,1,-62
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inflammatory mediators (e.g., chemokines), thereby regulating the

intensity of systemic inflammatory responses. Although this gene

has been confirmed to participate in metabolic reprogramming in

liver and gastric cancers, its role in sepsis remains to be further

validated, particularly whether it indirectly regulates inflammatory
Frontiers in Immunology 15
signals through the NF-kB or MAPK pathways (50, 51). MKI67, a

classical proliferation marker, may have a dual role in the sepsis

immune microenvironment: high expression may occur

during early excessive activation of immune cells, while

decreased proliferative capacity may accompany the late
FIGURE 11

Pseudotime trajectory analysis of immune cell states in sepsis. (A) Pseudotime trajectories of single cells colored by pseudotime (top left), Seurat
clusters (top center), cell states (top right), and experimental groups (bottom). (B) Expression trends of CREB5, MKI67, MYO10, and SULT1B1 along
the pseudotime axis.
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immunosuppressive state. This dynamic change may reflect disease

severity and prognosis. Its enrichment in the cell cycle and p53

pathways suggests that it may influence sepsis progression by

regulating the balance between immune cell proliferation and

exhaustion, similar to its role in the tumor microenvironment

(52, 53). CREB5, a key transcription factor of the cAMP-signaling

pathway, plays an important role in the initiation and progression

of multiple cancers (54).Although direct research on CREB5 in

sepsis is currently limited, existing evidence suggests that it may be

involved in immunomodulatory processes. For example, studies

have found that miR-582-5p/miR-590-5p can induce monocyte

immunosuppression by targeting the CREB1/CREB5-NF-kB
signaling pathway cascade that ultimately drives monocytic

immunosuppression (55), suggesting that CREB5 may act as a

regulator of the immune imbalance characteristic of sepsis.

Furthermore, the functions of CREB5 in cell proliferation and

survival (56), as well as its identified role in immunotherapy

resistance, also suggest that it may have a potential role in sepsis-

related cell damage repair and immunosuppressive processes. In the

future, further exploration is needed into the specific molecular

mechanisms of CREB5 in sepsis and its clinical significance (57–59).

In summary, these biomarkers may be involved in sepsis

through mechanisms related to cell cycle regulation (MYO10,

MKI67), metabolic reprogramming (SULT1B1), and inflammatory

signal transduction (CREB5). While their mechanisms share some

commonalities with functions in other diseases, they may also

exhibit specificity due to the unique pathological environment of

sepsis (e.g., systemic inflammation, immune paralysis). For

example, the genomic stability regulation of MYO10 may be

associated with apoptosis resistance caused by mitochondrial

damage in immune cells during sepsis, while the metabolic

modification function of SULT1B1 may be involved in sepsis-

related disorders of adrenocortical hormone metabolism (60).

Future studies should validate the expression patterns and

functions of these genes through in vitro and in vivo experiments,
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and use single-cell sequencing to clarify their dynamic changes in

specific immune cell subsets (e.g., neutrophils, monocytes) to reveal

their potential as diagnostic markers or therapeutic targets.

Additionally, evaluating the efficacy of small-molecule inhibitors

targeting CREB5 or MYO10 in sepsis models may provide a

theoretical basis for developing novel therapies targeting immune

metabolism or cell cycle regulation.

Literature on SULT1B1 involvement in sepsis-related

adrenocortical hormone metabolic disorders shows: Recent

studies have confirmed that ribosomal dysfunction and FcgR-
mediated phagocytic abnormalities play critical roles in sepsis.

The former downregulates the ribosomal biosynthesis pathway in

peripheral blood monocytes of patients, reducing IL-10 synthesis

and exacerbating immune imbalance (61), consistent with the

findings in this study that MYO10, MKI67, and other genes

regulate protein synthesis through the ribosomal pathway to affect

immune cell compensatory capacity; the latter has dual effects,

where overactivated FcgR signaling induces endothelial cell

apoptosis via reactive oxygen species (ROS) burst, while

inhibiting this pathway alleviates lung injury, echoing the

hypothesis that MYO10 and CREB5 regulate phagocytic efficiency

through actin remodeling (62). In terms of metabolic regulation,

SULT1A1 modifies the Fc segment of IgG to enhance its binding to

FcgR for pathogen clearance, providing evidence for a similar

immune-regulatory mechanism of SULT1B1 in the FcgR
phagocytic pathway (63). Cluster analysis divides sepsis patients

into two groups: Cluster 2 has an increased proportion of plasma B

cells, linked to MKI67-driven B cell differentiation, though their

hyperactivation or exhaustion may impair immunity (61, 62);

Cluster 1 shows increased neutrophil infiltration, associated with

activation of the CREB5/SULT1B1-regulated chemokine pathway,

whose phagocytic function is coordinately regulated by the FcgR
pathway and MYO10/CREB5 (61, 63). Additionally, B cells and

neutrophils interact via factors such as IgG, IL-6, and IL-10, with

this balance disrupted in different subgroups, leading to immune
FIGURE 12

The validation of the expression levels of biomarkers. (A) MYO10. (B) MKI67. (C) CREB5. (D) SULT1B1. * means P < 0.05, ** means P < 0.01.
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phenotype polarization—Cluster 1 favors an inflammatory

response, while Cluster 2 favors a compensatory antibody

response (61).

In this study, through regulatory network analysis, it was found

that four key biomarkers are potentially regulated by multiple

miRNAs (including hsa-mir-218-5p) as well as a large number of

TFs, indicating that their expression may be subject to precise

regulation at the complex transcriptional and post-transcriptional

levels. These findings indicate that the identified TFs and ncRNAs

themselves could serve as potential intervention targets for the

aforementioned biomarkers. Moreover, drug prediction based on

the DSigDB database identified the class I–selective histone

deacetylase (HDAC) inhibitor MS-275 (entinostat) as a candidate

compound predicted to interact with both MYO10 and

CREB5.Notably, existing studies have shown that MS-275, as a

class I-specific histone deacetylase (HDAC) inhibitor, may affect

energy metabolism to a certain extent and accelerate the migration

of cells across endothelial cell monolayers (64).existing studies have

shown that MS-275, as a class I-specific histone deacetylase

(HDAC) inhibitor, may affect energy metabolism and

accelerate cell migration through endothelial cell monolayers to

a moderate extent. MS-275 has also been investigated as a

radiosensitizer for treating inherently radioresistant PAX3-

FOXO1 rhabdomyosarcoma. Literature further indicates that MS-

275 inhibits Robo4 expression by suppressing HDAC3 in

endothelial cells and enhances endothelial and vascular

permeability (65).

Single-cell sequencing analysis suggests that CD16+ and CD14+

monocytes are key immune subgroups in the pathogenesis of sepsis.

Although this study found that the proportion of cells of these four

biomarkers in this monocyte subpopulation was not high, it is

important to interpret the single cell data in depth. Studies have

shown that gene expression has inherent heterogeneity in cell

populations, especially the expression of key regulatory genes is

often limited to subpopulations of cells with specific functional

states or activation stages (66). CD16+/CD14+ monocytes

represent the primary convergence point for overlapping signaling

pathways among these four biomarkers, including cytoskeletal

regulation, metabolic processes, proliferation, and inflammatory

responses. During sepsis, significant changes in the abundance of

this cell population, combined with coordinated expression patterns

within the biomarker panel, suggest that a functionally specialized

monocyte subpopulation undergoes critical functional

reprogramming essential to sepsis pathogenesis. This finding is

consistent with the known biological properties of CD16+

monocytes as a key driver of inflammation (67, 68). In the

complex pathogenesis of sepsis, CD16+/CD14+ monocytes play a

central role in their functional reprogramming and abnormal

association with multiple signaling pathways, including cytoskeletal

regulation, metabolism, proliferation and inflammatory signaling

pathways. Secondary clustering and pseudotime analysis of

monocytes showed that CREB5 and SULT1B1 tended to be stable

in their five differentiation states after significant downregulation in

early differentiation, suggesting that they may be involved in the

progression of sepsis. Studies have shown that significant changes in
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the composition and function of peripheral blood monocytes

(PBMCs) occur in patients with sepsis (69). In patients with severe

sepsis and septic shock, the proportion of CD14+CD16+ monocytes

was significantly elevated (70). These findings demonstrate that

CD16+/CD14+ monocytes act as central regulators of sepsis

through dysfunctional pathways involving inflammation and

immune metabolism. Targeting these cells or their key regulatory

factors could provide novel therapeutic approaches, though this

requires validation in future clinical cohort studies to optimize

intervention strategies (71–73).

This study found that CREB5 was significantly upregulated in

sepsis, and was specifically enriched in CD16+ and CD14+

monocytes, and its expression level showed dynamic changes with

cell differentiation. Gene set enrichment analysis suggested that

CREB5 was involved in ribosome and chemokine signaling

pathways. As a key transcription factor in the cAMP signaling

pathway, CREB5 recognizes and binds to the cAMP-responsive

element in the promoter region of the target gene through the basic

leucine zipper domain, and then regulates gene transcription

reprogramming (58, 59). In the early stage of sepsis, the

upregulation of CREB5 may enhance the transcriptional activity

of inflammatory factors such as IL-6 and TNF-a by directly binding

to the promoter region of inflammatory factors, thus driving the

inflammatory response of CD16+ monocytes. Its expression pattern

during differentiation follows a “first decrease then increase”

dynamic pattern, suggesting that CREB5 may exert dual

regulatory roles at different disease stages. Additionally, CREB5

might influence monocyte metabolic reprogramming by affecting

the transcription of glycolysis-related genes (59), thereby regulating

their immune functions. In conclusion, CREB5 is not only a

biomarker, but its DNA binding ability may play a central role in

the integration of septic stress signals and the reprogramming of

immune cell function. Future studies should further clarify the

downstream gene network of CREB5 to further reveal its specific

mechanism in sepsis.

Multi-omics analysis reveals that four biomarkers—MYO10,

SULT1B1, MKI67, and CREB5—are upregulated in sepsis patients and

hold potential as therapeutic targets:MYO10, an actin regulator, may be

involved in monocyte migration and adhesion; SULT1B1 shows early

downregulation followed by stabilization during monocyte

differentiation, and its reduced lipopolysaccharide(LPS) detoxification

capacity exacerbates inflammation, suggesting that targeting its

activation could enhance metabolic function; upregulation of MKI67

indicates that abnormal monocyte proliferation drives inflammation,

and inhibiting its expression may alleviate systemic inflammation (74);

CREB5 exhibits a biphasic expression pattern during differentiation, with

early downregulation exacerbating oxidative damage and late

upregulation exerting compensatory anti-inflammatory effects via

antioxidant genes, and activating its pathway can induce monocyte

polarization toward an anti-inflammatory phenotype to reduce organ

damage (75).

This study identified immune cell- and telomere-related

biomarkers in sepsis based on mRNA transcriptome data and

their expression levels at the single-cell level, providing a

theoretical basis for understanding sepsis and guiding subsequent
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diagnosis and treatment of sepsis patients. However, this study still

has some limitations. First, all analyses were based on retrospective

data from a public database with a relatively small sample size.

Although the results confirm changes in biomarker expression

levels in septic patients as a whole, this approach does not

distinguish which immune cells these transcripts are derived

from, and there is no independent external cohort validation.

Secondly, while single-cell transcriptomic analysis has revealed

express ion dynamics of these genes in immune cel l

subpopulations, their specific functional mechanisms in sepsis

remain unverified through experimental approaches such as gene

knockout or overexpression. This lack of experimental validation

prevents definitive causal relationships from being established.

Furthermore, although single-cell sequencing suggests CD16

+/CD14+ monocytes may be a critical source, whole blood data

cannot provide direct experimental evidence to support this

hypothesis. Furthermore, the predicted candidate drug MS-275’s

interaction with genes has only been preliminarily evaluated

through molecular docking, lacking support from in vitro and in

vivo pharmacodynamic experiments. Future studies should validate

the diagnostic efficacy of biomarkers in larger, multicenter

prospective clinical cohorts. Flow cytometry should be employed

to isolate key immune cell subpopulations (e.g., CD16+/CD14+

monocytes), enabling confirmation of their expression sources at

the cellular level. Combined with single-cell proteomics technology,

this approach will verify mRNA-protein level consistency, thereby

enhancing the reliability of conclusions. Secondly, the mechanism

must be deeply explained through functional experiments. In vitro,

gene editing or overexpression technology can be used to regulate

the expression of biomarkers in primary immune cells or cell lines,

and observe their effects on immune response (such as

inflammatory factor release, phagocytosis, cell migration and

proliferation); In vivo, we can establish myeloid cell conditional

knockout mouse models to clarify their causal role in the

pathogenesis of sepsis. Finally, for the predicted candidate drug

MS-275, systematic pharmacodynamic evaluations at the cellular

level and efficacy validation in animal models should be conducted

to determine its potential value in treating sepsis by modulating the

aforementioned therapeutic targets. In vivo, we can establish

myeloid cell conditional knockout mouse models to clarify their

causal role in the pathogenesis of sepsis. Finally, for the predicted

candidate drug MS-275, systematic pharmacodynamic evaluations

at the cellular level and efficacy validation in animal models should

be conducted to determine its potential value in treating sepsis by

modulating the aforementioned therapeutic targets. These studies

will help to promote the clinical translation of the biomarkers

identified in this study from basic research to clinical applications.
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SUPPLEMENTARY FIGURE 1

Three-dimensional scatter plot of case and control samples. 3D scatter plot
based on dimensionality reduction.

SUPPLEMENTARY FIGURE 2

Immune cell composition in sepsis and control samples.

SUPPLEMENTARY FIGURE 3

Immune cell composition in sepsis subtypes.

SUPPLEMENTARY FIGURE 4

Quality control of single-cell RNA-seq data.

SUPPLEMENTARY FIGURE 5

Heat maps of the top5 marker genes in each cluster.
Frontiers in Immunology 19
SUPPLEMENTARY FIGURE 6

Principal component analysis and dimensionality reduction of single-cell
data. JackStraw plot (top) and scree plot (bottom left) were used to assess

significance and variance explained by principal components. The t-SNE plot
(bottom right) displays cell clusters projected from top-ranked PCs.

SUPPLEMENTARY TABLE 1

qPCR experimental setup and primer sequences. This table includes (A) the

qPCR reaction system, (B) thermocycling conditions, and (C) sequences of
primers used to detect MYO10, SULT1B1, MKI67, CREB5, and the internal

reference gene GAPDH.

SUPPLEMENTARY TABLE 2

Gene Ontology (GO) biological process enrichment analysis of candidate
genes. Listed are enriched GO-BP terms with their GO ID, term name, gene

ratio, adjusted P-value, and core enrichment genes.

SUPPLEMENTARY TABLE 3

KEGG pathway enrichment analysis of candidate genes. Pathways were

identified using the KEGG database. Listed are the top enriched pathways

with adjusted P < 0.05.
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