:' frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

Lynn Xiaoling Qiang,
Northwell Health, United States

Bruno Jorge De Andrade Silva,

University of California, Los Angeles,

United States

Guiying Hou,

The 2nd Affiliated Hospital of Harbin Medical
University, China

Yunhao Liu
yunhaoliu@wust.edu.cn

These authors have contributed equally to
this work

17 June 2025
17 October 2025
30 October 2025

Chen D, Huang X, Wang C, Zheng C and

Liu Y (2025) Portfolio analysis of single-cell
RNA-sequencing and transcriptomic data
unravels immune cells and telomere-related
biomarkers in sepsis.

Front. Immunol. 16:1638156.

doi: 10.3389/fimmu.2025.1638156

© 2025 Chen, Huang, Wang, Zheng and Liu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Immunology

Original Research
30 October 2025
10.3389/fimmu.2025.1638156

Portfolio analysis of single-cell
RNA-sequencing and
transcriptomic data unravels
Immune cells and telomere-
related biomarkers in sepsis
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University of Science and Technology, Wuhan, China, 2Department of Intensive Care Unit, The
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Wuhan, China, *Huazhong University of Science and Technology, Wuhan, China

Background: Early diagnosis of sepsis is essential to reducing mortality. Immune
cells and telomeres play important roles in sepsis, but their mechanisms were still
unclear. This study aimed to explore the value of immune cells and telomere-
related genes in sepsis.

Methods: In this study, the transcriptomic data with sepsis and control samples
were obtained from public database. Multiple methods including differential
expression analysis, immune infiltration analysis, weighted gene co-expression
network analysis (WGCNA), 101-machine learning algorithm combinations were
used to identify biomarkers which related to the immune cells and telomere.
Afterwards, a nomogram was constructed to assess the clinical predictive value
of biomarkers. In addition, gene set enrichment analysis (GSEA), regulatory
network construction and drug prediction analysis were adopted to
demonstrate the role of biomarkers in sepsis. The key cells were also identified
using a single-cell dataset. Finally, the expression of biomarkers was further
validated in clinical samples by reverse transcription quantitative polymerase
chain reaction (RT-gPCR).

Results: This study obtained a total of 4 biomarkers (MYO10, SULT1B1, MKI67,
and CREB5), and the analysis of nomogram showed that the biomarkers had
good clinical predictive value to sepsis. The enrichment analysis results revealed
that the four biomarkers were enriched in the ribosome pathway. Besides, a
INcRNAs-miRNAs-biomarkers network was constructed for the four biomarkers.
Finally, we obtained a candidate drug (MS-275) and a key cell (CD16+ and CD14+
monocytes) respectively based on drug prediction and cell identification analysis.
In addition, we found that the expression levels of CREB5 and SULT1B1 had
significant changes during the process of key cell differentiation. The RT-qPCR
results showed biomarkers were upregulated in the sepsis group, consistent with
the bioinformatics analysis results.
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Conclusion: This study identified 4 biomarkers, namely MYO10, SULT1B1, MKI67,
and CREBS5 and explored the pathogenesis of sepsis, providing new insights for
potential treatment strategies by integrating transcriptomic data and single-

cell analysis.

sepsis, single-cell RNA sequencing, 101-machine learning, telomere, immune cells

1 Introduction

Sepsis is a life-threatening organ dysfunction caused by a
dysregulated host response to infection. It is characterized by
systemic immune activation, metabolic abnormalities, and multi-
organ dysfunction (1). It causes approximately 11 million deaths
globally each year (2). Although the incidence and mortality rates
have decreased in recent years, sepsis remains a significant health
burden (3). Due to its nonspecific clinical presentation and the
limitations of current diagnostic methods, early diagnosis remains
challenging, making the discovery of novel biomarkers a key focus of
research (4).

The pathogenesis involves complex disorders of immune
regulation. Early intervention targeting excessive inflammation has
shown poor outcomes. Recent studies have revealed that sepsis is often
accompanied by adaptive immune suppression, with functional
exhaustion of immune cells linked to adverse prognoses (5). This
process may be associated with telomere dysfunction: telomere
shortening can trigger cellular senescence and genomic instability,
while excessive activation of immune cells in sepsis may accelerate
telomere attrition. Clinical studies have demonstrated an association
between peripheral blood leukocyte telomere length and survival rates
in patients (6). Given the limited sensitivity of traditional biomarkers,
the functional state of immune cells and telomere length may offer
more precise assessments of disease severity. This study aims to identify
gene markers associated with telomeres and immune cells through
integrated bioinformatics analysis, in order to elucidate their roles in
sepsis progression and uncover novel therapeutic targets.

Single-cell RNA sequencing (scRNA-seq) is a revolutionary
technology that, compared to traditional bulk sequencing methods,
enables multi-omics analysis (genomic, transcriptomic, epigenomic) at
the single-cell level to reveal intercellular heterogeneity (7, 8). Its
advantages include the identification of rare cell subsets, decoding of
cell-cell communication, and tracking of dynamic changes, providing
high-precision data for disease mechanism research (9-11). Machine
learning (ML), which extracts patterns from complex data via
algorithms, has been widely applied in biomedicine, but it faces
challenges in interpretability and multimodal data integration (12,
13). To address these limitations, researchers are continuously
exploring novel ML approaches. For example, “101-machine
learning” is an emerging technique designed to enhance ML
performance and applicability through efficient data processing and
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model training. In this study, we utilized ML to optimize feature
selection and model training, thereby improving the efficiency and
accuracy of target screening (14).

This study was based on transcriptomic data from public
databases, and 101-machine learning algorithms were employed
to screen for sepsis-related biomarkers. Through in-depth analysis
of their clinical diagnostic value, enriched functions, involved
biological statistics, and interactions with the immune
microenvironment, we explored the functions and regulatory
mechanisms of these genes across different biological levels.
Finally, single-cell analysis techniques were used to elucidate the
cell-type-specific expression and distribution patterns of these genes
in sepsis. These findings lay a solid foundation for developing novel
therapeutic strategies for sepsis and are expected to advance
innovative treatments and personalized medicine in this field.

2 Materials and methods
2.1 Data collection

Three microarray datasets in this study were obtained from the
Gene Expression Omnibus (GEO) database using the “GEOquery”
package (version 4.2.1) (15). Among them, GSE9960 and GSE28750
both used the GPL570 sequencing platform (16). GSE9960
contained 70 peripheral blood mononuclear cell samples,
including 54 sepsis samples as the case samples and 16 normal
controls as the control samples. GSE28750 contained 30 blood
samples, of which 10 sepsis samples were the case samples and the
remaining were normal controls. The scRNA-seq dataset based on
the GPL24676 sequencing platform, GSE167363 contained 12
peripheral blood mononuclear cells samples, including 10 sepsis
case samples and 2 normal control samples (17). The 2086
telomere-related genes (TRGs) were extracted from TelNet
database (http://www.cancertelsys.org/telnet) (18). The analysis
process of this study is shown in Figure 1.

2.2 Differential expression analysis

The PCA in GSE9960 dataset was performed through the
“scatterplot3d” package (v 0.3-42) (19). The differentially
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This study analyzes the flowchart.

expressed genes (DEGs) between sepsis and normal samples in
GSE9960 dataset were identified using the “limma” package
(v 3.54.1) (20). The screening criteria were P < 0.05 & [log,Fold
Change (FC)| > 0.5. The top 10 genes up-regulated and down-
regulated in the sepsis samples based on the |log,FC| values were
displayed by volcano plot and heat plot which made use of
“ggplot2” package (v 3.4.1) (21) and “ComplexHeatmap” package
(v 2.14.0) (22), respectively.

2.3 Immune infiltration analysis and
weighted gene co-expression network
analysis

In our study, the relative distribution ratios of 22 immune cells
in each sample in GSE9960 were analyzed by using the cell
identification by estimating relative subsets of RNA transcripts
(CIBERSORT) algorithm (v 0.1.0) (23), and immune cells with a
proportion of 0 over 30% samples were removed in the subsequent
analysis. The differences of immune cells infiltration between the
case and control group were completed through the Wilcoxon rank
sum test (P < 0.05).Module genes highly correlated with immune
cells were selected using the “WGCNA” package (v 1.71) (24).
Sample cluster analysis used the hierarchical clustering (HCLUST)
function to identify and eliminate outliers. Then, we set R* = 0.85 to
screen for soft thresholds (). Topology overlap and adjacency
matrices were established based on the gene expression data.
Afterwards, the minimum gene count per module was set to 100
with the altitude of models being set to 0.4, and the modules were
merged according to the standards of the dynamic tree cutting
algorithm. Then, differential immune cell scores were used as the
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phenotype to calculate the correlations between key module and
phenotype. Finally, the modules with the best comprehensive score
from the modules which significantly correlated with phenotype
were obtained as the final module. The genes in final modules
significantly correlated with phenotype were selected as the
immune cell-related genes (ICRGs) (P < 0.05).

2.4 Enrichment analysis of candidate genes
and protein-protein interaction network

The candidate genes in our study were obtained by overlapping
the ICRGs, DEGs and TRGs, which made use of the “ggvenn”
package (v 1.7.3) (23).

The functions of candidate genes were explored by the kyoto
encyclopedia of genes and genomes (KEGG) and gene ontology
(GO) analyses with the “clusterProfiler” package (v 4.2.2) (25) (P <
0.05). Furthermore, the protein level interactions of candidate genes
were analyzed by PPI network using data from the search tool for
the recurring instances of neighboring genes (STRING) database
(confidence > 0.4) (26).

2.5 Construction of 101-machine learning
models and identification of biomarkers

In order to identify feature genes associated with sepsis, the
leave-one-out cross-validation (LOOCYV) framework was utilized in
the GSE9960 and GSE28750 datasets that integrated ten different
machine learning algorithms into 101 algorithm combinations. The
input data for machine learning algorithms was the candidate genes,
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and the ten machine learning algorithms comprised RSF and Enet
by the “glmnet” package (v 4.1.4) (27), least absolute shrinkage and
selection operator (LASSO) by the “glmnet” package (v 4.1.4) (27),
Ridge by the “glmnet” package (v 4.1.4) (27), stepwise Cox by the
“caret” package (v 6.0-93) (28), xBoost by the “xgboost” package (v
1.7.3.1) (29), plsRcox by the (v 3.2.2), SuperPC by the “superpc”
package (v 1.12) (30), generalized linear mixed model (GBRM) by
the “gbm” package (v 2.1.8.1) (31), and survival-SVM by the
“e1071” package (v 1.7-13) (32). Subsequently, the receiver
operating characteristic (ROC) curve drawn using the “pROC”
package (v 1.18.0) (33) was used to validate the predictive
performance of the 101-machine learning algorithm combinations
when the minimum and the maximum number of genes in the
model was from 2 to 10. The combination model with the highest
area under the curve (AUC) value of ROC curve was considered as
the optimal model. The genes of the optimal model were considered
as the candidate biomarkers for subsequent analysis.

In this study, ROC curve and expression level analysis were also
performed on the GSE9960 and GSE28750 datasets to identify
biomarkers with sepsis (AUC > 0.7). The expression level analysis
was used by Wilcoxon test, which required that the expression
trends of genes in two datasets were consistent (P < 0.05).

2.6 Gene correlation analysis and
distribution analysis in organs

In this study, the genotype-tissue expression (GTEx) database
was employed mainly for querying the expression levels of
biomarkers in 28 normal tissues and organs of the human body.
Besides, correlations among biomarkers were carried out using
Spearman’s correlation test with the “psych” package (v 2.2.9)
(34) in the GSE9960 datasets.

2.7 Nomogram analysis

To investigate the specific role of biomarkers in the diagnosis of
sepsis, the nomogram based on biomarkers was constructed using
the “regplot” package (v 1.1) (35) in the GSE9960 datasets. The
accuracy of prediction with nomogram was determined by the
calibration curve, which was drawn by the “rms” package (v 6.5.0)
(36). Furthermore, the predicting value of the nomogram was also
appraised by ROC curve.

2.8 Gene set enrichment analysis

In order to explore the biological pathways and functions with
biomarkers, gsea was executed by “clusterProfiler” package in the
GSE9960 datasets (37). Primarily, the Spearman correlation
coefficients between biomarkers and all genes were calculated in the
disease samples of the GSE9960 dataset. The GSEA of biomarkers was
conducted according to the sequencing list of genes which
corresponded to biomarkers (P.adjust < 0.05, |normalized
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enrichment score (NES) |> 1). In this step of analysis, the gene set
from the “org.Hs.eg.dbR” package (v 3.1.0) (38) was employed as the
background gene set.

2.9 Consistent clustering analysis

In order to cluster the sepsis samples into different clusters in
the GSE9960 dataset, the k-means algorithm with 1000 iterations
was executed by “ConsensusClusterPlus” package. In order to
determine the expression of biomarkers and the differences in
immune cell infiltration different subtypes on sepsis, the
expression of biomarkers and immune infiltration analysis was
performed between the different clusters according to the
previously referenced method (P < 0.05).

2.10 Regulating network construction and
drug prediction

LncRNAs can control the expression of mRNAs by binding to
shared miRNAs. So, in this study, the miRTarBase v9.0 database
and TarBase v9.0 database were manipulated based on the
NetworkAnalyst platform to forecast the miRNAs which could
target biomarkers. Then, the final miRNAs were obtained by
crossing over the miRNAs from the two databases. Finally, the
miRNet database was used to predict the IncRNAs which could
target the final miRNAs, and the IncRNA-miRNA-mRNA network
was visualized by Cytoscape software (v 3.9.1) (39).

In addition, this study also employed ChEA3 database to
forecast the transcription factors (TFs) which could target
biomarkers. The biological function (P < 0.05) and the
distribution in the tissues of TFs also were obtained from the
ChEA3 database.

To search for potential therapeutic drugs related to biomarkers
for sepsis, the “enrichR” package (v 3.2) (39) was used based on the
Drug Signatures Database (DSigDB) database to predict genes-drug
interactions (P < 0.05). Afterwards, in order to evaluate the binding
ability between drugs and biomarkers, the drugs which had the
highest significance with biomarkers were selected to perform
molecular docking. The three-dimensional structure with proteins
of biomarkers was retrieved from the Protein Data Bank (PDB)
database (https://www.rcsb.org/) and the three-dimensional
structure with molecular ligands of key active ingredients was
retrieved from the PubChem database. Finally, molecular ligands
and proteins were docked using online website.

2.11 Single-cell RNA-sequencing analysis

The scRNA-seq analysis was conducted using “Seurat” package
(v 5.0.1) (40). To ensure the accuracy of single-cell data, all samples
in the GSE167363 dataset were dealt with the PercentageEigenSet
function of the “Seurat” package. The data processing conditions
were as follows: the number of genes in cells ranges from 300 to
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10000, the expression level of genes in cells between 300-2000, the
genes expressing in at least three cells, and the proportion of
mitochondrial genes less than 15% in cells. Then, in light of the
GSE167363 dataset, data were normalized by the “NormalizeData”
function in the “Seurat” package (v 5.0.1), and highly variable genes
(HVGs) were selected by the “FindVariableFeatures” function.
Next, the “ScaleData” function in the “Seurat” package (v 5.0.1)
was applied to scale data before principal components analysis
(PCA). Subsequently, the “JackStraw” function within the “Seurat”
package (v 5.0.1) was applied to execute PCA on HVGs. The
“ElbowPlot” function within the “Seurat” package (v 5.0.1) was
thereafter applied to draw a scree plot of the top 30 principal
components (PCs), aiming to identify PCs that notably contributed
to variation for subsequent analysis (P < 0.05). Afterward, cell
cluster analysis was conducted on cells after dimensionality
reduction utilizing “FindNeighbors” and “FindClusters” functions
(resolution = 0.1, dimension = 30). After that, the cells were
clustered by the uniform tSNE clustering method (41). Marker
genes for cell annotation in this study were obtained from the
literature (15).

To determine the key cell types of sepsis in the GSE167363
dataset, the proportion of different types of cells in different
samples, the differential infiltration of cells, and expression of
biomarkers in different cell types were all considered. So, the cells
that satisfied the following criteria simultaneously as key cells: (1).
high proportion of cells in the sample; (2). cells with different
infiltration ratios between the disease and control; (3). cells with
different expression of biomarkers (P < 0.05). Subsequently, the
secondary clustering analysis on key cells was performed which
referred to the previous method, and the pseudo time analysis was
proceeded by the “Monocle” package (v 2.30.0) (42) to study the
developmental trajectory and differentiation directions of key cell
types. Eventually, the expression of biomarkers during cell
differentiation was observed.

2.12 Reverse transcription quantitative
polymerase chain reaction

The assessment of biomarkers expression was conducted on
clinical tissue samples using RT-qPCR. A total of 5 pairs of blood
samples were obtained from Wuhan Central Hospital Affiliated to
Huazhong University of Science and Technology, including 5 sepsis
and 5 control. All participants needed to sign and fill the informed
consent form, and the ethical approval agency was Ethics
Committee of The Central Hospital of Wuhan (No.
WHZXKYL2024-164). Firstly, the total RNA of 5 pairs of tissue
samples was derived by TRizol reagent (Ambion, U.S.A). The RNA
concentrations were computered by NanoPhotometer N50.
Secondly, mRNA was reversely transcribed into complementary
DNA (cDNA) utilizing SureScript-First-strand-cDNA-synthesis-
CREB5B test kit (Servicebio, Wuhan, China). Finally, the RT-
qPCR was conducted. The expression levels of biomarkers
between sepsis and control samples were calculated by 244", The
internal reference gene was glyceraldehyde-3-phosphate
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dehydrogenase (GAPDH), which was employed to normalize the
results. The results were calculated by GraphPad Prism 5. Detailed
information of primers and machine testing conditions was listed in
Supplementary Table SI.

2.13 Statistical analysis

Bioinformatics analyses were performed utilizing the R
programming language (v 4.2.2). Wilcoxon rank sum test was
used to compare the differences between two groups. P < 0.05
was considered statistically significant.

3 Results
3.1 Identification of candidate genes

The results of PCA showed that the case and control samples in
the GSE9960 dataset were relatively separated, but there were no
outlier samples, indicating good stability of the group samples
(Supplementary Figure S1). So, the DEGs were obtained between
all case and control samples in this dataset. A total of 589 DEGs
were identified, of which 342 were up-regulated and 247 were
down-regulated in the case group (Figures 2A, B). In the immune
infiltration analysis, 15 types of immune cells were remained after
removing cells that did not conform to the criteria (Supplementary
Figure S2). Then, a significant difference was observed in the
infiltration of 10 immune cells between the case and the control
group, including memory B cell, plasma B cell, Macrophage MO,
Monocyte, Neutrophil, resting natural killer (NK) cell, CD+ resting
memory T-cell, naive CD4+ T cell naive, CD8+ T cell CD8+, and
gammadelta T cell. The 10 immune cells were included in
subsequent analysis (Figure 2C).

In WGCNA, no outlier samples were detected and subsequent
analysis was based on all samples (Figure 2D). Afterwards, the soft
threshold was 30 when R? = 0.85, and a total of 7 co-expression
modules were obtained (Figures 2E, F). The correlation analysis
indicated that the MEyellow module exhibited the strongest
correlation with the immune cell score, and 1,886 ICRGs were
identified (Figure 2G). Ultimately, 32 candidate genes were
obtained by taking the intersection of ICRGs, DEGs, and
TRGs (Figure 2H).

3.2 The analysis of enrichment analysis and
PPI network

The GO enrichment analysis of the candidate genes revealed
that there were 440 significant functions, including nuclear division,
organelle fission, spindle, chromosomal region, protein serine
kinase activity, protein serine/threonine kinase activity, etc.
(Figure 3A) (Supplementary Table S2). Meanwhile, a total of 15
significant functions were enriched in the KEGG analysis which
included oocyte meiosis, progesterone-mediated maturation of
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Scale-free topology model fit and mean connectivity across soft-thresholding powers. (F) Gene clustering dendrogram with color-coded modules
identified by WGCNA. (G) Heatmap illustrating module-trait correlations between WGCNA modules and immune cell scores. (H) Venn diagram
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AUC (Figures 4A-C). At the same time, the 7 genes such as
MYOI10, TDRDY, SULTIBI1, MKI67, CREB5, BASP1, and CKAP4
in the “RF+Lasso” model were placed in subsequent analysis. The
ROC curve analysis of the7 genes indicated that the AUC values of
MYO10, SULT1BI, MKI67, and CREBS5 were greater than 0.7 in the
two datasets (Figures 4D, E). These 4 genes were differentially
expressed between groups in both datasets, and all were up-
regulated in the case group (Figures 4F, G). Therefore, MYOI0,
SULTI1BI, MKI67, and CREB5 were selected as the biomarkers for
this study. At that time, all 4 biomarkers showed a positive
correlation, and the highest positive correlation occurred between
SULTIBI and CREB5 (cor = 0.823182574, p = 2.24x107'%)
(Figure 4H). Otherwise, the GTEx database was occupied to
observe the distribution of biomarkers in human tissues and
organs (Figure 4I). The results indicated that CREB5 and
SULTIBI had the highest expression level in whole blood tissue,
and MKI67 had the highest expression level in cell-Cultured
fibroblasts. Unusually, the levels of expression with MYOI0 in all
tissues were similar.

3.4 Construction of nomogram

The nomogram consisted of “points” and “total points”, with
the points representing the points of biomarkers and the latter
representing the total points of all biomarkers. The sum of gene
points indicated that the higher the total score, the higher likelihood
of sepsis in this sample. As shown in the Figure 5A, the point of
MYOI0 was the highest indicated that MYOI0 had the greatest
impact on the predictive value of sepsis and the result was
significant (P < 0.05). In addition, the P-value of the calibration
curve was 0.111, indicating the accuracy of prediction with the
nomogram was quite well (Figure 5B). Similarly, the AUC in ROC
of the model was 0.872, also indicating good prediction
performance of the model (Figure 5C).

3.5 The enrichment pathway of the
biomarkers

The GSEA revealed the enrichment pathway of the biomarkers.
The results showed that the four biomarkers were all enriched in
ribosome, and 3 biomarkers (MYOI10, SULTIB1, CREB5) were
enriched in Fc gamma R-mediated phagocytosis. The common
enrichment pathway of CREB5 and SULT1BI was the chemokine
signaling pathway. The co-enrichment pathway of CREB5 and
MYOI0 was the regulation of actin cytoskeleton (Figures 6A-D).

3.6 Consensus clustering analysis of
biomarkers

As shown in the Figure 7A, the best cluster stability was

achieved when the number of clusters (K) equaled 2.
Consequently, the sepsis samples in the GSE28750 dataset were
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divided into two subgroups, including cluster]l and cluster2. To
obtain the expression trends of biomarkers between clusterl and
cluster2, the Wilcoxon test was used. The results indicated that the
expression of MKI67, SULTIBI and CREB5 were significantly
different between two clusters. Specifically, MKI67 was up-
regulated in cluster2, while CREB5 and SULTIBI were up-
regulated in clusterl (Figure 7B). To investigate the different
proportion of immune cell infiltration between two clusters, 22
immune cells were included based on the CIBERSORT algorithm
(Supplementary Figure S3). But only 16 immune cells were included
in differential analysis, and only two cells stypes (B cell plasma b and
Neutrophil) showed significant differences between clusters (P <
0.05) (Figure 7C).

3.7 ldentification of non-coding RNA and
TFs

By using the NetworkAnalyst platform, a total of 30 miRNAs
were identified for four biomarkers. Among them, 3 miRNAs were
predicted with CREBS5, 17 miRNAs were predicted with MKI67, 8
miRNAs were predicted with MYOI0, and 2 miRNAs were
predicted with SULTIBI. Specifically, the miRNA which targeted
MYOI0 and SULTIBI was hsa-mir-124-3p. while that targeted
MYOI0 and MKI67 was hsa-mir-218-5p. Next, 1,055 IncRNA-
miRNA interactions were obtained by the miRNet database, and
the top 3 IncRNAs related to each miRNA such as which included
MKI67-hsa-mir-484-SNHG12, MKI67-hsa-mir-218-5p-SLFNLI-
AS, and MYOI10-hsa-mir-218-5p-ADAMTSL4-AS1 were selected
to construct a network diagram. The IncRNAs-miRNAs-
biomarkers network were exhibited in the Figure 8A, Besides, a
total of 703 TFs were identified for four biomarkers. We selected the
top 30 TFs which had higher correlation with the biomarkers for the
TF-biomarkers network. The network was visualized by Cytoscape
software. The number of TFs predicted with MKI67 was the largest
(Figure 8B). The enrich function of TF mainly included anatomical
structure morphogenesis, animal organ morphogenesis, and
blastoderm segmentation. Finally, we also observed the expression
of TFs in the tissue distribution, and the results displayed that the
expression of TFs were observed in nerve, colon, uterus, skin, and
blood vessel (Figure 8C).

3.8 Drug prediction and molecular docking

A total of 80 drugs were chosen in the DSigDB database.
Subsequently, we selected the top 10 drugs with higher
significance to construct drug-biomarkers network by Cytoscape
software. In the drug-biomarkers network, it could be observed that
Methaneseleninie acid was targeted to the MYO10 and MKI67 while
MS-275 was targeted to the MYO10 and CREBS (Figure 9A). Due to
its highest saliency with biomarkers and three-dimensional
structure, MS-275 was selected to perform molecular docking
analysis. MYOI10 was selected as the gene also because of the
three-dimensional structure for molecular docking analysis. It is
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generally believed that |total score| > 7.0 kcal/mol indicated a
stronger binding activity. In our study, the total score was -9.4
kcal/mol, indicating that the biomarkers had preferable binding
activity with the target protein (Table 1) (Figure 9B).

3.9 Identification of key cells

After undergoing quality control, 47,080 cells and 20,696 genes
were retained for further analysis (Supplementary Figure S4).
Afterwards, the top 3000 hypervariable genes were selected for
PCA (Figure 10A). In this study, the top 30 principal components
were selected for cluster analysis, and all cells were ultimately
divided into 12 clusters (Figures 10B, C). A total of 6 cells (B
cells, CD16+ and CD14+ monocytes, CD4+memory cells, CD8+ T
cells, Megakaryocyte progenitors, NK cells) were annotated based
on the expression of marker genes in different cell clusters
(Figure 10D). Simultaneously, the expressions of marker genes
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were shown in the six cell types (Figure 10E). To further
demonstrate the expression of marker genes in each cell cluster,
we generated a heatmap of the top 5 marker genes with the highest
expression levels in each cluster (Supplementary Figure S5), aiming
to more intuitively reflect the gene expression characteristics of
different cell clusters. The cell proportion bar stack graph shows the
high specificity of the marker gene, confirming the accuracy of the
annotation (Figure 10F). To identify the key cell type in this study,
we analyzed the expression levels of biomarkers in different cells.
The results showed that compared with other immune cell types, all
four biomarkers exhibited high expression in CD16+ and CD14+
monocytes (Figure 10G). We further compared the infiltration
differences of each cell type between the sepsis group and the
control group using the Wilcoxon test (P < 0.05), and found that
there were significant differences in CD4+ memory cells, B cells,
CD16+ and CD14+ monocytes, and CD8+ T cells between the two
groups (Figure 10H). By synthesizing the evidence from both the
above-mentioned biomarker expression profiles and cell infiltration
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KEGG pathway enrichment analysis for MYO10, SULT1B1, MKI67, and CREB5. Pathway enrichment analysis based on GSEA for MYO10 (A), SULT1B1

(B), MKI67 (C), and CREBS5 (D).

differences, we finally identified CD16+ and CD14+ monocytes as
the key cells. After secondary clustering, key cells were divided into
seven clusters of key cells (Supplementary Figure S6). In pseudo-
time analysis, a total of 5 underwent distinct states of CD16+ and
CD14+ monocytes were discovered, and the expression of the cell
was reduced over time in the disease group (Figure 11A).
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During the process of cell differentiation, MKI67 and MYO10
showed no significant changes, while the expression level of CREB5
first decreased and then increased, mostly distributed in the state 1
stage, which was the early stage of differentiation. The expression
levels of SULTIBI first decreased and then stabilized, mostly
distributed in the state 1 stage. The results indicated that the
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development of diseases might be closely related to CREB5 and
SULTIBI (Figure 11B).

3.10 The expression analysis of biomarkers
in the clinical samples

As shown in the Figure 12, The RT-qPCR results showed the
expression of MYOI10, SULTIBI, MKI67, and CREB5 had
significant differences between controls and sepsis samples (P <
0.05). The expression of 4 biomarkers were all upregulated in the
sepsis group which were consistent in the results with the
bioinformatics analysis results, indicating that preliminary results
were reliable in our study.
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4 Discussion

Sepsis is typically triggered by infection, leading to an excessive
reaction of the body’s immune system that damages its own tissues
and organs. Immune cells play a critical role in the onset and
development of sepsis. In sepsis, immune cell phenotypes influence
susceptibility and mortality, and telomere shortening is closely
associated with the pathological processes of sepsis—such
shortening may induce a phenotype resembling accelerated aging
in survivors (43, 44). Mendelian randomization studies have
confirmed a potential causal relationship between genetically
predicted telomere shortening and increased sepsis susceptibility
(42). In-depth research on the association between immune cells
and telomeres can provide new directions for deciphering the

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1638156
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al. 10.3389/fimmu.2025.1638156

W anatomical structure morphogenesis
W animal organ morphogenesis
blastoderm segmentation
M central nervous system neuron developr
M collagen fibril organization
1 definitive hemopoiesis
W embryonic organ morphogenesis
W epidermis development
W humoral immune response
W immune response
M lipid biosynthetic process
M lymphocyte differentiation
W negative regulation of small molecule me
@ M negative regulation of transcription inv...
" odontogenesis of dentin-containing toot!
M oligodendrocyte differentiation
M pancreas development
W pituitary gland development
B positive regulation of wound healing
prostate gland morphogenesis
W regulation of cardioblast differentiatio...
W regulation of neural retina development
W regulation of ossification
regulation of skeletal muscle tissue dev...
W ANA 3-end processing
W single fertilization
W skeletal system development
W stem cell fate specification
W thyroid hormone generation
transcription, DNA-templated

FIGURE 8
Regulatory network analysis of candidate genes. (A) IncRNA-miRNA-mRNA regulatory network constructed for MYO10, MKI67, CREB5, and
SULTIBI. (B) Transcription factor regulatory network associated with the four candidate genes. (C) GO functional annotation of regulatory modules.

pathological mechanisms of sepsis and improving its diagnosis and The potential mechanisms of the four biomarkers (MYOI0,
treatment. In this study, 34 candidate genes were obtained through ~ SULTI1BI, MKI67, CREBS5) identified in this study in sepsis can be
steps including differentially expressed gene screening, WGCNA  preliminarily interpreted through their known functions and
analysis, and intersection gene acquisition. Subsequently, four  related pathways. MYOIO, It is a key regulator of mitosis and
biomarkers were identified using 101-machine learning  genome stability (45). Although not yet directly implicated in sepsis,
algorithms, ROC curve analysis, and gene expression profiling. it may participate in the disease process by influencing immune-cell
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TABLE 1 Title. mitotic checkpoint, while dysregulation of the SHH/WNT pathway
; may further exacerbate endothelial barrier damage or organ repair
ol eelug Uesl s SR disorders, suggesting the potential role of MYO10 in sepsis-induced
MYO10-(MS-275) 9.4 12,1,-62 multiple organ dysfunction (46-48). SULTI1BI, a critical enzyme in

sulfur metabolism and hormone modification (49), may affect
proliferation and the SHH/WNT signaling pathways (45). For =~ common metabolic disorders in sepsis patients (such as non-
example, abnormal activation and apoptotic imbalance of  thyroidal illness syndrome) by regulating thyroid hormone
immune cells in sepsis may be related to its regulation of the metabolism. Its sulfonation reaction may also modify
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inflammatory mediators (e.g., chemokines), thereby regulating the
intensity of systemic inflammatory responses. Although this gene
has been confirmed to participate in metabolic reprogramming in
liver and gastric cancers, its role in sepsis remains to be further
validated, particularly whether it indirectly regulates inflammatory
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signals through the NF-xB or MAPK pathways (50, 51). MKI67, a
classical proliferation marker, may have a dual role in the sepsis
immune microenvironment: high expression may occur
during early excessive activation of immune cells, while
decreased proliferative capacity may accompany the late
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The validation of the expression levels of biomarkers. (A) MYO10. (B) MKI67. (C) CREBS. (D) SULT1BI1. * means P < 0.05, ** means P < 0.01.

immunosuppressive state. This dynamic change may reflect disease
severity and prognosis. Its enrichment in the cell cycle and p53
pathways suggests that it may influence sepsis progression by
regulating the balance between immune cell proliferation and
exhaustion, similar to its role in the tumor microenvironment
(52, 53). CREBS, a key transcription factor of the cAMP-signaling
pathway, plays an important role in the initiation and progression
of multiple cancers (54).Although direct research on CREB5 in
sepsis is currently limited, existing evidence suggests that it may be
involved in immunomodulatory processes. For example, studies
have found that miR-582-5p/miR-590-5p can induce monocyte
immunosuppression by targeting the CREB1/CREB5-NF-xB
signaling pathway cascade that ultimately drives monocytic
immunosuppression (55), suggesting that CREB5 may act as a
regulator of the immune imbalance characteristic of sepsis.
Furthermore, the functions of CREB5 in cell proliferation and
survival (56), as well as its identified role in immunotherapy
resistance, also suggest that it may have a potential role in sepsis-
related cell damage repair and immunosuppressive processes. In the
future, further exploration is needed into the specific molecular
mechanisms of CREBS in sepsis and its clinical significance (57-59).

In summary, these biomarkers may be involved in sepsis
through mechanisms related to cell cycle regulation (MYOI0,
MKI67), metabolic reprogramming (SULT1BI), and inflammatory
signal transduction (CREBS5). While their mechanisms share some
commonalities with functions in other diseases, they may also
exhibit specificity due to the unique pathological environment of
sepsis (e.g., systemic inflammation, immune paralysis). For
example, the genomic stability regulation of MYOI0 may be
associated with apoptosis resistance caused by mitochondrial
damage in immune cells during sepsis, while the metabolic
modification function of SULTIBI may be involved in sepsis-
related disorders of adrenocortical hormone metabolism (60).
Future studies should validate the expression patterns and
functions of these genes through in vitro and in vivo experiments,
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and use single-cell sequencing to clarify their dynamic changes in
specific immune cell subsets (e.g., neutrophils, monocytes) to reveal
their potential as diagnostic markers or therapeutic targets.
Additionally, evaluating the efficacy of small-molecule inhibitors
targeting CREB5 or MYOI0 in sepsis models may provide a
theoretical basis for developing novel therapies targeting immune
metabolism or cell cycle regulation.

Literature on SULTIBI involvement in sepsis-related
adrenocortical hormone metabolic disorders shows: Recent
studies have confirmed that ribosomal dysfunction and FcyR-
mediated phagocytic abnormalities play critical roles in sepsis.
The former downregulates the ribosomal biosynthesis pathway in
peripheral blood monocytes of patients, reducing IL-10 synthesis
and exacerbating immune imbalance (61), consistent with the
findings in this study that MYOI0, MKI67, and other genes
regulate protein synthesis through the ribosomal pathway to affect
immune cell compensatory capacity; the latter has dual effects,
where overactivated FcyR signaling induces endothelial cell
apoptosis via reactive oxygen species (ROS) burst, while
inhibiting this pathway alleviates lung injury, echoing the
hypothesis that MYO10 and CREB5 regulate phagocytic efficiency
through actin remodeling (62). In terms of metabolic regulation,
SULT1A1 modifies the Fc segment of IgG to enhance its binding to
FcyR for pathogen clearance, providing evidence for a similar
immune-regulatory mechanism of SULTIBI in the FcyR
phagocytic pathway (63). Cluster analysis divides sepsis patients
into two groups: Cluster 2 has an increased proportion of plasma B
cells, linked to MKI67-driven B cell differentiation, though their
hyperactivation or exhaustion may impair immunity (61, 62);
Cluster 1 shows increased neutrophil infiltration, associated with
activation of the CREB5/SULTIBI-regulated chemokine pathway,
whose phagocytic function is coordinately regulated by the FcyR
pathway and MYOIO0/CREB5 (61, 63). Additionally, B cells and
neutrophils interact via factors such as IgG, IL-6, and IL-10, with
this balance disrupted in different subgroups, leading to immune
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phenotype polarization—Cluster 1 favors an inflammatory
response, while Cluster 2 favors a compensatory antibody
response (61).

In this study, through regulatory network analysis, it was found
that four key biomarkers are potentially regulated by multiple
miRNAs (including hsa-mir-218-5p) as well as a large number of
TFs, indicating that their expression may be subject to precise
regulation at the complex transcriptional and post-transcriptional
levels. These findings indicate that the identified TFs and ncRNAs
themselves could serve as potential intervention targets for the
aforementioned biomarkers. Moreover, drug prediction based on
the DSigDB database identified the class I-selective histone
deacetylase (HDAC) inhibitor MS-275 (entinostat) as a candidate
compound predicted to interact with both MYOI0 and
CREB5.Notably, existing studies have shown that MS-275, as a
class I-specific histone deacetylase (HDAC) inhibitor, may affect
energy metabolism to a certain extent and accelerate the migration
of cells across endothelial cell monolayers (64).existing studies have
shown that MS-275, as a class I-specific histone deacetylase
(HDAC) inhibitor, may affect energy metabolism and
accelerate cell migration through endothelial cell monolayers to
a moderate extent. MS-275 has also been investigated as a
radiosensitizer for treating inherently radioresistant PAX3-
FOXO1 rhabdomyosarcoma. Literature further indicates that MS-
275 inhibits Robo4 expression by suppressing HDAC3 in
endothelial cells and enhances endothelial and vascular
permeability (65).

Single-cell sequencing analysis suggests that CD16+ and CD14+
monocytes are key immune subgroups in the pathogenesis of sepsis.
Although this study found that the proportion of cells of these four
biomarkers in this monocyte subpopulation was not high, it is
important to interpret the single cell data in depth. Studies have
shown that gene expression has inherent heterogeneity in cell
populations, especially the expression of key regulatory genes is
often limited to subpopulations of cells with specific functional
states or activation stages (66). CD16+/CD14+ monocytes
represent the primary convergence point for overlapping signaling
pathways among these four biomarkers, including cytoskeletal
regulation, metabolic processes, proliferation, and inflammatory
responses. During sepsis, significant changes in the abundance of
this cell population, combined with coordinated expression patterns
within the biomarker panel, suggest that a functionally specialized
monocyte subpopulation undergoes critical functional
reprogramming essential to sepsis pathogenesis. This finding is
consistent with the known biological properties of CD16+
monocytes as a key driver of inflammation (67, 68). In the
complex pathogenesis of sepsis, CD16+/CD14+ monocytes play a
central role in their functional reprogramming and abnormal
association with multiple signaling pathways, including cytoskeletal
regulation, metabolism, proliferation and inflammatory signaling
pathways. Secondary clustering and pseudotime analysis of
monocytes showed that CREB5 and SULTIBI tended to be stable
in their five differentiation states after significant downregulation in
early differentiation, suggesting that they may be involved in the
progression of sepsis. Studies have shown that significant changes in
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the composition and function of peripheral blood monocytes
(PBMCs) occur in patients with sepsis (69). In patients with severe
sepsis and septic shock, the proportion of CD14+CD16+ monocytes
was significantly elevated (70). These findings demonstrate that
CD16+/CD14+ monocytes act as central regulators of sepsis
through dysfunctional pathways involving inflammation and
immune metabolism. Targeting these cells or their key regulatory
factors could provide novel therapeutic approaches, though this
requires validation in future clinical cohort studies to optimize
intervention strategies (71-73).

This study found that CREB5 was significantly upregulated in
sepsis, and was specifically enriched in CD16+ and CD14+
monocytes, and its expression level showed dynamic changes with
cell differentiation. Gene set enrichment analysis suggested that
CREBS5 was involved in ribosome and chemokine signaling
pathways. As a key transcription factor in the cAMP signaling
pathway, CREB5 recognizes and binds to the cAMP-responsive
element in the promoter region of the target gene through the basic
leucine zipper domain, and then regulates gene transcription
reprogramming (58, 59). In the early stage of sepsis, the
upregulation of CREB5 may enhance the transcriptional activity
of inflammatory factors such as IL-6 and TNF-o by directly binding
to the promoter region of inflammatory factors, thus driving the
inflammatory response of CD16+ monocytes. Its expression pattern
during differentiation follows a “first decrease then increase”
dynamic pattern, suggesting that CREB5 may exert dual
regulatory roles at different disease stages. Additionally, CREB5
might influence monocyte metabolic reprogramming by affecting
the transcription of glycolysis-related genes (59), thereby regulating
their immune functions. In conclusion, CREB5 is not only a
biomarker, but its DNA binding ability may play a central role in
the integration of septic stress signals and the reprogramming of
immune cell function. Future studies should further clarify the
downstream gene network of CREB5 to further reveal its specific
mechanism in sepsis.

Multi-omics analysis reveals that four biomarkers—MYOIO,
SULTI1BI, MKI67, and CREB5—are upregulated in sepsis patients and
hold potential as therapeutic targets: MYOI0, an actin regulator, may be
involved in monocyte migration and adhesion; SULTIBI shows early
downregulation followed by stabilization during monocyte
differentiation, and its reduced lipopolysaccharide(LPS) detoxification
capacity exacerbates inflammation, suggesting that targeting its
activation could enhance metabolic function; upregulation of MKI67
indicates that abnormal monocyte proliferation drives inflammation,
and inhibiting its expression may alleviate systemic inflammation (74);
CREBS exhibits a biphasic expression pattern during differentiation, with
early downregulation exacerbating oxidative damage and late
upregulation exerting compensatory anti-inflammatory effects via
antioxidant genes, and activating its pathway can induce monocyte
polarization toward an anti-inflammatory phenotype to reduce organ
damage (75).

This study identified immune cell- and telomere-related
biomarkers in sepsis based on mRNA transcriptome data and
their expression levels at the single-cell level, providing a
theoretical basis for understanding sepsis and guiding subsequent
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diagnosis and treatment of sepsis patients. However, this study still
has some limitations. First, all analyses were based on retrospective
data from a public database with a relatively small sample size.
Although the results confirm changes in biomarker expression
levels in septic patients as a whole, this approach does not
distinguish which immune cells these transcripts are derived
from, and there is no independent external cohort validation.
Secondly, while single-cell transcriptomic analysis has revealed
expression dynamics of these genes in immune cell
subpopulations, their specific functional mechanisms in sepsis
remain unverified through experimental approaches such as gene
knockout or overexpression. This lack of experimental validation
prevents definitive causal relationships from being established.
Furthermore, although single-cell sequencing suggests CD16
+/CD14+ monocytes may be a critical source, whole blood data
cannot provide direct experimental evidence to support this
hypothesis. Furthermore, the predicted candidate drug MS-275s
interaction with genes has only been preliminarily evaluated
through molecular docking, lacking support from in vitro and in
vivo pharmacodynamic experiments. Future studies should validate
the diagnostic efficacy of biomarkers in larger, multicenter
prospective clinical cohorts. Flow cytometry should be employed
to isolate key immune cell subpopulations (e.g., CD16+/CD14+
monocytes), enabling confirmation of their expression sources at
the cellular level. Combined with single-cell proteomics technology,
this approach will verify mRNA-protein level consistency, thereby
enhancing the reliability of conclusions. Secondly, the mechanism
must be deeply explained through functional experiments. In vitro,
gene editing or overexpression technology can be used to regulate
the expression of biomarkers in primary immune cells or cell lines,
and observe their effects on immune response (such as
inflammatory factor release, phagocytosis, cell migration and
proliferation); In vivo, we can establish myeloid cell conditional
knockout mouse models to clarify their causal role in the
pathogenesis of sepsis. Finally, for the predicted candidate drug
MS-275, systematic pharmacodynamic evaluations at the cellular
level and efficacy validation in animal models should be conducted
to determine its potential value in treating sepsis by modulating the
aforementioned therapeutic targets. In vivo, we can establish
myeloid cell conditional knockout mouse models to clarify their
causal role in the pathogenesis of sepsis. Finally, for the predicted
candidate drug MS-275, systematic pharmacodynamic evaluations
at the cellular level and efficacy validation in animal models should
be conducted to determine its potential value in treating sepsis by
modulating the aforementioned therapeutic targets. These studies
will help to promote the clinical translation of the biomarkers
identified in this study from basic research to clinical applications.
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