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Background: Patients with Hutchinson-Gilford progeria syndrome (HGPS)
typically succumb to cardiovascular diseases in their teens. Although
fibroblasts have been implicated in the progression of arteriosclerosis, their
roles and mechanisms in progeroid aorta remain poorly understood.

Methods: Utilizing single-cell RNA sequencing, we analyzed aortic tissues from
HGPS mice with a focus on fibroblasts. Through gene expression profiling, Gene
Ontology (GO) analysis, and cell-cell communication networks across various
cell types, we revealed the unique contributions of fibroblasts during HGPS aortic
aging. Finally, knockdown of Lgals3bp in HGPS cells was performed to investigate
its role in inflammation and fibrosis.

Results: Fibroblasts exhibited altered gene expression profiles associated with
extracellular matrix dysregulation and inflammatory modulation, along with
elevated senescence-associated secretory phenotype (SASP) scores in HGPS
mice. Fibroblasts demonstrated the highest interaction frequency and intensity
among aortic cell populations, with the strongest intercellular crosstalk observed
between fibroblasts and dysfunctional vascular smooth muscle cells. We defined
nine fibroblast subclusters and delineated their distinct transcriptional signatures,
developmental trajectories, and interaction networks. Additionally, we identified
significant upregulation of Lgals3bp in aortic fibroblasts of HGPS mice, which
promoted the expression of pro-inflammatory factors and fibrosis-related genes.
Conclusion: Our findings underscore the pivotal role of fibroblasts in aortic
progeria-associated vascular remodeling in HGPS mice and suggest that
Lgals3bp may represent a potential therapeutic target for aortic pathology
in HGPS.

HGPS, fibroblasts, single-cell transcriptome analysis, aorta, aging
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1 Introduction

Hutchinson-Gilford progeria syndrome (HGPS) is a rare
genetic disorder caused by LMNA gene mutations and aberrant
expression of progerin. It is characterized by accelerated aging and
premature mortality, and most patients succumb to cardiovascular
diseases in their teenage years (1-3). The aortic pathology in HGPS
is marked by increased vascular fibrosis, extracellular matrix (ECM)
accumulation, and loss of vascular smooth muscle cells (VSMCs),
which ultimately drive atherosclerosis (4, 5). These vascular
phenotypes likely arise from dysregulated cellular composition,
molecular alterations, and disrupted intercellular signaling within
the vascular wall. Although recent studies have predominantly
focused on endothelial cells (ECs) and VSMCs dysfunction in
HGPS (6-
in this process remain poorly understood.

8), the roles and underlying mechanisms of fibroblasts

Fibroblasts are ECM-producing cells in the vasculature and
contribute to atherosclerosis (9). Impaired lysosomal activity and
autophagy in fibroblasts, along with the induction of apoptosis, can
accelerate the progression of atherosclerosis (10). Recent studies
have shown that in advanced human carotid atherosclerosis,
fibroblasts promote plaque progression by activating complement
and coagulation pathways in macrophages (11). These findings
underscore the important role fibroblasts play in vascular
remodeling of the aorta. Therefore, it is important to characterize
fibroblast alterations in the arteries of HGPS mice and their impact
on other vascular cell types to understand disease pathogenesis.

Single-cell RNA sequencing (scRNA-seq) of aged vasculature
enables the mapping of diverse cellular landscapes and the
identification of cell type-specific regulatory changes during
senescence (12, 13). Previous scRNA-seq analyses of HGPS
mouse aortas have primarily focused on the potential impact of
ECs on HGPS vascular pathology, with limited attention being paid
to the role of fibroblasts (6). In this study, we reanalyzed these
sequencing datasets with a focus on the role of fibroblasts, aiming to
investigate how fibroblasts influence the aortic remodeling of HGPS
mice and to seek a promising target for ameliorating aortic
inflammation and fibrosis. Collectively, our findings aim to
provide a deeper understanding of the functions and mechanisms
of fibroblasts in progeroid aorta.

2 Results

2.1 Aortic aging-associated vascular

remodeling in Lmna©¢%9¢/G699G mjce

G609G/G609G mice, we first

To assess aortic aging in Lmna
evaluated morphological changes using hematoxylin and eosin
(H&E) and Verhoeff-Van Gieson (VVG) staining. Compared to

G6096/G609G hice exhibited hallmarks of

Lmna™’™" littermates, Lmna
vascular aging, including increased media thickness, elevated
media-to-lumen diameter ratio, expanded media area, higher
collagen-to-media area ratio, elastin disruption, and reduced

medial cell density (Figures 1A-G). Masson’s trichrome staining
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revealed thickened aortic adventitia in Lmna®°?%/%%S mice
(Figures 1H, I).

demonstrated significantly upregulated expression of the
G609G/G609G

Additionally, immunohistochemistry

senescence markers, pl6 and p21, in aortas of Lmna
mice (Figures 1J-L). Collectively, these findings indicate that

G609G/G609G

Lmna mice develop aging-associated vascular

remodeling in the aorta.

2.2 Single-cell RNA sequencing reveals
distinct cell clusters and expres5|on
patterns in aortas of Lmna*’* and

LmnaG609G/G6O9G mice

To investigate cell type-specific transcriptional alterations in the

aortas of Lmna®00?¢/c00%G

mice at single-cell resolution, we
reanalyzed scRNA-seq datasets derived from the aortic tissues of
14-week-old Lmna®%%%%S and Lmna™* mice (6). Uniform
manifold approximation and projection (UMAP) dimensionality
reduction were employed to visualize global aortic cell populations
and 10 distinct cell types, based on their expression of canonical
markers, were identified: fibroblasts, VSMCs, dysfunctional
VSMCs, macrophages, ECs, Schwann cells, B cells, T cells,
neutrophils, and pericytes (Figure 2A). Dot and UMAP plots
illustrated marker genes defining each cell type (Figures 2B, C).
To quantify cellular composition, we generated a bar plot depicting
the proportional abundance of each cell population in the aortas
(Figure 2D). Fibroblasts constituted the predominant population in
the aortic cellular landscape.

GO analysis of the top 20 marker genes for each cell type
revealed the biological functions and features corresponding to the
known characteristics of each cell cluster (Figures 2E, F). For
example, GO terms such as “collagen-containing extracellular
matrix” and “extracellular matrix organization” aligned with the
molecular signatures of fibroblasts, while “contractile muscle fiber”
and “actin filament bundle” corresponded to those of VSMCs.
Similarly, and

“endothelium development” “regulation of

angiogenesis” reflected the functional profiles of ECs.

Additionally, immune-related terms, including “granulocyte

chemotaxis”, “lymphocyte proliferation”, “lymphocyte

differentiation”, and “leukocyte chemotaxis”, were associated with
macrophages, B cells, T cells, and neutrophils, respectively. In
summary, our results define the molecular signatures and

functional heterogeneity of distinct cell populations in the aortas

G609G/G609G

of Lmna™* and Lmna mice.

2.3 Aortic cell type-

Sé)eCIf‘IC transcrlptomlc
alterations in Lmna®°9°&

mICG

To further explore the mechanisms underlying aortic aging at

the cellular level, we compared gene expression patterns across

G609G/G609G

aortic cell types between Lmna™* and Lmna mice. We

identified thousands of differentially expressed genes (DEGs) in the

G609G/G609G

aortas of Lmna mice, including 2496 upregulated and

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1638083
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

10.3389/fimmu.2025.1638083

A Lmna ** L mna G609G/G609G B c D
\ / o / o wm Lmna **
- G609G/G609G - G609G/GE09G m L mna G0096/G609G
w m Lmna m Lmna
°:|? 8o~ P<0.0001 20 - 100 P=0.0003
3 P<0.0001
~ hd o 80_
604 X 15 - =
€ = X 604
[a)
= 40+ 210 - g
= g X 404
o 204 =
Sk 57 20
: 0- 0 - 04
» i L G609G/GE09G
E - Lmna F ) G Lrna H Lmna mna_____
w= Lmna 7" G609G/G609G %
= [ mna G609G/G609G P ~ = Lmna
204 P<0.0001 154 P<0.0001 254 P=0.0008
—~ hd 2 * % .
T 154 . S Rl
n . —
s 10 é 3
5101 8 2,
% ° ‘.q_) 5+ =
2 g
0- 0- 20-
| J Lmna ** Lmna G6096/G60sG K L
. oL Lmna **
wu Lmna ?* i w= Lmna " - G609G/GE09G
3 609G/G609
mm [ mng G609G/G609G © B mm L mna G6096/G609G == Lmna
o — —
= 407 o1 < 197 Pp<0.0001
— o
= F<0.0001 5 P<0.0001 = 87
g %7 3 § 104 T o
.'g o e 8 7 . ° 6
(7] (6]
S 204 [8) 8
bS] E T 4
c - 5 - =
) b o
2 10 af 2 S 54
= ©
< g 5
0- B < o Z o0-
FIGURE 1

Aortic aging-associated vascular remodeling in Lmna©609c/G609G

mice. (A-G) Hematoxylin-eosin (H&E) and Verhoeff-van Gieson (VVG) staining of

Lmna™’* and Lmna©®99%/G60%C mouse aorta (14 weeks). Scale bar, 150 um (H&E); 50 um (VVG) (A). Quantification of media thickness (MT) (B), MT/
lumen diameter (LD) (C), media area (MA) (D), collagen/MA (E), elastin breaks (F), and medial cell number (G) (n=6). (H, 1) Masson's trichrome staining

+/+

of the aortic adventitial fibrosis (blue areas) from Lmna™™ and Lmna

G609G/G609G

mice (14 weeks). Scale bar, 150 um. The boxes and arrows denoted

the aortic adventitia (H). Quantification of aortic adventitial thickness (n=6) (I). (J-L) Immunohistochemistry (IHC) of p16 and p21 in the aorta of

+/+ G609G/G609G

Lmna™"and Lmna

mice. Scale bar, 50 um (J). The quantification scores of positive signals (n=6) (K, L). Data are presented as mean + SD.

Statistical significance was determined by two-tailed unpaired Student's t-test.

1351 downregulated DEGs (Supplementary Table S1). The most
affected cell types included dysfunctional VSMCs, VSMCs,
macrophages, ECs, and fibroblasts, with 1364, 817, 625, 409, and
321 DEGs, respectively (Figures 3A, B). GO enrichment analysis
revealed that upregulated genes were predominantly associated with
leukocyte migration and chemotaxis, whereas the downregulated
genes were enriched in collagen-containing extracellular matrix and
mononuclear cell proliferation (Figure 3C), reflecting chronic
inflammation and disrupted ECM homeostasis in HGPS aortas.
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To further explore the molecular links between aortic aging and
atherosclerosis in HGPS, we performed a comprehensive
comparative analysis of DEGs with age-related genes from the
GenAge database and arteriosclerosis-related genes from the
MalaCards Human Disease database (Figure 3D). We identified
126 age-related genes with differential expression in HGPS aortas,
such as Cdknla, Stat3, Lmna, and Il1b (Figure 3E). Concurrently, 27
DEGs were hot spots related to atherosclerosis, such as Ace, Apoe,
and Hifla (Figure 3F). These findings probably imply a
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FIGURE 2

Cell types identified by sScRNA-seq of aortic tissues in Lmna*’* and Lmna®¢°9%/c599C mijce. (A) Uniform manifold approximation and projection

(UMAP) plot showing the ten cell types of mouse aorta. VSMC, vascular smooth muscle cell; Dysf. VSMC, dysfunctional VSMC; EC, endothelial cell.
(B) Dot plot showing the expression of representative genes for each cell type. (C) UMAP plots showing the representative genes of each cell type.
The color key from gray to red indicates low to high gene expression levels. (D) Bar chart showing the cell number of each cell type. (E) Heatmap
showing the gene expression signatures of each cell type. (F) Gene Ontology (GO) enrichment analysis for each cell type.

transcriptional convergence between HGPS vascular aging and  (Figure 3D), suggesting their potentially critical roles in the

arteriosclerosis. Strikingly, 10 genes exhibited shared atherosclerosis driven by aging in HGPS mice.

dysregulation in both aging and atherosclerosis, including Vcam]l,
Apoe, Gdf15, Timpl, Cxcl12, Hspdl, Serpinel, App, Eln, and Hifla
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in the aorta of Lmna

To further evaluate age-related inflammation of different cell types

GO09G/GE09G mice, we performed senescence-
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FIGURE 3
G609G/G609G

Transcriptional alterations in various cell types of aortic tissues in Lmna

genes (DEGs) across different cell types in the aorta of Lmna&°09¢/Ge09G

of LmnaG609G/G6D9G

(D) Venn diagram showing overlap among DEGs in the aorta of Lmna

mice. (C) Diagram showing the representative enrichment of GO terms of ten cell types in the aorta of Lmna
G609G/G609G

mice. (A) Bar plot showing the numbers of differentially expressed

mice. (B) Heatmap showing the DEGs across different cell types in the aorta

G609G/G609G mice.

mice, aging-related genes from GenAge database (https://

genomics.senescence.info/genes/), and arteriosclerosis-associated genes from MalaCards human disease database (https://www.malacards.org). AS,
arteriosclerosis. (E, F) Dot plot showing the DEGs overlapping with the GenAge database (E) and MalaCards arteriosclerosis database (F) in the aorta of

LmnaGéOQG/GGOQG

(H) UMAP plot showing the SASP score of each cell type in the aorta of Lmna

SASP score.

associated secretory phenotype (SASP) scoring across distinct cell
populations. Our analysis revealed significant increase in the SASP

G609G/G609G

score across six aortic cell types in Lmna mice, including

ECs, fibroblasts, VSMCs, macrophages, neutrophils, and T cells
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mice. (G) Ridge plot showing the shift of SASP gene set score across different cell types in the aorta of Lmna

05

G609G/G609G mice.

GO09G/GE09G mice. The color key from blue to red indicates low to high

(Figure 3G), indicating that the aorta of HGPS mice is characterized
by chronic inflammation. Notably, fibroblasts and macrophages
exhibited the highest SASP scores, suggesting their predominant role
in driving chronic inflammation during HGPS aortic aging.
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2.4 Enhanced fibroblast communication
with dysfunctional VSMCs during aortic
aging in HGPS mice

Given that aging is thought to affect intercellular
communication, we employed the R package “CellChat” to
explore communication and interactions among the 10 identified
cell populations. Compared with wild-type (WT) controls, we
observed a reduction in the overall frequency and strength of
cellular interactions in HGPS aortas (Figures 4A, B). Fibroblasts
exhibited the highest frequency and intensity of signaling. In
particular, in the aorta of HGPS mice, the number and strength
of communication from fibroblasts to dysfunctional VSMCs were
markedly increased (Figures 4C, D). Ligand-receptor pairs,
including COL family syndecan receptors and FNI-integrin
receptors, played crucial roles in mediating interactions between
fibroblasts and dysfunctional VSMCs in the aorta of HGPS mice
(Figure 4E). This suggests that fibroblasts may affect the function of
VSMCs through the secretion of collagen and FN1. Furthermore,
pathways associated with senescence (e.g., laminin, IGF) and
fibrosis (e.g., COLLAGEN) were upregulated in fibroblast-to-
dysfunctional VSMC communication in HGPS aortas, while the
TGEF-P signaling pathway was markedly activated in dysfunctional
VSMCs (Figures 4F, G). These findings suggest that fibroblasts may
play an important role in mediating VSMC dysfunction during
accelerated aging of the aorta in HGPS mice; however, this
hypothesis requires future experimental validation.

2.5 Functional annotation and
developmental trajectories of fibroblast
subpopulations

Given our observation that fibroblasts played a critical role in
aging-associated vascular remodeling in the aortas of HGPS mice,
and considering their inherent heterogeneity and plasticity, we
performed subclustering of fibroblasts to uncover the distinct
roles of fibroblast subclusters in progeroid aorta. Using UMAP-
based clustering, we segregated all fibroblasts into nine subclusters
and observed a significant increase in the proportion of HGPS cells
in Fib3 and Fib9, while the most significant increase in WT cells was
observed in Fib2, Fib5, and Fib6 (Figures 5A-C).

To gain deeper insight into the functional characteristics of the
nine fibroblast subclusters, we performed GO enrichment analysis
on highly variable genes. Fib3 was associated with the response to
toxic substances, p53-mediated intrinsic apoptosis, and DNA
damage response pathways, implying a redox imbalance and a
propensity for cell cycle arrest or apoptosis. Fib9 was enriched in
antiviral defense and interferon-3 response pathways, highlighting
its role in interferon signaling and antiviral responses, thereby
promoting inflammatory reactions (Figure 5D). The increased
proportions of Fib3 and Fib9 in HGPS aortas reflect an
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accumulation of senescent cells accompanied by heightened
inflammatory activity. Fib2 was enriched in cytoplasmic
translation, fibroblast proliferation, and regulation of precursor
metabolite and energy generation, indicative of a proliferative and
metabolically active state. Fib5 was linked to ECM organization,
positive regulation of cell-substrate adhesion, and regulation of
extracellular matrix endothelial cell migration, suggesting a dual
role in ECM synthesis and endothelial cell migration. Fib6 was
enriched in mesenchymal differentiation and fibroblast
proliferation, indicating its potential differentiation capacity
(Figure 5D). The reduced abundance of Fib2, Fib5, and Fib6 in
HGPS aortas suggests the disruption of their normal functions,
including proliferation, metabolism, differentiation, ECM synthesis,
and endothelial migration.

To investigate the differentiation states and developmental
trajectories of the fibroblast subclusters, we employed
CytoTRACE and Monocle 3 pseudotemporal trajectory analyses
of the nine fibroblast subpopulations. CytoTRACE analysis revealed
that Fib6 exhibited the highest CytoTRACE score among all
subclusters, indicating a less differentiated state (Figures 5E, F).
Conversely, Fib8 fibroblasts had the lowest CytoTRACE score,
suggesting terminal differentiation with minimal differentiation
potential (Figure 5F). Pseudotemporal trajectory analysis
positioned Fib6 as the developmental origin of fibroblast
subclusters, with Fib5, Fib7, Fib2, Fibl, Fib9, and Fib8
sequentially localized toward the endpoints of the trajectory
(Figure 5Q), reflecting progressive differentiation.

2.6 SASP score and intercellular
communication in aortic fibroblast
subpopulations of Lmna©699¢/G609G mjce

To further evaluate the senescence-associated features of

distinct fibroblast subpopulations in the aortas of Lmna®""%

G609 mice, we performed SASP scoring. Our analysis revealed a
significant increase in the SASP score across seven fibroblast
subpopulations in Lmna®%°%G%%G mice, including Fibl, Fib2,
Fib4, Fib5, Fib6, Fib7, and Fib9 (Figures 6A, B). These results
indicate that various fibroblast subtypes in the progeroid aorta of
HGPS mice are universally characterized by chronic inflammation.

To investigate intercellular interactions among fibroblast
subpopulations, we analyzed cell-cell communication networks
across nine subtypes. We observed a decreased frequency and
increased strength of interactions between fibroblast
subpopulations in the aortas of HGPS mice (Figures 6C, D). In
addition, we observed an increase in the frequency and intensity of
cell communication in Fib3 and Fib9, and Fib4 (Figures 6E, F).
These findings suggest that fibroblast subpopulations in HGPS
aortic aging are not uniformly functionally suppressed; instead,
they remodel the pathological microenvironment through

functional specialization and compensatory signal amplification.
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FIGURE 4
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and Lmna

** and Lmna mice.
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identifies key transcription factors specifically regulating DEGs in fibroblasts. (H) Network plot showing the differentially expressed Foxdl, Hoxc6, and
Prrx2 target genes in fibroblasts. (I) GO enrichment analysis of downregulated or upregulated Foxd1, Hoxc6, and Prrx2 target genes.

fibroblast subpopulation in the aorta of Lmna

and LmnaGGDQG/GGOQG

fibroblast subpopulations in the aorta of Lmna

Next, we performed a single-cell regulatory network inference
and clustering (SCENIC) analysis, which identified the
transcription factors Prrx2, Foxdl, and Hoxc6 as key regulators of
the transcriptome dynamics of aortic fibroblasts in Lmna
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mice (Figure 6G). Transcriptional network analysis predicted
that these factors act upstream of distinct genes involved in
extracellular matrix organization, vascular endothelial growth
factor signaling, and collagen fibril organization (Figures 6H, I).
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2.7 Lgals3bp serves as a critical regulator
of inflammation and fibrosis in HGPS
fibroblasts

To identify the potential drivers of fibroblasts during aortic
aging in HGPS mice, we analyzed DEGs in aortic fibroblasts from

G609G/G609G
Lmna /

mice and found that Galectin 3 binding protein
(Lgals3bp), a secretory glycoprotein, was upregulated in HGPS
aortic fibroblasts. Previous studies have demonstrated that
Lgals3bp activates the TGF-B1 signaling pathway, thereby
promoting hepatic fibrosis in mice (14). To investigate whether

3609G/G609G ___ -
GO09G/G609G i e we

Lgals3bp contributes to aortic aging in Lmna
analyzed the cell type-specific expression patterns. Lgals3bp was
expressed in fibroblasts (62.7%), macrophages (22.1%), ECs (6.3%),
VSMCs (5.8%), T cells (1.7%), dysfunctional VSMCs (0.8%), B cells
(0.1%), pericytes (0.2%), and neutrophils (0.04%) (Figures 7A, B).

- GO09G/G609G ice exhibited a

Compared to Lmna™" mice, Lmna
higher proportion of Lgals3bp™ fibroblasts and elevated Lgals3bp
expression levels (Figure 7C), particularly in Fib3 (Figures 7D, E).
Furthermore, we found that pro-inflammatory factors (Vcam1I and
Cxcl12) and fibrosis-related genes (Tgfv1, Timpl, and Postn) were
upregulated in Lgals3bp™ fibroblasts from the HGPS mouse aorta
compared to those from WT mice (Figures 7F-H). These findings
suggest that Lgals3bp may drive pro-inflammatory and pro-fibrotic
activities in aortic fibroblasts during HGPS pathogenesis.

To validate the expression of Lgals3bp in HGPS fibroblasts at
the cellular level, we employed a lentiviral system to express Flag-
tagged progerin in mouse embryonic fibroblasts NIH3T3, thereby
mimicking the pathophysiological features of HGPS fibroblasts.
qPCR analysis revealed that Lgals3bp was upregulated in NIH3T3
cells overexpressing progerin (Figure 7I). To investigate whether
Lgals3bp affects the expression of inflammatory factors and
activates fibrosis in fibroblasts, we knocked down Lgals3bp in
progerin-overexpressing NIH3T3 cells. The results showed that
progerin overexpression induced the upregulation of pro-
inflammatory factors (Vcaml and Cxcl12) and fibrosis-related
genes (Tgfbl, Timpl, and Postn), whereas Lgals3bp knockdown
reduced the mRNA levels of these genes (Figures 7J-N). These
findings indicate that Lgals3bp plays a critical role in the regulation
of inflammation and fibrosis in HGPS fibroblasts.

3 Discussion

G609G/G609G

Our study confirmed that Lmna mice underwent

senescence-associated vascular remodeling in the aorta. Through

/+

reanalysis of scRNA-seq data derived from Lmna™" and

LmnaGéOQG/GSUQG

mouse aortas, we identified fibroblasts as pivotal
contributors to chronic inflammation and fibrosis during aortic
aging. Further subclassification of fibroblasts into nine
transcriptionally distinct subclusters revealed unique molecular
signatures, developmental trajectories, and intercellular

communication dynamics. Finally, we discovered that Lgals3bp
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was upregulated in the aortic fibroblasts of Lmna®®““%S mice
and played a key role in modulating inflammation and fibrosis in
HGPS fibroblasts. In summary, our findings provide critical insights
into the cellular and molecular dynamics driving aortic senescence
in HGPS mice, highlighting fibroblasts as key coordinators of
vascular remodeling during HGPS aortic aging.

HGPS exhibits characteristics of premature or accelerated
aging, and its clinical manifestations share similarities with
physiological aging, including short stature, atherosclerosis, and
osteoporosis (15). The vascular pathology of HGPS overlaps with
normal aging in many key features, such as progressive arterial
stiffening, calcification, inflammation, and plaque erosion or
rupture (16). However, key distinctions include the dramatically
accelerated progression of lesions, marked depletion of VSMCs,
pronounced adventitial fibrosis, and a distinct lipid risk profile
compared to normal aging (17, 18). A single-cell transcriptomic
study of arterial aging in primates revealed increased transcriptional
noise in aortic adventitial fibroblasts, particularly in pathways
related to ECM organization and lipid response (12). Similarly, an
scRNA-seq analysis in naturally aged mice not only confirmed
increased transcriptional heterogeneity in adventitial fibroblasts but
also showed a rise in fibroblast senescence scores with age. This was
paralleled by an early emergence of inflammation-associated
senescence signatures and an alteration in the communication
network between fibroblasts and other cell types (13). Consistent
with these observations in natural aging, our study identified
significant transcriptomic alterations in aortic fibroblasts of HGPS
mice compared to WT controls, especially in inflammatory and
ECM organization pathways. Furthermore, aortic fibroblasts in
HGPS mice exhibited elevated SASP scores and significant
remodeling of their communication networks with other cell
types. Collectively, these findings suggest that the impact of
fibroblasts on aortic pathology in HGPS mice shares certain
similarities with the processes observed in natural aging.

Building on the original research, our analysis has enriched
differential gene expression profiling across distinct cell types in the
aortas of HGPS and WT mice. By establishing associations between
DEGs with aging and arteriosclerosis, we demonstrated that HGPS
aortic cells exhibited transcriptional changes that were shared with
the progression of both aging and arteriosclerosis (Figures 3D-F).
Senescent cells reinforce the local inflammatory microenvironment
by secreting diverse inflammatory cytokines and chemokines,
which recruit additional immune cells to plaque regions. This
process affects neighboring cells, perpetuates senescence, and
ultimately drives tissue dysfunction (19, 20). Previous studies
have documented pro-inflammatory changes in gene expression
profiles of both ECs and VSMC:s in aged rodents and primates (21-
23). Our findings further reveal that fibroblasts play a critical role in
mediating chronic inflammation and modulating cellular
communication networks within HGPS aortas, highlighting their
previously underappreciated contribution to vascular pathology.

The ECM is a critical determinant of health and longevity (24).
Ubiquitously present across all tissues and organs, the ECM not
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FIGURE 7

Lgals3bp mediates pro-inflammatory and pro-fibrotic functions of fibroblasts in aortic aging. (A) UMAP plot showing the distribution of Lgals3bp™ cells in
different cell types of the mouse aorta. (B) Bar plot showing the proportions of Lgals3bp™ cells across different cell types in mouse aorta. (C) Box plots
showing the proportion of Lgals3bp* cells and violin plot showing Lgals3bp expression level in WT and HGPS fibroblasts. (D) UMAP plots showing the
distribution of Lgals3bp* cells in aortic fibroblasts from WT and HGPS mice. (E) Violin plot showing the Lgals3bp expression level in different fibroblast
subpopulations of WT and HGPS. (F) Volcano plot showing DEGs in Lgals3bp™ fibroblasts from WT and HGPS mice. (G, H) Violin plots showing the
expression levels of Vcam1, Cxcl12, Tgfbl, Timpl (G), and Postn (H) in Lgals3bp™ fibroblasts from WT and HGPS mice. (I) gPCR analysis of Lgal3bp mRNA
levels in NIH3T3 cells transfected with Flag-progerin. (3-N) gPCR analysis of Vcam1 (J), Cxcl12 (K), Tgfbl (L), Timpl (M), and Postn (N) mRNA levels in
progerin-expressing NIH3T3 cells transfected with siLgals3bp. Data are presented as mean + SD. Statistical significance was determined by two-tailed

unpaired Student's t-test.
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only provides essential mechanical scaffolding, but also mediates
sophisticated biomechanical and biochemical signaling required for
tissue homeostasis, morphogenesis, and cellular differentiation (25,
26). Mammalian aging induces profound alterations in the
biosynthesis of the ECM, post-synthetic modifications of ECM
components, and modified cell-matrix interactions, collectively
driving the development of age-related pathologies (27). Age-
associated dysregulation of collagen synthesis in vascular walls,
potentially mediated through enhanced TGE-3 paracrine signaling
(28), contributes to vascular fibrosis and arteriosclerosis (29).
Additional hallmarks of increased arterial stiffness include
diminished elastin production, elastin degradation and
fragmentation, elastocalcinosis, and altered crosslinking of ECM
constituents (30, 31). Our study confirmed that aortic fibroblasts of
HGPS mice predominantly participate in ECM-related biological
processes (Figure 2F), with collagen-related pathways showing
upregulated activity in fibroblast-to-dysfunctional VSMC
communication (Figure 4G), indicating that fibroblasts play a
crucial role in the ECM remodeling associated with
premature aging.

LGALS3BP, alternatively designated as Gal3-BP, 90K, Mac2-BP,
or CyCAP, is a secreted multifunctional glycoprotein that has been
implicated in modulating pathological processes across infection (32),
autoimmunity (33), multi-organ fibrosis (34, 35), and oncogenesis (36,
37). Clinically, elevated plasma LGALS3BP levels are correlated with
long-term mortality in coronary artery disease (38). Experimental
evidence from hepatocyte-specific Lgals3bp-knockin mice revealed
exacerbated hepatic fibrosis accompanied by elevated TgfbI levels.
Mechanistically, Lgals3bp induces substantial upregulation of Tgf-f-
regulated genes in hepatocellular carcinoma cells, including
established Tgf-f1 targets, including Serpinel, Vcaml, and 1I6 (14).
Consistent with these findings, we observed upregulated Lgals3bp
expression in the aortic fibroblasts of HGPS mice (Figure 7C), with
cellular validation demonstrating elevated Lgals3bp levels in progerin-
overexpressing NIH3T3 (Figure 71). In addition, Lgals3bp knockdown
significantly reduced the expression of pro-inflammatory factors and
fibrosis-related genes in HGPS cells (Figures 7J-N). Collectively, our
results established Lgals3bp as a pivotal mediator driving pro-
inflammatory and pro-fibrotic functions in aortic fibroblasts of

609G/G609G
LmnaG G/G G

mice. Further investigation is required to
determine the function of Lgals3bp in HGPS mice, and whether
inhibiting Lgals3bp can ameliorate aortic progeroid phenotypes.
This study has some limitations. While scRNA-seq has
revolutionized our understanding of cellular heterogeneity, its
limitation lies in the loss of spatial information during tissue
dissociation. Consequently, it fails to reveal the intricate
architectural relationships and cell-cell communication niches
that are critical to tissue function. This gap can be addressed in
future studies by employing spatial transcriptomics, an approach
that enables the overlay of rich gene expression data onto precise
histological maps, thereby bridging a critical dimension in
interpreting complex processes such as aortic aging. Furthermore,
we demonstrated that fibroblasts in HGPS aortas exhibit enhanced
communication with dysfunctional VSMCs and that Lgals3bp
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promotes the expression of pro-inflammatory and pro-fibrotic
factors in fibroblasts at the cellular level. However, whether
Lgals3bp exacerbates VSMCs dysfunction by augmenting this
crosstalk through fibroblast-derived secretory factors remains to
be determined. In addition, we restricted our analysis to Lgals3bp-
induced upregulation of pro-inflammatory and pro-fibrotic factors
in fibroblasts. The underlying mechanisms through which Lgals3bp
modulates these factors will require dedicated investigation in
future studies. Finally, our study primarily investigated the role of
fibroblasts in aortic aging-associated vascular remodeling solely in
HGPS mice, with validation limited to progerin-overexpressing
NIH3T3 cells. It will be essential for future studies to determine
whether this mechanism is applicable to physiological aging, and its
potential role in natural aging remains to be validated in naturally
aged mice or human aortic fibroblasts.

4 Materials and methods

4.1 Animals

All animal experiments were approved by the Animal Ethics
Committee of Changchun Sci-Tech University (Approval No.
CKARI2024010) and conducted in accordance with the
“Laboratory Animal - Guideline for ethical review of animal
welfare” (GB/T 35892-2018) and the “Guide for the Care and Use
of Laboratory Animals: Eighth Edition”. Progerin ubiquitously

7609G/G609G
expressed Lmnag@009¢/G009C

mice (ICR background) were
previously described (39), with age-matched wild-type Lmna®"*
littermates serving as controls. Mice were maintained under
controlled environmental conditions (22 + 2 °C, 50% humidity)
with a 12-hour light/dark cycle, and provided ad libitum access to

food and water.

4.2 Histological analysis

Mice of specified genotypes at 14 weeks of age were first perfused
with PBS, followed by fixation via perfusion with 4%
paraformaldehyde (PFA). Aortic tissues were post-fixed in 4% PFA
at 4 °C for 3 days and subsequently embedded in paraffin. H&E, VVG,
Masson’s trichrome, and immunohistochemical (IHC) staining were
performed by Servicebio. Tissue sections were immunostained with
anti-p16 (1:200, Abclonal A0262) and anti-p21 (1:1000, Servicebio
GB15531) antibodies. Quantification of protein expression was
performed by calculating the percentage of positively stained cells
across three randomly selected fields per section. Vascular wall
thickness was defined as the radial distance from the luminal
surface to the external elastic lamina. Medial cell density was
quantified by counting nuclear counts per unit area within the
medial layer. Elastin fragmentation was assessed by evaluating the
continuity of elastin fibers observed in histological sections. Collagen
content was quantified as the percentage of Masson’s trichrome-
positive areas relative to the total tissue cross-sectional area.
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4.3 Cell culture

HEK293T and NIH3T3 cells were provided by Northeast
Normal University. HEK293T and NIH3T3 cells were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with
10% fetal bovine serum (FBS) and 1% penicillin-streptomycin, and
maintained at 37 °C under a humidified 5% CO, atmosphere.

4.4 Lentivirus production and transduction

HEK-293 cells were co-transfected with the lentiviral packaging
plasmids pMDIg/pRRE (6.5 ug), VSV-G (3.5 ug), pRSV-Rev (2.5
ug), and the core plasmid pCDH-CMYV-3xFlag-progerin (16 Lg)
using the transfection reagent polyethylenimine (8 ul). After 6-8
hours, the culture medium was replaced with a fresh complete
medium. The supernatant collected at 48 h and 72 h post-
transfection was filtered through a 0.45 pum filter. Viral particles
were concentrated by centrifugation at 4000 rpm for 20 minutes.
The concentrated virus was used to infect NTH3T3 cells in the
presence of polybrene (5 mg/ml).

4.5 siRNA transfection

NIH3T3 cells cultured in 6-cm dishes were switched to serum-
free DMEM prior to transfection. For transfection mixture
preparation, 8 pl of Lipofectamine 2000 transfection reagent
(Invitrogen, USA) was added to 250 pl of serum-free DMEM,
gently mixed, and incubated at room temperature for 5 minutes.
Separately, 25 ul of 20 uM siRNA (Sangon Biotech, China) was
diluted in 250 pl serum-free DMEM and mixed. The two solutions
were gently mixed and incubated at room temperature for 20
minutes. The resulting complex was added dropwise to the cell
culture medium with gentle swirling. After 6-8 hours of incubation,
the medium was replaced with fresh complete medium. Cells were
subjected to downstream analyses 48 hours post-transfection.

4.6 RNA extraction and real-time qPCR
analysis

Total RNA was isolated from cells using TRIzol ™ Reagent
(Cat# ET101, TransGen Biotech) following the manufacturer’s
protocol. cDNA synthesis was performed with the TransScript®
Uni One-Step gDNA Removal and cDNA Synthesis SuperMix
(Cat# AT311, TransGen Biotech). Real-time quantitative
polymerase chain reaction (RT-qPCR) was conducted on a
StepOnePlusTM Real-Time PCR System (Applied Biosystems,
USA) using PerfectStart® Green qPCR SuperMix (Cat# AQ601,
TransGen Biotech). B-actin served as the endogenous control.
Gene-specific primers (synthesized by Sangon Biotech, Shanghai,
China) were designed with the following sequences:
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B-actin (mouse)_fwd (5'-CCTCTATGCCAACACAGTGC-3’)
and B-actin (mouse)_rev (5'- ACATCTGCTGGAAGGTGGAC-3');

Lgals3bp (mouse)_fwd (5'-AGGGCTGCGACCTATTCATC-3")
and Lgals3bp (mouse)_rev (5'-TCGGGAGTAAAAGTAC
CTGAGG-3");

Vcaml (mouse)_fwd (5'-CTGGGAAGCTGGAACGAAGT-3')
and Vcaml (mouse)_rev (5'-GCCAAACACTTGACCGTGAC-3");

Cxcl12 (mouse)_fwd (5-TGCATCAGTGACGGTAAACCA-3')
and Cxcl12 (mouse)_rev (5- CACAGTTTGGAGTGTTGAGGAT-3");

Tgtbl (mouse)_fwd (5-CTGCTGACCCCCACTGATAC-3')
and Tgfbl (mouse)_rev (5'- GGGCTGATCCCGTTGATTTC-3");

Timpl (mouse)_fwd (5-CGAGACCACCTTATACCAGCG-
3’) and Timpl (mouse)_rev (5'- ATGACTGGGGTGTAG
GCGTA-3');

Postn (mouse)_fwd (5'-TGGTATCAAGGTGCTATCTGCG-3')
and Postn (mouse)_rev (5'- AATGCCCAGCGTGCCATAA-3).

4.7 Raw data processing and dimensionality
reduction-driven clustering analysis

The scRNA-seq dataset associated with HGPS murine aortas
was obtained from the study by Ana Barettino et al. (6). This
comprehensive dataset comprises transcriptomic profiles from
aortic tissue samples derived from two biological pairs of
Lmna®%%’%%C mice and their wild-type littermate controls
(Lmna*’*) on a C57BL/6 genetic background.

Raw scRNA-seq data were processed using the Seurat package
(v4.4.0) for normalization, quality control filtering, dimensionality
reduction, cell clustering, and differential gene expression analysis
(40). Rigorous quality thresholds were applied: cells retaining 200-
5,000 detected genes, >1,000 UMIs, and <10% mitochondrial gene
content. Potential doublets were identified and removed via
DoubletFinder (v2.0.3) (41), while ambient RNA contamination was
mitigated using DecontX (v1.4.0) (42). Batch effects across samples
were corrected through Harmony integration (v1.2.3) (43), with the
top 40 Harmony embeddings selected via the ElbowPlot function for
subsequent clustering and visualization. Cell clustering was performed
across resolution parameters (0.1-1.2) using the FindClusters function,
with optimal resolution (0.7) determined by cluster stability analysis
via the cluster R package (v0.5.1). Cell identities were annotated based
on canonical marker genes reported in literature. Dimensionality
reduction and visualization were achieved using the RunUMAP
function implementing UMAP. For fibroblast subpopulation
analysis, fibroblast clusters were extracted and re-clustered at a
resolution of 0.3 following the aforementioned workflow.

4.8 Differential gene expression and GO
enrichment analysis

Following stringent quality control, a total of 22196 high-
quality cells were retained for downstream analyses. Differential
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gene expression analysis was conducted using the MAST
framework (v1.28.0) implemented through the FindAllMarkers
function in Seurat (v4.4.0) (44). DEGs were identified using a
conservative threshold of Bonferroni-adjusted P < 0.05 combined
with absolute log, (fold-change) > 0.25.

GO enrichment analysis was performed using the
clusterProfiler R package (v4.14.0) (45), followed by visualization
of the results through the ggplot2 R package (v3.4.4; https://
github.com/tidyverse/ggplot2), with representative GO terms
selectively displayed to highlight biologically significant
functional categories.

4.9 Analysis of intercellular communication

Cell-cell communication networks between distinct cellular
populations were analyzed using CellChat (v2.1.2) (46), with
ligand-receptor interactions considered statistically significant at a
threshold of P<0.05. Intercellular communication patterns were
visualized through the netVisual circle function, quantitatively
depicting interaction frequency and communication strength
across cell types.

4.10 Pseudotime analysis

Cellular differentiation potential was quantified through
transcriptional entropy analysis using CytoTRACE (v1.1.0), a
computational framework for predicting developmental potency
based on gene expression heterogeneity (47). Pseudotemporal
trajectory reconstruction was performed within the Monocle 3
(v1.3.7) environment (48).

4.11 Transcriptional regulatory network
analysis

Transcriptional regulatory network analysis was performed
using the pySCENIC workflow (v0.12.1) (49). The mm10
transcription factor (TF) motif database was retrieved through
RcisTarget (v1.28.0). Gene regulatory networks (GRNs) were
inferred from DEGs using GRNBoost2. The reconstructed
transcriptional networks were visualized using Cytoscape
(v3.7.2) (50).

4.12 Statistical analysis

Statistical analyses were performed using GraphPad Prism
(version 8.0.2). Intergroup differences were assessed by two-tailed
unpaired Student’s t-tests. Quantitative data were expressed as
mean * standard deviation (SD). Statistical significance was
defined as P < 0.05.
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