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Roles of nucleotide metabolism
INn pancreatic cancer
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Nucleotide metabolism plays a pivotal role in the onset and progression of
various human diseases, including pancreatic disorders. As fundamental
biomolecules, nucleotides are essential for DNA and RNA synthesis, energy
production, and cell signaling. Disruptions in nucleotide metabolic pathways
have been linked to altered cell proliferation, apoptosis, and immune responses—
critical processes in the development of pancreatic diseases. In pancreatic
cancer, metabolic changes in nucleotides facilitate rapid tumor cell
proliferation and enhance chemotherapy resistance. Recent studies have
concentrated on identifying specific enzymes and pathways within nucleotide
metabolism as potential therapeutic targets. Targeted interventions, such as
modulating RRM2, TS, and other key enzymes or disrupting the PI3ZK/AKT/
mTOR pathway, have demonstrated potential in reducing tumor growth and
inflammation in pancreatic tissue. This review provides an overview of the latest
advancements in the understanding of nucleotide metabolism in pancreatic
cancer pathogenesis, emphasizing diagnostic and therapeutic strategies that
may improve patient outcomes.
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1 Introduction

Abnormalities in nucleotide metabolism have been shown to play a critical role in the
onset, progression, and treatment response of acute pancreatitis (AP), chronic pancreatitis
(CP), and pancreatic cancer (PC). PC, an aggressively invasive malignancy with an
exceptionally high mortality rate, is often referred to as the “King of Cancers.” As one of
the deadliest cancers globally, its subtle early symptoms frequently result in diagnosis at
advanced stages. Treatment options for PC remain limited, and the prognosis is poor,
highlighting the importance of a deeper understanding of its molecular mechanisms to
develop more effective therapies (1).

In pancreatic diseases, disruptions in cellular metabolism are fundamental. Nucleotide
metabolism, a key aspect of cellular metabolism, serves not only as a critical precursor for
DNA and RNA synthesis but also plays an essential role in biological processes such as cell
proliferation, survival, aging, and apoptosis. In PC cells, nucleotide metabolic pathways are
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frequently reprogrammed to support rapid tumor cell proliferation
and resistance to chemotherapy (2). Research has clarified that
nucleotide metabolism operates primarily through two biosynthetic
pathways: the de novo synthesis pathway and the salvage pathway
(3). PC cells rely heavily on the de novo synthesis pathway to meet
the demands of their accelerated growth.

Moreover, nucleotide metabolism is regulated by several
signaling pathways, including PI3K/Akt, mTOR, and p53, which
significantly influence the initiation and progression of PC. Recent
studies have demonstrated that targeting nucleotide metabolism
can not only impede tumor growth but also enhance chemotherapy
sensitivity (4, 5). Ongoing research is actively identifying new
nucleotide-related tumor markers in cancer (6, 7), with increasing
attention being paid to personalized treatment approaches for
patients (8).

Thus, a comprehensive investigation into the role of nucleotide
metabolism in PC offers insights into potential mechanisms for its
treatment and prevention, while also paving the way for novel
targeted therapeutic strategies in clinical practice. This review
examines the core pathways of nucleotide metabolism, explores
its relationship with PC, and highlights the significant alterations in
nucleotide metabolism observed in PC.

2 Nucleotide metabolism

Nucleotide metabolism is a crucial metabolic pathway in the
human body. Recent advancements, driven by global scientific
collaboration, have progressively clarified the structure and
function of key enzymes involved, shedding light on this complex
and essential process. Nucleotide metabolism encompasses the de

10.3389/fimmu.2025.1637768

novo synthesis pathways of pyrimidines and purines, the salvage
synthesis pathway (SSP), and nucleotide catabolism (Figures 1, 2).
Typically, the de novo synthesis pathway is the primary route of
nucleotide metabolism, while the SSP is utilized only in specific regions
where relevant enzymes are insufficient. The de novo purine synthesis
pathway begins with ribose-5-phosphate (R5P), which is enzymatically
converted into 5-phosphoribose-1-pyrophosphate (PRPP) (9). PRPP is
subsequently transformed into 5-phosphoribosamine (PAR), and
through nine catalytic steps facilitated by five enzymes, PAR yields
inosine monophosphate (IMP) (10). IMP is then converted to
adenosine monophosphate (AMP) and guanosine monophosphate
(GMP) by various enzymes (11). In purine salvage synthesis,
hypoxanthine and guanine bind with PRPP to form IMP and GMP,
respectively, while adenine is converted to AMP. The purine catabolic
pathway involves the breakdown of AMP into hypoxanthine, which,
along with guanine from GMP, is oxidized to xanthine and ultimately
to uric acid by xanthine oxidase (XO). Excess AMP and GMP exert
negative feedback inhibition on the production of adenylosuccinate
synthetase (ADSS) and adenine, while excess GMP inhibits inosine
monophosphate dehydrogenase (IMPDH) and guanine production.
The de novo pyrimidine synthesis pathway begins with the
multifunctional CAD protein complex, which includes carbamoyl-
phosphate synthetase II (CPSII), aspartate carbamoyltransferase
(ATC), and dihydroorotase (DHOase) (12). This complex
catalyzes the synthesis of carbamoyl phosphate, which, along with
glutamine and aspartic acid, is ultimately converted into orotic acid
through four key steps (13). As pyrimidine synthesis requires
oxygen, it is closely linked to mitochondrial function and cellular
oxygen availability. Orotic acid then undergoes reactions in the
cytoplasm to form uridine monophosphate (UMP), which is
subsequently converted into UDP and then into dCTP and dTTP.
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FIGURE 1

Core pathways of purine nucleotide metabolism: de novo synthesis, salvage synthesis, and catabolism. This diagram comprehensively illustrates the
core biosynthetic and catabolic networks of purine nucleotides (e.g.,, AMP, GMP), covering the de novo synthesis, salvage synthesis, and catabolism

of purines, along with some regulatory mechanisms. Solid arrows indicate the main metabolic pathways, while the dashed line indicates the process
from PRA to IMP. The double-underlined arrows and diamond boxes highlight feedback inhibition, and the dark color emphasizes key components.
This schematic diagram describes the various steps of purine metabolism as comprehensively as possible, and serves as a comprehensive reference
for understanding purine nucleotide metabolism in normal pancreatic diseases. RDS, rate-determining step; R5P, Ribose-5-phosphate; PRA,

Phosphoribosylamine.
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FIGURE 2

Core pathways of pyrimidine nucleotide metabolism: de novo synthesis, salvage synthesis, and catabolism. This diagram comprehensively illustrates
the core biosynthetic and catabolic networks of pyrimidine nucleotides (e.g., UMP, CTP, dTTP), covering the de novo synthesis, salvage synthesis,
and catabolism of pyrimidines, along with some regulatory mechanisms. The solid arrows represent the major metabolic flow. The double-
underlined arrows and diamond boxes highlight feedback inhibition, and the dark color emphasizes key components. This schematic diagram
describes the various steps of pyrimidine metabolism as comprehensively as possible, and serves as a comprehensive reference for understanding
pyrimidine nucleotide metabolism in normal pancreatic diseases. OPRT, Orotate phosphoribosyltransferase; OMPDC, Orotidine-5"-monophosphate
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decarboxylase.

Under resting conditions or when pyrimidine demand is low, the
body prefers the SSP. Uridine and cytidine are directly
phosphorylated to UMP or CMP by intracellular enzymes,
replenishing the pyrimidine pool through further reactions.
Pyrimidine catabolism involves the degradation of cytosine and
uracil into B-alanine, NH3, and CO,, while thymine is broken down
into B-aminoisobutyric acid, NH;, and CO,.

3 Nucleotide metabolism and disease
pathogenesis

3.1 Precancerous lesions

The pathogenesis of PC is a prolonged, multifactorial process,
involving a series of genetic and cellular changes. It is characterized
by various pathological alterations and progresses through several
precursor lesions, including pancreatic acinar cell transformation
(ADM), pancreatic intraepithelial neoplasia (PanIN), and
intraductal pancreatic mucinous neoplasms (IPMN).

ADM refers to the reversible transdifferentiation of pancreatic
acinar cells into duct-like cells. However, under the influence of
carcinogenic drivers and chronic inflammation, ADM can progress
to more advanced lesions, such as PanIN (14). PanIN lesions are
typically small (< 5mm) and appear as flat or papillary structures
within intralobular pancreatic ducts (15). They are classified based
on nuclear atypia into three grades: PanIN-1 (low-grade), PanIN-2
(moderate-grade), and PanIN-3 (high-grade). IPMN, on the other
hand, is marked by cystic lesions originating from the pancreatic
ductal system, which produce mucin. These lesions are categorized
into three subtypes: main duct IPMN (MD-IPMN), branch duct
IPMN (BD-IPMN), and mixed-type IPMN (MT-IPMN) (16).

Notably, metabolic reprogramming occurs in these precursor
lesions, indicating that early pancreatic carcinogenesis involves
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metabolic adaptations to meet the demands of nucleotide
metabolism. Furthermore, metabolic alterations observed at the
PanIN/IPMN stage appear to persist into the pancreatic ductal
adenocarcinoma (PDAC) stage. In a metabolomic analysis of a
PanIN mouse model, intermediates of the purine synthesis pathway
did not increase as carcinogenesis progressed. In fact, levels of
dAMP, GMP, and dGMP decreased. However, there was a
noticeable increase in ADP and ATP levels, suggesting heightened
cellular energy metabolism. This change may indicate either an
enhancement or a subtle modification of the purine synthesis
pathway, which warrants further investigation. In contrast, the
pyrimidine synthesis pathway showed more pronounced
upregulation during carcinogenesis. Levels of UDP and CMP
increased, while the concentration of carbamoylaspartate, an early
product of pyrimidine synthesis, decreased (17). In summary,
current research indicates that alterations in these metabolites
and their regulatory genes can indeed be observed in
precancerous lesion models. However, whether these alterations
act as functional drivers of disease occurrence remains unclear, and
this gap highlights the need for further mechanistic studies.

3.2 Pancreatic carcinogenesis mechanisms

PC is a highly lethal malignancy that can be classified into two
major categories based on its cellular origin: pancreatic epithelial-
derived and non-pancreatic epithelial-derived cancers. The
majority of PC cases are pancreatic epithelial-derived, primarily
comprising PDAC, which accounts for over 90% of cases. This
category also includes adenosquamous carcinoma, colloid
carcinoma, and undifferentiated carcinoma (18). Tumorigenesis
in PDAC is driven by genomic instability, including somatic
mutations, chromosomal rearrangements, copy number
alterations, and epigenetic modifications. Two principal molecular
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models of PDAC pathogenesis provide differing views on tumor
progression: one proposes a gradual, stepwise progression, while the
other suggests a punctuated evolutionary pattern (19). Apart from
genetic alterations, nucleotide metabolism-related mechanisms also
play crucial roles in PDAC progression. Through a complex
regulatory network, nucleotide metabolism-related mechanisms
directly or indirectly affect PDAC progression. Figure 3 shows the
mechanism related to nucleotide metabolism in pancreatic
cancer cells.

As in other solid tumors, angiogenesis plays a pivotal role in PC.
It is considered a key rate-limiting step in both tumor growth and
metastasis. In PC, angiogenesis is often induced by the hypoxic
environment within the tumor. Tumor cells respond by producing
and releasing a variety of growth factors, including vascular
endothelial growth factor receptor (VEGFR) and neuropilin
(NRP), which mediate and promote angiogenesis (20).
Additionally, PC cells exhibit a unique pathological structure

10.3389/fimmu.2025.1637768

known as basal microvillus supply, which supports high
metabolic activity. These structures are responsible for glucose
transport into tumor cells and display endocytic properties
similar to those of normal microvessels, facilitating nutrient
exchange in the tumor microvasculature. This interaction may
also enhance the activity of phagocytes and macrophages in
PDAC (21).

The tumor microenvironment (TME) of PDAC consists
primarily of various non-tumor cells, including cancer-associated
fibroblasts (CAFs), endothelial cells (ECs), nerve cells, and immune
cells, mainly myeloid cells. The TME is also rich in extracellular
matrix (ECM) components such as growth factors, cytokines,
hyaluronic acid (HA), and collagen. Notably, the TME of PDAC is
strongly immunosuppressed, with a marked absence of highly active
infiltrating CD8" T cells (22). This unique immunosuppressive
environment plays a critical role in promoting the proliferation,
migration, and drug resistance of PDAC. PC cells meet the
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FIGURE 3

Schematic of nucleotide metabolism-related mechanisms in pancreatic cancer cells (by Figdraw). This diagram illustrates the mechanisms involved
in nucleotide metabolism within pancreatic cancer cells, covering DNA synthesis, pyrimidine precursor production, nucleotide synthesis gene
regulation, and acetate metabolism. Factors such as RRM2, PGK1, and DHODH, which are highly related to nucleotide metabolism in pancreatic
cancer, play crucial functional and regulatory roles. This framework outlines the changes in nucleotide metabolic pathways in certain pancreatic
cancer cells and highlights potential drug targets and regulatory mechanisms. RDS, rate-determining step; 1,3-BPG, 1,3-Bisphosphoglycerate; 3-PG,
3-Phosphoglycerate; Pyr Syn, Pyrimidine Synthesis; Pyr Prec, Pyrimidine Precursor; DHO, Dihydroorotate; SAT1 Act, SAT1 Activation
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demands of rapid proliferation by upregulating purine and
pyrimidine synthesis pathways. Additionally, the released
metabolites can modulate the activity of immune cells (23, 24).
Within the TME, tumor-associated macrophages (TAMs) undergo
metabolic reprogramming from an M1 phenotype, which is pro-
inflammatory, to an M2 phenotype, which is immunosuppressive.
This shift inhibits the function of effector T cells, promoting tumor
immune escape and progression. High concentrations of metabolites
such as adenosine suppress T cell proliferation and cytotoxic function
by binding to adenosine receptors on the surface of T cells (25, 26).
Moreover, regulatory T cells (Tregs) accumulate in the PC
microenvironment, further depleting critical metabolites like ATP
and impairing the antitumor responses of effector T cells, thereby
contributing to tumor immune evasion (27-29). Metabolic
reprogramming within the TME alters the utilization of metabolites
by immune cells, weakening their antitumor function and ultimately
facilitating tumor growth and metastasis.

In addition to immune cells, current studies also implicate
purinergic signaling in CAF and PDAC crosstalk. In PDAC the
CD39/CD73 pathway (ATP-AMP-adenosine axis) is markedly
upregulated, yielding high extracellular adenosine that suppresses
CD8+ T and NK cells while promoting Tregs and MDSCs (30).
Importantly, CAFs and tumor cells are major sources of this
pathway (30, 31). CAFs express CD73 (NT5E) and other
ectonucleotidases to produce adenosine, reinforcing local immune
evasion (30, 31). For example, multiscale profiling in PDAC found
that CD73+ CAFs cluster near tumor cells and likely mediate
metabolic crosstalk and immunosuppression in the dense stroma
(31). Single-cell analysis and spatial data show that PDAC cells and
CAFs are accompanied by higher scores of purine metabolism (32).
Co-culture experiments further show that silencing NT5E (CD73)
in PDAC cells reduced their invasion/proliferation, but this effect
was largely rescued by co-culture with CAFs (32). These findings
collectively indicate that CAF-derived purine metabolites and
enzymes drive PDAC progression and immune suppression via
metabolic reprogramming of the tumor microenvironment (e.g.
ATP/AMP conversion to adenosine). Targeting this CAF-purine
axis may represent a strategy to disrupt tumor-promoting metabolic
symbiosis and restore anti-tumor immunity in PDAC.

3.3 Changes in nucleotide metabolism-
related genes and enzymes in pancreatic
diseases

The role of nucleotide metabolism in pancreatic diseases has
garnered increasing attention, with numerous related genes and
their functions now being identified. Table 1 summarizes several
relevant genes, while Table 2 (33-81) provides a brief overview of
the mechanisms associated with these genes. Below are some key
changes in genes and enzymes.

3.3.1 Purine metabolism related

The elevated expression of adenosine succinate lyase (ADSL) in
cancer is linked to tumor invasion and poor prognosis. This effect is
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TABLE 1 Forty-two genes associated with nucleotide metabolism.

ADA ADK ADSL AK1 AK2 AK4
CAD DCK DGUOK DHODH DPYD DPYS
DTYMK DUT GART GDA GLRX GMPR
GSR ITPA KRAS LHPP NT5C NT5C2
NT5E NT5DC NUDT1 NUDT15 NUDT16 NUDT18
PAICS RRM1 RRM2 RRM2B SAMHD1 TK1

TK2 TXNRD1 TYMP TYMS UMPS XDH

mediated through the inhibition of Carma3 expression, which
influences resistance to gemcitabine (also known as 2,2-
difluorodeoxycytidine, dFdC), while Nrf2 signaling can regulate
ADSL expression. Knockdown of ADSL significantly reduces the
responsiveness of PC cells to gemcitabine treatment (82).

Adenosine deaminase (ADA) plays a role in adenosine
metabolism by converting adenosine to hypoxanthine. Although
its precise role in PC remains unclear, it is known that the serum
levels of ADA in patients with pancreatic diseases differ significantly
from those in healthy individuals (83), particularly in patients with
PC, making it a potential area for further investigation. CD73
(NT5E), a key enzyme that converts AMP to adenosine, has been
explored in PC, with the CD73 inhibitor AB680 showing promise
(84). Several CD73 inhibitors are currently in clinical trials (85).
Research on the Nudix hydrolase superfamily in PC is still limited.
These enzymes hydrolyze toxic nucleoside triphosphates, and
NUDT15 has emerged as a potential biomarker (86), with its high
expression strongly correlating with early postoperative recurrence
risk. Further investigation into its underlying mechanisms
is needed.

Adenylate kinase (AK) regulates multiple cellular functions,
including maintaining adenine nucleotide metabolic homeostasis,
activating the AK-AMP-AMPK signaling pathway, regulating the
cell cycle, proliferation, and intracellular energy transfer, as well as
mitochondrial ATP distribution. Studies suggest that AK expression
is upregulated in metastatic pancreatic endocrine tumors, with
overexpression potentially promoting tumorigenesis. AK also
influences the efficacy of adjuvant therapy by inducing epithelial-
mesenchymal transition (EMT). Compared to normal tissues, AK2
expression is elevated in PDAC, though its exact role requires
further exploration (87). In studies of adenylate kinase 4
pseudogene 1 (AK4P1), both AK4 and AK4P1 were identified as
oncogenic and significantly upregulated in PDAC (88).

Phosphoribosylaminoimidazole succinocarboxamide
synthetase (PAICS), which catalyzes the conversion of SAICAR to
AICAR in purine biosynthesis, is overexpressed in PDAC. Research
indicates that its knockdown suppresses cell proliferation, colony
formation, invasion, motility, and spheroid formation, suggesting
that PAICS targeting may offer a promising therapeutic strategy for
PDAC (69).

The NT5DC family includes evolutionarily conserved 5’-
nucleotidases that catalyze intracellular nucleotide hydrolysis.
Recent studies suggest that NT5DC2 may serve as both a
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TABLE 2 Genetic mechanisms of the 42 genes: brief elaboration.

get gene name Relevant mechanism References
ADA Mediates the deamination of adenosine and deoxyadenosine to generate inosine and deoxyinosine, 33)
critical for purine metabolism homeostasis
ADK Regulates intracellular adenosine levels through phosphorylation catalysis, modulating neuronal (34-36)
transmission and energy metabolism
Catalyzes the cleavage of adenylosuccinate and succinyl adenosine in the purine biosynthesis
ADSL o (37, 38)
pathway, yielding fumarate and AMP
AKL Maintains adenylate equilibrium through ATP+AMP « 2ADP interconversion, crucial for cellular (39)
energy metabolism
AK2 Overexpression activates the TGF-p/Smad3/Smad2/Smad4 axis, promoting EMT-mediated tumor (40)
invasiveness
AK4 Modulates mitochondrial ATP/AMP flux, coordinating cellular energy balance and stress responses (41)
AMPDI Converts AMP to IMP in muscle; deficiency leads to AMP accumulation, causing impaired energy 2)
metabolism manifesting as post-exertional myalgia and fatigue
CAD Multifunctional enzyme initiating pyrimidine biosynthesis: carbamoyl phosphate (3)
synthesis—carbamoyl aspartate formation—dihydroorotate production
DCK Initiates phosphorylation of deoxyribonucleosides (dCyd, dGuo, dAdo) in the nucleoside salvage (44-46)
pathway
DGUOK Phosphorylates deoxyguanosine to dGMP; mutations disrupt mitochondrial DNA replication (47)
DPYD Encodes dihydropyrimidine dehydrogenase (DPD) that catalyzes pyrimidine catabolism to uracil/ 8)
thymine, determining 5-FU pharmacokinetics
DPYS Mediates reversible hydrolytic ring-opening of dihydropyrimidines: 5,6-dihydrouracil>N- 49)
carbamoyl-B-alanine; 5,6-dihydrothymine—N-carbamoyl-o-aminoisobutyrate
DTYMK Phosphorylates dTMP to dTDP in pyrimidine metabolism, essential for DNA replication fidelity (50)
DUT Hydrolyzes dUTP to dUMP, preventing dUTP misincorporation into DNA strands (critical for 1)
genomic stability)
GART Trifunctional enzyme in de novo purine synthesis: phosphoribosylglycinamide formyltransferase 2)
(GAR Tfase)/synthetase (GARS)/AIR synthetase (AIRS) activities
GDA Catalyzes guanine to xanthine conversion in the purine degradation pathway, maintaining epidermal (53)
homeostasis
GLRX Glutaredoxin system component regulating redox homeostasis through protein disulfide reduction (54)
GMPR Converts GMP to IMP via NADPH-dependent deamination, balancing purine nucleotide pools (55)
GSR Reduces oxidized glutathione (GSSG) to GSH using NADPH (EC 1.8.1.7), crucial for redox 56)
homeostasis
ITPA Hydrolyzes non-canonical nucleotides: ITP—IMP, dITP—dIMP, XTP—XMP (EC 3.6.1.19) (57, 58)
KRAS The protein encodes a member of the small GTPase superfamily. A single amino acid substitution (59)
results in an activating mutation.

LHPP Histidine/lysine phosphatase (EC 3.6.1.3) regulating PI3K/AKT/mTOR signaling network (60)
NT5C 5'(3’)-nucleotidase (EC 3.1.3.5) dephosphorylating deoxyribonucleotides, regulating dNTP pools (61)
Gain-of-function mutations enhance chemoresistance to mercaptopurine via CMP hydrolysis-

NT5C2 ) ) ) i (62)
mediated reduction of active drug metabolites
NT5DC The coding sequence contains the 5-nucleotidase domain (NT5DC) family. (63)

NTSE Encodes CD73 (ecto-5"-nucleotidase, EC 3.1.3.5) catalyzing ATP/ADP—adenosine conversion, (64)
suppressing anti-tumor immunity
NUDTL Sanitizes oxidized nucleotides (8-0x0—dGTP4>8-0).(0-dGMP, EC 3.6.1.12) preventing DNA (65)
mutagenesis
NUDT15 Cleaves thio-dGTP/dTTP/dCTP (EC 3.6.1.1), determining thiopurine drug metabolism efficiency (66)
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TABLE 2 Continued

10.3389/fimmu.2025.1637768

Target gene name Relevant mechanism References
NUDT16 Prevents mutagenic nucleotide incorporation via IMP/XMP hydrolysis (EC 3.6.1.1) (67)
NUDT18 Hydrolyzes 8-0xo-dGTP (EC 3.6.1.12) in the nucleotide pool sanitation pathway (68)

PAICS Catalyzes AICAR—SAICAR conversion (EC 6.3.2.6) in de novo purine biosynthesis (69)

RRMI Catalytic subunit of ribonucleotide reductase (EC %.17'4'1)) converts NDP—dNDP with allosteric 70)
regulation

RRM2 Radical-generating subunit of ribonucleotide reductase, requires iron cofactor for catalysis (71)

RRM2B p53-inducible isoform (EC 1.17.4.1) maintaining dNTP pool balance during DNA repair (72)

SAMHD1 dNTP triphosphohydrolase (EC 3.1.5.1) restricting retroviral replication via dNTP depletion (73)

TK1 Cell cycle-regulated thymidine kinase (EC 2.7.1.21), biomarker for tumor proliferation (74)

TK2 Mitochondrial deoxyribonucleoside kinase (EC 2.7.1.113) essential for mtDNA maintenance (75)

TXNRD1 Thioredoxin reductase (EC 1.8.1.9) maintaining thioredoxin in reduced state using NADPH (76)

TYMP Thymidine phosphorylase (EC 2.4.2.4) gener'fltinfg 2-deoxy-D-ribose-1-phosphate for 7

neovascularization
TYMS Thymidylate synthase (EC 2.1.1.45) mediating dUMP—dTMP conversion with 5,10-CH2-THF (78, 79)

cofactor

UMPS Bifunctional enzyme (EC 2.4.2.10 & 4.1.1.23) converting orotate—UMP via OMP intermediate (80)

XDH Xanthine oxidoreductase (EC 1.17.3.2) producing uric acid via hypoxanthine—xanthine oxidation (81)

therapeutic target and a valuable biomarker for personalized
treatment in patients with PC (89).

3.3.2 Pyrimidine metabolism related

Upregulation of dihydropyrimidine dehydrogenase (DPYD),
which catalyzes the catabolism and inactivation of 5-fluorouracil
(5-FU) in pyrimidine-based chemotherapy, has been linked to
increased proliferation, invasion, angiogenesis, and resistance to
5-FU treatment in PC. Elevated DPYD expression in PDAC not
only enhances pyrimidine degradation but also promotes cell
proliferation and invasiveness, accompanied by upregulation of
MMP9 and MEP1A (90). This suggests potential therapeutic
benefits of targeting DPYD in clinical settings.

Dihydroorotate dehydrogenase (DHODH), a key enzyme in de
novo pyrimidine nucleotide synthesis, has demonstrated promising
preclinical activity. However, DHODH inhibitors have largely failed
to show efficacy in PDAC and other solid tumors in multiple clinical
trials, with cancer cells seemingly evading inhibition of this
metabolic enzyme. The underlying mechanisms remain unclear,
and further investigations are ongoing (91, 92). Teriflunomide, the
active metabolite of the immunosuppressant leflunomide, directly
inhibits DHODH and has been used in the treatment of rheumatoid
arthritis (93). Its potential role in PC remains to be explored.

Research on the TYMS gene in PC is gradually progressing.
Literature suggests that TYMS is upregulated in PC, with varying
expression levels across different histological grades and clinical
stages. High TYMS expression is associated with poor prognosis in
patients (94). Additionally, the TYMS gene encodes thymidylate
synthase (TS).

Frontiers in Immunology

TS plays a pivotal role in the synthesis of deoxythymidine
monophosphate (dTMP) by catalyzing the conversion of
deoxyuridine monophosphate (dUMP) to dTMP. As one of the
earliest identified anti-cancer targets (95), its role in PC remains
incompletely understood. Some studies report that TS activity in PC
is significantly higher than in normal pancreatic tissue, though
lower than in other solid tumors (96). Additionally, high TS
expression correlates with advanced clinical stages and poor
prognosis, making TS a potential biomarker for the diagnosis and
prognosis of patients with PC (94).

5-FU, widely used in the treatment of various gastrointestinal
cancers, including PC, targets TS. Although 5-FU’s efficacy in PC
tissue may be lower than in normal tissue (96), it remains a
cornerstone of treatment. As a TS inhibitor, 5-FU interferes with
dTMP production, thereby inhibiting DNA synthesis in cancer cells
(97, 98). Standard regimens like FOLFIRINOX (oxaliplatin,
irinotecan, 5-FU, and leucovorin) leverage the effects of 5-FU and
are commonly used for the initial treatment of metastatic pancreatic
adenocarcinoma (MPC) (99, 100). Overexpression of TS has been
closely linked to 5-FU resistance. 5-FU binds to TS through its
active metabolite, fluorodeoxyuridine monophosphate (FdAUMP),
inhibiting TS activity and disrupting DNA synthesis. However, TS
overexpression diminishes the therapeutic effects of 5-FU.
Therefore, inhibiting TS activity can enhance 5-FU efficacy (101,
102). Moreover, combining strategies to synergistically inhibit TS
activity may further improve therapeutic outcomes. Tumor
genotypes and metabolic adaptations in the TME also modulate
TS activity, highlighting the need for personalized TS-targeted
therapies based on patient stratification (103, 104).
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Deoxycytidine kinase (DCK) is a key enzyme involved in the
SSP of deoxyribonucleotides and is crucial for the phosphorylation
of cytidine, thus playing an essential role in maintaining normal
DNA metabolism. Given that DCK affects the metabolism of
gemcitabine, a first-line nucleoside analog drug used to treat PC,
much of the existing literature focuses on its role in gemcitabine
metabolism, though its direct impact on PC remains underexplored.
Some studies indicate that in idiopathic pulmonary fibrosis (IPF),
DCK is a downstream target of hypoxia and contributes to alveolar
epithelial cell proliferation, while in chronic obstructive pulmonary
disease (COPD), elevated DCK levels can trigger apoptosis in
chronic lung disease cells (105). However, it is clear that during
PC treatment with gemcitabine, DCK expression decreases as the
disease progresses (106). Research into DCK’s regulatory
mechanisms in PC is still incomplete and warrants further
investigation. Clinically, gemcitabine is widely used as a standard
treatment for advanced PC. Decreased expression or mutations in
DCK are closely associated with gemcitabine resistance, particularly
in PC. As a key enzyme in gemcitabine activation, reduced DCK
activity results in lower cellular uptake and activation of the drug,
thereby compromising its efficacy (107). Increasing DCK
expression or activity can enhance the cytotoxic effects of
gemcitabine. Specifically, certain metabolic inhibitors may
reactivate DCK by modifying the tumor’s metabolic environment,
thus restoring gemcitabine efficacy (108). Furthermore, some
studies have explored gene therapy approaches to directly
introduce the DCK gene into PC tumors. This strategy, when
combined with chemotherapy, not only increases DCK activity
but also amplifies the drug’s cytotoxicity against cancer cells.

Ribonucleotide reductase M2 (RRM2), a subunit of
ribonucleotide reductase (RNR), is responsible for converting
ribonucleotides to deoxyribonucleotides, a key step in DNA
synthesis. Literature suggests that high RRM2 expression in PC is
associated with poor survival rates. Silencing RRM2 inhibits PC cell
proliferation and tumor growth by inactivating the PI3K/AKT/
mTOR pathway, leading to cell cycle arrest and/or apoptosis (109).
As an RNR-inhibiting antimetabolite, gemcitabine remains one of
the few FDA-approved drugs for PC treatment (110). Currently,
more selective RRM2 inhibitors are under development.

3.3.3 Oncogenic driver genes and other critical
genes

The Kirsten Rat Sarcoma (KRAS) gene mutation is the most
prevalent mutation across all cancers, including PC. Over 90% of
PDAC cases harbor activated KRAS mutations, which are strongly
associated with disease progression (111). The KRAS gene encodes
a small GTPase protein that functions as a molecular switch for
numerous key intracellular signaling pathways. KRAS activity is
determined by its binding to either GTP, which activates it, or GDP,
which inactivates it. The most common KRAS mutations occur at
codon 12 of the oncogene, and include G12D, G12V, and GI12R.
Oncogenic KRAS activates several critical downstream effector
pathways, including the RAF-MEK-ERK MAPK pathway, the
PI3K-AKT-mTOR pathway, and the Ral guanine nucleotide
exchange factor (RalGEF) pathway. Direct pharmacological
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targeting of KRAS has historically been considered challenging,
but recent studies have identified viable therapeutic strategies for
KRAS-targeted therapy (112, 113). Moreover, nucleotide
metabolism is a key mediator of KRAS resistance, with oncogenic
KRAS contributing to PC progression by regulating nucleotide
metabolism (114).

The oncogenic KRAS gene plays a pivotal role in pancreatic
disease progression through its interactions with nucleotide
metabolism. While past research has primarily targeted its
downstream signaling pathways, significant clinical advancements
remain elusive (115-117). The link between KRAS and nucleotide
metabolism still requires further exploration. Sotorasib and
Adagrasib, two KRAS G12C inhibitors, have shown efficacy in
various cancers, including non-small cell lung cancer (NSCLC)
(118, 119). However, their clinical efficacy in KRAS-mutant PCs is
limited by drug resistance and transient therapeutic effects. Although
these inhibitors demonstrate potent tumor-suppressive activity
during initial treatment (112), acquired resistance inevitably
develops with prolonged therapy. These resistance mechanisms
extend beyond KRAS itself to include the activation of downstream
signaling pathways such as the MAPK and PI3K-AKT-mTOR
pathways (120-122). KRAS-mutant tumor cells often rely on
enhanced nucleotide metabolic pathways to support rapid cell
proliferation. KRAS G12C inhibitors can inhibit tumor growth by
altering the metabolic state of tumor cells, particularly affecting the
nucleotide synthesis pathway (123). Although KRAS G12C inhibitors
show some efficacy when used alone (124), literature suggests that
combination therapies may offer a promising direction for
overcoming resistance and improving tumor suppression. Clinical
exploration of such combination therapies is ongoing (121, 125).

The phospholysine phosphohistidine inorganic pyrophosphate
phosphatase (LHPP) catalyzes the removal of phosphohistidine and
phospholysine modifications from target proteins. LHPP is
significantly downregulated in PC tissues and cell lines, and its
expression suppresses PC cell proliferation, migration, and invasion
while promoting apoptosis through AKT signaling (126, 127).
LHPP holds promise not only as a therapeutic target but also as a
prognostic biomarker and metabolic regulator, offering novel
insights for PC management.

3.4 Advances in targeting nucleotide
metabolism for PC therapy and related
clinical trials

KRAS has emerged as a central focus of research in PDAC (128).
Recent advances have been made in developing direct inhibitors
targeting the KRAS-G12C mutation, which have shown promise in
treating certain solid tumors. The Phase I/II CodeBreaK 100 trial
demonstrated positive effects in PDAC treatment (129), though the
efficacy of KRAS inhibitor monotherapy remains limited. Ongoing
investigations are exploring adagrasib for KRAS-G12C-mutated PC,
with clinical studies examining combination strategies involving
KRAS inhibitors and chemotherapy. Furthermore, combining KRAS
inhibitors with immunotherapy holds significant potential. Preclinical
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studies suggest that KRAS-G12C inhibitors may enhance tumor
immunogenicity, potentially synergizing with immunotherapies.
Building on these findings, the CodeBreaK 101 trial is evaluating
sotorasib in combination with pembrolizumab or atezolizumab.

Small molecule inhibitors targeting PAICS are currently under
development. Computer-screened PAICS inhibitory compounds
have demonstrated some inhibitory eftects on PDAC cells (130).
Although no clinical trial results are available yet, further in-depth
studies are warranted. TS has long been a target of chemotherapy. 5-
FU, its derivatives, and gemcitabine are commonly used
chemotherapeutic agents in various combination regimens. Efforts
are underway in the pharmaceutical field to develop drugs that
bypass DCK to overcome DCK-induced gemcitabine resistance
(131). Research on ADSL, LHPP, DPYD, RRM2, ADA, and the
NT5DC family is ongoing, though clinical trials remain limited.
Future advancements are eagerly anticipated.

Moreover, multiple combination therapeutic strategies are
being explored, including KRAS inhibitors combined with
metabolic pathway inhibition, direct metabolic inhibition paired
with immunotherapy, multi-metabolic pathway suppression
integrated with targeted therapy, and metabolic reprogramming
interventions alongside immunotherapy. However, current research
faces several challenges, including suboptimal efficacy, significant
population heterogeneity, incompletely controlled overlapping drug
toxicities, and excessive physiological burdens on patients. The
underlying resistance mechanisms—whether known or yet to be
fully characterized—require further investigation.

4 Conclusion and outlook

As insights into the role of nucleotide metabolism in PC continue
to deepen, clinical diagnostic and drug development targets are
gradually becoming clearer. In terms of early screening and
diagnosis, KRAS is the only gene currently with clinically
translatable potential for early detection. While PAICS and RRM2
show upregulation at the histological level, their use as early diagnostic
biomarkers remains distant. NUDT15, DPYD, TYMS, and DCK hold
promise as prognostic markers, while ADSL, ADA, AK, NT5DC, and
LHPP exhibit limited potential based on current evidence.

Although the impact of nucleotide metabolic pathways on
tumorigenesis and progression is increasingly recognized, and
their medical significance shows promise, numerous critical
questions remain unresolved. These include the relationship
between nucleotide metabolism and early diagnostic biomarkers,
the synergistic effects of immunotherapy combined with nucleotide
metabolism inhibitors, the cross-tissue and microenvironmental
effects of nucleotide metabolism, and the development and clinical
application of small molecule inhibitors.

In conclusion, the study of nucleotide metabolism in pancreatic
diseases has significant scientific implications and potential clinical
applications. Future research is expected to bring breakthroughs in
this field, offering new strategies and directions for the treatment of
pancreatic diseases.
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