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Osteoarthritis (OA) is a degenerative joint disease characterized by synovial

inflammation, cartilage degradation, and subchondral bone remodeling.

Synovial macrophages, particularly their polarization into pro-inflammatory M1

or anti-inflammatory M2 phenotypes, play a pivotal role in OA pathogenesis. M1

macrophages drive synovitis, oxidative stress, and cartilage catabolism by

secreting cytokines (IL-1b, TNF-a) and matrix-degrading enzymes (MMPs,

ADAMTS-5), while M2 macrophages promote tissue repair via TGF-b and IL-10.

Emerging therapeutic strategies, such as macrophage depletion, mTOR/SIRT1

modulation, and M2 polarization, demonstrate potential in rebalancing the M1/

M2 ratio to attenuate OA progression. However, translating these macrophage-

targeted strategies into clinical practice remains challenging due to difficulties in

achieving subtype-specific targeting, avoiding off-target immune effects, and

ensuring consistent therapeutic efficacy across patient populations. However,

challenges remain in achieving subtype-specific targeting and translating

preclinical findings to clinical applications. This review summarizes current

knowledge and provides valuable insights for advancing OA management

strategies, underscoring macrophages as promising therapeutic targets

in osteoarthritis.
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1 Introduction

Osteoarthritis (OA), recognized as the most common

degenerative joint disease, is characterized by complex

pathological alterations involving multiple joint structures

including articular cartilage, subchondral bone, synovial

membrane, ligaments, and periarticular musculature (1–3). A

critical pathological hallmark of OA is synovial inflammation (4–

6), with accumulating evidence indicating that the severity of

synovitis closely parallels disease progression (7–9). Synovitis,

defined as inflammatory changes in the synovial membrane,

manifests histologically through distinct features including

synovial cell hyperplasia, angiogenesis, and infiltration of

inflammatory cells (10–12).

Macrophages serve as versatile immune regulators that

participate in both innate immune responses and tissue

homeostasis, playing pivotal roles in host defense mechanisms

and the maintenance of physiological balance (13). Within this

inflammatory microenvironment, macrophages constitute the

predominant immune cell population. These cells actively

participate in OA pathogenesis through the sustained secretion of

pro-inflammatory cytokines and matrix-degrading enzymes,

thereby driving disease exacerbation and promoting joint tissue

destruction (14, 15). Therefore, an in-depth understanding of the

role of synovial macrophages in the initiation and progression of

OA is of critical importance. Importantly, among the various

immune cells implicated in OA, synovial macrophages represent a

particularly attractive therapeutic target due to their numerical

dominance, plastic phenotypic switching capacity, and ability to

orchestrate both destructive and reparative processes in the joint

microenvironment (16). Unlike lymphocytes or neutrophils, which

often act as downstream effectors, macrophages act as upstream

modulators of inflammation, matrix degradation, and chondrocyte

fate. Their dual polarization into pro-inflammatory (M1) and anti-

inflammatory (M2) phenotypes provides a therapeutically

exploitable axis to restore immune balance and promote tissue

repair (17, 18). As such, targeting macrophage polarization offers a

more direct and dynamic strategy for modulating joint

inflammation and structural damage compared to other

immune pathways.
2 Composition, functional roles, and
phenotypic characteristics of synovial
macrophages

2.1 Heterogeneity and functional
significance of synovial macrophages

The pivotal role of macrophages in OA synovitis has been

firmly established since early studies (19, 20). Athanasou et al (21).

first identified macrophage markers (CD11b, CD14, CD16, CD68)

in OA synovium, though these did not define activation states.

Subsequent work by Haywood et al (22)., Benito et al (23)., and
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Bondeson et al (24). demonstrated markedly increased macrophage

infiltration compared with healthy synovium, a finding reproduced

in multiple OA animal models (25, 26). Manferdini et al (27).

further revealed heterogeneous macrophage subsets (CD14, CD16,

CD68, CD80, CD163), emphasizing phenotypic diversity.

Polarization profiling has yielded variable results: Van den Bosch

et al (28). reported simultaneous elevation of M1 (CD86, CCL3,

CCL5) and M2 (CD206, IL−10, IL−1Ra) markers in end−stage OA,

whereas Zhang et al (26). observed a pronounced M1 (iNOS +)

predominance and M2 (CD206 +) reduction in human and murine

OAmodels. ScRNA‐Seq Revealed the macrophages could be further

categorized into two subclusters: C0 and C1. The relative

proportion of C0 and C1 was dramatically elevated in the

synovium of patients with diabetic OA compared to those with

normal synovium (29).

Recent phenotyping advances identified folate receptor−b (FR

−b) as a marker of pro−inflammatory monocytes (CD14high

CD16−) (30). FOLR2 + tissue−resident macrophages (TRMs)

localize perivascularly and interact with CD8 + T cells (31). This

finding enabled non−invasive visualization of macrophage

activation via ¹¹¹InCl 3−DTPA−folate SPECT imaging in rat OA

models (32), revealing transient activation peaks in mono

−iodoacetate−induced OA and sustained activity up to 12 weeks

post−ACL transection. De Visser et al (32). further reported a 28.4%

rise in FR−b + macrophages under high−fat diet conditions in a

groove model, concentrated within synovial and subchondral bone

regions. Clinical investigations have strengthened the association

between macrophage activation and OA progression. Daghestani

et al. (33) established significant correlations between synovial fluid

levels of CD14/CD163 and SPECT-detected macrophage activity,

with CD14 levels particularly associated with radiographic joint

space narrowing, osteophyte formation, and clinical pain scores.

Interestingly, CD163 as an M2 marker showed specific association

with osteophyte progression, suggesting a potential role for M2

macrophages in this aspect of OA pathogenesis. Kraus et al. (25)

extended these findings using 99Tc-m-EC20 (Etarfolatide) imaging

in human knee OA, detecting activated macrophages in 76% of

symptomatic knees with strong correlations to both pain severity

and radiographic disease stage. Importantly, FR-b+ macrophages

were identified in multiple OA-affected joints (fingers, shoulder,

ankle), with their presence consistently associated with

pain symptoms.
2.2 Phenotypic features and functional
roles of synovial macrophages

The synovium, a specialized vascular connective tissue that lines

the articular capsule, plays a pivotal role in maintaining joint

homeostasis by enveloping intra-articular structures (34, 35). The

pathological accumulation of macrophages within the synovial

lining serves as a diagnostic indicator of synovitis (16, 36), while

simultaneously contributing to synovial tissue homeostasis (37). In

OA, activated synovial macrophages have been implicated in the

pathogenesis of intra-synovial inflammation (38). These cells
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exhibit remarkable plasticity, undergoing polarization into distinct

functional phenotypes in response to local cytokine gradients—a

process termed M1/M2 polarization (39). Classical activation (M1

phenotype) occurs following exposure to pro-inflammatory

mediators including IFN-g, LPS, and TNF-a, resulting in

enhanced secretion of inflammatory cytokines (TNF-a, IL-1, IL-6,
IL-12) and enzymes (COX-2), coupled with diminished IL-10

production (37). Conversely, alternative activation (M2

phenotype) is induced by Th2-derived cytokines (IL-4, IL-13),

yielding anti-inflammatory macrophages that promote tissue

repair. The M2 population can be further classified into

functionally distinct subsets (M2a, M2b, M2c), all participating in

extracellular matrix remodeling (40). Single-cell RNA sequencing

studies have revealed a spectrum of macrophage activation profiles

that do not conform strictly to the M1 or M2 paradigm, indicating

that this polarization continuum demonstrates the dynamic

adaptability of macrophages to microenvironmental cues.

Emerging evidence highlights the prognostic significance of the

synovial M1/M2 polarization balance in OA progression. Topoluk

et al. (41) employed an innovative OA cartilage-synovium coculture

system to demonstrate that synovial macrophage depletion

significantly reduced the M1/M2 polarization ratio, concurrently

decreasing IL-13 and MMP-13 expression while mitigating cartilage

degradation. Complementary clinical findings by Liu et al. (42)

revealed elevated M1/M2 polarization ratios in both synovial fluid

and peripheral blood of knee OA patients, with positive correlations

observed between this ratio and radiographic disease severity,

suggesting its utility as a potential biomarker for OA staging.
3 Role of synovial macrophage
polarization in OA pathogenesis

3.1 Synovial inflammation and OA
progression

Synovial inflammation serves as a critical initiator of OA, with

synovial macrophages, particularly the M1 phenotype, acting as

central effectors in disease progression. This inflammatory response

is marked by persistent low-grade inflammation, excessive MMP

activity, and upregulation of pro-inflammatory cytokines (43).

Notably, synovitis often precedes overt cartilage degradation,

emphasizing its role as an early pathological hallmark (44).

Histological features include synovial lining hyperplasia, leukocyte

infiltration, and aberrant angiogenesis (6, 45). Among these cellular

changes, M1-polarized macrophages emerge as central mediators of

synovial inflammation. Upon activation, these macrophages release

a cascade of inflammatory cytokines (TNF-a, IL-1b, IL-6) and pain-
inducing neuropeptides, while simultaneously exacerbating

oxidative stress and inducing mitochondrial dysfunction through

enhanced autophagy (46).

3.1.1 Oxidative stress regulation in OA
Under normal physiological conditions, reactive oxygen species

(ROS) serve as critical signaling molecules involved in chondrocyte
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apoptosis regulation, gene expression modulation, and extracellular

matrix (ECM) homeostasis maintenance (47, 48). However,

pathological oxidative stress occurs when ROS generation

surpasses the antioxidant defense capacity, resulting in structural

damage to cellular components and articular tissues (49).

Mitochondrial dysfunction is a key contributor to excessive ROS

accumulation, which further disrupts intracellular signaling

cascades and amplifies inflammatory responses (50). Elevated

ROS levels exhibit a strong correlation with M1 macrophage

infiltration in OA synovium (51). These classically activated

macrophages secrete pro-inflammatory mediators, including IL-

1b, IL-6, IL-12, TNF-a, ROS, and inducible nitric oxide synthase

(iNOS), which collectively exacerbate synovial inflammation (17,

52, 53). The resulting oxidative stress, driven by ROS and nitric

oxide (NO), accelerates chondrocyte apoptosis and cartilage matrix

degradation (47). Mechanistically, excessive ROS inhibit the

protective PI3K/Akt pathway while activating pro-inflammatory

MEK/ERK signaling, further amplifying the inflammatory cascade

(47, 54). Zheng et al. (55) demonstrated that populnin alleviates

oxidative stress in OA synovium by suppressing NF-kB activation,

reducing IL-1b-induced NO production, and downregulating iNOS

expression. Macrophage polarization significantly influences

cellular redox balance through metabolic reprogramming. M1

macrophages predominantly utilize glycolysis and the pentose

phosphate pathway, enhancing ROS and NO generation and

perpetuating inflammation. In contrast, M2 macrophages exhibit

increased oxidative phosphorylation and express arginase-1 (Arg1),

contributing to ROS scavenging and tissue repair (56). Notably,

ROS also function as intracellular signaling molecules that reinforce

M1 polarization by activating NF-kB andMAPK pathways, creating

a self-sustaining inflammatory loop in OA synovitis (57–59).

3.1.2 Mitophagy regulation in OA
Mitochondria serve as the primary organelles for oxidative

phosphorylation in eukaryotic cells, playing a pivotal role in

cellular energy metabolism (60). Mitophagy, the selective

autophagy of damaged mitochondria, is a critical mechanism for

maintaining mitochondrial quality control and cellular

homeostasis. However, dysregulation of this process can lead to

pathological outcomes, as excessive mitophagy may disrupt

intracellular balance and trigger apoptotic or necrotic cell death

(61). Recent studies have elucidated the relationship between

mitophagy and macrophage polarization. Recent studies

demonstrated that LPS-stimulated macrophages polarized toward

the pro-inflammatory M1 phenotype exhibit elevated intracellular

ROS levels, accompanied by mitochondrial dysfunction and

marked upregulation of mitophagy-related proteins, including

Beclin-1 and PINK1. This enhanced mitophagy activity

contributes to the amplification of inflammatory responses.

Notably, intervention with 2-deoxy-D-glucose was found to

attenuate ROS generation during M1 polarization, thereby

reducing the fusion of impaired mitochondria with lysosomes and

subsequently suppressing excessive mitophagy, which may offer a

potential strategy for mitigating inflammation (62, 63). Conversely,

emerging evidence suggests that mitophagy modulation can
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reciprocally influence macrophage polarization states. For instance,

stabilization of mitochondrial membrane potential and

pharmacological inhibition of mitophagy have been shown to

promote the anti-inflammatory M2 phenotype, thereby alleviating

synovial inflammation (64).
3.2 Effects on cartilage

Cartilage, an avascular and aneural hyaline tissue, forms the

articular surface of bones and is essential for smooth joint

movement (65). Mechanical stress-induced cartilage injury

triggers chondrocytes and macrophages to release MMPs, which

degrade cartilage ECM and exacerbate OA progression (66). The

pathological mechanisms of OA involve the imbalance between

ECM synthesis and degradation due to elevated catabolic enzyme

activity, and chondrocyte apoptosis and cellular senescence.

Notably, modulating macrophage polarization, by enhancing the

M2 anti-inflammatory phenotype or suppressing the M1 pro-

inflammatory response, can promote cartilage repair, restore

tissue homeostasis, and mitigate OA progression (67, 68).

3.2.1 Impact on chondrocyte anabolic and
catabolic processes

Macrophage-chondrocyte crosstalk via paracrine signaling

plays a pivotal role in OA pathogenesis. Activated synovial

macrophages release pro-inflammatory cytokines, including IL-

1b , TNF-a , and IL-6, which disrupt the chondrocyte

microenvironment. These cytokines upregulate MMPs, leading to

the breakdown of key ECM components such as type II collagen

and aggrecan (69). Importantly, ECM degradation products act as

damage-associated molecular patterns (DAMPs), further activating

macrophages and perpetuating a self-sustaining cycle of synovial

inflammation and cartilage destruction. Experimental evidence

highlights the detrimental effects of M1 macrophages on

chondrocyte function. Samavedi et al. (70) utilized a 3D co-

culture model to demonstrate that chondrocytes exposed to LPS-

polarized M1 macrophages exhibited significantly increased

secretion of MMPs and inflammatory mediators (IL-1b, TNF-a,
IL-6, IL-8, IFN-g). Furthermore, Zhang et al. (26) identified a novel

mechanism wherein M1 macrophage polarization exacerbates OA

through chondrocyte-derived R-spondin 2 (Rspo2), which activates

b-catenin signaling and amplifies cartilage catabolism.

3.2.2 Impact on chondrocyte apoptosis
Growing research highlights the critical role of chronic low-

grade synovial inflammation in cartilage degradation, where

synovial macrophage polarization serves as a key mediator in OA

progression (71). Pro-inflammatory M1 macrophages exacerbate

OA pathology by promoting chondrocyte apoptosis, inducing

cellular hypertrophy, and facilitating ECM degradation, ultimately

leading to cartilage destruction (72). Experimental evidence

suggests that targeted depletion of synovial macrophages reduces

the M1/M2 ratio, suppresses IL-1 and MMP-13 expression, and

mitigates cartilage damage (41). Mechanistically, M1-polarized
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macrophages in OA synovial tissue release pro-inflammatory

mediators, including TNF-a and IL-1b, alongside MMPs, which

collectively accelerate ECM breakdown and drive chondrocyte

apoptosis (6). Among these cytokines, IL-1b plays a central role

in chondrocyte apoptosis by activating the NF-kB and MAPK

signaling cascades. Key components of these pathways—such as

p50, p52, Rel proteins (Rel, Rel A, Rel B), p38, JNK, and ERK—

regulate critical cellular processes, including chondrocyte

proliferation, differentiation, and programmed cell death (73, 74).

Pharmacological interventions targeting these pathways, such as

paeoniflorin, have demonstrated therapeutic potential by

modulating the Bax/Bcl-2/Caspase-3 axis and attenuating IL-1b-
induced chondrocyte apoptosis (75). In contrast, M2 macrophages

exhibit chondroprotective effects by promoting an anti-

inflammatory microenvironment and facilitating cartilage repair.

Dai et al. (76) demonstrated that type II collagen stimulates M2

polarization, which in turn suppresses chondrocyte apoptosis and

hypertrophy while supporting the regeneration of damaged

cartilage. This reparative function is partly mediated by TGF-b, a
potent anti-inflammatory cytokine that enhances chondrogenic

differentiation of bone marrow-derived mesenchymal stem cells

(BMSCs) (67). Additionally, M2 macrophages secrete IL-10, IL-

1RA, and CCL18, which counteract inflammation, alongside pro-

chondrogenic factors such as insulin-like growth factors (IGFs) (77,

78). These macrophages also contribute to ECM restoration by

upregu la t ing co l l agen type I I synthes i s , enhanc ing

glycosaminoglycan production, and inhibiting MMP-13 activity

(79). Beyond direct paracrine effects, macrophage polarization

influences chondrocyte fate through modulation of key signaling

pathways, including TGF-b, JNK, Akt, NF-kB, and b-catenin. These
interactions create a feedback loop wherein ECM degradation

further skews macrophage polarization toward a pro-

inflammatory phenotype, perpetuating a cycle of inflammation

and cartilage deterioration (80) (Figure 1).
3.3 Impact on chondrogenic differentiation
of mesenchymal stem cells

Mesenchymal stem cells (MSCs), as multipotent stromal cells,

are widely distributed in diverse tissues such as bone marrow,

skeletal muscle, periosteum, and trabecular bone (81, 82). Notably,

BMSCs exhibit significant immunomodulatory and anti-

inflammatory properties, which contribute to immune

suppression and tolerance induction through the downregulation

of pro-inflammatory responses. Additionally, BMSCs demonstrate

considerable regenerative potential in cartilage repair (83). In the

context of OA, BMSCs are recruited to injured joint tissues, where

they secrete an array of bioactive molecules, including chemokines,

cytokines, and growth factors. These factors play a crucial role in

promoting M2 macrophage polarization, thereby facilitating tissue

regeneration (67). Furthermore, MSCs exert a dual regulatory effect

on macrophage polarization: they suppress the activation of pro-

inflammatory M1 macrophages while enhancing the transition to

anti-inflammatory M2 phenotypes. Conversely, M1 macrophages
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negatively influence MSC functionality by impairing their

proliferation and viability, exacerbating inflammatory responses,

and accelerating cartilage matrix degradation (83). Supporting this,

Fahy et al. demonstrated that M1 macrophages significantly inhibit

the chondrogenic differentiation capacity of MSCs (84) (Table 1).
4 Targeting macrophages as a
therapeutic strategy for osteoarthritis

Synovial macrophage depletion has elucidated their pivotal role

in OA pathogenesis. Clodronate-loaded liposomes were first shown

to effectively ablate synovial macrophages in mice, reducing TGF-

b–mediated osteophyte formation (39). This effect was consistently

observed across diverse OA models (DMM, CIAOA), reinforcing

macrophage-driven osteophyte development (91–93). Subsequent

studies also reported decreased VDIPEN levels and MMP-3/MMP-

9 expression following depletion, suggesting direct involvement in

cartilage matrix degradation (94). However, the lack of macrophage

subtype specificity in such approaches limits their translational

potential. To improve therapeutic precision, manipulation of

mTOR signaling was employed to skew macrophage polarization,

demonstrating M1-driven OA exacerbation versus M2-mediated
Frontiers in Immunology 05
protection (26). Similarly, clodronate treatment in an ex vivo OA

model led to a reduced M1/M2 ratio and attenuated IL-1b, MMP-3

expression, and cartilage degradation (95, 96).

Further studies have explored selective macrophage depletion

strategies. Targeting CD14 + macrophages in OA synovium was

shown to reduce IL-1 and TNF-a levels (68), whereas CD14−

macrophages exhibited higher TNF-a and IL-1b mRNA

expression (97). In vitro co-culture experiments revealed that M1

macrophages upregulated MMPs, ADAMTS-5, and pro-

inflammatory cytokines, contributing to cartilage breakdown (70).

Conditioned media from M1-polarized macrophages elevated IL-

1b, IL-6, MMP-13, and ADAMTS-5 while suppressing aggrecan

and collagen II synthesis (98). Notably, M2 macrophages failed to

counteract M1-mediated cartilage destruction, suggesting that

simply promoting M2 polarization may not suffice to reverse OA

progression. In contrast, type II collagen derived from squid was

found to promote M2 macrophage polarization, enhance TGF-b
and IGF expression, inhibit chondrocyte apoptosis, and facilitate

cartilage repair (76). Additionally, magnolol was shown to reduce

the synovial M1/M2 ratio and alleviate inflammation in OAmice by

inhibiting the p38/ERK, p38/MAPK, and p65/NF-kB signaling

pathways (86). Supporting this approach, SIRT1 activators

administered either intraperitoneally or intra-articularly effectively
FIGURE 1

Mechanisms of synovial macrophage polarization in osteoarthritis (OA). Pro-inflammatory M1 macrophages induced by IFN-g and LPS promote
oxidative stress, ROS accumulation, and NF-kB/MAPK activation, driving synovial inflammation and cartilage catabolism. In contrast, IL-4/IL-13–
induced M2 macrophages enhance ROS scavenging, ECM restoration, and cartilage repair through Arg1 and b-catenin signaling, thereby suppressing
inflammation and promoting tissue regeneration. LPS; IGFs, insulin-like growth factors; ROS, reactive oxygen species; MAPK, mitogen-activated
protein kinase; MMP, matrix metalloproteinases; OA, osteoarthritis; MEK, methyl Ethyl Ketone; ERK, Extracellular signal-regulated kinase; PI3K,
phosphoinositide 3-kinase; AKT, also known as protein kinase B (PKB); ECM, extracellular matrix.
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reduced synovial inflammation, lowered the M1/M2 ratio, and

delayed OA progression in murine models (85).

Collectively, these findings underscore the protective role of M2

macrophages and suggest that modulating macrophage polarization

may represent a viable therapeutic strategy for OA (17, 87, 99).

Despite encouraging preclinical results, current macrophage-targeted

therapies face several limitations that hinder clinical translation. First,

non-specific depletion or systemic modulation of macrophages may

lead to unintended off-target effects, including disruption of

physiological macrophage functions essential for tissue repair and

host defense. Second, strategies that broadly promoteM2 polarization

or inhibi t M1 phenotypes risk inducing general ized

immunosuppression, potentially compromising innate immune

responses and increasing susceptibility to infections. Third,

variability in patient-specific factors such as baseline immune

profiles, metabolic status, and genetic polymorphisms may result in

heterogeneous therapeutic responses, posing challenges for

personalized treatment optimization. Lastly, the lack of reliable

biomarkers to monitor in vivo macrophage polarization hinders

real-time assessment of therapeutic efficacy (87–90).
5 Conclusion

Synovial macrophages play a central role in OA pathogenesis,

where their polarization state critically influences inflammatory

cascades and tissue homeostasis. Pro-inflammatory M1

macrophages exacerbate synovitis, oxidative stress, and

extracellular matrix degradation, whereas M2 macrophages

promote resolution of inflammation and tissue repair. Emerging

therapeutic approaches, including selective macrophage depletion,

mTOR pathway modulation, and SIRT1 activation, have shown

efficacy in shifting the M1/M2 equilibrium toward a reparative

phenotype, thereby mitigating OA progression. Despite these
Frontiers in Immunology 06
advances, key challenges persist, particularly in achieving

macrophage subtype-specific targeting and bridging the gap

between preclinical models and clinical applications. To overcome

these challenges, future strategies should emphasize cell-specific

delivery systems, such as nanocarrier-mediated or ligand-directed

targeting, to selectively reprogram synovial macrophage subtypes

within the joint microenvironment. Moreover, combinatory

approaches that integrate macrophage modulation with anti-

inflammatory agents, regenerative medicine or mechanical joint

unloading may yield synergistic benefits. By strategically

manipulating macrophage polarization, researchers may unlock

innovative treatments capable of not only slowing OA

progression but also restoring joint integrity and function.
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TABLE 1 Preclinical strategies targeting synovial macrophage polarization in OA and associated outcomes.

Strategy Mechanisms Agent(s) Benefits Limitations References

Macrophage
depletion

Elimination of synovial
macrophages to reduce
inflammation

Clodronate
liposomes; CD14 +

targeting

Suppresses osteophyte formation;
reduces MMPs and synovitis

Lacks subtype specificity; may
impair reparative functions

(41, 68, 70)

mTOR/SIRT1
modulation

Alters macrophage polarization
via metabolic regulation

Rapamycin; SIRT1
agonists

Reduces M1/M2 ratio;
downregulates IL-1b and MMP-13;
delays OA

Systemic effects; limited joint-
specific delivery

(26, 85)

Type II collagen–
induced M2

Induces anti-inflammatory
phenotype; promotes
regeneration

Squid-derived type
II collagen

Enhances TGF-b/IGF; protects
chondrocytes; supports repair

Heterogeneous efficacy;
limited monotherapy
potential

(69, 76)

Anti-
inflammatory
phytochemicals

Inhibits M1 signaling (NF-kB,
MAPK)

Magnolol;
Paeoniflorin

Downregulates inflammation;
protects cartilage

Off-target effects; long-term
immunosuppression risk

(86–90)

Coculture
macrophage
depletion

Reduces M1/M2 ratio and
inflammatory mediators

Clodronate
Decreases IL-1b and MMP-13;
mitigates ECM degradation

Ex vivo model; lacks in vivo
validation

(39, 41, 72, 80)

MSC-mediated
modulation

Promotes M2 phenotype via
paracrine immunosuppression

BMSC-secreted
factors

Enhances regeneration; suppresses
M1-driven inflammation

M1-mediated suppression of
MSCs; donor variability

(81–84)
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73. López-Armada MJ, Caramés B, Lires-Deán M, Cillero-Pastor B, Ruiz-Romero C,
Galdo F, et al. Cytokines, tumor necrosis factor-alpha and interleukin-1beta,
differentially regulate apoptosis in osteoarthritis cultured human chondrocytes.
Osteoarthritis Cartilage. (2006) 14:660–9. doi: 10.1016/j.joca.2006.01.005

74. Ji B, Guo W, Ma H, Xu B, Mu W, Zhang Z, et al. Isoliquiritigenin suppresses IL-
1b induced apoptosis and inflammation in chondrocyte-like ATDC5 cells by
inhibiting NF-kB and exerts chondroprotective effects on a mouse model of anterior
cruciate ligament transection. Int J Mol Med. (2017) 40:1709–18. doi: 10.3892/
ijmm.2017.3177

75. Wang B, Bai C, Zhang Y. Paeoniae radix alba and network pharmacology
approach for osteoarthritis: A review. Separations. (2024) 11:184. doi: 10.3390/
separations11060184

76. Dai M, Sui B, Xue Y, Liu X, Sun J. Cartilage repair in degenerative osteoarthritis
mediated by squid type II collagen via immunomodulating activation of M2
macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials.
(2018) 180:91–103. doi: 10.1016/j.biomaterials.2018.07.011

77. Das P, Jana S, Kumar Nandi S. Biomaterial-based therapeutic approaches to
osteoarthritis and cartilage repair through macrophage polarization. Chem Rec. (2022)
22:e202200077. doi: 10.1002/tcr.202200077

78. Couto CMS. Immunomodulatory Nanoenabled 3D Scaffolds for Chondral Repair.
Porto, Portugal: Universidade do Porto (Portugal (2021).
frontiersin.org

https://doi.org/10.1002/art.30363
https://doi.org/10.1002/art.39006
https://doi.org/10.3390/diagnostics15151932
https://doi.org/10.1007/s10787-021-00888-7
https://doi.org/10.1016/j.joca.2021.11.014
https://doi.org/10.1002/jcp.26429
https://doi.org/10.1016/j.joca.2021.11.014
https://doi.org/10.1515/biol-2022-0567
https://doi.org/10.3389/fimmu.2019.01084
https://doi.org/10.3389/fimmu.2019.01084
https://doi.org/10.1002/term.2610
https://doi.org/10.3892/etm.2018.6852
https://doi.org/10.3389/fnmol.2017.00421
https://doi.org/10.1038/s41413-025-00465-6
https://doi.org/10.3389/fimmu.2024.1394108
https://doi.org/10.3389/fimmu.2024.1394108
https://doi.org/10.15386/mpr-1422
https://doi.org/10.1038/s41598-025-11667-7
https://doi.org/10.1038/s41598-025-11667-7
https://doi.org/10.1155/2018/3075293
https://doi.org/10.3390/biomedicines9020216
https://doi.org/10.3390/antiox11122315
https://doi.org/10.1016/j.heliyon.2025.e42881
https://doi.org/10.3390/ijms26010245
https://doi.org/10.3390/ijms26136428
https://doi.org/10.1007/s10753-017-0558-9
https://doi.org/10.1007/s10753-017-0558-9
https://doi.org/10.1016/j.intimp.2023.109790
https://doi.org/10.1002/ptr.8455
https://doi.org/10.1016/j.bioactmat.2020.05.004
https://doi.org/10.1016/j.apsb.2019.01.015
https://doi.org/10.3390/biomedicines8110526
https://doi.org/10.3390/ijms21062173
https://doi.org/10.1042/CS20256705
https://doi.org/10.1021/acsanm.3c00595
https://doi.org/10.1186/s13287-025-04565-2
https://doi.org/10.1016/j.actbio.2021.12.006
https://doi.org/10.1016/j.actbio.2021.12.006
https://doi.org/10.3389/fimmu.2021.678757
https://doi.org/10.3389/fimmu.2021.678757
https://doi.org/10.3389/fimmu.2020.00111
https://doi.org/10.3389/fimmu.2022.967193
https://doi.org/10.1039/C8NR10013F
https://doi.org/10.1089/ten.tea.2016.0007
https://doi.org/10.1089/ten.tea.2016.0007
https://doi.org/10.1016/j.cytogfr.2019.03.004
https://doi.org/10.3390/ijms23063355
https://doi.org/10.1016/j.joca.2006.01.005
https://doi.org/10.3892/ijmm.2017.3177
https://doi.org/10.3892/ijmm.2017.3177
https://doi.org/10.3390/separations11060184
https://doi.org/10.3390/separations11060184
https://doi.org/10.1016/j.biomaterials.2018.07.011
https://doi.org/10.1002/tcr.202200077
https://doi.org/10.3389/fimmu.2025.1637731
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1637731
79. Madsen DH, Leonard D, Masedunskas A, Moyer A, Jürgensen HJ, Peters DE,
et al. M2-like macrophages are responsible for collagen degradation through a mannose
receptor-mediated pathway. J Cell Biol. (2013) 202:951–66. doi: 10.1083/jcb.201301081

80. Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis.
Osteoarthritis Cartilage. (2020) 28:555–61. doi: 10.1016/j.joca.2020.01.007
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