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Alterations in gut microbiota composition have been implicated in various
diseases, including cancer. Recent evidence suggests that intestinal microbiota
may influence the efficacy of immunotherapy. In this study, we investigated the
relationship between gut dysbiosis and NK cell exhaustion in Mexican patients
with cervical cancer (CC), a connection not previously explored. This cross-
sectional study included newly diagnosed CC patients, a separate cohort of post-
radio-chemotherapy (RCT) patients, and healthy donors (HD). Fecal microbiota
profiles were assessed using 16S rRNA sequencing, while peripheral NK cell
immune checkpoint expression was analyzed by multiparametric flow
cytometry. CC patients exhibited significant gut dysbiosis, marked by reduced
a-diversity, enrichment of pro-inflammatory taxa (Escherichia-Shigella,
Prevotella), depletion of short-chain fatty acid (SCFA)-producing bacteria
(Ruminococcus, Christensenellaceae), and enrichment of microbial metabolic
pathways related to inflammation, oxidative stress, nutrient limitation, and
immune suppression. Dysbiosis was more pronounced in patients after RCT,
with further enrichment of Phascolarctobacterium. In parallel, NK cells displayed
a putative exhausted phenotype, with elevated expression and co-expression of
PD-1, LAG-3, TIM-3, TIGIT, BTLA, and NKG2A. A dysbiosis score and an NK
exhaustion score were developed, revealing a significant positive correlation
between microbial imbalance and NK cell exhaustion. Machine learning analysis
identified the Escherichia/Ruminococcus ratio and PD-1"CD56°"9" NK cells as
predictive markers of CC. Moreover, both dysbiosis and NK cell exhaustion
markers were significantly associated with reduced patient survival. This is the

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1637098/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1637098/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1637098/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1637098/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1637098/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1637098/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1637098&domain=pdf&date_stamp=2025-10-31
mailto:susana.darreola@academicos.udg.mx
mailto:miriam.bueno@academicos.udg.mx
https://doi.org/10.3389/fimmu.2025.1637098
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1637098
https://www.frontiersin.org/journals/immunology

Klimov-Kravtchenko et al.

10.3389/fimmu.2025.1637098

first study to demonstrate a link between gut microbiota alterations and NK cell
exhaustion in CC. Our findings suggest that gut dysbiosis may contribute to
impaired anti-tumor immunity. This study supports the rationale for microbiota-
targeted interventions as adjunctive strategies in CC, although prospective
validation is required.

gut microbiota, NK cell, dysbiosis, cervical cancer, immune exhaustion,

immune checkpoints

Introduction

Cervical cancer (CC) remains a major global health burden,
particularly in low- and middle-income countries, where it is
among the leading causes of cancer-related mortality in women.
In Mexico, CC is the second most common cancer and the fourth
leading cause of cancer-related death among women. Despite
advancements in treatment, including radio-chemotherapy
(RCT), survival rates for advanced-stage CC remain suboptimal
(1). Recently, the microbiota has emerged as a crucial modulator of
cancer development and progression, now recognized as an
enabling hallmark of cancer (2).

Among the various microbiomes in the human body, the gut
microbiota has gained significant attention due to its systemic
influence on distant organs and physiological processes, including
immune system regulation. Crosstalk between the gut and vaginal
microbiota occurs through vertical transmission and direct
translocation of rectal microbes to the vaginal environment (3).
Additionally, the gut microbiota can contribute to the modulation
of vaginal microbiota through estrogen metabolism. Certain
intestinal bacteria produce B-glucuronidases, enzymes that
deconjugate estrogens previously metabolized in the liver,
facilitating their reabsorption into circulation. This process,
carried out by the estrobolome, influences estrogen availability
(4), which in turn affects the vaginal microbiota by promoting
Lactobacillus growth and microbial homeostasis in the vagina (5).
However, disruptions in this pathway may alter vaginal microbial
diversity, potentially impacting gynecological health, as elevated
estrogen levels have been associated with an increased risk of
malignancies (6).

Dysbiosis, an imbalance in microbial composition, has been
implicated in various diseases, including cancer. Alterations in the
gut microbiota can impact immune homeostasis, chronic
inflammation, and the efficacy of cancer therapies, highlighting
the potential role of the microbiota as both a biomarker and a
therapeutic target in oncology (2). Recent studies have reported
significant gut microbiota alterations in CC patients, including the
enrichment of Prevotella, Porphyromonas, Dialister, Proteobacteria,
and Escherichia-Shigella, alongside a depletion of beneficial short-
chain fatty acid (SCFA)-producing bacteria such as Blautia,
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Alistipes, Clostridia and Ruminococcus (7-10). Moreover, RCT
has been shown to further disrupt microbial diversity, reducing
beneficial taxa while promoting the expansion of pro-inflammatory
bacteria, including Proteobacteria, Gammaproteobacteria, and
Haemophilus (11). Notably, specific microbial signatures
characterized by decreased microbial diversity and increased
Escherichia-Shigella and Enterobacteriaceae have been associated
with poor prognosis and reduced survival in CC patients (12).

The gut microbiota plays a key role in modulating systemic
immune responses, including the function of natural killer (NK)
cells (13). As frontline effectors of anti-tumor immunity, NK cells
are essential for the rapid detection and elimination of malignant
cells, a process tightly regulated by the balance between activating
and inhibitory signals. However, in CC, NK cells often exhibit an
exhausted phenotype, characterized by increased expression of
inhibitory molecules, such as PD-1, TIGIT, and TIM-3, leading to
impaired cytotoxic activity (14).

The gut microbiota has been shown to influence the response to
immune checkpoint blockade (ICB) therapy. Specific gut microbial
profiles and greater microbial diversity have been correlated with
enhanced responses to PD-1, PD-L1, and CTLA-4 blockade
therapies in various cancers, possibly due to microbiota-immune
modulation or microbiota-drug interaction (15-18). Beyond
therapy response, microorganisms regulate immune function via
direct cell-cell interactions (19) and microbial metabolites (20),
which under a dysbiotic state could translocate due to compromised
integrity of the intestinal barrier and promote immune
exhaustion (21).

Despite the growing interest in the interplay between the
microbiota and the immune system, most studies have focused on
T cell-mediated immunity, leaving the relationship between gut
dysbiosis and NK cell exhaustion largely unexplored. RCT remains
the standard treatment for locally advanced CC; however, its
systemic effects, particularly on immune function and microbiota
composition, are not fully understood. Importantly, the therapeutic
landscape of CC is evolving beyond conventional RCT. ICB has
demonstrated clinical benefit in recurrent and metastatic disease
and is increasingly being incorporated into systemic regimens, often
in combination with RCT and anti-angiogenic agents. These
advances reinforce the importance of host-microbiota
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interactions in shaping responsiveness to therapeutic combinations
that are likely to become standard in the coming years, highlighting
the need for deeper investigation into how the microbiota
modulates treatment outcomes (22).

To our knowledge, this is the first study in Mexico to
characterize the gut microbiota in CC patients and to explore its
association with NK cell exhaustion and the effects of standard
RCT. This work provides novel insights to the study of host-
microbiota-immunity interactions in a Western Mexican cohort.

Materials and methods
Approval of clinical research

The recruitment of CC patients was conducted at the Instituto
Jalisciense de Cancerologia in Guadalajara, Jalisco, Mexico.
Clinically healthy female donors (HD) from the community
participated as the control group. This study was performed
following the ethical principles outlined in the Declaration of
Helsinki (2024 revision) and was approved by the Research and
Ethics Committees of the health institution (PRO-72/23) as well as
by the University Center (22-92-CI-00323). All participants were
informed about the objectives of the study, and written informed
consent was obtained before their inclusion.

Study design

This cross-sectional study included 77 female participants: 49
patients diagnosed with cervical cancer (CC) and 28 age-adjusted
healthy donors (HD). From each participant, fecal samples were
collected for gut microbiota profiling, and peripheral blood was
obtained for NK cell phenotypic analysis. CC patients were
stratified into two groups: 27 treatment-naive individuals with
newly diagnosed CC, assigned as CC pre-treatment group, and 22
patients who had completed standard-of-care radio-chemotherapy
(RCT), which consisted of 50 Gy delivered in 25 fractions with
concomitant platinum-based chemotherapy, within the previous
two weeks, assigned as CC post-treatment. The control group
comprised 28 healthy women with no history of malignancy,
confirmed by a negative Papanicolaou test within the past year.
Written informed consent was obtained from all participants prior
to enrollment.

Inclusion and exclusion criteria

Inclusion criteria for the CC group were: (i) age 218 years, (ii)
histopathologically confirmed cervical cancer (stages I-1V,
classified by TNM system), and (iii) provision of informed
consent. Exclusion criteria for all participants included: (i) use of
prebiotics or probiotics within four weeks before recruitment, (ii)
any chronic infection other than HPYV, (iii) hospitalization within
the past three months due to COVID-19-related illness, (iv)
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diagnosed gastrointestinal disorders, (v) autoimmune diseases and
(vi) pregnancy.

Extraction of nucleic acids and 16S rRNA
amplicon sequencing

Fecal samples were collected and immediately stored at —80°C.
DNA was extracted from 150 mg of frozen feces with Quick-
DNA™ Fecal/Soil Microbe Miniprep (Zymo Research, USA, cat:
D6010) according to the manufacturer’s protocol. DNA was
quantified using a NanoDropTM OneC spectrophotometer
(Thermo Scientific, Waltham, MA, USA). The 16S metagenomic
sequencing library preparation was performed according to the
Mumina MiSeq System protocol (Illumina, San Diego, CA, USA)
(23). V3 and V4 regions from 16S were amplified with Platinum
Taq DNA Polymerase High fidelity (Invitrogen, Waltham, MA,
USA) using primers with adaptors. The sequence of the primers
used was: Forward: (55TCGTCGGCAGCGTCAGA
TGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3),
reverse: (5’GTCTCGTGGGCTCGGAGATGTGTATAAGAGA
CAGGACTACHVGGGTATCTAATCC- 3°). PCR conditions
were performed according to the Illumina protocol. Product
purification was achieved using AMPure XP® (Beckman Coulter,
Indianapolis, IN, USA) magnetic beads and was quantified with the
Qubit® 3 dsDNA HS kit (Invitrogen, Waltham, MA, USA)
according to product indications. Next, index incorporation was
achieved with the Nextera XT Index Kit v2 Set A (No. Cat. FC-131-
2001, Illumina, San Diego, CA, USA) by a second PCR
amplification. Finally, amplicons were pooled to equimolar
concentrations into a 4 nmol/L solution tube, which were then
denatured, and was further diluted to the recommended loading
concentration for the MiSeq Sample Loading (kit Miseq Reagent V3
600-cycle, Illumina, San Diego, CA, USA). The sequencing was
performed according to the manufacturer’s protocol.

Bioinformatic analysis

Analysis of 16S rRNA (V3-V4) sequences was performed using
QIIME2 version 2024.2 amplicon distribution (24). Previously, the
sequences whose Phred score were higher than 30 were processed.
Then, raw reads (at least 100, 000 raw reads per sample) were
further denoised using DADA2 via g2-dada2 (25) at default
settings. Analyses were conducted with an average of 40, 000
denoised amplicon sequence variants (ASVs) per sample.
Taxonomy assignation of our sequences was performed using a
full-length 16S trained classifier (26), further employing Silva 138.1
as a reference taxonomic database (27, 28). ASVs identified as
mitochondria and chloroplasts were removed. Then, filtered ASV's
were aligned using multiple alignment using fast Fourier transform
(MAFFT) via g2-alignment, and phylogeny was built with FastTree2
via q2-phylogeny (29). A-diversity indices (30-33) and B-diversity
distances (Bray-Curtis, Jaccard, unweighted and weighted Unifrac)
(34, 35) were computed via g2-diversity. Principal coordinate
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analysis (PCoA) plots were generated to visualize B-diversity
distances using Emperor via g2-emperor (36) and the different
distances were further analyzed using permutational multivariate
analysis of variance (PERMANOVA) tests.

Differential abundance analyses at the genus level were
performed using analysis of compositions of microbiomes with
bias correction (ANCOM-BC) via q2-composition (37). Before
analysis, a frequency filter was applied in which features that
appeared more than 50 times in at least 10% of the samples were
retained. A g < 0.05 cut-off was used to assess significance, and a log
fold change (LFC) >|1.0] to evaluate the effect size. To assess the
potential metabolic profile of the gut microbiota, phylogenetic
investigation of communities by reconstruction of unobserved
states 2 (PICRUSt2) pipeline (38-42) was employed, coupled with
the MetaCyc Database (43). The resulting pathways were further
analyzed using ANCOM-BC, using the previously described
parameters. Different taxonomic ratios were calculated following
previously published methods (44).

Flow cytometry

Peripheral blood samples were collected using 10 mL K2-EDTA
spray-coated tubes (Becton Dickinson, Franklin Lakes, New Jersey,
USA; 366643) for the separation of peripheral blood mononuclear
cells (PBMCs). PBMCs were isolated via density gradient
centrifugation using Lymphoprep (Stemcell Technologies,
Vancouver, British Columbia, Canada; 07851).

After isolation, PBMCs were stored in liquid nitrogen at —196°C
until further analysis. Cell viability was assessed using trypan blue
exclusion, and only samples exhibiting >90% viability were included
in the following analyses.

A multi-parametric flow cytometry panel was employed to
evaluate the expression of immune checkpoint molecules (PD-1,
TIGIT, NKG2A, BTLA, TIM-3, and LAG-3) on NK cell subsets.
Viability was evaluated in every sample in an independent staining
using Zombie NIR™, and every sample showed a viability higher
than 90%. The following monoclonal antibodies were utilized for
staining 5 x 10° PBMCs: Anti-CD3-FITC [fluorescein
isothiocyanate, 300406], Anti-CD56-BV711 [Brilliant Violet 711,
362542], Anti-CD16-BV605 [Brilliant Violet 605, 302040], anti-
CD45-AF700 [Alexa Fluor 700, 304024), Anti-TIGIT- PE
[phycoerythrin, 372704], Anti-TIM-3-BV510 [Brilliant Violet 510,
345030], Anti-PD-1-BV421 [Brilliant Violet 421, 329920], Anti-
LAG-3-PerCP/Cy5.5 [peridinin chlorophyll/cyanine 5.-5, 369312],
Anti-BTLA-PE/Cy7 [phycoerythrin/cyanine 7, 344516], Anti-
NKG2A-APC [allophycocyanin, 375108]. All antibodies were
sourced from BioLegend (San Diego, CA, USA). Data acquisition
was conducted on an Attune' " NxT Flow Cytometer (Thermo
Fisher Scientific, Waltham, MA, USA). Compensation was made
with compensation beads (Becton Dickinson, Franklin Lakes, NJ,
USA; 55284). For each sample, singlet cells were identified using
forward scatter-area (FSC-A) vs. forward scatter-height (FSC-H)
dot plots, followed by gating lymphocytes using FSC-A vs. side
scatter-area (SSC-A) plots. A total of 250, 000 events were recorded
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within the lymphocyte gate. Single and co-expression of immune
checkpoint receptors was analyzed in peripheral NK cell
populations using Kaluza software (version 2.1, Beckman Coulter,
Brea, CA, USA). PBMCs were analyzed as CD3°CD56%™ and CD3"
CD56"8" NK cell populations.

Calculation of exhaustion and dysbiosis
scores

To standardize NK cell phenotyping and provide an integrative
measure of exhaustion, we developed a composite Global NK
Exhaustion Score. For each inhibitory receptor (PD-1, LAG-3,
BTLA, TIM-3, TIGIT, NKG2A), Z-scores were calculated relative
to the healthy donor distribution. The calculated Z-scores were then
classified by specified percentiles, as explained in Supplementary
Material 1, to obtain a score (1 to 3). These values were summed
separately for CD56"™ and CD56""€"" NK subsets. The Global NK
Exhaustion Score for each patient was defined as the mean of the two
subset-specific scores (CD56"™ and CD56""8"), yielding a composite
index of inhibitory receptor burden. This approach was inspired by
previous work in T cells, where transcriptomic-based exhaustion
scores were generated by integrating multiple exhaustion-related
features into a unified index (45). Conceptually, our strategy also
reflects the notion that NK dysfunction cannot be defined by a single
marker but rather emerges from the combined expression of multiple
inhibitory receptors and phenotypic alterations (46). Together, this
percentile-based score provides a standardized framework to
compare NK exhaustion across patients and to correlate it with
microbiota alterations.

The microbiota dysbiosis score included o-diversity metrics
(Shannon, Pielou, Simpson, and Strong indices) and the centered
log-ratio (CLR)-transformed relative abundances of bacterial taxa
previously identified as expanded or depleted in CC patients by
ANCOM-BC analyses. After Z-score calculation, each parameter
was scored using a similar percentile-based classification scheme,
capturing deviations in either direction from control values, as both
increases and decreases may reflect dysbiosis. Finally, correlation
analysis between NK exhaustion and microbiota dysbiosis scores
was performed. Detailed formulas and score calculation workflows
are provided in Supplementary Material 1.

Statistical analyses

Data distribution was assessed for normality using the
D’Agostino—Pearson normality test. For comparisons between two
groups, parametric data were analyzed using the Student’s T-test,
while non-parametric data were analyzed using the Mann-Whitney
U test. For comparisons involving three or more groups, a one-way
analysis of variance (ANOV A) was applied for parametric data, with
post-hoc comparisons adjusted using the Benjamini-Hochberg false
discovery rate (FDR) method. The Kruskal-Wallis test with the FDR
method of Benjamini-Hochberg for multiple comparisons was used
for non-parametric data.
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Microbiota composition and diversity analyses were conducted
using non-parametric tests (Kruskal-Wallis) within the QIIME2
package. Correlation between microbiota and NK cell exhaustion
markers was assessed using Spearman’s rank correlation coefficient.

Sociodemographic data were analyzed using the Chi-square test
and are presented as frequencies and percentages. Statistical
analyses were performed using GraphPad Prism, version 10.4.
and R Studio version 4.4.2. P-values < 0.05 were considered
statistically significant.

Machine learning analysis

A Random Forest (RF)-based classification model was
developed to predict CC using microbiota composition, NK cell
exhaustion markers, and patient demographic data. The dataset
consisted of 104 variables, including microbial genera abundances,
diversity indices, NK-cell receptor expression profiles, along with
clinical variables such as age and BMI. Only HD and newly
diagnosed, pre-treatment CC patients were considered for
analysis. This approach was adapted from Tsakmaklis et al., 2023
(47). Briefly, feature selection was performed using Recursive
Feature Elimination (RFE) with leave-group-out (Monte-Carlo)
cross-validation (1000 iterations) to minimize overfitting and
retain the 20 most predictive variables. The final RF model was
trained with 200 decision trees (ntree=200) and an empirically
determined mtry of 2. Model performance was assessed through
repeated random partitioning (1000 iterations) into training (70%)
and test (30%) subsets. In each iteration, the model was
independently trained and tested, and its predictive ability was
evaluated using the area under the receiver operating characteristic
curve (ROC-AUC), reported as the mean and standard deviation
across iterations reported as the mean and standard deviation (SD)
across iterations. The SD represents the variability of model
performance across these repeated cross-validation runs,
providing an estimate of the model’s stability and generalizability.
Classification accuracy was assessed using a confusion matrix,
calculating sensitivity, specificity, and overall accuracy. To further
validate the model and reduce predictor variables, stepwise logistic
regression was applied to the most important features identified
through RF analysis. The final logistic regression model was
developed with the selected variables and assessed for its
predictive accuracy.

To assess the impact of microbiota and NK cell exhaustion
markers on patient survival, an independent mortality prediction
model was developed, which was restricted to pre-treatment CC
patients using a 106-variable data set. The XGBoost (Extreme
Gradient Boosting) model demonstrated superior performance to
RF and was selected as the final model, which was trained using 10-
fold cross-validation with hyperparameter optimization through
grid search. Performance was assessed through 1000 iterations of
random partitioning (70% training, 30% testing). Similarly, stepwise
logistic regression was applied to the most important predictors
identified by XGBoost to refine the model and assess its
predictive power.
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For each selected variable, Kaplan-Meier survival curves were
generated to assess the differences in survival between groups. The
cutoff value for categorizing patients into “high” and “low” groups
was determined by the point of maximum sensitivity and specificity
on a ROC curve for each variable. This approach allowed a
distinction between patients who survived and those who did not.
Subsequently, Kaplan-Meier curves were constructed for survival
analysis of the CC pre-treatment patients over the 15-month follow-
up period.

Results

Cross-sectional study and characteristics
of participants

The Clinicopathological characteristics of the study participants
are presented in Table 1. No significant differences were observed in
the age across groups (p = 0.9658). However, BMI was significantly
higher in CC pre-treatment patients compared to HD (p = 0.0238),
with a greater prevalence of patients classified as overweight or with
obesity. The most common histological type was squamous cell
carcinoma, accounting for most cases in both the pre- and post-
treatment groups. Stool consistency, assessed by the Bristol Scale,
shifted from a median of 4 (IQR: 3-4) in HD to 3 (IQR: 2-6) in CC
pre-treatment and 5 (IQR: 4-6) in post-treatment patients,
consistent with bowel habit alterations linked to disease and
treatment. All post-treatment patients underwent a standard
regimen of fractionated radio-chemotherapy (RCT), receiving a
total dose of 50 Grays in 25 sessions, concomitant with platinum-
based chemotherapy.

Disruption of gut microbiota diversity in
newly diagnosed cervical cancer patients
and cancer patients after radio-
chemotherapy

The a-diversity of the gut microbiota was evaluated using
Shannon, Simpson, Pielou evenness, Simpson evenness, and
Strong metrics (Figure 1A). All comparisons showed significant
difterences between groups (Supplementary Table 2A). CC patients
exhibited a marked reduction in overall diversity compared with
HD, which was further aggravated after RCT. This reduction
reflected both a loss of diversity (Shannon, Simpson) and
evenness (Pielou, Simpson evenness), alongside increased
bacterial dominance (Strong). This shift indicates a profound
imbalance in gut microbiota, characterized by the
overrepresentation of specific taxa that may contribute to chronic
inflammation and dysbiosis. RCT further exacerbated this
disruption, amplifying bacterial dominance, intensifying the loss
of microbial diversity and homeostasis in CC patients.

[B-diversity was assessed using Bray—Curtis (Figure 1B), Jaccard,
weighted, and unweighted UniFrac metrics (Supplementary
Figure 2B), and visualized through Principal Coordinate Analysis
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TABLE 1 Demographical and clinical characteristics of study groups.

10.3389/fimmu.2025.1637098

Variable IO [pEa e P value
(n=22)
Age (years, mean * SD) 41.75 £ 12.09 41.52 + 13.05 42.41 + 10.63 0.9658"
BMI (kg/mz, mean * SD) 23.83 + 3.40° 27.26 + 5.09° 25.87 + 6.54 0.0276**
Underweight (n, %) 0 (0%) 1 (3.7%) 1 (4.5%)
Normal weight (n, %) 18 (64.3%) 8 (29.6%) 10 (45.5%)
0.0356*°
Overweight (n, %) 10 (35.7%) 12 (44.4%) 9 (40.9%)
Obesity (n, %) 0 (0%) 6 (22.2%) 2 (9.1%)
Bristol scale (median [IQR]) 4 [3-4] 3 [2-6] 5 [4-6] 0.1586"
Clinical stage (n, %)
I 10 (37%) 2 (9.1%)
1I 7 (25.9%) 6 (27.3%) 0.1107°
11 9 (33.3%) 12 (54.5%)
v 1 (3.7%) 2 (9.1%)
Histology (n, %)
Epidermoid 23 (85.2%) 15 (68.2%) 0.1854°
Adenocarcinome 4 (14.8%) 7 (31.8%)

Data are expressed as mean + SD, median [IQR], or n (%). Differences between groups were assessed using: ‘One-way ANOVA; “Kruskal-Wallis; *Fisher’s exact test. Post-hoc pairwise

comparisons, when applicable, were adjusted with the Benjamini-Hochberg FDR method. Significant differences between groups are indicated by superscript letters (a=HD; b=CC pre-tx; c=CC
post-tx). HD, healthy donors; CC pre-tx, cervical cancer patients before treatment; CC post-tx, cervical cancer patients after treatment; SD, standard deviation; IQR, interquartile range; BMI,

body mass index. A p-value<0.05 was considered statistically significant.

(PCoA). HD samples formed a relatively tight cluster, while pre-
treatment CC samples displayed a broader distribution, indicating
greater inter-individual variability. In contrast, post-treatment CC
samples were more distantly separated from HD and clustered more
compactly, reflecting a pronounced shift in microbial community
structure. PERMANOVA confirmed significant differences between
groups (Supplementary Table 2C), underscoring the strong
disruption of gut microbiota composition in CC patients, which
was further exacerbated following RCT.

Additionally, we assessed gut microbiota alpha and beta
diversity in CC patients stratified by clinical stage, both before
and after treatment. However, no significant compositional
differences were observed across stages, and further analyses of
microbiota-related parameters were not pursued (not shown).

Shift in relative abundance of gut
microbiota in newly diagnosed cervical
cancer patients and cancer patients after
radio-chemotherapy

At the phylum level, pre-treatment CC patients displayed a
reduction in the abundance of Firmicutes (80.35% vs. 61.66%), an
enrichment of Bacteroidota (16.53% vs. 31.72%) and Proteobacteria
(0.90% vs. 3.04%) in comparison to HD. This shift was even
more pronounced in post-treatment patients (Firmicutes 52.92%,
Bacteroidota 34.48%, Proteobacteria 8.52%), with a further expansion
of Actinobacteriota (1.08% vs. 2.91%) (Figure 2A).
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At the genus level, pre-treatment CC patients showed an
expansion of pathobionts, including Prevotella (3.72% vs. 10.55%)
and Escherichia-Shigella (0.29% vs. 3.29%), alongside a decrease in
SCFA-producing bacteria such as Faecalibacterium (15.53% vs.
12.43%), Ruminococcus (1.35% vs. 0.53%), and Roseburia (2.31%
vs. 1.64%) compared to HD. Post-treatment patients exhibited even
greater enrichment of Escherichia-Shigella (4.68%), accompanied by
an increase in Bacteroides (8.56% vs. 21.67%) and Anaerostipes
(0.85% vs. 1.73%), and pronounced reduction in Faecalibacterium
(7.55%), Ruminococcus (0.30%) Roseburia (0.78%), Akkermansia
(0.72% vs. 0.09%), and Subdolingranulum (2.50% vs. 1.42%), in
contrast to HD (Figure 2B).

Key bacteria associated with newly
diagnosed cervical cancer patients and
cancer patients after radio-chemotherapy

The ANCOM-BC analysis identified statistically significant
microbial taxonomic shifts between pre-treatment, post-
treatment, and HD groups, providing insights into the key
bacteria associated with the disease and treatment. In pre-
treatment patients, when compared to HD, Prevotella 9 showed
the highest enrichment (LFC = 2.49) and emerged as a hallmark
species of this group. This was accompanied by an increased
abundance of several other microbial taxa, notably within the
Proteobacteria phylum, including Escherichia-Shigella (p = 0.0319)
and Bilophila (p = 0.0019). Additionally, significant enrichment was
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FIGURE 1

Gut microbiota diversity in fecal samples from healthy donors (HD), CC patients before treatment (CC pre-tx), and CC patients after treatment (CC
post-tx). (A) a-diversity metrics: Shannon, Simpson, Pielou evenness, Simpson evenness and Strong. Comparisons between groups were performed
using one-way ANOVA for parametric data (Shannon and Simpson), and the Kruskal-Wallis test for non-parametric data (Pielou evenness, Simpson
evenness, and Strong), followed by the Benjamini-Hochberg FDR method for multiple comparison correction. Data are shown as mean + SD for
parametric variables and median with IQR for non-parametric variables. (B) B-diversity: Three-dimensional scatter plot obtained by PCoA using the
Bray-Curtis distance, showing the distance between study groups in terms of B-diversity. Statistical analyses were performed using PERMANOVA to
determine the statistical significance of the observed separations in the coordinate space. *p < 0.05, **p< 0.01, ****p <0.0001. FDR, False Discovery
Rate; PCoA, Principal Coordinates Analysis; PERMANOVA, Permutational Multivariate Analysis of Variance.

observed in several bacteria within the Firmicutes phylum,
including Streptococcus, Enterococcus, Ruminococcaceae UBA
1819 (p = 0.0020), Parabacteroides, Phascolarctobacterium, and
Anaerovoracaceae XII AD3011 (p = 0.0360) (Figure 3A).
Post-treatment patients exhibited a marked alteration in their
microbial communities. While some similarities to the pre-
treatment microbiota were observed, post-treatment individuals
demonstrated a more pronounced enrichment of inflammation-
associated bacteria. Compared to HD, key bacteria with significant
increase included Phascolarctobacterium (p = 0.0039), Escherichia-
Shigella (p = 0.0400), Streptococcus (p = 0.0168), Bilophila
(p = 0.0009), Parabacteroides (p = 0.0351), and Anaerovoracaceae
XII AD3011 (p = 0.0073). Compared to pre-treatment, there was a
particular enrichment of Phascolarctobacterium (LFC 4.20), along
with Oscillibacter, Collinsella, and Intestinibacter, suggesting
potential microbial signatures associated with the therapeutic
intervention (Figure 3B). Additionally, post-treatment patients
exhibited a pronounced depletion of short-chain fatty acid
(SCFA)-producing bacteria, including Ruminococcus (p = 0.0206),
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Christensenellaceae R-7 group (p = 0.0015), Akkermansia,
Oscillospiraceae, Lachnospiraceae, Eubacterium, and Clostridium
(Figure 3C). These results suggest a shift towards a pro-
inflammatory microbial profile in the post-treatment state.

The HD group was predominantly characterized by members of
the Firmicutes phylum such as Ruminococcus, Christensenellaceae
R-7 group, Eubacterium ruminantium, Roseburia, and genera such
as Bifidobacterium and Akkermansia, which are associated with
intestinal health.

Overall, CC patients are characterized by Prevotella and
Escherichia-Shigella, while treatment led to the enrichment of
specific bacteria, particularly Phascolarctobacterium, Oscillibacter,
Collinsella, and Intestinibacter, while SCFA-associated taxa,
including Ruminococcus, Akkermansia, Oscillospiraceae, and
Lachnospiraceae, were depleted.

Following these results, a ratio analysis was performed using
CLR-transfomed relative abundance of representative taxa
(Figure 3D) (Supplementary Material 3, for ratio calculation),
such as Proteobacteria/Firmicutes (HD vs. CC pre- treatment:
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groups. ASVs, Amplicon Sequence Variants.

p=0.0428; HD vs. CC post- treatment: p = 0.050; CC pre- treatment
ys. CC post- treatment: p = 0.9332), Bacteroidota/Firmicutes
(HD vs. CC pre-treatment: p = 0.0781; HD vs. CC post-treatment:
p = 0.0112; CC pre-treatment vs. CC post-treatment: p = 0.3501),
Escherichia/Ruminococcus (HD vs. CC pre-treatment: p = 0.002;
HD vs. CC post-treatment: p = 0.0017; CC pre-treatment vs. CC
post-treatment: p = 0.7831), Prevotella/Ruminococcus (HD vs. CC
pre-treatment: p = 0.0215; HD vs. CC post-treatment: p = 0.1446;
CC pre-treatment vs. CC post-treatment: p = 0.7777), Escherichia/
Erysipelotrichaceae UCG-003 (HD vs. CC pre-treatment: p = 0.0048;
HD vs. CC post-treatment: p = 0.0615; CC pre-treatment vs. CC
post-treatment: p = 0.4137).

Functional metagenomic profiles in newly
diagnosed cervical cancer patients and
cancer patients after radio-chemotherapy

PICRUSt2 analysis showed that pre-treatment patients exhibit an
enrichment of amino acid biosynthesis and metabolism (L-tryptophan
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biosynthesis, ornithine degradation, L-arginine degradation, L-
ornithine degradation, chorismate metabolism, arginine degradation
I1, and chorismite biosynthesis II), degradation of aromatic compounds
and xenobiotics (4-hydroxyphenylacetate degradation, toluene
degradation I and II, 3-phenylpropanoate degradation,
protocatechuate degradation II, and 4-methylcatechol degradation),
inflammation process (enterobactin biosynthesis, enterobacterial
common antigen, Kdo2-lipid A and LPS biosynthesis) bacterial stress
(ppGpp biosynthesis), antibiotic resistance (polymyxin resistance) and
pathways involved in energy metabolism (Glycolysis-TCA-GLYOX-
Bypass, TCA-GLYOX-Bypass, sulfoglycolysis, glyoxylate cycle). In
contrast, the HD group present an enrichment of adenosylcobalamin
biosynthesis and octane oxidation (Figure 4A).

Post-treatment patients, in comparison with HD exhibit
enrichment of antioxidant-related pathways (ubiquinol-8, -7, -9,
and -10 biosynthesis), pathways involved in energy metabolism
(TCA cycle 1V, Glycolysis-TCA-GLYOX-Bypass, Fatty acid and
beta-oxidation), amino acid metabolism (L-tryptophan
biosynthesis, and L-histidine degradation II), degradation of
aromatic compounds and xenobiotics (toluene degradation I and
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* s

Differential taxon analysis of gut microbiota in fecal samples from healthy donors (HD), CC patients before treatment (CC pre-tx), and CC patients
after treatment (CC post-tx). (A) Comparison of HD vs. CC pre-tx, (B) Comparison of HD vs. CC post-tx, and (C) Comparison of CC pre-tx vs. CC
post-tx at the family and genus levels using ANCOM-BC. Blue bars represent bacterial taxa enriched in HD, purple bars in CC pre-tx, and pink bars in
CC post-tx. Bars indicate the LFC obtained by ANCOM-BC between study groups, using an LFC cutoff of +1.5. ANCOM-BC. (D) Ratios of CLR-
transformed relative abundance of selected taxa between groups. Comparisons between groups were performed using the Kruskal-Wallis test for
non-parametric data, followed by the Benjamini-Hochberg FDR method for multiple comparison correction. Data are shown as median with IQR.

*p < 0.05, **p < 0.01, ***p < 0.001. LFC, Log Fold Change; ANCOM-BC, Analysis of Compositions of Microbiomes with Bias Correction; CLR,

Centered Log-Ratio.

II, 3-phenylpropanoate degradation, and 4-hydroxyphenylacetate
degradation), inflammation-related pathways (enterobactin
biosynthesis, enterobacterial common antigen biosynthesis, and
Kdo2-lipid A biosynthesis), bacterial stress response (ppGpp
biosynthesis), and antibiotic resistance (polymyxin resistance). In
contrast, the HD group presented an enrichment of
adenosylcobalamin biosynthesis I, ethylmalonyl-CoA pathway,
methyl aspartate cycle, formaldehyde assimilation I, taurine
degradation, isopropanol biosynthesis (Figure 4B).

Comparing pre- and post-treatment patients, pre-treatment
showed an enrichment of pathways involved in xenobiotic
degradation and detoxification (formaldehyde assimilation I,
isopropanol biosynthesis, and sulfolactate degradation), and
pathways related to amino acid metabolism (L-threonine
metabolism, taurine degradation, and phenylwthylamine
degradation), other pathways such as phenylacetate degradation I,
along with methylcatechol degradation II, were also observed. In
contrast, in the post-treatment group, enrichment of degradation of
nucleotide derivatives (allantoin degradation IV and pyrimidine
ribonucleosides degradation) and L-histidine degradation II were
observed (Figure 4C).
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Upregulated immune checkpoint
expression in peripheral NK cells of newly
diagnosed cervical cancer patients and
cancer patients after radio-chemotherapy

An initial frequency analysis of NK cell populations (Figure 5A)
revealed a significant increase in total NK cell frequency in both
patient groups compared to healthy women (HD vs. CC pre-
treatment: p = 0.014, HD vs. CC post-treatment: p = 0.015). In
the pre-treatment group, there was a trend toward an expansion of
the CD56%™ NK cell subset, although this increase did not reach
statistical significance (HD vs. CC pre-treatment: p = 0.1312),
accompanied by a decrease in the CD5 NK cell population
(HD vs. CC pre-treatment: p = 0.1299). Conversely, the post-
treatment group exhibited the opposite trend, with a reduction in
the CD56%™ population (HD vs. CC post-treatment: p = 0.6263)
and a concomitant increase in the CD56° 8" NK cell subset (HD vs.
CC post-treatment: p = 0.7816). Notably, a direct comparison

6bright

between pre- and post-treatment patients revealed a near-
dim

significant difference in the frequency of both CD56
(p = 0.0508) and CD56"¢" NK cell subsets (p = 0.0809)
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(Figure 5B). NK cells were further subdivided into four subsets
based on CD56 and CDI16 expression: CD56%™CDI16",
CD56%™CD16°, CD56™8MCD16", and CD56°#"CD16™ (48).
Among these, we observed a significant expansion of the
CD56™"CD16" population in post-treatment patients compared
with both HD (p = 0.0239) and CC pre-treatment groups
(p = 0.0370). In contrast, the frequencies of the other subsets did
not show significant differences across groups (Supplementary
Figure 4). Analyses of immune checkpoint expression were
conducted only on the classical CD56%™ and CD56""8"" NK
cell subsets.

The CD56%™ NK cell population revealed a significant increase
of PD-1 expression in treatment-naive patients compared to HD
(HD vs. CC pre-treatment: p = 0.0457), which was further amplified
post-treatment (HD vs. CC post-treatment: p < 0.0001; CC pre-
treatment vs. CC post-treatment: p = 0.0261). A similar trend was
noted for LAG-3 (HD vs. CC pre-treatment: p = 0.0313; HD vs. CC
post-treatment: p < 0.0001; CC pre-treatment vs. CC post-
treatment: p = 0.0306) and BTLA (HD vs. CC pre-treatment: p =
0.0051; HD vs. CC post-treatment: p < 0.0007). However, no
significant difference was observed in BTLA expression between
pre- and post-treatment patient groups (CC pre-treatment vs. CC
post-treatment: p = 0.4516). No statistically significant differences
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were found for the markers TIM-3, TIGIT, and NKG2A between
the groups (Figure 6A).

In the CD56""" NK cell population, a similar pattern of
immune checkpoint expression was observed, with an increase in
the percentage of positive cells in the CC pre-treatment group,
followed by an exacerbation post-treatment, compared to the HD
group. However, these differences did not reach statistical
significance between the two CC patient subgroups. Notably, this
trend was particularly evident for LAG-3 (HD vs. CC pre-treatment:
p <0.0001; HD vs. CC post-treatment: p < 0.0001; CC pre-treatment
vs. CC post-treatment: p = 0.5857) and TIM-3 (HD vs. CC pre-
treatment: p = 0.0018; HD vs. CC post-treatment: p = 0.0008; CC
pre-treatment vs. CC post-treatment: p = 0.6651). Though TIGIT
followed a similar trend, statistical significance was only reached in
the post-treatment group compared to HD (HD vs. CC pre-
treatment: p = 0.1038; HD vs. CC post-treatment: p = 0.0148; CC
pre-treatment vs. CC post-treatment: p = 0.3632). Interestingly, PD-
1 expression increased significantly in both CC groups compared to
HD. Post-treatment patients exhibited a decrease in PD-1
expression compared to pre-treatment, although this did not
reach statistical significance (HD vs. CC pre-treatment: p <
0.0001; HD vs. CC post-treatment: p = 0.0002; CC pre-treatment
vs. CC post-treatment: p = 0.2414). No significant changes were
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antineoplastic treatment (CC post-tx). (A) Flow cytometry analysis strategy for NK cell populations. (B) Percentages of total NK cells (CD3 CD56%),
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using the Kruskal-Wallis test for non-parametric data, followed by the Benjamini-Hochberg FDR method for multiple comparison correction.
Frequency data are presented as individual expression percentages and median with IQR. *p < 0.05.

observed in the percentage of cells positive for NKG2A and BTLA
between the groups (Figure 6B).

The co-expression analysis revealed consistent evidence of a
putative exhausted phenotype in NK cells across both patient
groups, with a notable exacerbation following treatment,
especially in the CD56™ population. Significant increases were
detected in the co-expression of several inhibitory receptors: PD-
1I"BTLA™ (HD vs. CC pre-treatment: p = 0.3513; HD vs. CC post-
treatment: p = 0.0029; CC pre-treatment vs. CC post-treatment: p =
0.0329), PD-1"LAG-3" (HD vs. CC pre-treatment: p = 0.3683; HD
vs. CC post-treatment: p = 0.0105; CC pre-treatment vs. CC post-
treatment: p = 0.0829), PD-1"TIM-3" (HD vs. CC pre-treatment:
p = 0.3798; HD vs. CC post-treatment: p = 0.0063; CC pre-
treatment vs. CC post-treatment: p = 0.0533), PD-1"TIGIT"
(HD vs. CC pre-treatment: p = 0.7292; HD vs. CC post-
treatment: p = 0.0025; CC pre-treatment vs. CC post-treatment:
p = 0.0061), and TIGIT'TIM-3" (HD ws. CC pre-treatment:
p = 09917; HD vs. CC post-treatment: p = 0.0488; CC pre-
treatment vs. CC post-treatment: p = 0.0438). In contrast, the co-
expression of NKG2A'TIGIT" showed a different trend, with a
significant decrease in both patient groups compared to healthy
controls (HD vs. CC pre-treatment: p = 0.0017; HD vs. CC post-
treatment: p = 0.0054; CC pre-treatment vs. CC post-treatment:
p = 0.8195). No significant differences were found in the co-
expressions of PD-1"NKG2A™ and NKG2A"TIM-3" (Figure 7A).

In CD56"¢" NK cells, a significant increase in populations

exhibiting signs of immune exhaustion was observed, including PD-
I"BTLA™ (HD vs. CC pre-treatment: p = 0.0001; HD vs. CC post-
treatment: p = 0.0048), PD-1"LAG-3" (HD vs. CC pre-treatment:
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P < 0.0001; HD vs. CC post-treatment: p = 0.0191), PD-1"TIM-3"
(HD vs. CC pre-treatment: p = 0.0064; HD vs. CC post-treatment:
p = 0.0261), PD-1"TIGIT" (HD vs. CC pre-treatment: p = 0.0001;
HD vs. CC post-treatment: p = 0.0052), PD-1"NKG2A™ (HD vs. CC
pre-treatment: p = 0.0013; HD vs. CC post-treatment: p = 0.0108),
TIGIT'TIM-3" (HD vs. CC pre-treatment: p = 0.0170; HD vs. CC
post-treatment: p = 0.0003), and NKG2A"TIM-3" (HD vs. CC pre-
treatment: p = 0.0216; HD vs. CC post-treatment: p = 0.0073),
compared to the healthy control group. No significant differences
were found between the pre- and post-treatment patient subgroups.
Consistent with the individual PD-1 expression patterns observed
in this cell population, post-treatment patients tended to decrease
the percentage of PD-1" cells co-expressing other immune
checkpoints compared to pre-treatment patients. Nevertheless,
these changes did not reach statistical significance (Figure 7B).

Dysbiosis score positively correlates with
NK cell exhaustion scores

To evaluate the association between microbiota dysbiosis and
NK cell exhaustion, a Spearman correlation analysis was performed
between the dysbiosis score and NK cell exhaustion scores derived
from CD56%™ and CD56"""" subpopulations, as well as their global
exhaustion score. A positive correlation was observed between the
dysbiosis score and the global NK cell exhaustion score (R = 0.50,
P < 0.0001), suggesting that higher levels of dysbiosis are associated
with increased NK cell exhaustion when using this approach. When
analyzing individual NK cell subsets, the dysbiosis score showed a
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Analysis of immune checkpoint marker analysis in NK cell populations from peripheral blood of healthy donors (HD), CC patients before treatment
(CC pre-tx), and CC patients after treatment (CC post-tx). (A) Percentage of peripheral CD56%™ NK cells expressing inhibitory immune checkpoints.
(B) Percentage of peripheral CD56°"9" NK cells expressing immune checkpoints: PD-1, LAG-3, BTLA, TIM-3, TIGIT, and NKG2A. Comparisons
between groups were performed using one-way ANOVA for parametric variables: TIM-3 CD56%™ and CD56P"9"™, TIGIT CD569™, and NKG2A
CD56™. Kruskal-Wallis was applied for non-parametric variables: PD-1 CD56%™ and CD56°"9", LAG-3 CD56%™ and CD56°"9", BTLA CD56%™ and
CD56°19" TIGIT CD56P9M, and NKG2A CD56P"9" All tests were corrected for multiple comparisons using the Benjamini—Hochberg FDR method.
Data are shown as individual percentages of cells expressing each receptor as mean + SD for parametric variables and median with IQR for non-

parametric variables. *p < 0.05, **p< 0.01, ***p <0.001, ****p <0.0001.

significant positive correlation with both CD56%™ (R = 0.44,
p < 0.0001) and CD56"€" NK cell exhaustion scores (R = 0.42,
p < 0.00), indicating that alterations in microbiota composition
could be linked to exhaustion across different NK cell populations
(Supplementary Figure 5).

Prediction of newly diagnosed cervical
cancer patients with a machine-learning
approach

The random forest (RF) classification model identified the
most important predictors for CC as the expression of PD-1,
LAG-3, and their co-expression on CD56%#" NK cells, along
with the Escherichia/Ruminococcus ratio (Figure 8A). The model
demonstrated robust discriminative power with an average ROC-
AUC of 0.950 (SD = 0.0545). Repeated 10-fold cross-validation
(5 repetitions) confirmed the stability and reliability of the model,
with a mean ROC-AUC of 0.935 (Figure 8B). This RF model
effectively distinguished pre-treatment CC patients from HD, as
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shown by the confusion matrix (Supplementary Figure 6), achieving
an accuracy of 92.86% (p = 0.00455, 95% CI: 0.6613-0.9982), with a
kappa coefticient of 0.8571. The model yielded a sensitivity of
87.5%, specificity of 100%, positive predictive value of 100%, and
negative predictive value of 85.71%, resulting in a balanced accuracy
of 93.75%. Individual ROC curve analyses were performed for the
five top-ranked variables identified by the RF model. These features
exhibited moderate-to-high discriminative power, with AUCs
ranging from 0.778 to 0.891 (Supplementary Figure 7).

Subsequent simplified logistic regression using the top predictors
stepwise selected revealed that increased PD-1 expression on
CD56"" NK cells (OR = 1.81, 95% CI: 1.31-2.84, p = 0.002) and
a higher Escherichia/Ruminococcus ratio (OR = 14.0, 95% CI: 1.64-
176, p = 0.023) were significantly associated with increased CC risk
(Figure 8C). This logistic regression model yielded an AUC of 0.905
(Figure 8D). The final predictive equation was:

logit(P) = -3.3919 + 0.5938 x PD - 1*CD56"" NK cells

Escherichia
+2.6358 X ————ra
Ruminococcus
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Co-expression of inhibitory immune checkpoint markers in NK cells from peripheral blood of healthy donors (HD), CC patients before treatment
(CC pre-tx), and CC patients after treatment (CC post-tx). (A) Percentage of peripheral CD56%™ NK cells expressing co-inhibitory immune
checkpoints. (B) Percentage of peripheral CD56P"9" NK cells expressing co-inhibitory immune checkpoints: PD-1"BTLA*, PD-1*LAG-3*, PD-1*TIM-
3%, PD-1*TIGIT, TIGIT*TIM-3*, NKG2A*TIGIT*, PD-1*NKG2A™", and NKG2A*TIM-3". Comparisons between groups were performed using one-way
ANOVA for parametric variables: NKG2A*TIM-3* CD56%™ and CD56°"9" and TIGIT*TIM-3* CD56°"9", and Kruskal-Wallis for all other analyzed
co-expressions, followed by Benjamini-Hochberg FDR correction for multiple comparisons. Data is shown as individual percentages of cells positive
for co-expression with mean + SD for parametric variables and median with IQR for non-parametric variables. *p < 0.05, **p< 0.01, ***p <0.001,

*xkxp <0.0001.

Predictive modeling of mortality in newly
diagnosed cervical cancer patients

An XGBoost classification model was applied to predict survival
outcomes in CC patients. Feature importance analysis identified the
most relevant predictors as the expression of TIGIT* CD56"8" NK
cells, CD56%™ NK cells, and the Proteobacteria/Firmicutes ratio,
followed by other immune and microbial features (Figure 9A). The
model achieved an AUC of 0.875 (SD = 0.236). Repeated cross-
validation yielded a mean ROC-AUC of 0.806 (SD = 0.119)
(Figure 9B). Despite a limited sample size, this model effectively
distinguished survival from death in CC patients, as shown by the
confusion matrix (Supplementary Figure 8). The model achieved an
accuracy of 83.3% (95% CI: 0.3588-0.9958), with a sensitivity of
75.0%, specificity of 100%, balanced accuracy of 87.5%, and a kappa
value of 0.6667.

The stepwise algorithm revealed TIGIT*TIM-3* CD56""¢™ and
CD56%™ NK cell frequency as the most important variables.
Posterior logistic regression showed that elevated TIGIT"TIM-3"
CD56"" (OR = 1.23, 95% CI: 1.04-1.62, p = 0.050) and CD56%™
NK cells (OR = 2.89, 95% CI: 1.38-13.22, p = 0.0499) were associated
with higher mortality (Figure 9C). The two-variable model yielded an
AUC of 0.885 (Figure 9D). The final predictive equation was:

logit(P) = —105.640 + 0.208 x TIGIT*TIM — 3" CD56"" NKcells

+1.058 x CD56"™NK cells
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A second logistic regression using TIGIT*TIM-3* CD56""¢™
NK cells and Proteobacterial Firmicutes (log) ratio did not reveal any
statistically significant associations with mortality (Supplementary
Figure 9A). The combined model yielded an AUC of 0.823
(Supplementary Figure 9B), but these findings should be
considered preliminary.

Survival analysis in newly diagnosed
cervical cancer patients

Kaplan-Meier survival analysis was conducted over a 15-month
follow-up period to evaluate the prognostic significance of the
identified markers. Analyses were restricted to pre-treatment CC
patients, as RCT profoundly alters both the gut microbiota and NK
cell phenotypes; therefore, untreated samples provide the most
appropriate setting to assess predictors of survival. Of the 27 pre-
treatment CC patients, 23 were evaluable for survival analysis. 4
patients were lost to follow-up and, therefore, excluded from
survival analyses. Patients alive at the end of the 15-month
follow-up were censored at that time. Patients were stratified by
cut-off values determined via ROC curve analysis for each variable.
Patients were stratified into high and low groups using cut-off
values derived from ROC curves based on the survival status of pre-
treatment CC patients, selecting the point with maximum
sensitivity and specificity for each variable.
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Patients with elevated levels of TIGIT'TIM-3" expression on
CD56"" NK cells were associated with worse prognosis, with a
median survival of 12 months compared to higher survival in the
low-expression group (log-rank p=0.01), and a log-rank hazard
ratio (HR) of 5.789 (95% CI: 1.503-22.29). In this analysis, 7 deaths
occurred in the high-expression group and 2 in the low-expression
group, while 3 and 11 patients, respectively, were censored at
15 months (Figure 10A). Similarly, a high Proteobacteria/
Firmicutes ratio exhibited significantly reduced overall survival
(log-rank p = 0.05), with a median survival of 12 months and a
log-rank HR of 3.921 (95% CI: 1.059-14.52). For this variable,
7 deaths occurred in the high-ratio group and 2 in the low-ratio
group, while 5 and 9 patients, respectively, were censored at 15
months (Figure 10B). An analysis for the CD56"™ NK cell
population was performed; patients with a high percentage
showed a trend toward lower survival probability (log-rank HR =
2.436), but the difference was not statistically significant (log-rank
p = 0.1831; 95% CI: 0.6553-9.055) (not shown).
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Combined marker analyses

Combined survival analyses were conducted to assess
synergistic effects; as these analyses were restricted to extreme
categories (high/high vs. low/low variables), the effective sample
size was reduced. Patients with high levels of both TIGIT*TIM-3"
expression on CD56°" " NK cells and a high frequency of CD56"™
NK cells had a significantly reduced survival with a mean of 11.5
months (Mantel-Haenszel HR = 17.83, 95% CI: 2.742-115.9, log-
rank p = 0.0026) compared to those with low levels of both
variables. In this comparison, 5 deaths occurred in the high/high
group, whereas no deaths were observed in the low/low group;
7 patients in the low/low group and 1 in the high/high group were
censored at 15 months (Figure 10C). Similarly, patients presenting
both high TIGIT*TIM-3" expression on CD56"¢" NK cells and a
high Proteobacteria/ Firmicutes ratio exhibited significantly reduced
survival, with a mean of 11 months (HR = 10.68, 95% CI: 1.918-
59.44, log-rank p = 0.0054), compared to patients with low values
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for both markers. For this variable combination, 5 deaths occurred
in the high/high group and 1 in the low/low group, while 6 patients
in the low/low group and none in the high/high group were
censored at 15 months (Figure 10D).

Discussion

This study provides novel evidence that gut microbial
imbalances and peripheral NK cell immune exhaustion play a
central role in cervical cancer (CC) progression. Furthermore, the
integrative analysis of these two variables supports the diagnosis
and prognosis of CC. By integrating microbiota profiling,
immunophenotyping, and computational analyses, we identified a
dysbiotic microbial signature and a putative NK cell exhausted
phenotype that radio-chemotherapy (RCT) further exacerbates.

Congruent with previous reports, the expansion of
Proteobacteria, Prevotella, Escherichia-Shigella, Streptococcus, and
Enterococcus has been observed in the gut microbiota of CC
patients (7, 8). In our study, CC patients harbored a gut microbiota
with significantly reduced richness, diversity, and evenness,
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accompanied by an increased dominance of pro-inflammatory
pathobionts such as Prevotella and Escherichia-Shigella. These
genera have been associated with inflammatory diseases, immune
evasion, cancer progression, and therapy resistance (49-51). Notably,
Enterococcus and Bilophila were enriched in pre-treatment CC
patients. Enterococcus faecalis has been shown to polarize colonic
macrophages toward a clastogenic M1 phenotype, promoting DNA
damage via bystander effect (52), while Bilophila wadsworthia has
been associated with genotoxicity and cancer development through
the production of hydrogen sulfide, a microbial metabolite capable of
inducing epithelial damage, DNA instability, and protumorigenic
signaling (53). Although many of these taxa are considered
commensal, under dysbiotic conditions, they can express a range of
virulence factors, including adhesins, hemolysins, LPS, and proteases,
that contribute to inflammation and immune modulation (54).
Conversely, health-associated and SCFA-producing taxa such
as Ruminococcus, Christensenellaceae, and Eubacterium were
depleted; the reduction of these bacteria has been linked with
disease (55). SCFAs such as acetate, propionate, and butyrate play
a central role in maintaining mucosal integrity and modulating

immune responses (20). These metabolites can enhance NK
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proliferation, cytotoxicity, and extracellular vesicle secretion (56),
and boost CD8" T cell effector responses, increasing TNF-o and
IEN-y secretion (57). Although certain contexts suggest SCFAs may
also dampen immune activation by upregulating inhibitory markers
(58), in the setting of CC, the observed loss of SCFA-producing
bacteria likely reflects an immunologically impaired environment
that favors inflammation and tumor evasion. However, functional
assays will be essential to establish whether SCFAs differentially
influence NK cell subsets and shape their exhaustion and
effector potential.

Furthermore, RCT intensified this dysbiosis by depleting even
more health-associated taxa such as Ruminococcus and Clostridium,
while enriching species like Phascolarctobacterium, which has been
previously associated with oncogenic processes (59).

Functional prediction of microbial metabolism revealed a
proinflammatory and stress-associated profile in CC patients,
with enrichment of pathways related to LPS biosynthesis,
enterobactin production, and stress response pathways. Elevated
enterobactin biosynthesis, a siderophore produced by Escherichia,
may reflect adaptation to iron-rich environments, potentially
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favored by CC related bleeding (60). The enrichment of pathways
associated with bacterial strategies for coping with nutrient
limitation and stress, such as glyoxylate bypass, chorismate
pathway and biosynthesis of ppGpp alarmone suggests a
metabolically constrained environment in CC patients, where
microbes reduce anabolic processes, activating stringent response
and processes such as rRNA synthesis and shift toward carbon
conservation pathways, promoting the growth of bacteria couped to
these processes like Escherichia (61-63). The enrichment of
histidine degradation pathways may be relevant, as its metabolite
imidazole propionate has been implicated in promoting intestinal
inflammation by activating pro-inflammatory signaling pathways,
increasing nitric oxide synthesis and IL-6 levels, and impairing
mucosal integrity by reducing goblet cell populations (64).
Upregulation of toluene degradation pathways suggests microbial
adaptation to xenobiotic-rich environments, potentially leading to
the production of toxic metabolites like cresols that may disrupt gut
homeostasis and contribute to carcinogenic processes (65, 66).
Chorismate metabolism, enriched in CC patients, encompasses the
microbial biosynthesis of enterobactin, ubiquinol, and L-tryptophan
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(67). L-tryptophan biosynthesis, also upregulated in CC samples, can
be further catabolized by indoleamine 2, 3-dioxygenase (IDO) and
tryptophan 2, 3-dioxygenase (TDO), which are homologous enzymes.
While IDO is mainly expressed by mammalian cells, TDO is widely
distributed across both eukaryotes and prokaryotes, including certain
bacterial taxa (68). These enzymes generate immunoregulatory
metabolites such as kynurenine, picolinic acid, and quinolinic acid,
which inhibit the proliferation and cytotoxic activity of activated NK
cells (69). Notably, bacterial degradation of L-tryptophan to
kynurenine occurs under aerobic conditions (70), suggesting a
relationship with the intestinal dysbiosis observed in CC patients,
since we have observed a greater proliferation of facultative aerobic
genera. Moreover, commensal-derived butyrate has been shown to
downregulate IDO-1 expression in intestinal epithelial cells (71).
Congruently, we observed a depletion of butyrate-producing bacteria
in CC patients, which may favor an intestinal microenvironment
permissive to IDO overexpression. Kynurenine, in turn, can enter
NK cells through the aryl hydrocarbon receptor (AhR) and
downregulate activating receptors such as NKG2D and NKp46
through STAT1/3 signaling, ultimately impairing NK cell function
(72). Additionally, chorismate is also a precursor for the bacterial
biosynthesis of immunosuppressants such as FK506, FK520, and
rapamycin, further supporting its role in modulating host immune
responses (73).

Interestingly, we observed overexpression of the L-arginine/L-
ornithine degradation pathway in pre-treatment samples. Arginase
is a key enzyme in the urea cycle that transforms L-arginine into
urea and L-ornithine. Two isoforms of arginase, ARG1 and ARG2,
are aberrantly expressed in various types of cancer and have been
shown to play a crucial role in regulating tumor growth and
metastasis (74). Additionally, L-arginine depletion has been
reported to impair several critical functions of NK cells, including
their proliferation, cytotoxic activity, IFN-y production, and the
expression of NKp46 and NKp30 (75). Recent findings have shown
that Proteobacteria can directly consume arginine, thereby reducing
its systemic availability and impairing anti-tumor immunity by
enhancing Treg suppressive activity and dampening CD8" T cell
responses (76). Treg cells are also known to inhibit NK cell
functions (77). Consistent with these reports, our data revealed
an increased abundance of both the phylum Proteobacteria and
the genus Escherichia, a representative member known to degrade
arginine under nitrogen-limiting conditions (78). Notably, the
enrichment of this pathway co-occurred with increased allantoin
degradation and ppGpp biosynthesis, both of which are
associated with bacterial adaptation to nitrogen scarcity (79, 80).
These findings suggest that alterations in L-arginine metabolism
may contribute to tumor progression and immune evasion
by compromising not only CD8" T cells but also NK cell-
mediated responses. Further investigation should aim to address
L-arginine metabolism in CC and its impact on the tumor
microenvironment (TME).

Allantoin degradation was also upregulated in CC patients,
particularly post-treatment. Allantoin is produced via non-
enzymatic conversion of uric acid mediated by reactive oxygen
species and is considered a biomarker of systemic oxidative stress in
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humans (81). Elevated oxidative status has been clinically
documented in CC patients undergoing RCT (82). Under
nitrogen-limiting conditions, certain bacteria degrade allantoin as
an alternative nitrogen source (80). The upregulation of the
allantoin degradation pathway by the gut microbiota may reflect
microbial adaptation to this oxidative environment. Moreover,
allantoin has been shown to impair cisplatin efficacy via direct
interaction (83), suggesting that this microbial mechanism could
potentially enhance treatment response. However, allantoin also
exerts antioxidant and mucosal-protective effects (84), and its
excessive degradation may compromise epithelial homeostasis,
potentially contributing to post-RCT mucosal damage. Finally,
the post-treatment enrichment of antioxidant biosynthesis
pathways, such as ubiquinol production, may represent microbial
adaptations to the oxidative and inflammatory conditions induced
by RCT (85). These findings highlight the functional plasticity and
resilience of the microbiota in response to treatment-related stress.

In parallel, we observed profound alterations of peripheral NK
cell phenotypes, particularly following treatment. Both CD56%™
and CD56"¢" NK cell subsets exhibited increased expression and
co-expression of inhibitory checkpoint receptors, including PD-1,
LAG-3, TIM-3, TIGIT, and BTLA. This phenotype was especially
pronounced after RCT, particularly in the CD56%™ population.
Notably, co-expression patterns were elevated in CD56"™ NK cells

Pright NK cells showed a reduction, yet

post-treatment, while CD56
remained significantly higher than in HD. These findings highlight
the potential benefit of ICB therapies in CC, particularly targeting
PD-1 and other inhibitory axes, as suggested by clinical data
supporting the efficacy of anti-PD-1 agents in this setting (86).
NK cells go far beyond the classical dichotomy of cytotoxic
CD56%™ and regulatory CD56""" (87). Additional subsets such
as CD56"#"'CD16", CD56"™CD16’, CD56'CD16", and
CD56° ™€ populations illustrate their remarkable plasticity.
For example, CD56""" cells can acquire cytotoxic activity after
IL-15 priming, hepatic CD56""8" NK cells show reduced cytokine
secretion despite their phenotype, uterine CD56°P*™" 8 cells
promote angiogenesis and tissue remodeling (88), and CD56
CD16" have been shown to expand in cancer (89). Together,
these observations highlight that surface phenotype alone does
not define NK cell functional fate, which is increasingly
understood in the context of maturation, metabolism, and high-
dimensional subset frameworks (90, 91).

The concept of NK cell exhaustion in cancer has gained
considerable attention in recent years, particularly given its
correlation with poor prognosis and relevance to ICB
responsiveness. Although the definition of exhaustion in NK cells
is not as well established as in T cells, hallmark features include
downregulation of activating receptors, impaired proliferation and
cytokine production, and sustained upregulation of inhibitory
molecules (92). Accordingly, our findings of upregulated PD-1,
LAG-3, BTLA, TIM-3, and TIGIT, particularly in co-expression
patterns, support a putatively exhausted state.

Following treatment, the immune landscape undergoes further
alteration. Radiation therapy (RT) has been shown to increase PD-
L1 expression on cancer cells (93) and to modulate immune
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checkpoint profiles in both tumor and peripheral immune cells. For
example, PD-1 and LAG-3 expression increased in T cells of rectal
cancer patients after RT (94). Other tumor evasion mechanisms
include shielding via platelets or collagen, and upregulation of
ligands such as CD155, which binds TIGIT on NK cells,
impairing their function (95). Additionally, microbial influences
on the tumor microenvironment are emerging. Intratumoral
bacteria like Fusobacterium nucleatum, a bacterium linked to
colorectal cancer, can suppress anti-tumor immunity by binding
to TIGIT via its Fap-2 protein, thereby blocking tumor cell
elimination (96).

To explore the interplay between microbial alterations and NK
cell phenotypes, we developed composite dysbiosis and NK
exhaustion scores. These scores revealed a significant positive
correlation, suggesting that microbial dysbiosis may contribute to
or exacerbate NK cell exhaustion. While causality remains to be
established, several mechanistic routes may underlie this link. NK
cells are equipped with pattern recognition receptors and can
directly respond to microbial components such as LPS, flagellin,
and outer membrane proteins via non-TLR4 pathways, TLRS5,
TLR2, respectively, often in synergy with cytokines like IL-1f, IL-
2, IL-12, and IL-15 (97, 98). Additionally, direct interactions
between microbial ligands and natural cytotoxicity receptors on
NK cells have been documented. Specifically, NKp44 has been
shown to directly bind to Mycobacterium, Nocardia farcinica, and
Pseudomonas aeruginosa (99), NKp46 to Fusobacterium nucleatum
(100), and NKp30 to B-1, 3-glucans on Candida albicans and
Cryptococcus neoformans (101).

Dysbiosis-induced intestinal permeability may facilitate the
translocation of microbial antigens into circulation, driving
chronic NK cell activation and potential exhaustion (102, 103). In
murine models of colorectal cancer, dysbiosis has been associated
with T cell exhaustion, characterized by an increased population of
PD-1"LAG-3"TIM-3" CD8" T cells, suggesting that microbial
imbalance may promote tumor progression through immune
dysfunction (21). Our data revealed enrichment of LPS synthesis
pathways in pre-treatment patients. LPS can disrupt intestinal
barriers by activating myosin light chain kinase and enhancing
paracellular translocation (104). Consistently, our data reveals an
increase in the Proteobacteria phylum in CC, which are recognized
as major producers of LPS.

NK cell activation depends not only on microbial ligands but
also on the priming by accessory cells, including dendritic cells
(DCs), monocytes, and macrophages, as well as on a cytokine milieu
composed of IL-12, IL-15, type I IENs, and IL-18 (105). Commensal
microbiota is crucial in shaping this axis. Ganal et al. demonstrated
that mononuclear phagocyte-mediated NK cell priming via IFN-I is
microbiota-dependent. Germ-free mice failed to induce NK cell
cytotoxicity due to a lack of microbiota-induced chromatin
remodeling in DCs, which impairs the accessibility of
transcription factors such as IRF3 and NF-kB to IFN-I promoter
regions. Failing to produce IFN-I, a cytokine essential for NK cell
priming by subsequent IL-15 trans-presentation. Importantly, this
defect was reversible upon microbiota colonization (106).
Moreover, microbiota-derived cyclic di-AMP can stimulate
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STING-mediated IFN-I production in monocytic cells, recruiting
DCs and promoting IL-15-mediated NK cell activation within the
tumor microenvironment (107).

The ratio of Escherichia/Ruminococcus, together with the
elevated PD-1" CD56""¢™ NK cells, emerged as the strongest
predictors of CC in our RF and logistic regression models.
Notably, an increased abundance of Escherichia and a
concomitant reduction in Ruminococcus have also been reported
in previous CC microbiota studies, supporting the consistency of
this dysbiotic pattern across independent cohorts (10). As already
mentioned, Escherichia, a facultative aerobic pathobiont, is
associated with inflammation and genotoxin production (50),
while Ruminococcus contributes to gut homeostasis through
SCFA production and epithelial maintenance (108). In parallel,

elevated PD-1 expression on CD56"7¢"

NK cells may indicate an
impairment of cytokine secretion and, consequently, a reduction in
the infiltration of other immune cells, such as DCs, into the TME,
leading to compromised immune surveillance (107). This
microbial-immune axis underscores the importance of integrating
microbiota composition and immune phenotypes for possible
disease classification through potential non-invasive biomarkers
for CC risk.

Notably, similar microbiota-NK interactions have been
reported in other malignancies. In melanoma, the combination of
TIGIT™ NK cells with specific gut microbial profiles predicted
response to checkpoint blockade, directly linking microbiota
composition with NK-mediated immunotherapy outcomes (47).
In prostate cancer, microbiota-informed NK cell biomarkers, such
as upregulation of PD-1, TIM-3, increased CD56""8" and
downregulated NKG2D, have been proposed to refine prognosis
and guide clinical management strategies (109). In hepatocellular
carcinoma, modulation of the gastrointestinal microbiota enhanced
NK cell activity and reduced exhaustion (110). These studies
highlight microbiota-driven regulation of NK function as a
broader phenomenon across cancers, with our work providing the
first integrative evidence in CC.

Altogether, these findings reveal a dysbiotic gut microbiota
profile in CC patients, marked by a reduction of diversity and
expansion of pro-inflammatory taxa, which is further aggravated
following RCT. This microbial imbalance may promote systemic
inflammation and immune dysregulation, potentially influencing
the vaginal ecosystem and facilitating persistent HPV infection.
These results underscore the importance of the gut-immune-
vaginal axis in CC pathogenesis and point toward the potential of
microbiota modulation as a complementary approach in disease
management. This study offers an integrative view of microbial and
immunological alterations in CC and provides a rationale for future
translational efforts targeting the microbiota-immune axis. Given
the pivotal role of gut microbiota in shaping immune responses and
influencing therapeutic efficacy, as well as the fundamental role of
NK cells in anti-tumor immunity, understanding how dysbiosis
affects NK cell function may unlock new microbiota-focused
strategies to enhance treatment outcomes.

The integration of microbiota and NK cell profiling holds great
potential for precision medicine in CC. Beyond characterizing the
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established disease, these approaches could be extended to women
with persistent HPV infection and precancerous lesions, to
determine whether microbial-immune alterations precede
malignant transformation. In parallel, composite indices such as
the Escherichia/Ruminococcus ratio or NK exhaustion scores
require validation as predictive biomarkers across larger and
longitudinal cohorts. This aligns with previous approaches such
as the Royal Marsden Hospital (RMH) Score, which integrates
albumin, lactate dehydrogenase (LDH) levels, and the number of
metastatic sites, and has been validated as a prognostic tool in
oncology (111), as well as systemic indicators of nutritional and
inflammatory status (112, 113) which may also interact with
microbial profiles in shaping clinical outcomes.

Importantly, strategies to restore microbial balance through
probiotics, prebiotics, or diet may represent feasible interventions to
modulate NK cell function and improve therapeutic responses. In
the next years, advancing from correlative studies to interventional
designs will be crucial to translate the microbiota-immune axis into
an actionable tool for patient stratification and treatment
optimization. Overall, this study supports the rationale for
microbiota-targeted interventions as adjunctive strategies in CC,
although prospective validation is required.

The limitations of this study include a relatively small sample size
and the use of a cross-sectional rather than a longitudinal design,
which restricts the ability to assess temporal dynamics and infer
causal relationships. Moreover, incorporating clinical and lifestyle
data, such as antibiotic use and dietary habits, will be essential for a
more comprehensive understanding of microbiota-host interactions
in CC. Although this study focused on the potential influence of the
gut microbiota on systemic NK cell exhaustion, it did not include
analysis of vaginal or intratumoral microbiota. This limits the ability
to directly assess microbial translocation or characterize local
dysbiosis within the tumor environment. Future studies should
incorporate paired analyses of gut, vaginal, and intratumoral
microbiota, along with immune profiling within the TME,
including NK cell exhaustion and other immunological parameters,
to establish more precise associations. Another important limitation
relates to the immunophenotypic characterization of NK cells. In this
study, immune checkpoint expression was analyzed in the two NK
cell subpopulations CD56"™ and CD56""", a strategy that only
partially captures their currently recognized heterogeneity. A more
refined approach should distinguish functional NK subsets and
incorporate a broader panel of activating and inhibitory receptors
to better characterize exhaustion phenotypes. In addition, the global
NK exhaustion and dysbiosis scores used here represent an
exploratory composite that requires validation in larger cohorts and
diverse contexts. Complementary functional assays, including
degranulation, cytokine production, and cytotoxicity
measurements, will be essential to extend these findings,
particularly when applied to distinct NK subsets that may
differentially respond to microbiota alterations, consequently
shaping their exhaustion and effector capacity.
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