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Introduction: Graves' disease (GD) is an organ-specific autoimmune disorder
characterized by the presence of thyroid-stimulating hormone receptor
autoantibodies (TRAb), leading to hyperthyroidism. While genetic and
environmental factors contribute to GD pathogenesis, the role of epigenetic
mechanisms, particularly in regulating Thl7-associated cytokines, remains
poorly understood.

Methods: This study aimed to characterize the promoter methylation profiles of
IL17,1L21, and IL22 in GD patients, evaluate their diagnostic potential, and explore
correlations with clinical parameters. Targeted bisulfite sequencing was
performed on peripheral blood mononuclear cells from 60 GD patients,
including newly diagnosed and refractory individuals, and 60 matched
healthy controls.

Results: Significant hypomethylation at IL17, IL21, and IL22 promoter regions was
observed in GD patients compared with controls (P = 2.5 x 1077), with partial
methylation restoration in refractory cases. Four specific CpG sites were
identified as potential biomarkers, demonstrating good diagnostic performance
with area under the curve (AUC) values exceeding 0.7, including
chr4_123542549_R (AUC = 0.754) and chrl2_68647247_R (AUC = 0.752).
These sites were associated with elevated TRAb (OR = 4.00, P = 0.02) and FT4
levels (OR = 0.29, P = 0.02), respectively.

Discussion: Our findings highlight Th17-related epigenetic dysregulation as a key
feature of GD and support the potential of methylation markers for diagnostic
and therapeutic monitoring applications.
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1 Introduction

Graves’ disease (GD) is a prototypical organ-specific
autoimmune thyroid disorder characterized by hyperthyroidism
mediated by thyroid-stimulating hormone receptor autoantibodies
(TRADb), along with thyroid follicular epithelial hyperplasia and
lymphocytic infiltration of the gland (1, 2). Its pathogenesis involves
a complex interplay between genetic predisposition and
environmental triggers. Genetic variants in immune-regulatory
genes such as HLA, CTLA4, and PTPN22 are strongly associated
with increased susceptibility to GD (3, 4), while environmental
exposures are recognized as critical contributors to disease initiation
and progression (5, 6).

Emerging evidence has shown elevated frequencies of
peripheral Th17 cells in GD patients, correlating positively with
TRAD titers (7). Th17-related cytokines—interleukin (IL)-17, IL-21,
and IL-22—play distinct and complementary roles in the
pathogenesis of autoimmune diseases. IL-17 promotes the
recruitment of inflammatory cells and tissue remodeling; IL-21
facilitates B cell differentiation and autoantibody production; and
IL-22 modulates epithelial barrier integrity and influences the local
thyroid immune microenvironment (8-10). While their
immunological functions in GD have been well established, the
epigenetic regulation of these cytokines—particularly DNA
methylation of their promoter regions—remains poorly defined
(11, 12).

DNA methylation, a key epigenetic mechanism involving the
addition of methyl groups to CpG dinucleotides, is essential for the
regulation of gene expression and has been implicated in the
pathogenesis of multiple autoimmune diseases (13-15).
Hypomethylation of immune-related genes can result in aberrant
T and B lymphocyte activation, aggravating inflammatory
responses and promoting disease progression (16, 17). Previous
studies suggest that methylation changes in cytokine genes may
modulate their transcription and contribute to immune
dysregulation in GD (18). Furthermore, environmental factors
such as endocrine-disrupting chemicals may exacerbate GD by
disrupting thyroid hormone signaling and interfering with
epigenetic regulation (19). A comprehensive understanding of the
interplay among genetic susceptibility, environmental factors, and
epigenetic modifications is therefore essential for elucidating the
molecular mechanisms underlying GD and identifying novel
therapeutic targets (20).

In this study, we employed targeted bisulfite sequencing to
assess the DNA methylation status of the promoter regions of IL17,
IL21, and IL22 in peripheral blood mononuclear cells (PBMCs)
from GD patients (21). Using machine learning algorithms, we
developed a CpG-based diagnostic model and, for the first time,
compared methylation profiles between newly diagnosed GD
(NGD) and refractory GD (RGD) cases (22). By correlating
methylation patterns with clinical parameters such as TRAb and
FT4, we aimed to elucidate the role of Th17-associated epigenetic
dysregulation in GD progression and identify potential biomarkers
for disease diagnosis and therapeutic monitoring.
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2 Materials & methods
2.1 Study population

This study was conducted at Zhoupu Hospital, Shanghai,
China, between August 2023 and January 2025. A total of 120
Han Chinese individuals were enrolled, including 60 patients
diagnosed with GD and 60 age- and sex-matched healthy
controls. Participants were recruited from the Department of
Endocrinology and the Physical Examination Center. Baseline
demographic and clinical characteristics are summarized in Table 1.

To investigate disease phenotypes, GD patients were further
stratified into two subgroups: (1) NGD, defined as patients with
first-time diagnosis of hyperthyroidism and no prior treatment; and
(2) RGD, defined as patients with a disease duration >2 years,
persistent or recurrent hyperthyroid symptoms, and positive TRAb
levels (=1.5 IU/L) despite standard treatment. Clinical data collected
included age at onset, thyroid size, presence of ophthalmopathy,
smoking status, and family history of hyperthyroidism (defined as
having at least one first-degree relative affected). Drug history was
recorded for methimazole (MMI), and patients were categorized
according to their daily dosage (=5 mg/day or <5 mg/day).The
study was approved by the Ethics Committee of Shanghai Health
Medical College (Approval No. 2023-C-123-E01), and written
informed consent was obtained from all participants.

2.2 Thyroid function assessment and
inclusion/exclusion criteria

GD diagnosis was based on clinical symptoms, laboratory findings,
and thyroid ultrasonography. Fasting venous blood samples (10 mL,
non-anticoagulated) were collected after >8 hours of fasting. Thyroid
function was assessed using electrochemiluminescence (ECL) assays.
Inclusion criteria for GD comprised: clinical manifestations of
hyperthyroidism, suppressed serum TSH levels, positive TRAb, and
ultrasonographic evidence of diffuse goiter.

Healthy controls were selected from individuals with normal
physical and biochemical examination results and no history of
chronic diseases. Control participants also provided fasting venous
blood samples, and their thyroid peroxidase antibody (TPOAD)
levels were assessed using ECL. Inclusion criteria for controls
included TPOAD negativity and absence of a family history of
autoimmune thyroid diseases (AITDs). Exclusion criteria for both
groups included the presence of diftuse goiter or thyroid nodules
>5 mm detected by ultrasonography, as well as a history or
diagnosis of other autoimmune diseases.

2.3 DNA extraction

PBMCs were isolated from 5.0 mL of venous blood collected in
EDTA-K2 tubes after overnight fasting. Genomic DNA was
extracted using the Relaxgene DNA Isolation Kit (Tiangen
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TABLE 1 Characteristics of patients with GD and controls.

GD (%) Control
Characteristic (%)
NGD (%) RGD (%) NC (%)
Number 35 25 60 -
Sex
Female 35 21 55 0.064
Male 0 4 5
Age 36.46+13.49 37.20£12.85 38.25£1.60 0.499
Age of onset 36.46+13.49 33.12+12.94 -
<=18y 1 2 0.324
>18y 34 23
Thyroid size
Normal 22 16 -
I 5 4 - 0.676
1I 6 5 -
11 2 0 -
Family history
(+) 2 3 - 0.764
) 33 23 -
Ophthalmopathy
+) 3 3 - 0.937
) 32 22 -
Smoke
(+) 2 3 - 0.162
) 31 28 -
T3(1.21-3.01nmol/1) 6.38+2.37 4.69+2.60 - -
T4(71.31- 229.13 207.56 B B
165.06nmol/1) +85.56 +71.51
FT3(3.15-6.70pmol/l) 25.79+12.66 16.00+10.88 - -
FT4(11.92-
21.62pmol/l) 57.69+29.73 37.24+18.40 - -
TSE(0.300- 0.01+0.02 0.01+0.00 - -
5.000ulU/1)
Tg(1.59-50.03ng/ml) 38.79+74.86 :;22873 - -
O A R B :
wownwm | AT 8
TRAD(<1.501U/1) 13.19+12.36 6.62+3.25 - -
Drug -
(Continued)
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TABLE 1 Continued

GD (%) Control
Characteristic (%)
NGD (%) RGD (%) NC (%)
>5mg/d - 14 _
<5mg/d - 2 _

Data are mean+SEM;GD Graves’ Disease, NGD Newly Diagnosed Hyperthyroidism, RGD
Refractory Graves” Disease, NC Normal Control, Normal No thyroid enlargement, thyroid is
not palpable, or not visible on imaging, I Mild thyroid enlargement, palpable only when
swallowing, or detectable by imaging, IT Moderate thyroid enlargement, palpable at rest, and
clearly visible on imaging, III Severe thyroid enlargement, visibly affecting the neck, often
forming a visible goiter, and affecting swallowing and breathing, (+) indicates the presence of
the condition (e.g., family history, ophthalmopathy, smoking). (-) indicates the absence of the
condition, T3 Triiodothyronine, T4 Thyroxine, FT3 Free Triiodothyronine, FT4 Free
Thyroxine, TSH Thyrotropin (Thyroid-Stimulating Hormone), Tg Thyroglobulin, TgAb
Thyroglobulin Antibody, TPOAb Thyroid Peroxidase Antibody, TRAb TSH Receptor
Antibody.

Biotech, China) following the manufacturer’s instructions. DNA
concentration and purity were assessed using a NanoDrop 2000
spectrophotometer (Thermo Scientific, USA). Only samples
meeting the following quality criteria were included:
concentration 220 ng/uL, OD260/280 ratio between 1.7-1.9, and
0D260/230 =22.0.

2.4 DNA methylation analysis of IL17, IL21,
and IL22

DNA methylation levels at the promoter regions of IL17, IL21, and
IL22 genes were analyzed using the MethleargetTM assay (Genesky
Corporation, Shanghai, China). CpG-rich promoter regions (GC
content >20%, length >200 bp) were selected, and two rounds of
PCR were conducted per target gene. Methylation at each CpG site was
quantified as the ratio of methylated to total cytosines. CpG site
annotation was based on genomic coordinates. Primer sequences and
PCR conditions are provided in Table 2 and Supplementary Table S1.

2.5 Diagnostic model construction using
machine learning

To identify potential diagnostic biomarkers, four supervised
machine learning algorithms were applied: Random Forest (RF),
Support Vector Machine (SVM), Generalized Linear Model (GLM),
and eXtreme Gradient Boosting (XGBoost). All models were
implemented in R using the caret package (v7.0-1) with
standardized preprocessing including mean-centering and near-
zero variance filtering (23). Model performance was evaluated
using repeated stratified 5-fold cross-validation (3 repetitions),
with performance metrics averaged across all folds.

Model interpretability was assessed using Shapley additive
explanations (SHAP), implemented via the DALEX R package
(v2.4.3), to evaluate the relative importance of each CpG site based on
cooperative game theory (24). Diagnostic performance was quantified
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TABLE 2 [L17, IL21, IL22 CpG site annotation.

IL17 IL21 IL22

CpG Site Strand Location DistanceToTSS CpG Site Strand Location DistanceToTSS CpG Site Strand Location DistanceToTSS
chr6_52049313_F + Promoter -1872 | chr4_123542199_R | - Promoter 25 | chrl2_68647247_ R - Promoter 34
chr6_52049431_F + Promoter -1754 = chr4_123542356_R | - Promoter -132 chrl2_68647281_R - Promoter 0
chr6_52049562_F = + Promoter -1623 | chr4_123542401_R | - Promoter -177 = chr12_68647290_R | - Promoter -9
chr6_52049644_F =+ Promoter -1541 | chr4_123542549_R | - Promoter -325  chrl2_68647352_R | - Promoter -1472
chr6_52050133_F =+ Promoter -1383 | chr4_123543093_R | - Promoter -869  chrl2_68647357_R | - Promoter 30
chr6_52050190_F =+ Promoter -995 | chr4_123543180_R - Promoter -956  chr12_68647388_R - Promoter -1
chr6_52050263_F =+ Promoter -922 | chr4_123543435_ R - Promoter -1463 | chr12_68647499 R - Promoter -112
chr6_52050401_F | + Promoter -1734 | chr4_123543739_R | - Promoter -1515  chrl2_68647575_R = - Promoter -188
chr6_52050597_F = + Promoter -588 | chr4_123543922 R | - Promoter -1698  chrl2_68647591_R | - Promoter -204
chr6_52050745_F = + Promoter -440 | chr4_123543942_R | - Promoter -1718 = chr12_68647735_R = - Promoter -348
chr6_52051062_F =+ Promoter -123 chr12_68648357_R = - Promoter -912
chr6_52051103_F + Promoter -82 chr12_68648359_ R - Promoter -1532
chr6_52051108_F =+ Promoter -77 chr12_68648412_R - Promoter -1481
chr6_52051113_F + Promoter -72 chr12_68648630_R - Promoter -1243
chr6_52051156_F | + Promoter -29 chr12_68648813_R = - Promoter -1426
chr6_52051162_F =+ Promoter -23 chr12_68648921_R = - Promoter -1534

chr12_68649043_R = - Promoter -1412

F forward primer, R reverse primer,+Sense strand,-Antisense strand.

e 32 Buelp

£889£91'5202' NWwIl/685¢°0T
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using receiver operating characteristic (ROC) curves generated by the
pROC package (v1.18.5), and the area under the curve (AUC) was
interpreted as follows: <0.6, non-informative; 0.6-0.7, suboptimal; 0.7-
0.9, moderate to strong; >0.9, excellent discrimination (25).

2.6 Correlation between methylation and
clinical parameters

To explore the relationship between methylation profiles and
clinical features of GD, patients were stratified by age, age at onset,
sex, disease subtype, family history, presence of ophthalmopathy,
smoking status, and thyroid function indices. FT3 and FT4 levels
were dichotomized at their median values. TSH was categorized as
<0.001 vs. >0.001 mIU/L, and TRAD as <1.5 vs. >1.5 IU/L. Variables
with >50% missing data (e.g., T3, T4, Tg) were excluded.

Expression data were log2-transformed using the formula log2
(X+1). Univariate binary logistic regression was performed using
the glm function in R to identify significant predictors. Variables
with p < 0.1 were included in multivariate logistic regression to
identify independent associations, with significance set at p < 0.05.
Statistical modeling was conducted using the rms (v6.4.0) and
ResourceSelection (v0.3.5) R packages.

2.7 Statistical analysis

Methylation data are presented as meantstandard error of the
mean (SEM). Normally distributed continuous variables are shown
as meantstandard deviation (SD), while non-normally distributed
data are expressed as median with interquartile range (IQR). Group
comparisons were conducted using independent samples t-tests or
Mann-Whitney U tests, as appropriate. Correlations between
methylation levels and clinical variables were evaluated using
Spearman’s rank correlation coefficient. Categorical variables were
analyzed using Chi-square or Fisher’s exact tests.

Univariate binary logistic regression was performed to evaluate
associations between clinical features and methylation subgroups, and
odds ratios (ORs) with 95% confidence intervals (CIs) were calculated.
Variables with p < 0.1 in univariate analysis were included in
multivariate logistic regression to identify independent predictors (p <
0.05). All statistical analyses, including data preprocessing, descriptive
statistics, and regression modeling, were conducted using SPSS version
26.0 (IBM Corp., Armonk, NY, USA) and R version 4.3.3 (R Core
Team, Vienna, Austria).

3 Results

3.1 Reduced methylation levels of IL17,
IL21, and IL22 promoter regions in GD
patients

To investigate DNA methylation alterations across different
stages of Graves® disease (GD), we enrolled 35 NGD patients, 25
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RGD patients, and 60 NCs. PBMCs were isolated and subjected to
DNA extraction. Following stringent quality control, promoter
regions of the Thl7-related cytokines IL17, IL21, and IL22 with
GC content >20% were selected for methylation analysis.

Compared to NCs, the majority of CpG sites in GD patients
exhibited significantly reduced methylation levels, with high intra-
group consistency (Supplementary Figures S1A-F). Principal
component analysis (PCA) of methylation profiles clearly
distinguished GD patients from controls (Figures 1A-C), and
revealed a significant overall decrease in methylation levels in GD
patients (P=2.5 x 107, Figure 1D). Both NGD (P=1.4 x 10”) and RGD
(P=6.6 x 10”7 groups showed significantly lower methylation compared
to NCs, with NGD exhibiting the most pronounced hypomethylation,
suggesting stage-specific methylation dynamics (Figures 1E-F).

We further assessed gene-specific methylation of the IL17, IL21,
and IL22 promoter regions. All three genes exhibited significantly
lower promoter methylation levels in GD patients relative to NCs
(p < 0.05, Figure 2A). Similar reductions were observed in both
NGD and RGD subgroups (p < 0.05, Figures 2B, C).

To delineate CpG site-specific methylation patterns, we analyzed
promoter regions >200 bp in length, containing 16 CpG sites for IL17,
10 for IL21, and 17 for IL22 (Supplementary Table S2). The methylation
levels of CpG sites for each gene are shown in Figures 3A-C. Site-level
methylation analyses demonstrated significant hypomethylation in GD
patients at 12 CpG sites in IL17 (p < 0.05, Figure 4A), 9 sites in IL21
(Figure 4B), and 13 sites in IL22 (Figure 4C).

3.2 Identification of diagnostic CpG Sites in
IL17, IL21, and IL22 promoter regions using
machine learning

After excluding CpG sites without statistically significant
methylation differences, the remaining CpG sites in the promoter
regions of IL17, IL21, and IL22 were used to develop predictive
models. Four machine learning algorithms were applied: RF, SVM,
GLM, and XGB. Among them, the RF, SVM, and XGB models
demonstrated superior performance in terms of lower residual
distributions and higher classification accuracy based on ROC
curve analysis (Figures 5A-C). Thus, these three models were
selected for downstream analyses.

Four CpG sites—chr4_123542199_R, chr4_ 123542549 _R,
chr12_68647247_R, and chr12_68647735_R—were consistently
identified by the three models and prioritized for further
evaluation (Figures 5D, E).

3.3 Diagnostic evaluation of
hypomethylated CpG sites

The four CpG sites identified through model-based feature
importance were subjected to ROC curve analysis to assess their
diagnostic utility (Figure 6). All four CpG sites demonstrated AUC
values >0.7, indicating moderate diagnostic performance.
Specifically, the AUC values for chr4_123542199_R,
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FIGURE 1

DNA methylation percentages in IL17, IL21, and IL22 gene promoters across study groups. (A) Principal component analysis (PCA) of DNA
methylation levels in the IL17, IL21, and IL22 gene promoters between Graves' disease (GD) patients and normal controls (NC). (B) PCA of
methylation levels comparing newly diagnosed GD (NGD) patients and NC. (C) PCA of methylation levels comparing refractory GD (RGD) patients
and NC. (D) Violin plots showing DNA methylation percentages in the IL17, IL21, and IL22 promoters between GD and NC groups. (E) Violin plots
comparing methylation levels between NGD and NC groups. (F) Violin plots comparing methylation levels between RGD and NC groups.
Abbreviations: GD, Graves’ disease; NGD, newly diagnosed Graves' disease; RGD, refractory Graves' disease; NC, normal control; PCA, principal
component analysis. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant (p > 0.05).

chr4_123542549_R, chrl2_68647247_R, and chrl2_68647735_R
were 0.764, 0.754, 0.752, and 0.738, respectively (Figures 6A-D).
These results suggest that hypomethylation at these sites may serve
as potential biomarkers for GD diagnosis.

3.4 Clinical relevance of methylation
alterations

Clinical variable distributions are presented in Supplementary
Table S4. To investigate the clinical relevance of the four identified

CpG sites, univariate logistic regression analyses were performed
(Supplementary Figure S2). Hypomethylation at
chr4_123542549_R was significantly associated with elevated
TRAD levels (OR=4.00, 95% CI: 1.30-12.33, p=0.02), and this
association remained significant in multivariate analysis (Figure 7;
Supplementary Table S3). These findings suggest that
demethylation at this site may influence TRAb production or
activity, potentially contributing to disease pathogenesis and
reflecting disease severity.

Furthermore, both univariate and multivariate analyses
revealed a significant association between hypomethylation at
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FIGURE 2

DNA methylation percentages in IL17, IL21, and IL22 gene promoters in each study group. (A) DNA methylation percentages in IL17, IL21, and IL22
gene promoters in GD patients and NC. (B) DNA methylation percentages in IL17, IL21, and IL22 gene promoters in NGD and NC. (C) DNA
methylation percentages in IL17, IL21, and IL22 gene promoters in RGD and NC. GD, Graves' Disease; NGD, Newly Diagnosed Graves' Disease; RGD,
Refractory Graves' Disease; NC, Normal Control. *p < 0.05, **p < 0.01, ***p < 0.001, ns, p > 0.05.
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chr12_68647247_R and increased FT4 levels (OR=0.29, 95% CI:
0.10-0.84, p=0.02, Figure 7; Supplementary Table S3). This
indicates a possible regulatory role for this site in thyroid
hormone synthesis or metabolism, suggesting its utility as a
marker of thyroid functional status in GD.

No significant associations were observed between methylation
levels at chr4_123542199_R or chrl2_68647735_R and clinical
parameters (p > 0.05, Supplementary Figure S2).

4 Discussion

In recent years, DNA methylation has been widely recognized
as a key epigenetic mechanism involved in maintaining
physiological homeostasis and regulating gene expression under
pathological conditions, including autoimmune diseases (26, 27).
GD, a prototypical autoimmune thyroid disorder, has been
associated with aberrant methylation patterns of immune-related
genes, such as IL10 (28). In this study, we focused on the DNA
methylation status of the promoter regions of IL-17, IL-21, and IL-
22 in PBMCs from patients with GD. By integrating machine
learning models, we identified hypomethylated CpG sites
significantly associated with GD, and found strong correlations
between these epigenetic alterations and clinical indicators such as
TRAD and FT4. These findings are consistent with previous reports
emphasizing the role of Th1l7 cells in GD-related immune
dysregulation and provide new insights into the epigenetic
regulation of Th17 cell function (29, 30).

We found that the promoter regions of Th17-related cytokines
exhibited significantly lower methylation levels in patients with GD
compared to healthy controls. This suggests that epigenetic
mechanisms may contribute to GD pathogenesis and highlights a
previously underexplored dimension of Th17 cell regulation in this
context. Notably, aberrant methylation patterns of IL-17, IL-21, and
IL-22 are not exclusive to GD; similar patterns have been reported
in other Thl7-mediated autoimmune diseases, including
rheumatoid arthritis, psoriasis, and Sjogren’s syndrome (31-34).
Hypomethylation in these loci may enhance transcription factor
binding, such as RORyt, or modulate IL-23/IL-23R signaling, or
destabilize repressive chromatin complexes, thereby facilitating the
expression of these pro-inflammatory cytokines (35-38). These
observations support the existence of a shared epigenetic
dysregulation of Thl7-associated genes across various
autoimmune conditions.

Previous studies, including our own, have demonstrated
increased proportions of Th17 cells in patients with GD, with
elevated expression levels of IL-17, IL-21, and IL-22 correlating
positively with disease activity (39-42). These cytokines are
markedly upregulated in GD and are implicated in amplifying the
pro-inflammatory response and contributing to thyroid tissue
damage (43-45). While earlier research has primarily focused on
phenotypic aspects of Th17 cell activation, our study underscores
the pivotal role of epigenetic regulation in modulating Th17-related
gene expression. By systematically correlating promoter
methylation with transcriptional activity, we offer new insights
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FIGURE 4
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DNA methylation percentages at CpG sites within the I1L21 gene promoter in GD patients versus NC. (C) Box plot illustrating the distribution of DNA
methylation percentages at CpG sites within the I1L22 gene promoter in GD patients versus NC. Data are presented as median with interquartile range;
statistical comparisons highlight group-specific differences in methylation levels. GD, Graves' Disease; NC, Normal Control. *p < 0.05,
**p < 0.01, ***p < 0.001, ns, p > 0.05.

Frontiers in Immunology

08

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1635883
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Jiang et al.

10.3389/fimmu.2025.1635883

Feature Importance

created for the GLM, RF, SVM, XGB model

GLM
chrd_123542549_R
chr6_52051108_F
chr12_68647735_R
chri2_68647247_R
chr12_68647499 R
chri2_68647281_R
chr6_52051103_F
chrd_123542356_R
chrd_123542401_R
chr6_52049562_F

RF
chrd_123542549_R
chr12_68647735_R
chr12_68647247_ R

chr6_52051103_F
chr4_123542199_R
chrd_123542356_R
chrd_123543093_R
chr4_123543942_ R

chr6_52049313_F
chr12_68648921_R

SVM
chrd_123542549_R
chr12_68647735_R
chr12_68647247_R
chr12_68648630_R
chr4_123542199_R
chr12_68647591_R
chr4_123543093_R
chr12_68648813_R
chrd_123543922 R

chr6_52050263_F

XGB
chr4_123542549_R
chré_52051108_F
chr12_68647735_R
chr12_68647247_R
chr6_52051103_F
chrd_123542199_R
chr12_68647591_R
chrd_123543942_R
chr12_68647575_R
chr12_68648813_R
04 05

0.6
Root mean square error (RMSE) loss after permutations

Sensitivity (TPR)
o
g

025

0.00

AUC(SVM) = 0.925 (0.832-1)
AUC(RF) = 0.881 (0.768-0.993)
AUC(XGB) = 0.875 (0.761-0.99)

AUC(GLM) = 0.649 (0.494

0.00 025 0.50
1-Specificity (FPR)

FIGURE 5

SVM

RF

XGB

GLM

30 %
20 %
10%
0%

0.7

model
~— SWM

— xGB
— GM

Boxplots of |residual|
Red dot stands for root mean square of residuals

Model E3 svv E3 RF E3 xGB E3 GLM

-
[T

—e

0.00 0.25 0.50 0.75 1.00

Reverse cumulative distribution of |residuall

Model — SVM — RF —— XGB —— GLM

0.00 0.25 0.50 0.75 1.00
|residual|

SVM RF

XGB

Construction and performance evaluation of machine learning models for DNA methylation-based classification. (A) Feature importance rankings
derived from four machine learning models: Random Forest (RF), Support Vector Machine (SVM), Generalized Linear Model (GLM), and eXtreme
Gradient Boosting (XGB). (B) Cumulative residual distribution curves for each model, indicating overall model fit. (C) Box plots of residuals for the
four models; red dots represent the Root Mean Square Error (RMSE) for each model. (D) Receiver Operating Characteristic (ROC) curves generated
from the test set for all four models; SVM, RF, and XGB models achieved area under the curve (AUC) values exceeding 0.7. (E) Venn diagram
illustrating the overlap of important features identified by the SVM, RF, and XGB models. RF, Random Forest; SVM, Support Vector Machine; GLM,
Generalized Linear Model; XGB, eXtreme Gradient Boosting; RMSE, Root Mean Square Error; ROC, Receiver Operating Characteristic; AUC, Area

Under the Curve.
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Receiver operating characteristic curve analysis of selected CpG Loci based on test set predictions. (A) Receiver Operating Characteristic (ROC)
curve for the chr4_123542199_R locus. (B) ROC curve for the chr4_123542549_R locus. (C) ROC curve for the chrl2_68647247_R locus. (D) ROC
curve for the chr12_68647735_R locus. Each panel shows the classification performance of the corresponding CpG locus, with AUC values
indicating diagnostic potential. ROC, Receiver Operating Characteristic; AUC, Area Under the Curve.

into the epigenetic mechanisms underlying Th17 dysregulation in
GD (46, 47).

GD is characterized by thyroid-specific organ involvement, in
which aberrant expression of the thyroid-stimulating hormone
receptor (TSHR) on follicular epithelial cells and its interaction
with thyroid-stimulating hormone receptor antibodies (TRAb) may
drive immune imbalance (48). However, our machine learning
analysis revealed that hypomethylation at chr4:123542549_R
(AUC > 0.7) exhibited higher sensitivity and specificity for GD
identification compared to conventional antibody-based
diagnostics such as TRAD, which has a false-negative rate of 10-
15% (49). Additionally, the methylation level at chr12:68647247_R
was significantly correlated with elevated FT4 levels. These findings
suggest that aberrant methylation at specific loci may play a direct

Frontiers in Immunology 10

regulatory role in the immune imbalance and thyroid dysfunction
associated with GD. By employing advanced machine learning
techniques, this study uniquely identified GD-associated CpG
sites with potential predictive value for disease risk, warranting
further validation in larger cohorts (50).

Interestingly, in patients with RGD, partial modulation of
methylation levels was observed after treatment; however, these
levels remained lower than in healthy controls. This suggests the
presence of an epigenetic “memory” that may sustain autoimmune
activity and contribute to disease relapse, even during periods of
clinical remission. Persistent hypomethylation of Th17 cytokine
genes may maintain Th17 activation and predispose patients to
recurrence. This finding offers new perspectives on the mechanisms
underlying GD chronicity and relapse. Clinically, methylation
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status may reflect treatment response and serve as a biomarker for
relapse risk. The incomplete restoration observed suggests that
conventional antithyroid therapy (e.g., methimazole) may
insufficiently reset epigenetic patterns, highlighting the need for
interventions targeting immune regulation or epigenetic
remodeling. Longitudinal monitoring of methylation profiles
could aid early diagnosis, track disease trajectory, and identify
patients at high risk of persistent or recurrent hyperthyroidism.
Future research should employ single-cell methylome sequencing
and functional assays to dissect cell type-specific methylation
patterns and clarify their roles in modulating Th17 activity.
Furthermore, dynamic monitoring of methylation changes in
Th17 cytokine genes may inform treatment adjustments and
support the development of early-stage immuno-epigenetic
combination therapies (51).

In conclusion, this study identified decreased DNA methylation
levels in the promoter regions of IL-17, IL-21, and IL-22 in patients
with GD and preliminarily explored their associations with Th17
cell activation and clinical parameters. These findings contribute to
a deeper understanding of the epigenetic mechanisms involved in
GD and lay a foundation for future research.

5 Conclusion

From an epigenetic perspective, this study investigated the
aberrant methylation patterns of IL-17, IL-21, and IL-22 genes in
GD patients, contributing to a deeper understanding of the role of
Th17 cells in GD-related immune dysregulation. These findings
may aid in advancing the understanding of GD’s
immunopathological mechanisms and provide a scientific basis
for potential epigenetic intervention strategies.
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