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Cardiovascular diseases (CVDs) pose a significant threat to the health of the
elderly population. As the global population ages and medical management
remains imperfect, reducing the medical burden of CVDs is of great importance.
Aging is a complex process that contributes to the development and progression
of CVDs through various mechanisms. The manuscript reviews the mechanisms
of aging and their impact on the cardiovascular system. We explore the role of
aging in the cardiac microenvironment, highlighting the changes that occur in
the heart's cellular and molecular landscape as a result of the aging process.
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1 Introduction

Enhanced living conditions and medical advancements have significantly prolong human
lifespan (1). The proportion of the population aged 65 years and over is predicted to increase
substantially worldwide by 2030, accounting for approximately 19% of the total population
(2). Old age is generally regarded as a major and nonmodifiable risk factor for chronic, life-
threatening conditions (3), including CVDs, cancer (4, 5), and neurodegenerative diseases (6)
(Figure 1). Among these, CVDs represent the leading cause of mortality among the elderly
(7). During body ageing, the accumulation of senescent cells may adversely affect tissue
homeostasis (8, 9). Therefore, reducing the accumulation of senescent cells is important for
slowing the onset and progression of ageing-related CVDs.

In the cardiac environment, aging emerges as a stress response triggered by numerous
stimuli, such as telomere attrition, virus infection, hypoxia, oxidative stress, mitochondrial
dysfunction, protein imbalance, and impaired autophagy (10). Increasing evidence illustrates
the complex associations between cardiovascular cellular senescence and the pathogenesis as
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Cellular senescence is closely related to a variety of diseases throughout the body. In the cardiovascular system, cellular senescence leads to
dysfunction of ECs, VSMCs, etc., which in turn increases the risk of diseases such as hypertension, AS, and cardiac infarction. In the nervous system,
neuronal senescence may trigger neurodegenerative diseases, such as Alzheimer's disease and Parkinson ‘s disease. In conclusion, cellular
senescence accumulates in systemic tissues and becomes a potential trigger for a variety of diseases.

well as progression of CVDs, including atherosclerosis (AS), arterial
stiffening, aortic aneurysms, myocardial fibrosis and heart failure (11).

This manuscript discusses the phenotypic expressions and
underlying molecular pathways correlated with the ageing process
and their contribution to the development of CVDs. Additionally,
we assessed the advantages and challenges of targeting senescent
cells in preventing and managing ageing-related CVDs. The entire
framework of the article is depicted in Figure 2.

2 Molecular mechanisms of ageing

The ageing process in the heart is marked by several key molecular
mechanisms (Figure 3). Aging hinders tissue regeneration, whereas the
accumulation of progerin disrupts nuclear function. Impaired
autophagy and mTOR pathway dysfunction lead to the accumulation
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of damaged cellular components. Mitochondrial issues impact energy
metabolism and contribute to oxidative stress. When dysregulated, the
cGAS-STING signaling pathway can trigger inflammation. Telomeres
shorten with age, triggering a DNA damage response (DDR) that can
lead to senescence. The senescence-associated secretory phenotype
results in the release of inflammatory factors that degrade the
surrounding tissue. Epigenetic changes also influence the expression
of genes related to cardiac ageing. Together, these factors contribute to
the ageing characteristics of the heart.

2.1 Cellular senescence and ageing

Cellular senescence, characterized by irreversible exit from the
cell cycle and entry into a state of growth arrest, was initially
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Overview of this review.

proposed by Hayflick and Moorhead in the 1960s (12, 13). This
phenomenon, initially described as limited in the ability of human
diploid cells to proliferate in vitro, is now recognized as a response
to various stressors, including telomere shortening, oxidative stress,
and chromatin structure abnormalities (14). During cellular
senescence, the retinoblastoma protein (Rb) is typically
dephosphorylated or hypophosphorylated via the p53/p21"AFY
P or p16™ */Rb signaling pathway. This process halts cell
cycle progression, ultimately leading to senescence (10).

Senescent cells are characterized by the following traits (15, 16)
(1): increased expression and activity of senescence-associated [B-
galactosidase (SA-B-gal) (2); increased levels of p21 and p16 (3); the
presence of nuclear senescence-associated heterochromatin foci
(SAHFs) (4); a senescence-associated secretory phenotype (SASP);
and (5) an abnormally enlarged cell size and flattened morphology.
Among these, the SASP is a distinctive secretory profile specific to
senescent cells and is a critical marker of cellular ageing (17). Below,
we extensively discuss the molecular mechanisms of ageing that
may occur in different cell types.

2.2 Progerin accumulation and ageing

Nuclear structural abnormalities emerging during cellular
senescence are dominated by progerin, a truncated form of Lamin
A generated by mutations in the LMNA gene (18, 19). Progerin
accumulation disrupts nuclear integrity and accelerates the aging
process, especially in the cardiovascular system.

Hutchinson - Gilford progeria syndrome (HGPS) is associated
with LMNA gene mutations leading to abnormal lamin levels.
Patients with HGPS exhibit calcification and abrasion of vascular
smooth muscle cells (VSMCs), along with significant adventitial
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fibrosis, leading to severe premature arteriosclerosis (20). However,
progerin overexpression in different cardiac cells leads to different
cardiac diseases in the HGPS mouse model. Selective overexpression
of VSMC-derived progerin induces endoplasmic reticulum (ER)
stress and atherogenesis (AS) (21, 22). Progerin accumulation in
endothelial cells(ECs) leads to cardiac fibrosis and cardiac
hypertrophy (23). Simultaneously, At the same time, progerin is
also elevated in individuals with dilated cardiomyopathy, which is
strongly associated with left ventricular remodeling and myocardial
ageing (24).

In HGPS mouse model, the massive accumulation of prelamin
A (Lamin A precursor) resulting from knockdown of Zmpste24
similarly causes nuclear lamina defects and accelerates VSMC
premature senescence (25). In human arteries, prelamin A is
prevalent in the media of VSMCs or atherosclerotic lesions in
older individuals, whereas it rarely accumulates in young and
healthy vessels. Consequently, prelamin A may emerge as a novel
biomarker for cardiovascular ageing and may participate in the
development of CVDs. Reducing prelamin A/progerin by injecting
CRISPR/Cas9 improves HGPS symptoms in mice, which highlights
a new therapeutic approach for improving age-induced CVDs
(26, 27).

2.3 Impaired autophagy and ageing

Autophagy is able to eliminate misfolded proteins and
dysfunctional organelles. Maintaining efficient autophagy is also
necessary for many cellular processes associated with lifespan
extension (28). Age-related decreases in autophagic activity,
attributed to diminished lysosomal function as well as decreased
expression of genes associated with autophagy, such as ATG7,
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Signaling pathways and mechanisms of cellular senescence. Cellular senescence is a cellular state triggered by stress injury and some physiological
processes, which is mainly divided into replicative senescence and non-replicative senescence. Replicative senescence is caused by telomere
shortening due to continuous division of normal cells, and when telomeric DNA shortens to a certain extent, cells automatically turn on the ageing
program and prevent cell cycle progression through the p53/p21 and p16'N"**/Rb signaling pathways. Non-replicative ageing can be triggered by
various stress factors, and nuclear DNA damage is an important role. DNA damage-activated DDR can lead to p53 activation via ATM or ATR kinase
activation, which in turn triggers cell cycle arrest. DDR can also induce SASP secretion via the cGAS-STING pathway. SASP components secreted by
nearby senescent cells, such as IL-6, trigger the JAK-STAT signaling pathway, the so-called paracrine-induced senescence. In addition,
mitochondrial dysfunction has been implicated as a driver of cellular senescence, mainly through three different mechanisms, which have been
described in detail previously. ATM, Ataxia-Telangiectasia mutated; ATR, Ataxia-Telangiectasia and Rad3-related protein; CCF, cytoplasmic chromatin
fragments; MAPK, mitogen-activated protein kinases; mtDNA, Mitochondrial DNA; ULK1, UNC-51-like kinases 1.

contribute substantially to cardiovascular ageing (29-31). In
VSMCs, defective autophagy accelerates aging and promotes
atherosclerotic plaque formation; whereas in ECs, it exacerbates
vascular inflammation and impairs NO bioavailability, thereby
aggravating arterial stiffness and hypertension. In cardiomyocytes,
impaired autophagy leads to accumulation of dysfunctional
mitochondria and damaged proteins, which trigger myocardial
fibrosis and contractile dysfunction.

Mice with impaired autophagy exhibit worsened cardiac
dysfunction, whereas enhancing autophagy can enhance cardiac
function and alleviate age-related heart problems by eliminating
proteins with damage, dysfunctional organelles, and altered
DNA (32).

Key mechanisms of autophagy include the inhibition of the
target of rapamycin (mTOR) or the activation of 5-AMP-activated
protein kinase (AMPK) (33). mTOR inhibits autophagy in two
ways. First, mTOR directly inhibits unc-51-like kinase 1 (ULK1),
which is a critical initiator of the autophagic process. Second,
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mTOR exerts an inhibitory effect on autophagy by hindering
lysosome development, which is facilitated by impeding the
nuclear translocation of TFEB (34). mTORCI, a protein complex
formed by mTOR, is pivotal in the regulation of translational
processes. Inhibition of mTORCI decelerates the rate of protein
translation, increasing the accuracy of mRNA translation into
proteins and improving protein folding precision. This process
contributes to slowing the ageing process by reducing
proteotoxicity and the accumulation of oxidative stress (35, 36).
The inhibition of mTOR expression to activate autophagy has been
shown to suppress VSMC replicative senescence and stabilize
progressive atherosclerotic plaques (37, 38).

2.4 Mitochondrial dysfunction and ageing

Mitochondrial dysfunction is a prominent feature of cellular
senescence, primarily driven by dysregulated mitochondrial
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dynamics, mitochondrial DNA (mtDNA) damage, and oxidative
stress (39, 40). Imbalanced mitochondrial dynamics—including
hyperfusion (mediated by MFN1/2 and OPAIl) and impaired
fission (due to reduced DRP1/FIS1 levels)—compromise
cardiomyocyte function and promote ageing (41-43). Mitochondria
are the factory of cell energy, and their dynamic imbalance will
damage the efficiency of ATP synthesis and produce ROS. Excessive
ROS generation directly damages ECs and vascular smooth muscle
cells, leading to arterial stiffening and plaque vulnerability. In
cardiomyocytes, persistent mitochondrial dysfunction impairs ATP
generation and activates pro-fibrotic pathways, contributing to
maladaptive remodeling and heart failure. Inflammatory signaling
triggered by mtDNA release through the cGAS-STING pathway
further links mitochondrial senescence to chronic vascular
inflammation and AS. Mitochondrial division contributes to the
removal of dysfunctional mitochondria by mitophagy.
Consequently, disruptions in fission-fusion balance (as evidenced
by hyperfusion) accelerates the accumulation of abnormal
mitochondria and oxidative proteins and triggers downstream
inflammatory signaling pathways. Currently, mitochondria can
promote cardiomyocyte senescence through three different
mechanisms. Anderson et al. reported that excessive reactive
oxygen species (ROS) production directly induces DNA and
telomere damage (44, 45). Chung et al. suggested that mtDNA
activates the cGAS-STING pathway, thereby stimulating SASP
release (45, 46). A third view suggests that mitochondria can act on
the AMPK-p53 signaling pathway, thereby accelerating
cellular senescence.

2.5 Inflammation and ageing

The cGAS-STING pathway and SASP constitute two
interrelated core elements of inflammation, a prominent feature
of cardiovascular ageing. Cyclic GMP-AMP synthase (cGAS) can
recognize exogenous DNA (bacterial viruses, dead cells, tumor cells,
etc.) and endogenous DNA (damaged chromosomes, mitochondria,
etc.) and bind to the obtained double-stranded DNA (dsDNA) to
form cyclic GMP-AMP (cGAMP) (47, 48). cGAMP binds and
initiates the STING protein located in the ER, initiating the
activation of its downstream signaling (49, 50). CDNs, DNA
damage, ER stress, and inherited gain-of-function mutations in
the gene encoding STING can directly activate STING, bypassing
the need for cGAMP (51, 52). Activated STING can initiate the
phosphorylation and nuclear translocation of IFN regulatory factor
3(IRF3) and nuclear factor-kappa B(NF-xB), which further
promotes the synthesis of IFN-I, tumor necrosis factor (TNF),
and IL-6 by cells (53). These inflammatory factors are also
prominent components of the SASP. Therefore, the cGAS-STING
pathway contributes to inflammatory ageing by facilitating the
secretion of SASP components from cells.

The mechanism of the SASP involves the activation of
transcription factors such as NF-xB, C/EBPJ, and GATA4, which
are closely related to the chronic DDR, and the mTOR and p38
MAPK pathways (54). Many SASP-associated genes contain
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binding sites for NF-kappaB and C/EBPP b in their cis-regulatory
regions, and the upregulation of expression at these sites promotes a
positive feedback cycle. This cycle further consolidates the ageing
state of cells by communicating with the microenvironment
through NOTCH signaling, ROS, the cytoplasmic bridge, and the
secretion of small extracellular vesicles (SEVs) (10).

Persistent SASP and c¢GAS-STING activation fuel chronic
vascular inflammation, enhance endothelial dysfunction,
destabilize atherosclerotic plaques, and promote myocardial
fibrosis, thereby linking cellular senescence to CVDs progression.

2.6 Telomeres and ageing

Telomeres are protective caps at chromosome ends consisted of
repetitive TTAGGG sequences and associated proteins that prevent
chromosome degradation and fusion (55). These proteins help
avoid the recognition of telomeres as DNA damage, initiating the
DDR. Telomeres shorten as cell division repeats, and the shielding
proteins no longer protect DNA after a critical telomere length is
reached, thereby activating the DDR mechanism (56). This process
inhibits cell cycle progression by inducing the expression of p21 and
pl16. The activation of the telomeric DDR (tDDR) also leads to the
generation of telomere-associated DDR sites (TAFs) or telomere-
induced DNA damage sites (TIFs), which are regarded as markers
of tissue ageing and cellular senescence in vitro (57).

Activation of the tDDR and the accumulation of TAFs are also
often causally linked to various age-related phenomena, including
mitochondrial dysfunction, altered nutrient perception, impaired
autophagy, a loss of proteostasis, and epigenetic dysregulation (57).
These findings suggest that many ageing hallmarks revolve around a
unified “telomere-centric” mechanistic principle (58).

2.7 Epigenetic regulation and ageing

Epigenetics pertains to biological mechanisms that influence
gene activity without modifying DNA sequences, impacting gene
expression through DNA methylation, histone modifications, and
noncoding RNAs (59). DNA methylation changes gene expression
through DNA methyltransferases (DNMTs) without altering the
DNA sequence, affecting the cell cycle, DNA repair capacity, and
cellular processes associated with cellular senescence. Thus, DNA
methylation is a marker of ageing and a critical regulator of cellular
ageing (60). Research indicates a link between the onset and
progression of CVDs such as coronary heart disease (CHD), heart
failure, and hypertension with DNA methylation (61, 62).

Modifications to histones have the ability to modify the binding
strength between histones and DNA double helices while recruiting
various adaptor proteins or effector proteins to remodel chromatin.
Sirtuins (SIRTs) represent a group of histone deacetylases that
effectively counteract ageing characteristics across various cell
types (63). In cardiomyocytes, SIRT3 prevents TGFfB-induced
fibrosis by activating GSK3B (64). In ECs, SIRT1 regulates
endothelial nitric oxide synthase (eNOS) to mitigate oxidative
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damage (65) and deacetylates p65 to disrupt the interaction between
acetyltransferase P300 and NF-xB, thereby inhibiting NF-kappa B
activity (66).

Noncoding RNAs, including microRNAs (miRNAs) and long
noncoding RNAs (IncRNAs), are vital in regulating ageing
processes and CVDs. For example, when miRNA-22 is actively
expressed, it accelerates the ageing and migration of cardiac
fibroblasts (CFs) (67). LncRNAs bidirectionally regulate cardiac
regeneration and development. Linc1405 and the IncRNAs PANCR
and Hdn were found to induce the transformation of CFs into
cardiomyocytes, promoting cell differentiation and heart
development (68, 69). The repression of cardiac regeneration and
differentiation is observed in the presence of the IncRNA CAREL
(70). In summary, the regulation of cellular senescence involves
various stimulatory factors and pathways (Figure 3).

3 Cardiac ageing microenvironment

Cardiovascular resident cells and immune cells together
constitute the cardiac ageing microenvironment. Cardiomyocytes,
ECs, VSMCs, and fibroblasts in this microenvironment undergo
senescence in this microenvironment, accelerating cardiac
structural abnormalities and functional deterioration. The ageing
immune microenvironment includes monocytes/macrophages,
dendritic cells (DCs), and T cells, which has an impact on tissue
homeostasis by modulating the inflammatory response. All these cells
and their interactions shape the cardiac ageing microenvironment
and influence the resilience and ageing process of the heart.

3.1 Ageing in cardiomyocyte

Multiple cells collaborate to sustain the normal physiological
function of the heart. Therefore, the senescence of certain cell types
increases the risk of CVDs (Figure 4). Cardiac cells constitute
approximately 30%-40% of cardiomyocytes, which are essential for
generating the force required for the heart’s pumping function (71).
Cardiomyocytes that have reached senescence exhibit DNA damage,
ER stress, impaired mitochondrial function, and compromised
contractile performance and regulate the microenvironment
through the paracrine secretion of the SASP to induce local
noncardiomyocyte ageing (72). Many mechanisms that induce
cardiomyocyte ageing have been identified, including telomere
shortening (73), epigenetic changes (74), and the SASP (44), but
metabolic dysfunction is a key factor contributing to cardiomyocyte
ageing and decreased cardiac function (75).

Compared with other cells, cardiomyocytes exhibit a distinct
metabolic profile, relying primarily on fatty acids and glucose for
energy provision. The ratio of fatty acids and glucose in the energy
supply is dynamically regulated by developmental, physiological,
and pathological responses (76, 77). Fatty acyl-CoA (CoA) and
pyruvate serve as the primary substrates for ATP generation in the
mitochondria of cardiomyocytes and are produced through the
oxidation of fatty acids and glucose, respectively. CoA and pyruvate
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are regulated mainly by carnitine-palmitoyltransferase-1 (CPT1)
and pyruvate dehydrogenase (PDH) (78), which are rate-limiting
enzymes in mitochondria. CPT1 levels are significantly reduced
during ageing (79) and may lead to cardiac complications (80). A
lack of CPT1 exacerbates the ageing process in cardiomyocytes and
contributes to lipotoxic cardiac hypertrophy (81).

In addition, the expression levels of peroxisome proliferator-
activated receptor oo (PPARa) and PGC-lo, which are essential
regulators of fatty acid metabolism, decrease with ageing (82). In
mice prone to accelerated ageing, decreases in PPARoc mRNA and
protein levels lead to increases in ceramide levels, which correlate
with the development of cardiac hypertrophy (83). Aged hearts
demonstrate a reduced capacity for fatty acid oxidation and rely
more on augmented glucose oxidation pathways to meet their
metabolic needs (84).

The insulin signaling pathway is essential for glucose metabolism
in cardiomyocytes and can be activated by insulin growth factor
receptor (IGFR) to induce the SASP and promote cardiomyocyte
senescence (85). More importantly, metabolic dysfunction impairs
mitochondrial function, impacting all substrates, including increasing
ROS generation (86). Defective mitochondria persist in the heart,
leading to exacerbated oxidative stress and injury, alongside the
activation of oxidative signaling pathways.

Senescent cardiomyocytes display diminished contractile function
and disrupted conduction patterns, resulting in cardiomyopathy and
arrhythmias (87). Alterations in the mitochondrial membrane potential
and telomere shortening were observed in cardiomyocytes from mice
with Duchenne muscular dystrophy (DMD), suggesting cellular
senescence (88). Anthracyclines cause a dilated cardiomyopathy
phenotype linked to cardiomyocyte senescence, as shown by
increased mtDNA levels (89). In addition, ageing rat cardiomyocytes
display a decreased mitochondrial membrane potential, increased ROS
levels, and an attenuated ability to undergo electrical pacing, indicating
an increased risk of arrhythmia (90).

3.2 Ageing in endothelial cell

ECs are highly active monolayers that line the inner layers of
blood vessels and cover the inner surface of the entire circulatory
system (71). ECs not only form the vascular barrier, which helps
maintain blood flow, but also regulate vascular tone and blood
pressure by synthesizing vasoactive substances and growth factors
(91). However, ECs are highly susceptible to injury because they are
located between circulating blood and semisolid tissues and are
continuously exposed to unique injury-irritating environments
(hemodynamically generated pressures, circulating factors,
pathogenic stimuli, etc.). One of the consequences of EC injury is
cellular senescence, which causes impaired vasodilation and
vascular dysfunction. Senescent ECs can be observed in the hearts
of patients with diseases such as AS, heart failure, and aneurysms
(92). EC senescence is mainly caused by oxidative stress and
vascular inflammation. The senescence of ECs is expedited by
metabolic factors such as hyperuricemia or dysregulation of the
RAAS (93). Many molecules and pathways, such as SIRT, Klotho,
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Cardiovascular disease is associated with senescence of a variety of cells. Senescent cardiomyocytes mainly showed decreased fatty acid oxidation
ability and enhanced glucose oxidation pathway. ECs are continuously exposed to unique injury-stimulating environments (blood flow pressure,
blood flow shear stress, circulating factors, pathogenic stimuli, etc.) and are therefore highly susceptible to injury. In addition to being affected by
DNA damage, oxidative stress, etc., SIRT6 deficiency and SIRT1 inactivation can lead to senescence in VSMCs. Under stress conditions, the
phenotype of CFs is irreversibly altered, as shown by an increase in ageing markers such as o.-SMA. Immune-related cells such as DCs,

Macrophages, and T cells regulate the progression of cardiovascular disease mainly through changes in inflammatory factors. a-SMA, myofibroblast
marker; Ang Il, Angiotensin Il; CPT1, carnitine palmitoyl transterase-1; SIRT1/6, Sirtuin 1/6.

RAAS, IGFBP, NRF2, and mTOR, are associated with promoting
EC senescence (94).

Aging and impaired function of ECs play critical roles in the
development of CVDs. SIRT6 deficiency, miR-217 overexpression
or NOX activity accelerate EC senescence, leading to AS (95, 96). In
addition, EC senescence can mediate thrombosis by increasing
plasminogen activator inhibitor-1 (PAI-1) (97). Heart failure with
a preserved ejection fraction (HFpEF) represents a category of age-
related CVDs closely linked to EC senescence and myocardial

abnormalities in miRNAs are associated with EC dysfunction
(101). Angiotensin II (Ang II) can induce EC senescence through
an ATIR-mediated pathway, increasing ROS generation,

inflammation, extracellular matrix remodeling, and vascular tone
(102, 103).

3.3 Ageing in vascular smooth muscle cell

fibrosis (98). More importantly, mouse models of accelerated
ageing have shown that EC senescence contributes to HFpEF, as
evidenced by diastolic dysfunction, interstitial fibrosis, left atrial
dilation, and left ventricular hypertrophy (92).

The incidence of atrial fibrillation (AF) is higher in older
individuals. The onset of AF correlates with the senescence of ECs
and fibroblasts (99, 100). The downregulation of eNOS and
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VSMCs are vital for regulating vascular wall tension and
maintaining blood pressure (104). VSMC senescence promotes
arterial stiffness and arterial calcification, leading to reduced
arterial compliance and elastic reservoir dysfunction, which are
the pathological foundations of diseases such as hypertension and
independent risk factors for heart failure (105). Senescent VSMCs
considerably influence AS development (106) and are closely
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associated with aortic aneurysm (107), pulmonary hypertension
(108), and fibrotic neointima formation (109).

Telomere shortening, DNA damage, oxidative stress, and
autophagic dysfunction can all cause VSMC senescence (110).
The activation of SIRT family proteins plays a multifaceted
antiaging role (111), and SIRT6 deficiency and SIRT1 inactivation
can lead to senescence in VSMCs (112). Abnormal processing of
Prelamin A to lamin A results in defects in the nuclear layer,
increasing the vulnerability of DNA to damage and accelerating
cellular senescence (25). Moreover, sustained DNA damage signals
promote the transformation of VSMCs into osteoblastic vascular
smooth muscle cells, leading to subsequent vascular calcification
and AS (113, 114).

Interestingly, the replicative senescence of VSMCs mediates
their phenotypic transformation through runt-related transcription
factor-2 (RUNX-2) and induces age-related medial arterial
calcification (115). In addition, senescent VSMCs exhibit elevated
levels of inflammatory cytokines and reduced expression of anti-
inflammatory factors (116). IL-1a activates the SASP in local cells
and increases IL-6 secretion, inducing local inflammation in the
cardiac microenvironment (117).

Like other heart cells, VSMC senescence also leads to CVDs, most
commonly AS. Matthews et al. detected a large amount of senescent
VSMCs in atherosclerotic fibrous caps (118). Compared with normal
VSMCs, plaque VSMCs are distinguished by shorter telomeres,
higher p16 and p21 expression, stronger SAB-gal activity, and a
flatter cell morphology. In addition, telomere shortening in intimal
VSMCs is positively correlated with the severity of AS. VSMC
senescence also leads to plaque instability, resulting in myocardial
infarction (MI) and stroke. This instability may be related to the
secretion of MCP1, MIPla/b, and CCL3/4, which promote the
accumulation of monocytes, macrophages, and lymphocytes (119,
120). Ang II also induces premature VSMC senescence, thereby
accelerating the development of AS (103). The overexpression of
TRF2 decreases DNA damage and inhibits senescence in VSMCs,
thereby attenuating plaque vulnerability (119).

Additionally, VSMC senescence may also participate in the
pathophysiological processes of pulmonary arterial hypertension
through the SASP (121). The existing literature suggests that
VSMC senescence is associated with the development of aortic
aneurysms. Liao et al. were the first researchers to document that
medial VSMCs from patients with AAA display enhanced replicative
senescence. Compared with VSMCs from the same patient’s inferior
mesenteric artery (IMA), AAA-derived VSMCs are more extensive
and rounder, and their proliferative capacity is significantly
diminished (122). Angiotensin converting enzyme, Ang II, and
RAS accelerate VSMC ageing and lead to the formation of AAAs
by stimulating the production of proinflammatory cytokines, ROS,
and the ageing phenotype in VSMCs (123).

3.4 Ageing in cardiac fibroblasts

CFs are important components of cardiac noncardiomyocytes.
CFs maintain the extracellular matrix (ECM) structure and
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adhesion integrity by expressing integrins and matrix
metalloproteinases (MMPs) (124). In addition, CFs can also
participate in paracrine secretion to regulate the hypertrophy,
proliferation, growth, and ageing of surrounding cells (125).

Under stress conditions, CFs change their phenotype and
transform into myofibroblasts. CFs undergo irreversible
senescence upon sustained stimulation by stressors. Notably, the
expression of ageing biomarkers such as p16 and p21 is significantly
increased in the hearts of mice following MI (126). Costaining of o-
SMA (a marker for myofibroblasts) with p53 or p16 revealed an
increased presence of senescent fibroblasts within the border zone
of the infarct (127). Similarly, senescent fibroblasts have been
detected in mouse models of cardiac hypertrophy and remodeling
(128). In conclusion, senescent fibroblasts are ubiquitous in fibrotic
areas and are involved in the pathological processes associated with
myocardial fibrosis.

CF senescence has a dual impact on cardiac health. On the one
hand, as cardiac fibroblasts enter a senescent state, their ability to
secrete collagen decreases, which may delay the initial stage of the
wound healing process. On the other hand, fibrosis can be reduced
and cardiac function can be improved by inducing CF senescence.
Conversely, if the natural ageing process of fibroblasts is delayed, it
may exacerbate the degree of myocardial fibrosis and ultimately
lead to cardiac dysfunction. Therefore, balancing the ageing of
fibroblasts is essential for maintaining heart health.

Following acute MI, the activated cardiac fibroblast phenotype
undergoes dynamic changes from an inflammatory to a
noninflammatory state, driving extracellular matrix regulation
and ultimately supporting scar formation (129). Premature ageing
of CFs reduces the production of ECM components, such as
collagen, and may lead to the inhibition of reparative fibrosis in
wounds during healing. However, under chronic pressure loading,
the premature ageing of CFs may play a protective role by reducing
ECM deposition and preventing excessive fibrosis, thereby
preventing further decreases in cardiac stiffness and function
(127, 128). Furthermore, the overexpression of matricellular
protein (CCN1) may induce CF senescence, thereby reducing
myocardial fibrosis and enhancing cardiac function post-MI, thus
playing a beneficial role in acute ischemia (84). These findings
suggest potential positive effects of fibroblast senescence in
some cases.

However, some studies indicate that the beneficial effects of CF
senescence require a balance with the potentially deleterious effects
of ageing. Gavin D. Richardson et al. found that following
myocardial ischemia/reperfusion injury (IRI), biological processes
associated with fibrosis and inflammation are attenuated upon the
administration of the antiaging agent navitoclax, thereby improving
cardiac function and reducing the scar size (130).

Interestingly, NEIL3 is an enzyme involved in DNA repair
processes that minimizes oxidative damage to DNA by recognizing
and removing oxidized bases. CFs proliferate excessively in the
hearts of Neil3 ™~ mice, but the risk of cardiac rupture remains
(131). DNA damage caused by Neil3 deletion may initiate the
ageing phenotype in the cardiac microenvironment via SASP-
mediated paracrine signaling. This process increases MMP2
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expression, leading to ECM degradation and, ultimately, cardiac
rupture (131, 132). Cardiac fibrosis tends to increase with age and is
correlated with HFpEF (133). Some molecules, such as miR-1468-
3p and SIRT6, promote the ageing of CFs by regulating TGF-B1
signaling, which in turn increases the occurrence of myocardial
fibrosis (134). These studies suggest that regulating the ageing
balance of fibroblasts is crucial for treating CVD.

3.5 Ageing in monocyte/macrophage

Stoneman et al. showed that the quantity of monocytes/
macrophages significantly promote the development of
atherosclerotic plaques, including increasing the collagen content
in plaques and the formation of necrotic cores (135). Monocytes
undergo a metabolic shift toward glycolysis and enhance pro-
inflammatory signaling upon stimulation with oxidized low-
density lipoprotein (ox-LDL) (136). Within the intima, these
monocytes differentiate into macrophages under macrophage
colony-stimulating factor (M-CSF) regulation (137). The resulting
M1 macrophages promote inflammatory responses through
abundant secretion of growth factors and cytokines, particularly
TNEF-o and IL-1P - two central mediators of atherosclerosis-related
inflammatory pathways (138). These activated M1 macrophages
further stimulate CFs via the Smad3 signaling pathway by releasing
profibrotic factors (particularly TGF-B1), thereby upregulating
collagen and MMPs production, which ultimately leads to
abnormal extracellular matrix deposition and remodeling (139).
In contrast, M2 macrophages exhibit anti-inflammatory properties
through IL-4, IL-13, and IL-10 secretion.

Ageing macrophages have a greater effect on plaque formation.
Senescent macrophages can undergo polarization towards the M1
phenotype and release SASP factors, including TNF-a, IL-6, IL-1,
CCL2, and MMP 9, the collagenase enzyme. In addition, senescent
macrophages have impaired efferocytosis capacity, increasing the
expansion and vulnerable plaque shape of necrotic cores (140).
Their collective actions contribute to the accelerated advancement
of atherosclerotic plaques (141). Senescent macrophages
accumulate in the subendothelial area during the early stage of
AS and drive the pathological development of AS by increasing the
expression of inflammatory cytokines and chemokines. In the late
stages of AS, macrophages increase plaque instability, which is
characteristic of elastic fiber fragmentation and fibrous cap
thinning, by increasing metalloproteinases (142).

3.6 Ageing in Dendritic cell

In CVDs, DCs act as antigen-presenting cells (APCs) to
influence the progression of AS by regulating Tregs (143).
Senescent DCs exhibit downregulated expression of MHC-I/II
molecules, leading to impaired T cell activation and compromised
immune surveillance functions. However, different DC subsets
present within the vessel wall each have unique functions, which
reflect their diversity and complexity in CVDs. For example,
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CD103" DCs are present in the normal arterial wall and exert
anti-AS effects mainly by inducing Tregs, whereas CCL17" DCs
exert pro-AS effects mainly by limiting Treg production. In Ldlr™~
mice, impaired autophagy in CD11b" DCs due to Atgl6ll
deficiency promotes aortic CD4" Treg cells expansion and
reduced AS (144). The role of pDCs in regulating AS is also
complex. On the one hand, pDCs promote Treg differentiation by
releasing indoleamine 2,3-dioxygenase (IDO) and chemokine (C-C
motif) receptor 9 (CCRY), thereby producing IL-10 and mitigating
AS progression (145). On the other hand, pDCs also accelerate AS
formation by producing IFN-o.

Notably, senescence is associated with increased DC activation
and lipid contents in DCs compared with the characteristics of DCs
in young adult and aged mice. The regulation of lipid accumulation
and activation of DC subsets may be attributed to the decrease in
the response to infection with ageing (146). Although increased
accumulation of DCs and Tregs has been reported in the murine
atherosclerotic intima, the role of senescent DCs in CVD
development remains unclear (147).

3.7 Ageing in T cell

During the development of AS, antigen-presenting cells (APCs)
present antigens produced from components such as LDL to naive
CDA'T cells. This process results in the stimulation of antigen-
specific CD4™T cells and the secretion of the proinflammatory
cytokines IFN-y and TNF or the anti-inflammatory cytokine IL-
10 to regulate macrophage polarization (148). Therefore, T cells are
bifaceted in the regulation of the establishment and stability of
atherosclerotic plaques, which can not only exert beneficial
inhibitory effects but also contribute to facilitating the formation
of plaques.

Ageing T cells are associated with CVD pathological
progression. In older individuals, an increase in CD4+ T-cell
populations with high expression levels of IL-17 and IFN-y has
been observed. These cells also display characteristics commonly
associated with ageing, such as decreased CD28 expression and
elevated NKG2D levels. Interestingly, these changes are strongly
linked to metabolic risk factors for CVDs (149). Recent findings
have shown that cytomegalovirus (CMV) seropositivity, a widely
recognized driver of T-cell senescence, is closely linked to the
incidence of CHD. Additionally, there is a positive correlation
between CMV seropositivity and the risk of stroke, MI, and
mortality from CVDs (150, 151).

Furthermore, the presence of aged T cells in the bloodstream is
linked to disease relapse and the emergence of additional CVDs
among individuals diagnosed with acute coronary syndrome (152).
Indeed, the detrimental impact of ageing-related T cells on CVDs
has been documented in mice. Specifically, in a mouse model of
hypertension induced by Ang II, the introduction of T cells from
aged mice into young recipients expedited cardiac and renal damage
through an increase in IFN-y secretion, thereby fostering
inflammation and fibrosis. A recent study revealed that ageing-
related cardiovascular changes, such as aortic dilatation, partial
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rupture, and myocardial dysfunction, developed in a mouse model
of premature T-cell failure due to mitochondrial dysfunction (153).
The results of this study suggest that the presence of aged T cells
may directly impact the progression of CVDs.

4 Endocrine ageing and sex-specific
differences in cardiovascular ageing

Endocrine ageing, a core aspect of the biology of aging, has
garnered increasing attention. Research indicates that the decline in
estrogen, testosterone, growth hormone (GH), and thyroid
hormone (TH) levels is closely associated with cardiovascular
dysfunction, increased vascular stiffness, elevated inflammation,
and myocardial remodeling. Furthermore, sex differences are
evident throughout the spectrum of cardiovascular disease.
Women experience relatively stronger cardiovascular protection
before menopause, but this risk rises rapidly post-menopause. In
contrast, men exhibit a higher vascular risk profile due to age-
related declines in androgen from midlife onward. These findings
suggest a significant interaction between endocrine aging and
biological sex differences in the process of cardiovascular ageing.

4.1 Estrogen and cardiovascular protection

Sufficient literature demonstrates that estrogen exerts multiple
protective effects on the cardiovascular system, including promoting
vasodilation, protecting endothelial function, improving lipid
metabolism, reducing inflammation and mitigating oxidative stress
(154). Estrogen primarily exerts its pleiotropic protective effects
through nuclear receptors (ER0/ERP) and membrane-associated
receptors (GPER).

In the regulation of vascular tone, ERt rapidly activates eNOS
through the PI3K/Akt signaling pathway, mediating the rapid
release of NO from ECs (155).NO serves as a crucial vasodilator
that effectively dilates blood vessels, improves endothelial function,
and exerts anti-atherosclerotic effects. Conversely, reduced NO
levels diminish vascular antioxidant capacity and exacerbate
inflammatory responses.

Estrogen exerts a positive regulatory effect on lipid metabolism. It
enhances the production of high-density lipoprotein (HDL) by
inhibiting hepatic lipase activity and accelerates the clearance of low-
density lipoprotein (LDL) through upregulation of LDL receptor
expression. During the menopausal transition, decreased estrogen
levels accompanied by a relative increase in androgen levels may lead
to disordered lipid metabolism, thereby increasing the risk of AS (156).
Estrogen regulates lipid metabolism mainly through genomic and non-
genomic effects mediated by estrogen receptors (ERs). Among them,
ERo. mainly promotes the transport of cholesterol from peripheral
tissues (such as arterial wall macrophages) to the liver by regulating
apolipoprotein E (APOE) and cholesterol reverse transporter ABCA1/
ABCG], thereby enhancing HDL biosynthesis (157).

In addition, estrogen plays a role in vascular protection through
various mechanisms such as anti-oxidation, promoting NO production
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and inhibiting inflammatory signaling pathways. Activation of ERol
can inhibit NF-xB and NLRP3 inflammasome signaling pathways,
reduce the release of inflammatory factors such as IL-6 and TNF-a,
thereby reducing vascular endothelial inflammation (158). ERf inhibits
LDL oxidative modification by enhancing the activity of superoxide
dismutase (SOD) and glutathione peroxidase (GPx), reducing the
accumulation of reactive ROS (159).

Although a large amount of evidence supports that estrogen has a
protective effect on the cardiovascular system, the clinical application
of its alternative therapy (ERT) is still controversial. A number of
large-scale clinical trials have suggested that ERT may increase the
risk of stroke and thromboembolic events, so its benefits and safety
should be carefully evaluated in translational applications (160).

4.2 Androgens and cardiovascular
homeostasis

The effect of androgen on CVDs is a complex and controversial
topic. However, most studies suggest that elevated TES levels have a
protective effect on the cardiovascular system.

Early clinical studies have found that the incidence of
hypertension and coronary artery disease in men is higher than
that in premenopausal women, thus forming the view that TES and
other androgens may be detrimental to cardiovascular health (161).
However, the latest clinical and animal research evidence overturns
the traditional understanding that androgens have significant
benefits for male blood pressure and metabolism - both of which
are key risk factors for CVDs (162). Systematic follow-up
evaluations of early epidemiological investigations, clinical studies,
and animal experiments revealed that these initial studies had many
methodological flaws in experimental design, model selection, and
data analysis (163, 164). Epidemiological studies have shown that
low androgen levels are an independent risk factor for CVDs (165,
166). Low TES is often accompanied by lipid metabolism disorders,
insulin resistance and central obesity.

The protective effect of TES on the heart is mainly manifested in
its diastolic vascular function and endothelial protection. The core
mechanism of TES relaxing blood vessels is to activate cGMP-PKG
signaling pathway by promoting NO synthesis, and then open BKca
channel (167, 168).In rat aortic tissue, TES significantly enhances
NO synthesis through the androgen receptor and calcium influx,
whereas the calcium channel blocker verapamil attenuates TES-
induced NO production (169). Cardiovascular ageing is closely
associated with reduced NO synthesis in ECs. Androgens help
counteract this process by promoting eNOS activity and NO
production, thereby enhancing the antioxidant capacity of ECs—a
mechanism aligned with cardiovascular anti-ageing pathways.

At physiological levels, androgens can improve endothelial function
and enhance antioxidant capacity. However, supraphysiological doses
may lead to adverse effects, such as hypertensive heart disease, increased
risk of venous thrombosis, and recurrence in patients with prostate
cancer (170, 171). However, meta-analyses have also indicated that
TES replacement therapy is safe in the short to medium term, with no
higher risk of cardiovascular events compared to men not receiving TES
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treatment (172). In summary, current clinical evidence is insufficient to
support the beneficial effect of androgen replacement therapy on CVDs,
and further large-scale clinical trials are needed to evaluate its efficacy
and safety.

4.3 Growth hormone and the
cardiovascular system

With the increase of age, the secretion of growth hormone (GH)
decreases gradually. Some elderly people have age-related GH
deficiency. Since the GH/IGF-1 axis plays a critical role in the
development and functional regulation of the cardiovascular
system, reduced GH secretion is considered to be closely
associated with metabolic disorders and an increased risk of CVDs.

The GH/IGF-1 axis maintains cardiac structure and metabolic
homeostasis by promoting myocardial gene expression, enhancing
amino acid uptake and protein synthesis, and regulating
cardiomyocyte size. It upregulates muscle protein mRNA,
augments type I calcium channel activity, improves calcium
sensitivity, and increases Ca > -ATPase levels, thereby optimizing
calcium handling and contractility (173). Physiological GH/IGF-1
signaling is crucial for normal heart mass and function.

In the vascular system, GH/IGF-1 receptors are widely expressed.
Experimental studies indicate that GH/IGF-1 exerts angiogenic factor-
like effects by inducing the proliferation and migration of vascular
endothelial cells and promoting the formation of new capillaries (174).
Furthermore, it enhances vascular endothelial function and regulates
vasomotion through stimulating NO synthesis, thereby playing a key
role in maintaining vascular homeostasis.

In addition, GH exerts metabolic effects including promoting
protein synthesis, stimulating lipolysis, and suppressing glucose
utilization. It also modulates vascular tone, thereby influencing
peripheral resistance and blood pressure. Consequently, abnormal
GH secretion not only contributes to metabolic disorders but may
also disrupt blood pressure homeostasis, elevating the risk of
atherosclerosis and other cardiovascular diseases.

Clinical evidence indicates that GH replacement therapy improves
the lipid profile (reducing LDL-C and increasing HDL-C), restores
vascular endothelial function, and lowers inflammatory markers—such
as high-sensitivity C-reactive protein, IL-6, and TNF-0—in patients
with growth hormone deficiency, while also reducing carotid intima-
media thickness (175). Some studies further suggest that GH treatment
can enhance cardiac function, exemplified by reduced left ventricular
end-systolic volume and improved ejection fraction (176). However,
large-scale prospective clinical trials using cardiovascular events as
primary endpoints are still lacking, and the long-term cardiovascular
benefits of such therapy require further validation (177).

4.4 Thyroid hormone and cardiovascular
system

Thyroid hormones (TH) play a critical role in maintaining
cardiovascular homeostasis by regulating heart rate, myocardial
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contractility, and systemic vascular resistance. Thyroid dysfunction
is frequently observed in patients with CVDs, with subclinical
hypothyroidism (SCH) being the most common form (178).
Epidemiological evidence consistently indicates that the
prevalence of overt hypothyroidism and SCH increases with
advancing age and is strongly associated with dyslipidemia,
hypertension, diabetes, and other cardiovascular risk factors
(179-181).

Thyroid dysfunction affects cardiovascular function by altering
the levels of T3, T4 and TSH. T3 binds to nuclear thyroid hormone
receptors (TRs) in cardiomyocytes, promoting the synthesis of
contractile proteins such as myosin heavy chain V3, and
enhances myocardial contractility by upregulating B1-adrenergic
receptor expression (182). In addition, T3 increases intracellular
cAMP levels, which upregulates Ca®"-ATPase activity and thereby
improves diastolic relaxation. Moreover, thyroid hormones can
activate the PI3K/AKT signaling pathway to stimulate NO
production in vascular endothelial cells, ultimately reducing
systemic vascular resistance (183).

Thyroid hormone also regulates lipid metabolism by acting on
genes such as the LDL receptor (184). TSH is positively associated
with elevated lipids, insulin resistance, and hyperglycemia. TSH not
only affects lipid metabolism indirectly by regulating TH levels, but
also acts directly on hepatic TSH receptors to activate CAMP/PKA/
CREB signaling pathways and promote cholesterol synthesis. This
explains the phenomenon that SCH patients have elevated lipids
despite normal TH levels (185).

Levothyroxine is a commonly used drug for the treatment of
hypothyroidism. Available studies have shown that levothyroxine
replacement appears to improve left ventricular function,
endothelial function, and lipid metabolism and partially reverse
the pathological effects of hypothyroidism on the cardiovascular
system (186). However, there remains a lack of consistent evidence
for its cardiovascular benefit in SCH patients, which needs to be
verified by further large-scale prospective studies.

In general, these changes in hormone levels directly or indirectly
contribute to the development and progression of CVDs mainly
through the regulation of lipid metabolism, the impact of
inflammatory factors, and the SASP. From the therapeutic
perspective, although hormone replacement therapy (HRT) and
selective estrogen receptor modulators (SERMs) can improve
endothelial function and lipid metabolism disorders, their long-term
safety remains controversial. Although TES replacement therapy is
increasingly active, the results of studies on cardiovascular outcomes
are variable and require strict weighing of risks versus benefits.
Compared with systemic sex hormone intervention, targeting the
clearance of senescent cells and SASP may more accurately and
safely intervene in the endocrine ageing process.

5 Targeting aging to alleviate CVDs

A large body of data suggests that ageing cardiovascular cells
add to and accelerate the development and progression of CVDs.
Hence, the targeted clearance of senescent cells represents a
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promising therapy for averting or managing age-related ailments
such as CVDs (187). While senescent cells can originate from
various tissues, diseases, and cell types, they exhibit common
ageing mechanisms and biochemical characteristics, which opens
the possibility of treating or delaying ageing-related diseases by
removing senescent cells. As early as 2004, a report noted that the
burden of senescent cells in mammals is inversely proportional to
their healthy lifespan. This insight has prompted researchers to
explore the development of targeted therapies to eradicate these
ageing cells (188). Since then, the therapeutic elimination of
senescent cells has emerged as a groundbreaking strategy to
decelerate ageing and potentially inhibit disease progression.

5.1 Drug therapy

5.1.1 Senolytics: selective removal of senescent
cells

Senolytics, compounds designed to target and eliminate
senescent cells selectively, facilitate this process primarily by
inhibiting antiapoptotic factors. In 2015, the Kirkland trial at the
Mayo Clinic in the United States first reported the first group of
senolytics, dasatinib and quercetin (Table 1) (206). Dasatinib, a
commonly employed medication for leukemia treatment in clinical
settings, effectively inhibits both Bcr-Abl fusion gene I and Src
tyrosine kinase (207). Quercetin, a flavonol compound, can
suppress PI3K activity, increase SIRT1-213 expression (208) and
impede mTOR signaling (209). The combination of dasatinib and
quercetin (D+Q) enhances the clearance of senescent cells and
promotes improvements in cardiac function and carotid vascular
reactivity in older mice.

Interestingly, at the time, the Kirkland team noticed an essential
phenomenon: the activity of proapoptotic pathways increased
significantly in senescent cells. Based on this result, they proposed
a bold hypothesis: senescent cells rely on senescent cell
antiapoptotic pathways (SCAPs) to antagonize apoptosis, thus
allowing them to eventually survive (206). The theoretical
hypothesis of SCAPs proposed by the Kirkland team at the time
was confirmed by a series of subsequent studies in multiple
laboratories; at the same time, many novel senolytics emerged
based on this feature of senescent cells (Table 1).

Subsequently, navitoclax (ABT-263), an inhibitor of the
synthetic BCL-2 protein family (which includes Bcl-2, Bcl-XL,
and Bcl-w), was identified as a third-generation senolytic drug
(210, 211). Experiments performed by Childs et al. demonstrated
that the depletion of senescent cells by ABT-263 (navitoclax)
significantly inhibited AS in the aortic arch of Ldlr” mice (142).
ABT-263 also promotes the clearance of senescent cardiomyocytes,
thereby reducing myocardial fibrosis and cardiomyocyte
hypertrophy (212). ABT-263 administration in mice with
simulated MI alleviates myocardial remodeling, enhances diastolic
function, and increases the overall survival of aged mice (213).

Piperlongumine (PL) is also a senolytic that promotes apoptosis
in senescent cells. PL kills WI-38 fibroblasts, but does not induce
ROS generation, by inducing apoptosis (196). The combined use of
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PL with ABT-263 resulted in enhanced antiaging activity. These
findings suggest that we can reduce the dose of ABT-263 when
administered in combination with the other two drugs, significantly
reducing the adverse effects of ABT-263. However, the antiaging
mechanism of PL needs to be clarified. Notably, senescent cells
share survival traits with cancer cells. Thus, PL has shown promise
in inducing apoptosis in these cells by suppressing the PI3K/Akt/
mTOR signaling pathway (206).

In 2017, scientists such as Kirkland discovered that drugs such
as fisetin and the BCL-XL inhibitors A1331852 and A1155463 also
have basic antiaging effects (195). In recent years, a growing array of
senolytics with antiaging potential has been identified, including
sexual small molecules, natural products and their key components,
as well as peptide inhibitors designed to target known SCAPs (e.g.,
FOXO4-DRI) (204). FOXO4-DRI can interfere with the interplay
between FoxO4 and p53 in senescent cells and trigger apoptosis in
senescent but unhealthy cells by releasing and activating p53.

Interestingly, most reported senolytics appear to clear only one
or several specific types of senescent cells. For example, fisetin
explicitly triggers programmed cell death in aged human umbilical
vein endothelial cells (HUVECs). However, it does not have any
senescence-inducing effects on aged IMR90 cells, human lung
fibroblast lines, or primary human preadipocytes (195).
Navitoclax, A1331852, and A1155463 exhibit the ability to trigger
programmed cell death in aged HUVECs and IMR90 cells but show
limited efficacy in inducing apoptosis in senescent preadipocytes
(214). In contrast, dasatinib selectively induces apoptosis in
senescent human preadipocytes more efficiently than in HUVECs
(206). Individual senolytic drugs have different effects even when
they act on a specific type of cell. For example, navitoclax has
apoptosis-inducing effects on senescent embryonic fibroblasts such
as IMR-90 cells. However, its efficacy is relatively low for senescent
primary lung fibroblasts (211). Hence, accurately defining or
drawing conclusions about the generalizability and effectiveness of
particular senolytics without thorough empirical examinations
is difficult.

A recent study revealed that procyanidin C1 (PCC1) can safely
and efficiently clear various cell types and senescent cells generated
by different senescence triggers (205). In addition, PCC1
significantly improved the physiological function and lifespan of
ageing mice, and the creatinine, body weight, urea and immunity of
the mice were not affected throughout the process. Phytochemical
senolytics of natural origin, similar to PCCI, deserve in-depth
exploration as potential antiaging agents.

5.1.2 Senomorphics: SASP inhibition

The SASP contributes to both the generation of senescent cells
and the enhancement of senescence within the microenvironment
through paracrine and autocrine signaling mechanisms.
Senomorphics, which inhibit the SASP without killing senescent
cells, are another approach to alleviate tissue disturbances, organ
regression, and body ageing caused by cellular ageing.

Senomorphics can lower SASP expression levels in senescent
cells either directly or indirectly. This process is achieved by
inhibiting various transcription factors, such as NF-kB, the JAK2/
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TABLE 1 Senolytics treatment in age-related diseases.

Age-related

10.3389/fimmu.2025.1635736

Compounds Target (or targets) ; Developtment status
diseases
Alzheimer disease Clinical trial: NCT04685590 (189)
L . N Idiopathic pulmonary . .
Dasatinib (D)and Quercetin (Q) | Pan-receptor tyrosine kinases fibrosis Clinical trial: NCT02874989 (190)
Chronic kidney disease Clinical trial: NCT02848131 (191)
Ovarian cancer Clinical triatNCT02591095 (192)
Navitoclax (ABT-263) Bcl-2, Bcl-X; and BCL-W
RAS-mutant tumors Clinical trial: NCT02079740 (193)
ABT737 BCL-X and BCL-W, Aged lungs and skin in vivo experiment: K5-rtTA/tet-p14 transgenic mice (194)
A1331852 and A1155463 BCL-X;, NA in vitro experiment: HUVECs and IMR90 cells (195)
. . in vitro experiment: human WI-38 fibroblasts and
Piperlongumine(PL) Unknown NA (196)
senescent cells
Human progeroid syndrome  in vivo experiment: Erccl’* mice (197)
[77DMAC P Nephropathy and in vivo experiment: apoE”" mic (198)
in vivo experiment: aj ice
Atherosclerosis P P
Fisetin PI3K-mTOR Progeria in vivo experiment: fl p16*"**% Erccl* mice (199)
Curcumin NF-xB Neurodegenerative disease Clinical trial: NCT01383161 (200)
. in vivo experiment: immunodeficientnude NMRInu/nu
Lung fibrosis . (201)
mice
Na+ /K+ -ATPase
C‘ardi.ac glycosides (ouabain, Tumor cells and senescent in vivo experiment: C57BL/6] mice 202)
digoxin) cells
tinoid-related orph
retinold-refated orphan Atherosclerosis in vivo experiment: ApoE'/ " mice (203)
receptor-y
FOXO4-DRI FoxO4-p53 in vivo experiment: Xpd" ™" mice (204)
NOXA and PUMA(BCL-2
procyanidin C1 (PCCI) Membe:)“ ( NA in vivo experiment: C57BL/6L mice (205)

STAT3 signal transduction pathway, the TRAF6/TAKI1
inflammatory signal transduction pathway, the mTOR protein
kinase, and other signaling pathways involved in inducing and
sustaining the SASP (215).

Prior research has demonstrated that NF-xB inhibitors can
reduce the expression of proinflammatory components of the SASP,
especially cytokines and chemokines (216). Resveratrol and
epigallocatechin gallate (EGCG) are both NF-kB inhibitors. The
former downregulates the levels of SASP-related proinflammatory
cytokines such as IL-8 and TNF-o by inhibiting the SIRT1/NF-kB
signaling pathway (217). The latter can directly downregulate the
production of TNF-o and IL-6 in 3T3-L1 preadipocytes (218).

Similar natural compounds include naringenin, apigenin,
pterostilbene, kaempferol, and catechin, which are relatively safer
than synthetic compounds and have better application prospects
(219, 220). Rapamycin and its analogues (rapalogs), on the other
hand, reduce SASP expression levels by inhibiting mTOR activity
and can prolong the healthy lifespan and overall lifespan of mice
(221, 222). Metformin, a drug that effectively treats the symptoms of
individuals with type 2 diabetes mellitus (T2DM), can inhibit SASP
expression and alleviate age-related chronic diseases (223). It
impedes tumor development by reducing SASP production
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through the inhibition of IKK/NF-kB activity (224). Ruxolitinib, a
tyrosine kinase inhibitor, is a JAK1/JAK2-STAT3 pathway-
targeting agent that inhibits the development and progression of
the SASP in vitro and in vivo (225). In a population of older
individuals diagnosed with myelodysplastic syndrome and a
median age of 65 years, the administration of ruxolitinib
alleviated the intensity of asthenia symptoms, encompassing
factors such as weight, strength, and excessive appetite (226).

However, the issue that arises from the inhibition of
intracellular pro-SASP signaling is the potential increase in cancer
risk due to the disruption of SASP factor expression. For example,
in mouse lymphoma models, downregulation of the SASP by the
inhibition of NF-xB attenuates immune surveillance following
therapeutic ageing and synergizes with p53 insufficiency to lead to
ageing escape, resulting in treatment resistance and relapse (216).
Future in-depth clinical studies specifically addressing these issues
are still needed.

Although so many senolytics and senomorphics have been
found, most of them are still in the stage of in vitro and animal
experiments (Table 1). Animal models offer the advantage of
rapidly validating theories and mechanisms, but their limitation
lies in the gap from the pathological ageing environment in
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humans. More importantly, in the same aging research, different
laboratories may use natural aging mice, transgenic models, drug-
induced models, etc., resulting in significant differences in the effect
of drugs on scavenging senescent cells. Moreover, the disease course
in animal models progresses much faster than human natural
ageing, which may exaggerate drug efficacy or obscure long-term
adverse effects. In addition, many senolytics or senomorphics
demonstrate promising results in animal studies, but their
effectiveness is highly dependent on cell type. For instance,
navitoclax effectively eliminates senescent VSMCs in mice, yet
shows limited efficacy in other cell types.

At present, clinical trials of anti-ageing drugs targeting CVDs
have not yet been initiated and remain largely confined to metabolic
diseases or osteoarthritis. Although theoretical foundations and
animal experiments provide important mechanistic insights, the
results should be interpreted with caution when translated into
clinical practice. The development of anti-aging drugs specifically
targeting CVDs will still require a long process of exploration.

5.2 Increasing immune surveillance of
senescent cells

Under physiological conditions, senescent cell clearance
primarily relies on apoptosis and immune-mediated mechanisms.
However, most senescent cells acquire anti-apoptotic properties,
rendering the immune system crucial for their elimination.
Currently, two principal immunotherapeutic strategies exist for
cardiac injury repair: molecular-level interventions targeting IL-
1B to mitigate inflammatory responses, and cellular-level
approaches utilizing senescence-specific ligands to direct immune
cell-mediated recognition and clearance.

The IL-1B-IL6-CRP axis constitutes a central inflammatory
pathway in atherosclerosis and cardiovascular disease, where IL-1P3
serves as the upstream regulator that activates the NLRP3
inflammasome to induce ECs expression of adhesion molecules,
thereby promoting inflammatory cell recruitment and macrophage
activation. Furthermore, IL-1B enhances IL-6 production, which
stimulates hepatic synthesis of CRP, fibrinogen, and plasminogen
activator inhibitors (227). The CANTOS clinical trial demonstrated
that IL-1B inhibition with canakinumab significantly reduced
cardiovascular risk in patients with elevated inflammation (hs-CRP
>2 mg/dL) independent of LDL modulation, but there were limitations
of increased risk of infection and no improvement in mortality (228).
Conversely, the broad-spectrum anti-inflammatory drug methotrexate
showed no cardiovascular benefit, confirming the need for pathway-
specific interventions (229). These findings highlight the therapeutic
potential of developing novel interventions against specific pathogenic
pathways in AS, including chemokine-receptor interactions, immune
checkpoint, immunemetabolic modulation, and hormonal/lipid
mediator networks, which may collectively overcome the limitations
of conventional anti-inflammatory strategies while providing more
precise therapeutic effects (230).

Emerging findings indicate that various immune cells, such as
macrophages, NK cells, neutrophils, and cytotoxic T cells, are involved
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in the immunosurveillance of senescent cells (231). Senescent cells
recruit corresponding immune cells for recognition and clearance by
expressing different ligands on their surface. For example, senescent
IMR-90 fibroblasts increase the expression of MICA and ULBP2, the
corresponding ligands of the NK cell-activating receptor NKG2D,
which triggers their targeted clearance by NK cells (232).
Furthermore, specific markers such as major histocompatibility
complex class IT (MHCII) molecules may be expressed by senescent
cells, enabling their precise identification and subsequent elimination
by CD4" T cells within the immune system (233). However, how these
immune cells clear apoptotic or senescent cardiovascular cells remains
unknown. Notably, chimeric antigen receptor (CAR)-T cells may be a
potential immune surveillance tool for ageing.

The efficacy and specificity of cytotoxic T cells decline with age,
despite their crucial roles in identifying and eradicating foreign
entities within the human body. CAR-T cells represent a form of
live-cell therapy that allows T cells to more precisely identify cancer
cell surface markers by introducing chimeric antigen receptors
(CARs) onto the surface of T cells using genetic engineering
techniques. This technology has already shown considerable
efficacy in the treatment of a range of cancers (234) and is
FDAIl-approved for treating certain leukemias and lymphomas
(235). In recent years, CAR-T-cell therapy has been considered to
target the elimination of noncancerous cells, such as senescent cells.

Fortunately, CAR-T cells have progressed successively as
antiaging drugs. High expression of fibroblast-activating protein
(FAP) in CFs leads to myocardial fibrosis and myocardial disease. A
reversal of cardiac fibrosis and restoration of function were observed
in mice exposed to Ang II and phenylephrine following the adoptive
transfer of FAP-targeting CD8+ T cells generated using CAR-T-cell
technology (236). Corina Amor et al. reported that urokinase-type
plasminogen activator receptor (uPAR), a cell membrane protein, is
significantly upregulated with age. They have also successfully
documented the efficacy of CAR-T cells targeting uPAR in
clearing senescent cells both in vivo and in vitro (237). UPAR-
CAR-T cells improve exercise capacity, reverse liver fibrosis, and
ameliorate metabolic dysfunction in aged mice and mice fed a high-
fat diet (237).

Unlike senolytics, which are not system-specific and require
long-term repeated administration, uPAR-CAR-T cells
demonstrate enhanced targeted clearance and can achieve long-
term therapeutic and preventive effects with a single low dose
administration (238). These findings confirm the strong
therapeutic activity of antiaging CAR-T cells in addressing
ageing-related disorders. Notably, XuDong Zhao et al. recently
reported that NKG2D ligand (NKG2DL) was upregulated in
senescent cells (239). Accordingly, the team developed NKG2D-
CAR-T-cell therapy that selectively targets the consumption of
NKG2DL-expressing senescent cells in mice and juvenile
nonhuman animals while improving the function of multiple
organs. Nevertheless, pertinent evidence indicating that ageing
cardiovascular cells can produce NKG2DL is insufficient. In
summary, the utilization of specialized CAR-T cells for the
targeted elimination of aged cardiovascular cells holds great
potential as a viable approach.
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5.3 Cell replacement

Specific induction conditions can facilitate the differentiation of
stem cells into contractile cardiomyocytes, ECs, and smooth muscle
cells so that myocardial contractile function, vascular regeneration,
and myocardial regeneration are enhanced, thereby improving
cardiac function. Consequently, stem cell therapy represents a
promising method for replenishing regenerative cells. Currently,
induced pluripotent stem cells (iPSCs), mesenchymal stem cells
(MSCs), cardiac stem cells (CSCs) and embryonic stem cells (ESCs)
are among the primary types of stem cells employed for treating
CVDs. Among these cells, the clinical application of ESCs is
constrained by ethical considerations and the potential for
immune rejection.

IPSCs are cells with self-renewal and pluripotent differentiation
abilities obtained from autologous mature somatic cells after
reprogramming. Since Takahashi et al. discovered iPSCs in 2006,
their potential therapeutic effects on diseases, especially CVDs, have
been explored (240). Animal experiments indicated that iPSCs
could successfully differentiate into vascular ECs, cardiomyocytes
and VSMCs. Furthermore, injection of iPSCs into ischemic
myocardial tissue of rats has been shown to increase cardiac
ejection fraction and reduce fibrosis (241, 242). Another study
revealed that the integration of iPSC-derived cardiomyocytes,
ECs, and VSMCs into the ischemic myocardium of pigs via
intramyocardial microsphere transplantation enhanced the left
ventricular ejection fraction, improved myocardial metabolism,
and reduced the infarct size (243). In addition to the above
animal experiments, Osaka University officially performed a
phase I clinical trial of hiPSC-CM myocardial patches in January
2020 to assess their safety and potential efficacy in the hearts of
patients with ischemic cardiomyopathy (237). The above evidence
suggests that iPSC-CMs can be used as a new method for cardiac
regenerative therapy.

MSCs are a subset of adult stem cells with the capacity to
differentiate into mesodermal derivatives (chondrocytes, osteocytes,
and adipocytes), have powerful multilineage differentiation
potential and self-renewal ability, and have been widely used to
alleviate ageing-related diseases. MSCs primarily treat ischemic
CVDs through the following mechanisms (1): MSCs stimulate the
proliferation and differentiation of cardiac cells, as well as
angiogenesis (240) (2). MSCs promote cardiac repair and reduce
myocardial apoptosis by secreting growth factors and exerting
paracrine effects (244). Clinical trials of MSCs in CVD treatment
are also more mature, multiple trials have been completed, and the
expected results have been obtained.

In 2005, Hare et al. first used MSC transplantation to treat MI,
and this study yielded crucial findings regarding the safety and
effectiveness of allogeneic bone marrow stem cell applications (245).
A clinical trial conducted in 2015 involved a controlled,
multicenter randomized study of patients with chronic ischemic
cardiomyopathy. The aim of this study was to evaluate the safety
and efficacy of intramyocardial transplantation of allogeneic human
MSCs derived from the umbilical cords of different individuals
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(246). In addition, Bartolucci et al. assessed the safety and
effectiveness of administering intravenous infusions of MSCs
derived from human umbilical cords to individuals diagnosed
with chronic heart failure (247).

The above experiments demonstrated the safety of MSC
transplantation as well as the efficacy of improving myocardial
perfusion after MI. However, current clinical trials in CVD patients
are still at a very early stage, and some potential risks associated
with the systemic application of MSCs, such as embolism and
inflammation, still exist. In addition, the potential differences in
efficacy between MSCs from different sources must be circumvented
and elucidated in future studies.

Whether CSCs can be used for the treatment of CVDs is
controversial. In 2003, Beltrami et al. concluded that endogenous
stem cells exist in the heart and that c-Kit" cardiomyocytes cultured
in vitro, enriched, and injected into necrotic cardiomyocyte areas
were able to repair most necrotic areas and improve cardiac systolic
function (248). The study had significant repercussions in
academia, followed by the successive discovery of CSCs with
different surface markers, and the locations and proportions of
various CSC distributions have varied (249, 250).

However, the same approach was used by Jesty et al. (251) but
did not replicate the findings of Beltrami et al. (248) that c-Kit"
CSCs can be converted into cardiomyocytes in the infarcted
myocardium of adults. Van Berlo et al. (252) also questioned the
role of CSCs in treating MI reported by Beltrami et al. In 2018, after
an investigation by Harvard University and other relevant
authorities, Beltrami et al. were suspected of fabricating data and
paper fraud, which basically halted clinical trials of CSCs for the
treatment of CVDs.

However, in some clinical trials, such as the SCIPIO trial (253)
and the CADUCEUS trial (250), an intracoronary injection of
endogenous CSCs has been observed to enhance the left
ventricular ejection fraction, reduce the size of the myocardial
infarct and the amount of scar tissue, and enhanced regional
systolic function in patients with myocardial ischemia. Therefore,
although CSCs with different surface markers cannot differentiate
into cardiomyocytes, the paracrine effects of these cells can
potentially enhance the movement, growth, specialization, and
angiogenesis by cardiac stem cells within the body. Moreover,
they can enhance the recruitment of endogenous CSCs, hinder
cell apoptosis in the infarct region, inhibit myocardial remodeling,
and thus improve cardiac function (254, 255). Given that adult
cardiomyocytes still possess a relatively sluggish capacity for cell
division, enhancing their ability to proliferate into cardiomyocytes
and replace necrotic cardiomyocytes following myocardial ischemia
could emerge as a prominent area of focus in future research.

5.4 Other factors

In addition to pharmacological interventions, increasing
evidence suggests that modifiable lifestyle and environmental
factors play an important role in modulating cardiac ageing.
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Exercise has emerged as an effective strategy for the prevention
and rehabilitation of CVDs. Exercise promotes mitochondrial
biogenesis through AMPK regulation, increases cellular energy
metabolism, and enhances functional reserve in the
cardiovascular system. In addition, regular aerobic exercise can
reduce oxidative stress in ECs and suppress aging-related
inflammatory processes (256).

Dietary patterns significantly influence the ageing process. Both
caloric restriction (CR) and intermittent fasting (IF) have been
shown to delay aging through telomere lengthening and
modulation of key signaling pathways including AMPK, PKB/
AKT, and mTOR (257). Adherence to the EAT-Lancet dietary
pattern - characterized by increased consumption of vegetables,
fruits, whole grains, and nuts, along with reduced intake of animal-
derived foods, red meat, added sugars, and saturated fats - has been
associated with decelerated biological aging and extended life
expectancy (258). This dietary approach provides abundant
bioactive compounds such as omega-3 fatty acids, antioxidants
(vitamin C, carotenoids, and polyphenols), zinc, and vitamin D,
which exert multi-faceted anti-ageing effects. Its mechanisms of
action mainly include enhancing innate and adaptive immune
function, reducing oxidative stress damage, and improving
cellular metabolic homeostasis, thereby effectively delaying aging-
related inflammatory processes (259). The potential synergy
between dietary interventions and senolytic therapies represents
an emerging research frontier. Interestingly, 3-hydroxybutyrate (3-
HB) may serve as a crucial mediator connecting ketogenic diet,
intermittent fasting (IF), and exercise with extended health span.
The underlying mechanisms involve its anti-inflammatory
properties, attenuation of vascular aging processes, and
maintenance of immune homeostasis through CD8'T cell
regulation (260).

Conversely, environmental toxins significantly accelerate aging
processes through sustained genotoxic stress. Chronic exposure to
airborne particulate matter (PM2.5) promotes DNA damage,
micronuclei formation, and c¢GAS activation (261). Notably,
smoking cessation represents a key lifestyle intervention that
reduces inflammation and improves immune function (262).

6 Conclusions

With scientific and technological advancements and the
evolution of society, the ageing population trend has become an
inevitable social and medical problem in various countries around
the world. Ageing research has experienced unprecedented
momentum and potential in recent years. Previous findings
indicate that the accumulation of senescent cells potentially plays
arole in the progression of pathological states in different regions of
the cardiovascular system. The rapid development of antiaging
drugs and ageing intervention technologies will significantly
benefit various aspects, such as human health, medical progress,
and socioeconomic status. Despite these advancements, the
comprehension of the specific molecular mechanisms underlying

Frontiers in Immunology

16

10.3389/fimmu.2025.1635736

cardiovascular cell senescence remains limited, for example, how
the ageing of a single cardiac cell type leads to a specific disease
phenotype and how to screen highly selective markers for ageing
cardiovascular cells (10). These conditions have hindered the
development of effective methods to prevent or treat CVDs.

Investigational treatments are currently being explored with the
goal of achieving overall suppression of senescence and/or clearance
of senescent cells. Compared with senomorphics, which transiently
reduce SASP levels, senolytics have rapidly become a reasonably
effective and advantageous therapeutic strategy to prevent, delay, or
reduce various age-related diseases and organ dysfunctions in
recent years (263). Although multiple clinical trials on senolytic
interventions are currently being conducted, none have targeted
CVDs. In the future, more extensive randomized controlled trials
must be conducted to accurately assess and ensure medication
safety and treatment benefits and validate the preliminary results of
early clinical trials. In addition, gaining a more comprehensive
comprehension of the molecular mechanisms underlying immune
response is imperative. Furthermore, the specific identification and
targeting of ageing cardiovascular cells are crucial. Additionally,
advancements in genetic, epigenetic, or metabolomic mechanisms
related to cardiac cell senescence may provide enhanced
personalized therapeutic options for individuals suffering
from CVDs.
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