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Cardiovascular diseases (CVDs) pose a significant threat to the health of the

elderly population. As the global population ages and medical management

remains imperfect, reducing the medical burden of CVDs is of great importance.

Aging is a complex process that contributes to the development and progression

of CVDs through various mechanisms. The manuscript reviews the mechanisms

of aging and their impact on the cardiovascular system. We explore the role of

aging in the cardiac microenvironment, highlighting the changes that occur in

the heart’s cellular and molecular landscape as a result of the aging process.
KEYWORDS

cardiac microenvironment, aging, cardiac aging, therapy, inflammation
1 Introduction

Enhanced living conditions and medical advancements have significantly prolong human

lifespan (1). The proportion of the population aged 65 years and over is predicted to increase

substantially worldwide by 2030, accounting for approximately 19% of the total population

(2). Old age is generally regarded as a major and nonmodifiable risk factor for chronic, life-

threatening conditions (3), including CVDs, cancer (4, 5), and neurodegenerative diseases (6)

(Figure 1). Among these, CVDs represent the leading cause of mortality among the elderly

(7). During body ageing, the accumulation of senescent cells may adversely affect tissue

homeostasis (8, 9). Therefore, reducing the accumulation of senescent cells is important for

slowing the onset and progression of ageing-related CVDs.

In the cardiac environment, aging emerges as a stress response triggered by numerous

stimuli, such as telomere attrition, virus infection, hypoxia, oxidative stress, mitochondrial

dysfunction, protein imbalance, and impaired autophagy (10). Increasing evidence illustrates

the complex associations between cardiovascular cellular senescence and the pathogenesis as
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well as progression of CVDs, including atherosclerosis (AS), arterial

stiffening, aortic aneurysms, myocardial fibrosis and heart failure (11).

This manuscript discusses the phenotypic expressions and

underlying molecular pathways correlated with the ageing process

and their contribution to the development of CVDs. Additionally,

we assessed the advantages and challenges of targeting senescent

cells in preventing and managing ageing-related CVDs. The entire

framework of the article is depicted in Figure 2.

2 Molecular mechanisms of ageing

The ageing process in the heart is marked by several key molecular

mechanisms (Figure 3). Aging hinders tissue regeneration, whereas the

accumulation of progerin disrupts nuclear function. Impaired

autophagy and mTOR pathway dysfunction lead to the accumulation
Frontiers in Immunology 02
of damaged cellular components. Mitochondrial issues impact energy

metabolism and contribute to oxidative stress. When dysregulated, the

cGAS-STING signaling pathway can trigger inflammation. Telomeres

shorten with age, triggering a DNA damage response (DDR) that can

lead to senescence. The senescence-associated secretory phenotype

results in the release of inflammatory factors that degrade the

surrounding tissue. Epigenetic changes also influence the expression

of genes related to cardiac ageing. Together, these factors contribute to

the ageing characteristics of the heart.
2.1 Cellular senescence and ageing

Cellular senescence, characterized by irreversible exit from the

cell cycle and entry into a state of growth arrest, was initially
FIGURE 1

Cellular senescence is closely related to a variety of diseases throughout the body. In the cardiovascular system, cellular senescence leads to
dysfunction of ECs, VSMCs, etc., which in turn increases the risk of diseases such as hypertension, AS, and cardiac infarction. In the nervous system,
neuronal senescence may trigger neurodegenerative diseases, such as Alzheimer’s disease and Parkinson ‘s disease. In conclusion, cellular
senescence accumulates in systemic tissues and becomes a potential trigger for a variety of diseases.
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proposed by Hayflick and Moorhead in the 1960s (12, 13). This

phenomenon, initially described as limited in the ability of human

diploid cells to proliferate in vitro, is now recognized as a response

to various stressors, including telomere shortening, oxidative stress,

and chromatin structure abnormalities (14). During cellular

senescence, the retinoblastoma protein (Rb) is typically

dephosphorylated or hypophosphorylated via the p53/p21WAF1/

CIP1 or p16INK4a/Rb signaling pathway. This process halts cell

cycle progression, ultimately leading to senescence (10).

Senescent cells are characterized by the following traits (15, 16)

(1): increased expression and activity of senescence-associated b-
galactosidase (SA-b-gal) (2); increased levels of p21 and p16 (3); the
presence of nuclear senescence-associated heterochromatin foci

(SAHFs) (4); a senescence-associated secretory phenotype (SASP);

and (5) an abnormally enlarged cell size and flattened morphology.

Among these, the SASP is a distinctive secretory profile specific to

senescent cells and is a critical marker of cellular ageing (17). Below,

we extensively discuss the molecular mechanisms of ageing that

may occur in different cell types.
2.2 Progerin accumulation and ageing

Nuclear structural abnormalities emerging during cellular

senescence are dominated by progerin, a truncated form of Lamin

A generated by mutations in the LMNA gene (18, 19). Progerin

accumulation disrupts nuclear integrity and accelerates the aging

process, especially in the cardiovascular system.

Hutchinson – Gilford progeria syndrome (HGPS) is associated

with LMNA gene mutations leading to abnormal lamin levels.

Patients with HGPS exhibit calcification and abrasion of vascular

smooth muscle cells (VSMCs), along with significant adventitial
Frontiers in Immunology 03
fibrosis, leading to severe premature arteriosclerosis (20). However,

progerin overexpression in different cardiac cells leads to different

cardiac diseases in the HGPS mouse model. Selective overexpression

of VSMC-derived progerin induces endoplasmic reticulum (ER)

stress and atherogenesis (AS) (21, 22). Progerin accumulation in

endothelial cells(ECs) leads to cardiac fibrosis and cardiac

hypertrophy (23). Simultaneously, At the same time, progerin is

also elevated in individuals with dilated cardiomyopathy, which is

strongly associated with left ventricular remodeling and myocardial

ageing (24).

In HGPS mouse model, the massive accumulation of prelamin

A (Lamin A precursor) resulting from knockdown of Zmpste24

similarly causes nuclear lamina defects and accelerates VSMC

premature senescence (25). In human arteries, prelamin A is

prevalent in the media of VSMCs or atherosclerotic lesions in

older individuals, whereas it rarely accumulates in young and

healthy vessels. Consequently, prelamin A may emerge as a novel

biomarker for cardiovascular ageing and may participate in the

development of CVDs. Reducing prelamin A/progerin by injecting

CRISPR/Cas9 improves HGPS symptoms in mice, which highlights

a new therapeutic approach for improving age-induced CVDs

(26, 27).
2.3 Impaired autophagy and ageing

Autophagy is able to eliminate misfolded proteins and

dysfunctional organelles. Maintaining efficient autophagy is also

necessary for many cellular processes associated with lifespan

extension (28). Age-related decreases in autophagic activity,

attributed to diminished lysosomal function as well as decreased

expression of genes associated with autophagy, such as ATG7,
FIGURE 2

Overview of this review.
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contribute substantially to cardiovascular ageing (29–31). In

VSMCs, defective autophagy accelerates aging and promotes

atherosclerotic plaque formation; whereas in ECs, it exacerbates

vascular inflammation and impairs NO bioavailability, thereby

aggravating arterial stiffness and hypertension. In cardiomyocytes,

impaired autophagy leads to accumulation of dysfunctional

mitochondria and damaged proteins, which trigger myocardial

fibrosis and contractile dysfunction.

Mice with impaired autophagy exhibit worsened cardiac

dysfunction, whereas enhancing autophagy can enhance cardiac

function and alleviate age-related heart problems by eliminating

proteins with damage, dysfunctional organelles, and altered

DNA (32).

Key mechanisms of autophagy include the inhibition of the

target of rapamycin (mTOR) or the activation of 5-AMP-activated

protein kinase (AMPK) (33). mTOR inhibits autophagy in two

ways. First, mTOR directly inhibits unc-51-like kinase 1 (ULK1),

which is a critical initiator of the autophagic process. Second,
Frontiers in Immunology 04
mTOR exerts an inhibitory effect on autophagy by hindering

lysosome development, which is facilitated by impeding the

nuclear translocation of TFEB (34). mTORC1, a protein complex

formed by mTOR, is pivotal in the regulation of translational

processes. Inhibition of mTORC1 decelerates the rate of protein

translation, increasing the accuracy of mRNA translation into

proteins and improving protein folding precision. This process

contributes to slowing the ageing process by reducing

proteotoxicity and the accumulation of oxidative stress (35, 36).

The inhibition of mTOR expression to activate autophagy has been

shown to suppress VSMC replicative senescence and stabilize

progressive atherosclerotic plaques (37, 38).
2.4 Mitochondrial dysfunction and ageing

Mitochondrial dysfunction is a prominent feature of cellular

senescence, primarily driven by dysregulated mitochondrial
FIGURE 3

Signaling pathways and mechanisms of cellular senescence. Cellular senescence is a cellular state triggered by stress injury and some physiological
processes, which is mainly divided into replicative senescence and non-replicative senescence. Replicative senescence is caused by telomere
shortening due to continuous division of normal cells, and when telomeric DNA shortens to a certain extent, cells automatically turn on the ageing
program and prevent cell cycle progression through the p53/p21 and p16INK4A/Rb signaling pathways. Non-replicative ageing can be triggered by
various stress factors, and nuclear DNA damage is an important role. DNA damage-activated DDR can lead to p53 activation via ATM or ATR kinase
activation, which in turn triggers cell cycle arrest. DDR can also induce SASP secretion via the cGAS-STING pathway. SASP components secreted by
nearby senescent cells, such as IL-6, trigger the JAK-STAT signaling pathway, the so-called paracrine-induced senescence. In addition,
mitochondrial dysfunction has been implicated as a driver of cellular senescence, mainly through three different mechanisms, which have been
described in detail previously. ATM, Ataxia-Telangiectasia mutated; ATR, Ataxia-Telangiectasia and Rad3-related protein; CCF, cytoplasmic chromatin
fragments; MAPK, mitogen-activated protein kinases; mtDNA, Mitochondrial DNA; ULK1, UNC-51-like kinases 1.
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dynamics, mitochondrial DNA (mtDNA) damage, and oxidative

stress (39, 40). Imbalanced mitochondrial dynamics—including

hyperfusion (mediated by MFN1/2 and OPA1) and impaired

fission (due to reduced DRP1/FIS1 levels)—compromise

cardiomyocyte function and promote ageing (41–43). Mitochondria

are the factory of cell energy, and their dynamic imbalance will

damage the efficiency of ATP synthesis and produce ROS. Excessive

ROS generation directly damages ECs and vascular smooth muscle

cells, leading to arterial stiffening and plaque vulnerability. In

cardiomyocytes, persistent mitochondrial dysfunction impairs ATP

generation and activates pro-fibrotic pathways, contributing to

maladaptive remodeling and heart failure. Inflammatory signaling

triggered by mtDNA release through the cGAS–STING pathway

further links mitochondrial senescence to chronic vascular

inflammation and AS. Mitochondrial division contributes to the

removal of dysfunctional mitochondria by mitophagy.

Consequently, disruptions in fission-fusion balance (as evidenced

by hyperfusion) accelerates the accumulation of abnormal

mitochondria and oxidative proteins and triggers downstream

inflammatory signaling pathways. Currently, mitochondria can

promote cardiomyocyte senescence through three different

mechanisms. Anderson et al. reported that excessive reactive

oxygen species (ROS) production directly induces DNA and

telomere damage (44, 45). Chung et al. suggested that mtDNA

activates the cGAS-STING pathway, thereby stimulating SASP

release (45, 46). A third view suggests that mitochondria can act on

the AMPK-p53 signaling pathway, thereby accelerating

cellular senescence.
2.5 Inflammation and ageing

The cGAS-STING pathway and SASP constitute two

interrelated core elements of inflammation, a prominent feature

of cardiovascular ageing. Cyclic GMP-AMP synthase (cGAS) can

recognize exogenous DNA (bacterial viruses, dead cells, tumor cells,

etc.) and endogenous DNA (damaged chromosomes, mitochondria,

etc.) and bind to the obtained double-stranded DNA (dsDNA) to

form cyclic GMP-AMP (cGAMP) (47, 48). cGAMP binds and

initiates the STING protein located in the ER, initiating the

activation of its downstream signaling (49, 50). CDNs, DNA

damage, ER stress, and inherited gain-of-function mutations in

the gene encoding STING can directly activate STING, bypassing

the need for cGAMP (51, 52). Activated STING can initiate the

phosphorylation and nuclear translocation of IFN regulatory factor

3(IRF3) and nuclear factor-kappa B(NF-kB), which further

promotes the synthesis of IFN-I, tumor necrosis factor (TNF),

and IL-6 by cells (53). These inflammatory factors are also

prominent components of the SASP. Therefore, the cGAS-STING

pathway contributes to inflammatory ageing by facilitating the

secretion of SASP components from cells.

The mechanism of the SASP involves the activation of

transcription factors such as NF-kB, C/EBPb, and GATA4, which

are closely related to the chronic DDR, and the mTOR and p38

MAPK pathways (54). Many SASP-associated genes contain
Frontiers in Immunology 05
binding sites for NF-kappaB and C/EBPb b in their cis-regulatory

regions, and the upregulation of expression at these sites promotes a

positive feedback cycle. This cycle further consolidates the ageing

state of cells by communicating with the microenvironment

through NOTCH signaling, ROS, the cytoplasmic bridge, and the

secretion of small extracellular vesicles (sEVs) (10).

Persistent SASP and cGAS–STING activation fuel chronic

vascular inflammation, enhance endothelial dysfunction,

destabilize atherosclerotic plaques, and promote myocardial

fibrosis, thereby linking cellular senescence to CVDs progression.
2.6 Telomeres and ageing

Telomeres are protective caps at chromosome ends consisted of

repetitive TTAGGG sequences and associated proteins that prevent

chromosome degradation and fusion (55). These proteins help

avoid the recognition of telomeres as DNA damage, initiating the

DDR. Telomeres shorten as cell division repeats, and the shielding

proteins no longer protect DNA after a critical telomere length is

reached, thereby activating the DDR mechanism (56). This process

inhibits cell cycle progression by inducing the expression of p21 and

p16. The activation of the telomeric DDR (tDDR) also leads to the

generation of telomere-associated DDR sites (TAFs) or telomere-

induced DNA damage sites (TIFs), which are regarded as markers

of tissue ageing and cellular senescence in vitro (57).

Activation of the tDDR and the accumulation of TAFs are also

often causally linked to various age-related phenomena, including

mitochondrial dysfunction, altered nutrient perception, impaired

autophagy, a loss of proteostasis, and epigenetic dysregulation (57).

These findings suggest that many ageing hallmarks revolve around a

unified “telomere-centric” mechanistic principle (58).
2.7 Epigenetic regulation and ageing

Epigenetics pertains to biological mechanisms that influence

gene activity without modifying DNA sequences, impacting gene

expression through DNA methylation, histone modifications, and

noncoding RNAs (59). DNA methylation changes gene expression

through DNA methyltransferases (DNMTs) without altering the

DNA sequence, affecting the cell cycle, DNA repair capacity, and

cellular processes associated with cellular senescence. Thus, DNA

methylation is a marker of ageing and a critical regulator of cellular

ageing (60). Research indicates a link between the onset and

progression of CVDs such as coronary heart disease (CHD), heart

failure, and hypertension with DNA methylation (61, 62).

Modifications to histones have the ability to modify the binding

strength between histones and DNA double helices while recruiting

various adaptor proteins or effector proteins to remodel chromatin.

Sirtuins (SIRTs) represent a group of histone deacetylases that

effectively counteract ageing characteristics across various cell

types (63). In cardiomyocytes, SIRT3 prevents TGFb-induced
fibrosis by activating GSK3b (64). In ECs, SIRT1 regulates

endothelial nitric oxide synthase (eNOS) to mitigate oxidative
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damage (65) and deacetylates p65 to disrupt the interaction between

acetyltransferase P300 and NF-kB, thereby inhibiting NF-kappa B

activity (66).

Noncoding RNAs, including microRNAs (miRNAs) and long

noncoding RNAs (lncRNAs), are vital in regulating ageing

processes and CVDs. For example, when miRNA-22 is actively

expressed, it accelerates the ageing and migration of cardiac

fibroblasts (CFs) (67). LncRNAs bidirectionally regulate cardiac

regeneration and development. Linc1405 and the lncRNAs PANCR

and Hdn were found to induce the transformation of CFs into

cardiomyocytes, promoting cell differentiation and heart

development (68, 69). The repression of cardiac regeneration and

differentiation is observed in the presence of the lncRNA CAREL

(70). In summary, the regulation of cellular senescence involves

various stimulatory factors and pathways (Figure 3).
3 Cardiac ageing microenvironment

Cardiovascular resident cells and immune cells together

constitute the cardiac ageing microenvironment. Cardiomyocytes,

ECs, VSMCs, and fibroblasts in this microenvironment undergo

senescence in this microenvironment, accelerating cardiac

structural abnormalities and functional deterioration. The ageing

immune microenvironment includes monocytes/macrophages,

dendritic cells (DCs), and T cells, which has an impact on tissue

homeostasis by modulating the inflammatory response. All these cells

and their interactions shape the cardiac ageing microenvironment

and influence the resilience and ageing process of the heart.
3.1 Ageing in cardiomyocyte

Multiple cells collaborate to sustain the normal physiological

function of the heart. Therefore, the senescence of certain cell types

increases the risk of CVDs (Figure 4). Cardiac cells constitute

approximately 30%-40% of cardiomyocytes, which are essential for

generating the force required for the heart’s pumping function (71).

Cardiomyocytes that have reached senescence exhibit DNA damage,

ER stress, impaired mitochondrial function, and compromised

contractile performance and regulate the microenvironment

through the paracrine secretion of the SASP to induce local

noncardiomyocyte ageing (72). Many mechanisms that induce

cardiomyocyte ageing have been identified, including telomere

shortening (73), epigenetic changes (74), and the SASP (44), but

metabolic dysfunction is a key factor contributing to cardiomyocyte

ageing and decreased cardiac function (75).

Compared with other cells, cardiomyocytes exhibit a distinct

metabolic profile, relying primarily on fatty acids and glucose for

energy provision. The ratio of fatty acids and glucose in the energy

supply is dynamically regulated by developmental, physiological,

and pathological responses (76, 77). Fatty acyl-CoA (CoA) and

pyruvate serve as the primary substrates for ATP generation in the

mitochondria of cardiomyocytes and are produced through the

oxidation of fatty acids and glucose, respectively. CoA and pyruvate
Frontiers in Immunology 06
are regulated mainly by carnitine-palmitoyltransferase-1 (CPT1)

and pyruvate dehydrogenase (PDH) (78), which are rate-limiting

enzymes in mitochondria. CPT1 levels are significantly reduced

during ageing (79) and may lead to cardiac complications (80). A

lack of CPT1 exacerbates the ageing process in cardiomyocytes and

contributes to lipotoxic cardiac hypertrophy (81).

In addition, the expression levels of peroxisome proliferator-

activated receptor a (PPARa) and PGC-la, which are essential

regulators of fatty acid metabolism, decrease with ageing (82). In

mice prone to accelerated ageing, decreases in PPARa mRNA and

protein levels lead to increases in ceramide levels, which correlate

with the development of cardiac hypertrophy (83). Aged hearts

demonstrate a reduced capacity for fatty acid oxidation and rely

more on augmented glucose oxidation pathways to meet their

metabolic needs (84).

The insulin signaling pathway is essential for glucose metabolism

in cardiomyocytes and can be activated by insulin growth factor

receptor (IGFR) to induce the SASP and promote cardiomyocyte

senescence (85). More importantly, metabolic dysfunction impairs

mitochondrial function, impacting all substrates, including increasing

ROS generation (86). Defective mitochondria persist in the heart,

leading to exacerbated oxidative stress and injury, alongside the

activation of oxidative signaling pathways.

Senescent cardiomyocytes display diminished contractile function

and disrupted conduction patterns, resulting in cardiomyopathy and

arrhythmias (87). Alterations in themitochondrial membrane potential

and telomere shortening were observed in cardiomyocytes from mice

with Duchenne muscular dystrophy (DMD), suggesting cellular

senescence (88). Anthracyclines cause a dilated cardiomyopathy

phenotype linked to cardiomyocyte senescence, as shown by

increased mtDNA levels (89). In addition, ageing rat cardiomyocytes

display a decreased mitochondrial membrane potential, increased ROS

levels, and an attenuated ability to undergo electrical pacing, indicating

an increased risk of arrhythmia (90).
3.2 Ageing in endothelial cell

ECs are highly active monolayers that line the inner layers of

blood vessels and cover the inner surface of the entire circulatory

system (71). ECs not only form the vascular barrier, which helps

maintain blood flow, but also regulate vascular tone and blood

pressure by synthesizing vasoactive substances and growth factors

(91). However, ECs are highly susceptible to injury because they are

located between circulating blood and semisolid tissues and are

continuously exposed to unique injury–irritating environments

(hemodynamically generated pressures, circulating factors,

pathogenic stimuli, etc.). One of the consequences of EC injury is

cellular senescence, which causes impaired vasodilation and

vascular dysfunction. Senescent ECs can be observed in the hearts

of patients with diseases such as AS, heart failure, and aneurysms

(92). EC senescence is mainly caused by oxidative stress and

vascular inflammation. The senescence of ECs is expedited by

metabolic factors such as hyperuricemia or dysregulation of the

RAAS (93). Many molecules and pathways, such as SIRT, Klotho,
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RAAS, IGFBP, NRF2, and mTOR, are associated with promoting

EC senescence (94).

Aging and impaired function of ECs play critical roles in the

development of CVDs. SIRT6 deficiency, miR-217 overexpression

or NOX activity accelerate EC senescence, leading to AS (95, 96). In

addition, EC senescence can mediate thrombosis by increasing

plasminogen activator inhibitor-1 (PAI-1) (97). Heart failure with

a preserved ejection fraction (HFpEF) represents a category of age-

related CVDs closely linked to EC senescence and myocardial

fibrosis (98). More importantly, mouse models of accelerated

ageing have shown that EC senescence contributes to HFpEF, as

evidenced by diastolic dysfunction, interstitial fibrosis, left atrial

dilation, and left ventricular hypertrophy (92).

The incidence of atrial fibrillation (AF) is higher in older

individuals. The onset of AF correlates with the senescence of ECs

and fibroblasts (99, 100). The downregulation of eNOS and
Frontiers in Immunology 07
abnormalities in miRNAs are associated with EC dysfunction

(101). Angiotensin II (Ang II) can induce EC senescence through

an AT1R-mediated pathway, increasing ROS generation,

inflammation, extracellular matrix remodeling, and vascular tone

(102, 103).
3.3 Ageing in vascular smooth muscle cell

VSMCs are vital for regulating vascular wall tension and

maintaining blood pressure (104). VSMC senescence promotes

arterial stiffness and arterial calcification, leading to reduced

arterial compliance and elastic reservoir dysfunction, which are

the pathological foundations of diseases such as hypertension and

independent risk factors for heart failure (105). Senescent VSMCs

considerably influence AS development (106) and are closely
FIGURE 4

Cardiovascular disease is associated with senescence of a variety of cells. Senescent cardiomyocytes mainly showed decreased fatty acid oxidation
ability and enhanced glucose oxidation pathway. ECs are continuously exposed to unique injury-stimulating environments (blood flow pressure,
blood flow shear stress, circulating factors, pathogenic stimuli, etc.) and are therefore highly susceptible to injury. In addition to being affected by
DNA damage, oxidative stress, etc., SIRT6 deficiency and SIRT1 inactivation can lead to senescence in VSMCs. Under stress conditions, the
phenotype of CFs is irreversibly altered, as shown by an increase in ageing markers such as a-SMA. Immune-related cells such as DCs,
Macrophages, and T cells regulate the progression of cardiovascular disease mainly through changes in inflammatory factors. a-SMA, myofibroblast
marker; Ang II, Angiotensin II; CPT1, carnitine palmitoyl transterase-1; SIRT1/6, Sirtuin 1/6.
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associated with aortic aneurysm (107), pulmonary hypertension

(108), and fibrotic neointima formation (109).

Telomere shortening, DNA damage, oxidative stress, and

autophagic dysfunction can all cause VSMC senescence (110).

The activation of SIRT family proteins plays a multifaceted

antiaging role (111), and SIRT6 deficiency and SIRT1 inactivation

can lead to senescence in VSMCs (112). Abnormal processing of

Prelamin A to lamin A results in defects in the nuclear layer,

increasing the vulnerability of DNA to damage and accelerating

cellular senescence (25). Moreover, sustained DNA damage signals

promote the transformation of VSMCs into osteoblastic vascular

smooth muscle cells, leading to subsequent vascular calcification

and AS (113, 114).

Interestingly, the replicative senescence of VSMCs mediates

their phenotypic transformation through runt-related transcription

factor-2 (RUNX-2) and induces age-related medial arterial

calcification (115). In addition, senescent VSMCs exhibit elevated

levels of inflammatory cytokines and reduced expression of anti-

inflammatory factors (116). IL-1a activates the SASP in local cells

and increases IL-6 secretion, inducing local inflammation in the

cardiac microenvironment (117).

Like other heart cells, VSMC senescence also leads to CVDs, most

commonly AS. Matthews et al. detected a large amount of senescent

VSMCs in atherosclerotic fibrous caps (118). Compared with normal

VSMCs, plaque VSMCs are distinguished by shorter telomeres,

higher p16 and p21 expression, stronger SAb-gal activity, and a

flatter cell morphology. In addition, telomere shortening in intimal

VSMCs is positively correlated with the severity of AS. VSMC

senescence also leads to plaque instability, resulting in myocardial

infarction (MI) and stroke. This instability may be related to the

secretion of MCP1, MIP1a/b, and CCL3/4, which promote the

accumulation of monocytes, macrophages, and lymphocytes (119,

120). Ang II also induces premature VSMC senescence, thereby

accelerating the development of AS (103). The overexpression of

TRF2 decreases DNA damage and inhibits senescence in VSMCs,

thereby attenuating plaque vulnerability (119).

Additionally, VSMC senescence may also participate in the

pathophysiological processes of pulmonary arterial hypertension

through the SASP (121). The existing literature suggests that

VSMC senescence is associated with the development of aortic

aneurysms. Liao et al. were the first researchers to document that

medial VSMCs from patients with AAA display enhanced replicative

senescence. Compared with VSMCs from the same patient’s inferior

mesenteric artery (IMA), AAA-derived VSMCs are more extensive

and rounder, and their proliferative capacity is significantly

diminished (122). Angiotensin converting enzyme, Ang II, and

RAS accelerate VSMC ageing and lead to the formation of AAAs

by stimulating the production of proinflammatory cytokines, ROS,

and the ageing phenotype in VSMCs (123).
3.4 Ageing in cardiac fibroblasts

CFs are important components of cardiac noncardiomyocytes.

CFs maintain the extracellular matrix (ECM) structure and
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adhesion integrity by expressing integrins and matrix

metalloproteinases (MMPs) (124). In addition, CFs can also

participate in paracrine secretion to regulate the hypertrophy,

proliferation, growth, and ageing of surrounding cells (125).

Under stress conditions, CFs change their phenotype and

transform into myofibroblasts. CFs undergo irreversible

senescence upon sustained stimulation by stressors. Notably, the

expression of ageing biomarkers such as p16 and p21 is significantly

increased in the hearts of mice following MI (126). Costaining of a-
SMA (a marker for myofibroblasts) with p53 or p16 revealed an

increased presence of senescent fibroblasts within the border zone

of the infarct (127). Similarly, senescent fibroblasts have been

detected in mouse models of cardiac hypertrophy and remodeling

(128). In conclusion, senescent fibroblasts are ubiquitous in fibrotic

areas and are involved in the pathological processes associated with

myocardial fibrosis.

CF senescence has a dual impact on cardiac health. On the one

hand, as cardiac fibroblasts enter a senescent state, their ability to

secrete collagen decreases, which may delay the initial stage of the

wound healing process. On the other hand, fibrosis can be reduced

and cardiac function can be improved by inducing CF senescence.

Conversely, if the natural ageing process of fibroblasts is delayed, it

may exacerbate the degree of myocardial fibrosis and ultimately

lead to cardiac dysfunction. Therefore, balancing the ageing of

fibroblasts is essential for maintaining heart health.

Following acute MI, the activated cardiac fibroblast phenotype

undergoes dynamic changes from an inflammatory to a

noninflammatory state, driving extracellular matrix regulation

and ultimately supporting scar formation (129). Premature ageing

of CFs reduces the production of ECM components, such as

collagen, and may lead to the inhibition of reparative fibrosis in

wounds during healing. However, under chronic pressure loading,

the premature ageing of CFs may play a protective role by reducing

ECM deposition and preventing excessive fibrosis, thereby

preventing further decreases in cardiac stiffness and function

(127, 128). Furthermore, the overexpression of matricellular

protein (CCN1) may induce CF senescence, thereby reducing

myocardial fibrosis and enhancing cardiac function post-MI, thus

playing a beneficial role in acute ischemia (84). These findings

suggest potential positive effects of fibroblast senescence in

some cases.

However, some studies indicate that the beneficial effects of CF

senescence require a balance with the potentially deleterious effects

of ageing. Gavin D. Richardson et al. found that following

myocardial ischemia/reperfusion injury (IRI), biological processes

associated with fibrosis and inflammation are attenuated upon the

administration of the antiaging agent navitoclax, thereby improving

cardiac function and reducing the scar size (130).

Interestingly, NEIL3 is an enzyme involved in DNA repair

processes that minimizes oxidative damage to DNA by recognizing

and removing oxidized bases. CFs proliferate excessively in the

hearts of Neil3 −/− mice, but the risk of cardiac rupture remains

(131). DNA damage caused by Neil3 deletion may initiate the

ageing phenotype in the cardiac microenvironment via SASP-

mediated paracrine signaling. This process increases MMP2
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expression, leading to ECM degradation and, ultimately, cardiac

rupture (131, 132). Cardiac fibrosis tends to increase with age and is

correlated with HFpEF (133). Some molecules, such as miR-1468-

3p and SIRT6, promote the ageing of CFs by regulating TGF-b1
signaling, which in turn increases the occurrence of myocardial

fibrosis (134). These studies suggest that regulating the ageing

balance of fibroblasts is crucial for treating CVD.
3.5 Ageing in monocyte/macrophage

Stoneman et al. showed that the quantity of monocytes/

macrophages significantly promote the development of

atherosclerotic plaques, including increasing the collagen content

in plaques and the formation of necrotic cores (135). Monocytes

undergo a metabolic shift toward glycolysis and enhance pro-

inflammatory signaling upon stimulation with oxidized low-

density lipoprotein (ox-LDL) (136). Within the intima, these

monocytes differentiate into macrophages under macrophage

colony-stimulating factor (M-CSF) regulation (137). The resulting

M1 macrophages promote inflammatory responses through

abundant secretion of growth factors and cytokines, particularly

TNF-a and IL-1b - two central mediators of atherosclerosis-related

inflammatory pathways (138). These activated M1 macrophages

further stimulate CFs via the Smad3 signaling pathway by releasing

profibrotic factors (particularly TGF-b1), thereby upregulating

collagen and MMPs production, which ultimately leads to

abnormal extracellular matrix deposition and remodeling (139).

In contrast, M2 macrophages exhibit anti-inflammatory properties

through IL-4, IL-13, and IL-10 secretion.

Ageing macrophages have a greater effect on plaque formation.

Senescent macrophages can undergo polarization towards the M1

phenotype and release SASP factors, including TNF-a, IL-6, IL-1b,
CCL2, and MMP 9, the collagenase enzyme. In addition, senescent

macrophages have impaired efferocytosis capacity, increasing the

expansion and vulnerable plaque shape of necrotic cores (140).

Their collective actions contribute to the accelerated advancement

of atherosclerotic plaques (141). Senescent macrophages

accumulate in the subendothelial area during the early stage of

AS and drive the pathological development of AS by increasing the

expression of inflammatory cytokines and chemokines. In the late

stages of AS, macrophages increase plaque instability, which is

characteristic of elastic fiber fragmentation and fibrous cap

thinning, by increasing metalloproteinases (142).
3.6 Ageing in Dendritic cell

In CVDs, DCs act as antigen-presenting cells (APCs) to

influence the progression of AS by regulating Tregs (143).

Senescent DCs exhibit downregulated expression of MHC-I/II

molecules, leading to impaired T cell activation and compromised

immune surveillance functions. However, different DC subsets

present within the vessel wall each have unique functions, which

reflect their diversity and complexity in CVDs. For example,
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CD103+ DCs are present in the normal arterial wall and exert

anti-AS effects mainly by inducing Tregs, whereas CCL17+ DCs

exert pro-AS effects mainly by limiting Treg production. In Ldlr−/−

mice, impaired autophagy in CD11b+ DCs due to Atg16l1

deficiency promotes aortic CD4+ Treg cells expansion and

reduced AS (144). The role of pDCs in regulating AS is also

complex. On the one hand, pDCs promote Treg differentiation by

releasing indoleamine 2,3-dioxygenase (IDO) and chemokine (C-C

motif) receptor 9 (CCR9), thereby producing IL-10 and mitigating

AS progression (145). On the other hand, pDCs also accelerate AS

formation by producing IFN-a.
Notably, senescence is associated with increased DC activation

and lipid contents in DCs compared with the characteristics of DCs

in young adult and aged mice. The regulation of lipid accumulation

and activation of DC subsets may be attributed to the decrease in

the response to infection with ageing (146). Although increased

accumulation of DCs and Tregs has been reported in the murine

atherosclerotic intima, the role of senescent DCs in CVD

development remains unclear (147).
3.7 Ageing in T cell

During the development of AS, antigen-presenting cells (APCs)

present antigens produced from components such as LDL to naïve

CD4+T cells. This process results in the stimulation of antigen-

specific CD4+T cells and the secretion of the proinflammatory

cytokines IFN-g and TNF or the anti-inflammatory cytokine IL-

10 to regulate macrophage polarization (148). Therefore, T cells are

bifaceted in the regulation of the establishment and stability of

atherosclerotic plaques, which can not only exert beneficial

inhibitory effects but also contribute to facilitating the formation

of plaques.

Ageing T cells are associated with CVD pathological

progression. In older individuals, an increase in CD4+ T-cell

populations with high expression levels of IL-17 and IFN-g has

been observed. These cells also display characteristics commonly

associated with ageing, such as decreased CD28 expression and

elevated NKG2D levels. Interestingly, these changes are strongly

linked to metabolic risk factors for CVDs (149). Recent findings

have shown that cytomegalovirus (CMV) seropositivity, a widely

recognized driver of T-cell senescence, is closely linked to the

incidence of CHD. Additionally, there is a positive correlation

between CMV seropositivity and the risk of stroke, MI, and

mortality from CVDs (150, 151).

Furthermore, the presence of aged T cells in the bloodstream is

linked to disease relapse and the emergence of additional CVDs

among individuals diagnosed with acute coronary syndrome (152).

Indeed, the detrimental impact of ageing-related T cells on CVDs

has been documented in mice. Specifically, in a mouse model of

hypertension induced by Ang II, the introduction of T cells from

aged mice into young recipients expedited cardiac and renal damage

through an increase in IFN-g secretion, thereby fostering

inflammation and fibrosis. A recent study revealed that ageing-

related cardiovascular changes, such as aortic dilatation, partial
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rupture, and myocardial dysfunction, developed in a mouse model

of premature T-cell failure due to mitochondrial dysfunction (153).

The results of this study suggest that the presence of aged T cells

may directly impact the progression of CVDs.
4 Endocrine ageing and sex-specific
differences in cardiovascular ageing

Endocrine ageing, a core aspect of the biology of aging, has

garnered increasing attention. Research indicates that the decline in

estrogen, testosterone, growth hormone (GH), and thyroid

hormone (TH) levels is closely associated with cardiovascular

dysfunction, increased vascular stiffness, elevated inflammation,

and myocardial remodeling. Furthermore, sex differences are

evident throughout the spectrum of cardiovascular disease.

Women experience relatively stronger cardiovascular protection

before menopause, but this risk rises rapidly post-menopause. In

contrast, men exhibit a higher vascular risk profile due to age-

related declines in androgen from midlife onward. These findings

suggest a significant interaction between endocrine aging and

biological sex differences in the process of cardiovascular ageing.
4.1 Estrogen and cardiovascular protection

Sufficient literature demonstrates that estrogen exerts multiple

protective effects on the cardiovascular system, including promoting

vasodilation, protecting endothelial function, improving lipid

metabolism, reducing inflammation and mitigating oxidative stress

(154). Estrogen primarily exerts its pleiotropic protective effects

through nuclear receptors (ERa/ERb) and membrane-associated

receptors (GPER).

In the regulation of vascular tone, ERa rapidly activates eNOS

through the PI3K/Akt signaling pathway, mediating the rapid

release of NO from ECs (155).NO serves as a crucial vasodilator

that effectively dilates blood vessels, improves endothelial function,

and exerts anti-atherosclerotic effects. Conversely, reduced NO

levels diminish vascular antioxidant capacity and exacerbate

inflammatory responses.

Estrogen exerts a positive regulatory effect on lipid metabolism. It

enhances the production of high-density lipoprotein (HDL) by

inhibiting hepatic lipase activity and accelerates the clearance of low-

density lipoprotein (LDL) through upregulation of LDL receptor

expression. During the menopausal transition, decreased estrogen

levels accompanied by a relative increase in androgen levels may lead

to disordered lipid metabolism, thereby increasing the risk of AS (156).

Estrogen regulates lipid metabolismmainly through genomic and non-

genomic effects mediated by estrogen receptors (ERs). Among them,

ERa mainly promotes the transport of cholesterol from peripheral

tissues (such as arterial wall macrophages) to the liver by regulating

apolipoprotein E (APOE) and cholesterol reverse transporter ABCA1/

ABCG1, thereby enhancing HDL biosynthesis (157).

In addition, estrogen plays a role in vascular protection through

various mechanisms such as anti-oxidation, promoting NO production
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and inhibiting inflammatory signaling pathways. Activation of ERa
can inhibit NF-kB and NLRP3 inflammasome signaling pathways,

reduce the release of inflammatory factors such as IL-6 and TNF-a,
thereby reducing vascular endothelial inflammation (158). ERb inhibits
LDL oxidative modification by enhancing the activity of superoxide

dismutase (SOD) and glutathione peroxidase (GPx), reducing the

accumulation of reactive ROS (159).

Although a large amount of evidence supports that estrogen has a

protective effect on the cardiovascular system, the clinical application

of its alternative therapy (ERT) is still controversial. A number of

large-scale clinical trials have suggested that ERT may increase the

risk of stroke and thromboembolic events, so its benefits and safety

should be carefully evaluated in translational applications (160).
4.2 Androgens and cardiovascular
homeostasis

The effect of androgen on CVDs is a complex and controversial

topic. However, most studies suggest that elevated TES levels have a

protective effect on the cardiovascular system.

Early clinical studies have found that the incidence of

hypertension and coronary artery disease in men is higher than

that in premenopausal women, thus forming the view that TES and

other androgens may be detrimental to cardiovascular health (161).

However, the latest clinical and animal research evidence overturns

the traditional understanding that androgens have significant

benefits for male blood pressure and metabolism - both of which

are key risk factors for CVDs (162). Systematic follow-up

evaluations of early epidemiological investigations, clinical studies,

and animal experiments revealed that these initial studies had many

methodological flaws in experimental design, model selection, and

data analysis (163, 164). Epidemiological studies have shown that

low androgen levels are an independent risk factor for CVDs (165,

166). Low TES is often accompanied by lipid metabolism disorders,

insulin resistance and central obesity.

The protective effect of TES on the heart is mainly manifested in

its diastolic vascular function and endothelial protection. The core

mechanism of TES relaxing blood vessels is to activate cGMP-PKG

signaling pathway by promoting NO synthesis, and then open BKca

channel (167, 168).In rat aortic tissue, TES significantly enhances

NO synthesis through the androgen receptor and calcium influx,

whereas the calcium channel blocker verapamil attenuates TES-

induced NO production (169). Cardiovascular ageing is closely

associated with reduced NO synthesis in ECs. Androgens help

counteract this process by promoting eNOS activity and NO

production, thereby enhancing the antioxidant capacity of ECs—a

mechanism aligned with cardiovascular anti-ageing pathways.

At physiological levels, androgens can improve endothelial function

and enhance antioxidant capacity. However, supraphysiological doses

may lead to adverse effects, such as hypertensive heart disease, increased

risk of venous thrombosis, and recurrence in patients with prostate

cancer (170, 171). However, meta-analyses have also indicated that

TES replacement therapy is safe in the short to medium term, with no

higher risk of cardiovascular events compared tomen not receiving TES
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treatment (172). In summary, current clinical evidence is insufficient to

support the beneficial effect of androgen replacement therapy on CVDs,

and further large-scale clinical trials are needed to evaluate its efficacy

and safety.
4.3 Growth hormone and the
cardiovascular system

With the increase of age, the secretion of growth hormone (GH)

decreases gradually. Some elderly people have age-related GH

deficiency. Since the GH/IGF-1 axis plays a critical role in the

development and functional regulation of the cardiovascular

system, reduced GH secretion is considered to be closely

associated with metabolic disorders and an increased risk of CVDs.

The GH/IGF-1 axis maintains cardiac structure and metabolic

homeostasis by promoting myocardial gene expression, enhancing

amino acid uptake and protein synthesis, and regulating

cardiomyocyte size. It upregulates muscle protein mRNA,

augments type I calcium channel activity, improves calcium

sensitivity, and increases Ca ² -ATPase levels, thereby optimizing

calcium handling and contractility (173). Physiological GH/IGF-1

signaling is crucial for normal heart mass and function.

In the vascular system, GH/IGF-1 receptors are widely expressed.

Experimental studies indicate that GH/IGF-1 exerts angiogenic factor-

like effects by inducing the proliferation and migration of vascular

endothelial cells and promoting the formation of new capillaries (174).

Furthermore, it enhances vascular endothelial function and regulates

vasomotion through stimulating NO synthesis, thereby playing a key

role in maintaining vascular homeostasis.

In addition, GH exerts metabolic effects including promoting

protein synthesis, stimulating lipolysis, and suppressing glucose

utilization. It also modulates vascular tone, thereby influencing

peripheral resistance and blood pressure. Consequently, abnormal

GH secretion not only contributes to metabolic disorders but may

also disrupt blood pressure homeostasis, elevating the risk of

atherosclerosis and other cardiovascular diseases.

Clinical evidence indicates that GH replacement therapy improves

the lipid profile (reducing LDL-C and increasing HDL-C), restores

vascular endothelial function, and lowers inflammatory markers—such

as high-sensitivity C-reactive protein, IL-6, and TNF-a—in patients

with growth hormone deficiency, while also reducing carotid intima-

media thickness (175). Some studies further suggest that GH treatment

can enhance cardiac function, exemplified by reduced left ventricular

end-systolic volume and improved ejection fraction (176). However,

large-scale prospective clinical trials using cardiovascular events as

primary endpoints are still lacking, and the long-term cardiovascular

benefits of such therapy require further validation (177).
4.4 Thyroid hormone and cardiovascular
system

Thyroid hormones (TH) play a critical role in maintaining

cardiovascular homeostasis by regulating heart rate, myocardial
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contractility, and systemic vascular resistance. Thyroid dysfunction

is frequently observed in patients with CVDs, with subclinical

hypothyroidism (SCH) being the most common form (178).

Epidemiological evidence consistently indicates that the

prevalence of overt hypothyroidism and SCH increases with

advancing age and is strongly associated with dyslipidemia,

hypertension, diabetes, and other cardiovascular risk factors

(179–181).

Thyroid dysfunction affects cardiovascular function by altering

the levels of T3, T4 and TSH. T3 binds to nuclear thyroid hormone

receptors (TRs) in cardiomyocytes, promoting the synthesis of

contractile proteins such as myosin heavy chain V3, and

enhances myocardial contractility by upregulating b1-adrenergic
receptor expression (182). In addition, T3 increases intracellular

cAMP levels, which upregulates Ca2+-ATPase activity and thereby

improves diastolic relaxation. Moreover, thyroid hormones can

activate the PI3K/AKT signaling pathway to stimulate NO

production in vascular endothelial cells, ultimately reducing

systemic vascular resistance (183).

Thyroid hormone also regulates lipid metabolism by acting on

genes such as the LDL receptor (184). TSH is positively associated

with elevated lipids, insulin resistance, and hyperglycemia. TSH not

only affects lipid metabolism indirectly by regulating TH levels, but

also acts directly on hepatic TSH receptors to activate cAMP/PKA/

CREB signaling pathways and promote cholesterol synthesis. This

explains the phenomenon that SCH patients have elevated lipids

despite normal TH levels (185).

Levothyroxine is a commonly used drug for the treatment of

hypothyroidism. Available studies have shown that levothyroxine

replacement appears to improve left ventricular function,

endothelial function, and lipid metabolism and partially reverse

the pathological effects of hypothyroidism on the cardiovascular

system (186). However, there remains a lack of consistent evidence

for its cardiovascular benefit in SCH patients, which needs to be

verified by further large-scale prospective studies.

In general, these changes in hormone levels directly or indirectly

contribute to the development and progression of CVDs mainly

through the regulation of lipid metabolism, the impact of

inflammatory factors, and the SASP. From the therapeutic

perspective, although hormone replacement therapy (HRT) and

selective estrogen receptor modulators (SERMs) can improve

endothelial function and lipid metabolism disorders, their long-term

safety remains controversial. Although TES replacement therapy is

increasingly active, the results of studies on cardiovascular outcomes

are variable and require strict weighing of risks versus benefits.

Compared with systemic sex hormone intervention, targeting the

clearance of senescent cells and SASP may more accurately and

safely intervene in the endocrine ageing process.
5 Targeting aging to alleviate CVDs

A large body of data suggests that ageing cardiovascular cells

add to and accelerate the development and progression of CVDs.

Hence, the targeted clearance of senescent cells represents a
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promising therapy for averting or managing age-related ailments

such as CVDs (187). While senescent cells can originate from

various tissues, diseases, and cell types, they exhibit common

ageing mechanisms and biochemical characteristics, which opens

the possibility of treating or delaying ageing-related diseases by

removing senescent cells. As early as 2004, a report noted that the

burden of senescent cells in mammals is inversely proportional to

their healthy lifespan. This insight has prompted researchers to

explore the development of targeted therapies to eradicate these

ageing cells (188). Since then, the therapeutic elimination of

senescent cells has emerged as a groundbreaking strategy to

decelerate ageing and potentially inhibit disease progression.
5.1 Drug therapy

5.1.1 Senolytics: selective removal of senescent
cells

Senolytics, compounds designed to target and eliminate

senescent cells selectively, facilitate this process primarily by

inhibiting antiapoptotic factors. In 2015, the Kirkland trial at the

Mayo Clinic in the United States first reported the first group of

senolytics, dasatinib and quercetin (Table 1) (206). Dasatinib, a

commonly employed medication for leukemia treatment in clinical

settings, effectively inhibits both Bcr-Abl fusion gene I and Src

tyrosine kinase (207). Quercetin, a flavonol compound, can

suppress PI3K activity, increase SIRT1–213 expression (208) and

impede mTOR signaling (209). The combination of dasatinib and

quercetin (D+Q) enhances the clearance of senescent cells and

promotes improvements in cardiac function and carotid vascular

reactivity in older mice.

Interestingly, at the time, the Kirkland team noticed an essential

phenomenon: the activity of proapoptotic pathways increased

significantly in senescent cells. Based on this result, they proposed

a bold hypothesis: senescent cells rely on senescent cell

antiapoptotic pathways (SCAPs) to antagonize apoptosis, thus

allowing them to eventually survive (206). The theoretical

hypothesis of SCAPs proposed by the Kirkland team at the time

was confirmed by a series of subsequent studies in multiple

laboratories; at the same time, many novel senolytics emerged

based on this feature of senescent cells (Table 1).

Subsequently, navitoclax (ABT-263), an inhibitor of the

synthetic BCL-2 protein family (which includes Bcl-2, Bcl-XL,

and Bcl-w), was identified as a third-generation senolytic drug

(210, 211). Experiments performed by Childs et al. demonstrated

that the depletion of senescent cells by ABT-263 (navitoclax)

significantly inhibited AS in the aortic arch of Ldlr−/−mice (142).

ABT-263 also promotes the clearance of senescent cardiomyocytes,

thereby reducing myocardial fibrosis and cardiomyocyte

hypertrophy (212). ABT-263 administration in mice with

simulated MI alleviates myocardial remodeling, enhances diastolic

function, and increases the overall survival of aged mice (213).

Piperlongumine (PL) is also a senolytic that promotes apoptosis

in senescent cells. PL kills WI-38 fibroblasts, but does not induce

ROS generation, by inducing apoptosis (196). The combined use of
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PL with ABT-263 resulted in enhanced antiaging activity. These

findings suggest that we can reduce the dose of ABT-263 when

administered in combination with the other two drugs, significantly

reducing the adverse effects of ABT-263. However, the antiaging

mechanism of PL needs to be clarified. Notably, senescent cells

share survival traits with cancer cells. Thus, PL has shown promise

in inducing apoptosis in these cells by suppressing the PI3K/Akt/

mTOR signaling pathway (206).

In 2017, scientists such as Kirkland discovered that drugs such

as fisetin and the BCL-XL inhibitors A1331852 and A1155463 also

have basic antiaging effects (195). In recent years, a growing array of

senolytics with antiaging potential has been identified, including

sexual small molecules, natural products and their key components,

as well as peptide inhibitors designed to target known SCAPs (e.g.,

FOXO4-DRI) (204). FOXO4-DRI can interfere with the interplay

between FoxO4 and p53 in senescent cells and trigger apoptosis in

senescent but unhealthy cells by releasing and activating p53.

Interestingly, most reported senolytics appear to clear only one

or several specific types of senescent cells. For example, fisetin

explicitly triggers programmed cell death in aged human umbilical

vein endothelial cells (HUVECs). However, it does not have any

senescence-inducing effects on aged IMR90 cells, human lung

fibroblast lines, or primary human preadipocytes (195).

Navitoclax, A1331852, and A1155463 exhibit the ability to trigger

programmed cell death in aged HUVECs and IMR90 cells but show

limited efficacy in inducing apoptosis in senescent preadipocytes

(214). In contrast, dasatinib selectively induces apoptosis in

senescent human preadipocytes more efficiently than in HUVECs

(206). Individual senolytic drugs have different effects even when

they act on a specific type of cell. For example, navitoclax has

apoptosis-inducing effects on senescent embryonic fibroblasts such

as IMR-90 cells. However, its efficacy is relatively low for senescent

primary lung fibroblasts (211). Hence, accurately defining or

drawing conclusions about the generalizability and effectiveness of

particular senolytics without thorough empirical examinations

is difficult.

A recent study revealed that procyanidin C1 (PCC1) can safely

and efficiently clear various cell types and senescent cells generated

by different senescence triggers (205). In addition, PCC1

significantly improved the physiological function and lifespan of

ageing mice, and the creatinine, body weight, urea and immunity of

the mice were not affected throughout the process. Phytochemical

senolytics of natural origin, similar to PCC1, deserve in-depth

exploration as potential antiaging agents.

5.1.2 Senomorphics: SASP inhibition
The SASP contributes to both the generation of senescent cells

and the enhancement of senescence within the microenvironment

through paracrine and autocrine signaling mechanisms.

Senomorphics, which inhibit the SASP without killing senescent

cells, are another approach to alleviate tissue disturbances, organ

regression, and body ageing caused by cellular ageing.

Senomorphics can lower SASP expression levels in senescent

cells either directly or indirectly. This process is achieved by

inhibiting various transcription factors, such as NF-kB, the JAK2/
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STAT3 signal transduction pathway, the TRAF6/TAK1

inflammatory signal transduction pathway, the mTOR protein

kinase, and other signaling pathways involved in inducing and

sustaining the SASP (215).

Prior research has demonstrated that NF-kB inhibitors can

reduce the expression of proinflammatory components of the SASP,

especially cytokines and chemokines (216). Resveratrol and

epigallocatechin gallate (EGCG) are both NF-kB inhibitors. The

former downregulates the levels of SASP-related proinflammatory

cytokines such as IL-8 and TNF-a by inhibiting the SIRT1/NF-kB
signaling pathway (217). The latter can directly downregulate the

production of TNF-a and IL-6 in 3T3-L1 preadipocytes (218).

Similar natural compounds include naringenin, apigenin,

pterostilbene, kaempferol, and catechin, which are relatively safer

than synthetic compounds and have better application prospects

(219, 220). Rapamycin and its analogues (rapalogs), on the other

hand, reduce SASP expression levels by inhibiting mTOR activity

and can prolong the healthy lifespan and overall lifespan of mice

(221, 222). Metformin, a drug that effectively treats the symptoms of

individuals with type 2 diabetes mellitus (T2DM), can inhibit SASP

expression and alleviate age-related chronic diseases (223). It

impedes tumor development by reducing SASP production
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through the inhibition of IKK/NF-kB activity (224). Ruxolitinib, a

tyrosine kinase inhibitor, is a JAK1/JAK2-STAT3 pathway-

targeting agent that inhibits the development and progression of

the SASP in vitro and in vivo (225). In a population of older

individuals diagnosed with myelodysplastic syndrome and a

median age of 65 years, the administration of ruxolitinib

alleviated the intensity of asthenia symptoms, encompassing

factors such as weight, strength, and excessive appetite (226).

However, the issue that arises from the inhibition of

intracellular pro-SASP signaling is the potential increase in cancer

risk due to the disruption of SASP factor expression. For example,

in mouse lymphoma models, downregulation of the SASP by the

inhibition of NF-kB attenuates immune surveillance following

therapeutic ageing and synergizes with p53 insufficiency to lead to

ageing escape, resulting in treatment resistance and relapse (216).

Future in-depth clinical studies specifically addressing these issues

are still needed.

Although so many senolytics and senomorphics have been

found, most of them are still in the stage of in vitro and animal

experiments (Table 1). Animal models offer the advantage of

rapidly validating theories and mechanisms, but their limitation

lies in the gap from the pathological ageing environment in
TABLE 1 Senolytics treatment in age-related diseases.

Compounds Target (or targets)
Age-related
diseases

Developtment status Refs

Dasatinib (D)and Quercetin (Q) Pan-receptor tyrosine kinases

Alzheimer disease Clinical trial: NCT04685590 (189)

Idiopathic pulmonary
fibrosis

Clinical trial: NCT02874989 (190)

Chronic kidney disease Clinical trial: NCT02848131 (191)

Navitoclax (ABT-263) Bcl-2, Bcl-XL and BCL-W
Ovarian cancer Clinical trial:NCT02591095 (192)

RAS-mutant tumors Clinical trial: NCT02079740 (193)

ABT737 BCL-X and BCL-WL Aged lungs and skin in vivo experiment: K5-rtTA/tet-p14 transgenic mice (194)

A1331852 and A1155463 BCL-XL NA in vitro experiment: HUVECs and IMR90 cells (195)

Piperlongumine(PL) Unknown NA
in vitro experiment: human WI‐38 fibroblasts and
senescent cells

(196)

17-DMAG HSP90

Human progeroid syndrome in vivo experiment: Ercc1-/D mice (197)

Nephropathy and
Atherosclerosis

in vivo experiment: apoE-/- mice (198)

Fisetin PI3K-mTOR Progeria in vivo experiment: f1 p16+/Luc; Ercc1−/D mice (199)

Curcumin NF-kB Neurodegenerative disease Clinical trial: NCT01383161 (200)

Cardiac glycosides (ouabain,
digoxin)

Na+ /K+ -ATPase

Lung fibrosis
in vivo experiment: immunodeficientnude NMRInu/nu
mice

(201)

Tumor cells and senescent
cells

in vivo experiment: C57BL/6J mice (202)

retinoid-related orphan
receptor-g

Atherosclerosis in vivo experiment: ApoE-/- mice (203)

FOXO4-DRI FoxO4-p53 in vivo experiment: XpdTTD/TTD mice (204)

procyanidin C1 (PCCI)
NOXA and PUMA(BCL-2
Member)

NA in vivo experiment: C57BL/6L mice (205)
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humans. More importantly, in the same aging research, different

laboratories may use natural aging mice, transgenic models, drug-

induced models, etc., resulting in significant differences in the effect

of drugs on scavenging senescent cells. Moreover, the disease course

in animal models progresses much faster than human natural

ageing, which may exaggerate drug efficacy or obscure long-term

adverse effects. In addition, many senolytics or senomorphics

demonstrate promising results in animal studies, but their

effectiveness is highly dependent on cell type. For instance,

navitoclax effectively eliminates senescent VSMCs in mice, yet

shows limited efficacy in other cell types.

At present, clinical trials of anti-ageing drugs targeting CVDs

have not yet been initiated and remain largely confined to metabolic

diseases or osteoarthritis. Although theoretical foundations and

animal experiments provide important mechanistic insights, the

results should be interpreted with caution when translated into

clinical practice. The development of anti-aging drugs specifically

targeting CVDs will still require a long process of exploration.
5.2 Increasing immune surveillance of
senescent cells

Under physiological conditions, senescent cell clearance

primarily relies on apoptosis and immune-mediated mechanisms.

However, most senescent cells acquire anti-apoptotic properties,

rendering the immune system crucial for their elimination.

Currently, two principal immunotherapeutic strategies exist for

cardiac injury repair: molecular-level interventions targeting IL-

1b to mitigate inflammatory responses, and cellular-level

approaches utilizing senescence-specific ligands to direct immune

cell-mediated recognition and clearance.

The IL-1b-IL6-CRP axis constitutes a central inflammatory

pathway in atherosclerosis and cardiovascular disease, where IL-1b
serves as the upstream regulator that activates the NLRP3

inflammasome to induce ECs expression of adhesion molecules,

thereby promoting inflammatory cell recruitment and macrophage

activation. Furthermore, IL-1b enhances IL-6 production, which

stimulates hepatic synthesis of CRP, fibrinogen, and plasminogen

activator inhibitors (227). The CANTOS clinical trial demonstrated

that IL-1b inhibition with canakinumab significantly reduced

cardiovascular risk in patients with elevated inflammation (hs-CRP

>2 mg/dL) independent of LDL modulation, but there were limitations

of increased risk of infection and no improvement in mortality (228).

Conversely, the broad-spectrum anti-inflammatory drug methotrexate

showed no cardiovascular benefit, confirming the need for pathway-

specific interventions (229). These findings highlight the therapeutic

potential of developing novel interventions against specific pathogenic

pathways in AS, including chemokine-receptor interactions, immune

checkpoint, immunemetabolic modulation, and hormonal/lipid

mediator networks, which may collectively overcome the limitations

of conventional anti-inflammatory strategies while providing more

precise therapeutic effects (230).

Emerging findings indicate that various immune cells, such as

macrophages, NK cells, neutrophils, and cytotoxic T cells, are involved
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in the immunosurveillance of senescent cells (231). Senescent cells

recruit corresponding immune cells for recognition and clearance by

expressing different ligands on their surface. For example, senescent

IMR-90 fibroblasts increase the expression of MICA and ULBP2, the

corresponding ligands of the NK cell-activating receptor NKG2D,

which triggers their targeted clearance by NK cells (232).

Furthermore, specific markers such as major histocompatibility

complex class II (MHCII) molecules may be expressed by senescent

cells, enabling their precise identification and subsequent elimination

by CD4+ T cells within the immune system (233). However, how these

immune cells clear apoptotic or senescent cardiovascular cells remains

unknown. Notably, chimeric antigen receptor (CAR)-T cells may be a

potential immune surveillance tool for ageing.

The efficacy and specificity of cytotoxic T cells decline with age,

despite their crucial roles in identifying and eradicating foreign

entities within the human body. CAR-T cells represent a form of

live-cell therapy that allows T cells to more precisely identify cancer

cell surface markers by introducing chimeric antigen receptors

(CARs) onto the surface of T cells using genetic engineering

techniques. This technology has already shown considerable

efficacy in the treatment of a range of cancers (234) and is

FDAI1-approved for treating certain leukemias and lymphomas

(235). In recent years, CAR-T-cell therapy has been considered to

target the elimination of noncancerous cells, such as senescent cells.

Fortunately, CAR-T cells have progressed successively as

antiaging drugs. High expression of fibroblast-activating protein

(FAP) in CFs leads to myocardial fibrosis and myocardial disease. A

reversal of cardiac fibrosis and restoration of function were observed

in mice exposed to Ang II and phenylephrine following the adoptive

transfer of FAP-targeting CD8+ T cells generated using CAR-T-cell

technology (236). Corina Amor et al. reported that urokinase-type

plasminogen activator receptor (uPAR), a cell membrane protein, is

significantly upregulated with age. They have also successfully

documented the efficacy of CAR-T cells targeting uPAR in

clearing senescent cells both in vivo and in vitro (237). UPAR-

CAR-T cells improve exercise capacity, reverse liver fibrosis, and

ameliorate metabolic dysfunction in aged mice and mice fed a high-

fat diet (237).

Unlike senolytics, which are not system-specific and require

long-term repeated administration, uPAR-CAR-T cells

demonstrate enhanced targeted clearance and can achieve long-

term therapeutic and preventive effects with a single low dose

administration (238). These findings confirm the strong

therapeutic activity of antiaging CAR-T cells in addressing

ageing-related disorders. Notably, XuDong Zhao et al. recently

reported that NKG2D ligand (NKG2DL) was upregulated in

senescent cells (239). Accordingly, the team developed NKG2D-

CAR-T-cell therapy that selectively targets the consumption of

NKG2DL-expressing senescent cells in mice and juvenile

nonhuman animals while improving the function of multiple

organs. Nevertheless, pertinent evidence indicating that ageing

cardiovascular cells can produce NKG2DL is insufficient. In

summary, the utilization of specialized CAR-T cells for the

targeted elimination of aged cardiovascular cells holds great

potential as a viable approach.
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5.3 Cell replacement

Specific induction conditions can facilitate the differentiation of

stem cells into contractile cardiomyocytes, ECs, and smooth muscle

cells so that myocardial contractile function, vascular regeneration,

and myocardial regeneration are enhanced, thereby improving

cardiac function. Consequently, stem cell therapy represents a

promising method for replenishing regenerative cells. Currently,

induced pluripotent stem cells (iPSCs), mesenchymal stem cells

(MSCs), cardiac stem cells (CSCs) and embryonic stem cells (ESCs)

are among the primary types of stem cells employed for treating

CVDs. Among these cells, the clinical application of ESCs is

constrained by ethical considerations and the potential for

immune rejection.

IPSCs are cells with self-renewal and pluripotent differentiation

abilities obtained from autologous mature somatic cells after

reprogramming. Since Takahashi et al. discovered iPSCs in 2006,

their potential therapeutic effects on diseases, especially CVDs, have

been explored (240). Animal experiments indicated that iPSCs

could successfully differentiate into vascular ECs, cardiomyocytes

and VSMCs. Furthermore, injection of iPSCs into ischemic

myocardial tissue of rats has been shown to increase cardiac

ejection fraction and reduce fibrosis (241, 242). Another study

revealed that the integration of iPSC-derived cardiomyocytes,

ECs, and VSMCs into the ischemic myocardium of pigs via

intramyocardial microsphere transplantation enhanced the left

ventricular ejection fraction, improved myocardial metabolism,

and reduced the infarct size (243). In addition to the above

animal experiments, Osaka University officially performed a

phase I clinical trial of hiPSC-CM myocardial patches in January

2020 to assess their safety and potential efficacy in the hearts of

patients with ischemic cardiomyopathy (237). The above evidence

suggests that iPSC-CMs can be used as a new method for cardiac

regenerative therapy.

MSCs are a subset of adult stem cells with the capacity to

differentiate into mesodermal derivatives (chondrocytes, osteocytes,

and adipocytes), have powerful multilineage differentiation

potential and self-renewal ability, and have been widely used to

alleviate ageing-related diseases. MSCs primarily treat ischemic

CVDs through the following mechanisms (1): MSCs stimulate the

proliferation and differentiation of cardiac cells, as well as

angiogenesis (240) (2). MSCs promote cardiac repair and reduce

myocardial apoptosis by secreting growth factors and exerting

paracrine effects (244). Clinical trials of MSCs in CVD treatment

are also more mature, multiple trials have been completed, and the

expected results have been obtained.

In 2005, Hare et al. first used MSC transplantation to treat MI,

and this study yielded crucial findings regarding the safety and

effectiveness of allogeneic bone marrow stem cell applications (245).

A clinical trial conducted in 2015 involved a controlled,

multicenter randomized study of patients with chronic ischemic

cardiomyopathy. The aim of this study was to evaluate the safety

and efficacy of intramyocardial transplantation of allogeneic human

MSCs derived from the umbilical cords of different individuals
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(246). In addition, Bartolucci et al. assessed the safety and

effectiveness of administering intravenous infusions of MSCs

derived from human umbilical cords to individuals diagnosed

with chronic heart failure (247).

The above experiments demonstrated the safety of MSC

transplantation as well as the efficacy of improving myocardial

perfusion after MI. However, current clinical trials in CVD patients

are still at a very early stage, and some potential risks associated

with the systemic application of MSCs, such as embolism and

inflammation, still exist. In addition, the potential differences in

efficacy betweenMSCs from different sources must be circumvented

and elucidated in future studies.

Whether CSCs can be used for the treatment of CVDs is

controversial. In 2003, Beltrami et al. concluded that endogenous

stem cells exist in the heart and that c-Kit+ cardiomyocytes cultured

in vitro, enriched, and injected into necrotic cardiomyocyte areas

were able to repair most necrotic areas and improve cardiac systolic

function (248). The study had significant repercussions in

academia, followed by the successive discovery of CSCs with

different surface markers, and the locations and proportions of

various CSC distributions have varied (249, 250).

However, the same approach was used by Jesty et al. (251) but

did not replicate the findings of Beltrami et al. (248) that c-Kit+

CSCs can be converted into cardiomyocytes in the infarcted

myocardium of adults. Van Berlo et al. (252) also questioned the

role of CSCs in treating MI reported by Beltrami et al. In 2018, after

an investigation by Harvard University and other relevant

authorities, Beltrami et al. were suspected of fabricating data and

paper fraud, which basically halted clinical trials of CSCs for the

treatment of CVDs.

However, in some clinical trials, such as the SCIPIO trial (253)

and the CADUCEUS trial (250), an intracoronary injection of

endogenous CSCs has been observed to enhance the left

ventricular ejection fraction, reduce the size of the myocardial

infarct and the amount of scar tissue, and enhanced regional

systolic function in patients with myocardial ischemia. Therefore,

although CSCs with different surface markers cannot differentiate

into cardiomyocytes, the paracrine effects of these cells can

potentially enhance the movement, growth, specialization, and

angiogenesis by cardiac stem cells within the body. Moreover,

they can enhance the recruitment of endogenous CSCs, hinder

cell apoptosis in the infarct region, inhibit myocardial remodeling,

and thus improve cardiac function (254, 255). Given that adult

cardiomyocytes still possess a relatively sluggish capacity for cell

division, enhancing their ability to proliferate into cardiomyocytes

and replace necrotic cardiomyocytes following myocardial ischemia

could emerge as a prominent area of focus in future research.
5.4 Other factors

In addition to pharmacological interventions, increasing

evidence suggests that modifiable lifestyle and environmental

factors play an important role in modulating cardiac ageing.
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Exercise has emerged as an effective strategy for the prevention

and rehabilitation of CVDs. Exercise promotes mitochondrial

biogenesis through AMPK regulation, increases cellular energy

metabol ism, and enhances funct ional reserve in the

cardiovascular system. In addition, regular aerobic exercise can

reduce oxidative stress in ECs and suppress aging-related

inflammatory processes (256).

Dietary patterns significantly influence the ageing process. Both

caloric restriction (CR) and intermittent fasting (IF) have been

shown to delay aging through telomere lengthening and

modulation of key signaling pathways including AMPK, PKB/

AKT, and mTOR (257). Adherence to the EAT-Lancet dietary

pattern - characterized by increased consumption of vegetables,

fruits, whole grains, and nuts, along with reduced intake of animal-

derived foods, red meat, added sugars, and saturated fats - has been

associated with decelerated biological aging and extended life

expectancy (258). This dietary approach provides abundant

bioactive compounds such as omega-3 fatty acids, antioxidants

(vitamin C, carotenoids, and polyphenols), zinc, and vitamin D,

which exert multi-faceted anti-ageing effects. Its mechanisms of

action mainly include enhancing innate and adaptive immune

function, reducing oxidative stress damage, and improving

cellular metabolic homeostasis, thereby effectively delaying aging-

related inflammatory processes (259). The potential synergy

between dietary interventions and senolytic therapies represents

an emerging research frontier. Interestingly, b-hydroxybutyrate (b-
HB) may serve as a crucial mediator connecting ketogenic diet,

intermittent fasting (IF), and exercise with extended health span.

The underlying mechanisms involve its anti-inflammatory

properties, attenuation of vascular aging processes, and

maintenance of immune homeostasis through CD8+T cell

regulation (260).

Conversely, environmental toxins significantly accelerate aging

processes through sustained genotoxic stress. Chronic exposure to

airborne particulate matter (PM2.5) promotes DNA damage,

micronuclei formation, and cGAS activation (261). Notably,

smoking cessation represents a key lifestyle intervention that

reduces inflammation and improves immune function (262).
6 Conclusions

With scientific and technological advancements and the

evolution of society, the ageing population trend has become an

inevitable social and medical problem in various countries around

the world. Ageing research has experienced unprecedented

momentum and potential in recent years. Previous findings

indicate that the accumulation of senescent cells potentially plays

a role in the progression of pathological states in different regions of

the cardiovascular system. The rapid development of antiaging

drugs and ageing intervention technologies will significantly

benefit various aspects, such as human health, medical progress,

and socioeconomic status. Despite these advancements, the

comprehension of the specific molecular mechanisms underlying
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cardiovascular cell senescence remains limited, for example, how

the ageing of a single cardiac cell type leads to a specific disease

phenotype and how to screen highly selective markers for ageing

cardiovascular cells (10). These conditions have hindered the

development of effective methods to prevent or treat CVDs.

Investigational treatments are currently being explored with the

goal of achieving overall suppression of senescence and/or clearance

of senescent cells. Compared with senomorphics, which transiently

reduce SASP levels, senolytics have rapidly become a reasonably

effective and advantageous therapeutic strategy to prevent, delay, or

reduce various age-related diseases and organ dysfunctions in

recent years (263). Although multiple clinical trials on senolytic

interventions are currently being conducted, none have targeted

CVDs. In the future, more extensive randomized controlled trials

must be conducted to accurately assess and ensure medication

safety and treatment benefits and validate the preliminary results of

early clinical trials. In addition, gaining a more comprehensive

comprehension of the molecular mechanisms underlying immune

response is imperative. Furthermore, the specific identification and

targeting of ageing cardiovascular cells are crucial. Additionally,

advancements in genetic, epigenetic, or metabolomic mechanisms

related to cardiac cell senescence may provide enhanced

personalized therapeutic options for individuals suffering

from CVDs.
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