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Integrated proteomics and
single-cell transcriptomics reveal
potential therapeutic targets

in Wilson's disease patients

Yue Qi', Minghui Sun', Fang Xu, Hao Zhou, Lihua Yuan,
Xinlei Yu, Sirui Cao and Rui Hua*

Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of
Jilin University, Changchun, Jilin, China

Purpose: Wilson's Disease (WD), an autosomal recessive ATP7B mutations
disorder causing copper accumulation, poses diagnostic challenges. This study
used proteomics and single-cell transcriptomics to identify WD mechanisms and
therapeutic targets.

Methods: Proteomic analysis was conducted on clinical samples from WD
patients and the control group, followed by validation via ELISA. Subsequently,
an integrated analysis was conducted by combining these data with single-cell
RNA sequencing data from the database. Analytical content included differential
expression, functional enrichment, drug target prediction, immune infiltration,
and subtype-specific biomarker screening via LASSO/SVM-REF.

Results: Proteomic analysis identified 420 differentially expressed proteins (266
upregulated, 154 downregulated) in WD patients compared with healthy
controls, with significant enrichment in inflammatory pathways. Integration
with DrugBank revealed eight hub proteins with high diagnostic accuracy (AUC
> 0.9), among which Inter-alpha-trypsin inhibitor heavy chain 1 (ITIH1) and
Transthyretin (TTR) may regulate the PI3K-Akt signaling pathway. Subsequently,
ELISA validation confirmed significantly reduced levels of TTR, Ceruloplasmin
(CP), and ITIH1 proteins in WD. Considering the heterogeneity of the WD
microenvironment and single-cell diversity, further single-cell transcriptomic
analysis was performed. The results revealed immune dysregulation,
characterized by increased macrophage infiltration and reduced T/NK cell
proportions, and PI3K-Akt-mTOR pathway enrichment in macrophages. For
subtype-specific analysis, six key proteins were identified to distinguish hepatic
and brain subtypes (AUC > 0.9).

Conclusions: The hub proteins and subtype-specific biomarkers identified in this
study provide potential targets for the precise treatment of WD, while
emphasizing the critical role of the PI3K-Akt pathway in WD.
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Introduction

Wilson’s disease (WD), also known as hepatolenticular
degeneration, is a rare autosomal recessive disorder caused by
mutations in the adenosine triphosphatase copper transporting
beta (ATP7B) gene, which encodes a copper-transporting ATPase
(ATPase 7B) cooperating with the antioxidant protein 1 (ATOXI)
for hepatic copper excretion (1). Impaired function of ATP7B leads
to pathological copper accumulation primarily in hepatocytes,
which released the excess copper into bloodstream, with very
toxic form affecting other organs, including the brain, kidneys,
and cornea (2). Hepatic involvement ranges from asymptomatic
elevation of liver enzymes to acute liver failure or cirrhosis (3).
Brain symptoms, including dystonia, tremors, and psychiatric
disturbances, typically manifest in the second or third decade of
life (4). Additionally, patients may present with Kayser-Fleischer
(K-F) rings, renal tubular acidosis, or hemolytic anemia (5-7).
Clinically, WD is classified into hepatic, brain, and mixed
subtypes, each with distinct pathological features and progression
patterns (8). Despite its well-characterized genetic basis, WD
remains challenging to diagnose early due to its phenotypic
variability and nonspecific initial symptoms. Delayed diagnosis
often results in irreversible organ damage, underscoring the
urgent need for biomarkers that can facilitate early intervention
and improve patient outcomes (9, 10).

Current treatments, such as copper chelators (e.g.,
penicillamine) and zinc salts, aim to reduce copper overload but
are associated with significant side effects and variable efficacy (11,
12). Moreover, a subset of patients develops end-stage liver disease
or severe brain disability despite therapy (13), highlighting gaps in
understanding the molecular mechanisms driving WD
pathogenesis. Identifying novel therapeutic targets, particularly
those involved in copper toxicity or inflammatory cascades, could
pave the way for more effective and personalized treatments
(14, 15).

Recent advances in high-throughput technologies, particularly
proteomics and single-cell transcriptomics, have revolutionized the
study of complex diseases like WD (16). Proteomics enables
systematic quantification of protein expression, post-translational
modifications, and interactions, offering insights into disease-
associated pathways and potential drug targets. For instance,
large-scale proteomic studies have identified dysregulated proteins
in WD patients, such as ceruloplasmin (CP) (17), which is
implicated in copper transport and inflammation (18). However,
bulk proteomics lacks cellular resolution, masking heterogeneity
within immune microenvironment affected by WD.

Single-cell RNA sequencing (scRNA-seq) addresses this
limitation by profiling gene expression at the individual cell level,
revealing cell-type-specific responses to copper toxicity and
immune microenvironment remodeling. In WD, scRNA-seq is
expected to elucidate how copper accumulation differentially
impacts hepatocytes, astrocytes, or immune cells, thereby
uncovering subtype-specific mechanisms. For example, recent
studies in other metabolic liver diseases have demonstrated the
power of single-cell approaches to identify rare cell populations
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driving fibrosis or inflammation (17, 19, 20). Integrating proteomics
with scRNA-seq provides a complementary perspective, linking
protein-level alterations to transcriptional changes and
cellular dynamics.

This study leverages both technologies to dissect the molecular
landscape of WD. By combining proteomic profiling of patient
plasma with single-cell transcriptomics of the hepatic
microenvironment, we aim to: 1) identify dysregulated proteins
and pathways contributing to WD progression; 2) characterize
immune cell heterogeneity and its role in copper-induced tissue
injury; 3) and discover subtype-specific biomarkers with diagnostic
and therapeutic potential. By combining macro-level pathway
analysis with micro-level cellular insights, this approach seeks to
uncover novel mechanisms of copper toxicity and immune
dysregulation, offering translational opportunities for precision
diagnosis and therapy in WD.

Materials and methods
Sample cohort and data collection

Study participants

A total of 30 samples were included in the proteomic analysis,
among which 20 were WD patients with a male-to-female ratio of 9:
11, consisting of 8 cases of hepatic subtype (HS), 4 cases of brain
subtype (BS), and 8 cases of mixed subtype (MS); the remaining 10
were healthy controls (male: female = 5: 5). For Enzyme-Linked
Immunosorbent Assay (ELISA) validation, 10 WD patients and 10
healthy controls were enrolled, with a male-to-female ratio of 5: 5 in
both groups. All samples were obtained from the Department of
Biobank, Division of Clinical Research, The First Hospital of Jilin
University. Diagnosis of WD was confirmed by ATP7B genetic
sequencing, CP reduces the increase in 24-hour urinary copper, and
clinical evaluation, including the presence of K-F rings, brain
symptoms. Exclusion criteria included concurrent viral hepatitis,
autoimmune liver disease, alcoholic liver disease, drug-induced liver
disease, and simple fatty liver. In addition, WD disease is classified
into three types clinically: 1) the hepatic type involves hepatitis,
cirrhosis, and liver function impairment, 2) the brain type manifests
with brain symptoms such as Parkinson’s syndrome and movement
disorders and 3) the mixed type exhibits characteristics of both
types. Healthy controls were individuals without a personal or
family history of liver or brain diseases and with normal liver
enzyme levels. The study was conducted in accordance with the
Declaration of Helsinki and approved by the Ethics Committee of
the First Hospital of Jilin University (approval number: 2023-430).

Sample collection

Fasting blood samples from WD patients and healthy controls
were collected in 6 mL EDTA anticoagulant tubes in the morning.
The blood samples were centrifuged at 4,000 rpm for 5 min within 2
h to separate serum and plasma. Subsequently, the plasma and
serum samples were collected and immediately stored at -80°C for
subsequent proteomic analysis and ELISA verification.
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Proteomic analysis

Proteomic sample preparation

Plasma samples were taken out from -80°C and centrifuged (4°
C, 12,000 g, 10 min). High-abundance proteins in plasma were
depleted using the Pierce' Top 14 Abundant Protein Depletion
Spin Columns Kit (Thermo Scientific) according to the
manufacturer’s instructions, and protein concentration was
determined by BCA assay (Thermo Fisher). An equal amount of
protein from each sample was subjected to enzymatic hydrolysis.
Dithiothreitol was added to adjust the final concentration to 5 mM,
and after reduction at 56°C for 30 min, iodoacetamide was added to
adjust the final concentration to 11 mM. The samples were placed
in ultrafiltration tubes and centrifuged (12,000 g, 20 min), followed
by buffer exchange with 8 M urea and buffer for 3 times respectively.
Trypsin was then added at a ratio of 1: 50 (protease: protein, m/m)
for overnight digestion. Peptides were recovered by centrifugation
at room temperature (12,000 g, 10 min) and then recovered once
with ultrapure water, and the peptide solutions from the two times
were combined.

LTQ-orbitrap detection

After separation by an ultra-high performance liquid system,
the peptides were injected into the NSI ion source for ionization and
then analyzed by Qrbitrap Exploris " 480 mass spectrometry.
Firstly, the ion source voltage was 2.3 kV, and the FAIMS voltage
was -45 and -70. High-resolution Qrbitrap was used to detect and
analyze peptide parent ions and their secondary fragments, with the
parameters as follows: the primary mass spectrometry scan range
was 400-1,200 m/z, and the scan resolution was 60,000; the
secondary mass spectrometry scan range was fixed at 110 m/z as
the starting point, the scan resolution was 15,000, and TurboTMT
was set to None. The data acquisition mode adopted the data-
dependent scanning program.

Proteomic data analysis

Proteomic data were generated using label-free quantitative
proteomics. Retrieval was performed using Proteome Discoverer
(v2.4.1.15). The database was Homo_sapiens_9606_PR_
20201214.fasta, with a reverse database added to calculate the
false discovery rate (FDR) caused by random matching and a
contamination database added to eliminate the impact of
contaminant proteins in the identification results. The enzymatic
cleavage mode was set to Trypsin (Full); the number of missed
cleavage sites was set to 2; the minimum length of peptides was set
to 6 amino acid residues; the maximum number of modifications of
peptides was set to 3; the mass error tolerance for primary parent
ions was set to 10 ppm, and that for secondary fragment ions was
0.02 Da. Carbamidomethyl (C) was set as a fixed modification, and
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Oxidation (M), Acetyl (N-terminus), Met-loss (M), and Met-loss
+acetyl (M) were set as variable modifications. The FDR for protein,
peptide, and PSM identification was all set to 1%, and missing
values were imputed by normal distribution (21). Proteins with
>50% missing values in both groups were excluded, resulting in
1,404 proteins for downstream analysis. Pearson correlation,
principal component analysis, and relative standard deviation
were used to evaluate the repeatability of protein quantification.

Differential expression analysis

Differentially expressed proteins (DEPs) in WD patients versus
controls were identified using the limma package (R v4.0.3), with
significance defined as |fold change (FC)| > 1.3 or |FC| < 0.769 and
adjusted p < 0.05 (Benjamini-Hochberg correction). Visualization
of DEPs was performed by generating heatmaps with the pheatmap
package and volcano plots using ggplot2 in R.

Drug target prediction

Known WD drugs and their corresponding targets were
retrieved from the DrugBank database (https://go.drugbank.com/)
using the query “Wilson Disease.” Overlaps between DrugBank
targets and DEPs were identified using Venny 2.1, yielding a set of
hub proteins for functional validation.

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed
on DEPs using Gene Set Enrichment Analysis (GSEA) (https://
www.gsea-msigdb.org/gsea/index.jsp). Analyses were conducted
respectively on biological processes (BP), cellular components
(CC), and molecular functions (MF) to understand the signaling
pathways involved in the occurrence and development of diseases.
Significance was defined as p < 0.05, with pathway visualization via
ggplot2 and Cytoscape.

ELISA validation

Serum samples from 10 WD patients and 10 controls were
collected. Protein levels of Inter-alpha-trypsin inhibitor heavy chain
1 (ITTH1), Transthyretin (TTR), and CP were measured using
human ELISA kits (Shanghai Keaibio, CB11750-Hu for ITIHI,
CB11791-Hu for TTR, CB10305-Hu for CP) according to
standard protocols. Protein concentrations were determined via a
four-parameter logistic (4-PL) model in GraphPad Prism 9.
Statistical comparisons between groups were performed using the
two-tailed Student’s t-test, with significance set at p<0.01.
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Single-cell transcriptomics analysis

Data processing

scRNA-seq data was obtained from Gene Expression Omnibus
(https://www.ncbinlm.nih.gov/, accession number: GSE254082).
Hepatic mesenchymal cells from three WD patients and three
hepatic hemangioma patients were subjected to scRNA-seq analysis.
Raw FASTQ files were processed with Cell Ranger v3.1.0 to generate
gene expression matrices, which were subsequently analyzed using the
Seurat package (v4.1.0). Low-quality cells were filtered out by retaining
cells with 2300 detected genes and =10 unique molecular identifiers
(UMIs). Data normalization was performed using the
“NormalizeData” function with the “LogNormalize” method.
Variable features were identified using “FindVariableFeatures”
function to recognize the top 5,000 genes, followed by principal
component analysis (PCA) with “RunPCA” function. Batch effects
were corrected using the Harmony package (v0.1.0).

Cell subset clustering and annotation

Cell clusters were identified using “FindClusters” functions
(resolution = 0.5). Uniform manifold approximation and
projection (UMAP) was applied for dimensionality reduction and
visualization. Cell types were annotated based on canonical marker
genes from the CellMarker database (http://117.50.127.228/
CellMarker/index.html).

Differentially expressed gene analysis

Differentially Expressed Gene (DEG) analysis between cell
subsets was performed using “FindAllMarkers” with parameters:
min.pct = 0.25, logfc.threshold = 0.25. Genes with adjusted p < 0.05
were considered differentially expressed.

Pathway enrichment and GSVA analysis

GO/KEGG enrichment analysis of DEGs was performed as
described above. Gene Set Variation Analysis (GSVA) was
conducted using the msigdbr and gsva package in R, applying
hallmark gene sets from MSigDB to assess pathway activity across
cell subsets.

Immune infiltration analysis

Immune cell composition was estimated using CIBERSORT
(v1.03) package with the LM22 signature matrix, which quantifies
22 immune cell types from bulk transcriptomic data. Proportions of
immune cells were compared between WD patients and controls
using the Wilcoxon rank-sum test. Correlations between hub
proteins and immune cell proportions were evaluated via
Pearson’s correlation coefficient.
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Subtype-specific biomarker identification

LASSO regression for feature selection

To identify proteins distinguishing hepatic and brain WD
subtypes, DEPs between the two subtypes were first identified.
LASSO (Least Absolute Shrinkage and Selection Operator)
regression was applied using the glmnet package in R to reduce
dimensionality and avoid overfitting. The optimal regularization
parameter (A) was selected via 10-fold cross-validation, yielding 10
candidate proteins with non-zero coefficients.

SVM-REF for protein ranking

Support Vector Machine with Recursive Feature Elimination
(SVM-REF) was performed to rank the 10 candidate proteins by
importance. The algorithm iteratively removed the least significant
feature until the top 10 proteins were ranked based on their
contribution to SVM classification accuracy.

Intersection analysis

The top 10 proteins from LASSO and SVM-REF were
intersected using Venny 2.1. Their diagnostic performance was
evaluated via receiver operating characteristic (ROC) curve analysis,
with area under the curve (AUC) calculated using the
pROC package.

Statistical analysis

Statistical analyses were performed in R (v4.2.1). The Wilcoxon
rank-sum test was used to compare protein expression, cell
proportions, and pathway enrichment scores between WD and
control groups. A two-tailed Student’s t-test was used to compare
ELISA results. A p-value < 0.05 was considered
statistically significant.

Results

Differential protein analysis between
disease and normal samples

Comparative proteomic analysis identified 420 DEPs between
WD patients and health controls, including 266 upregulated and 154
downregulated proteins (Figures 1A, B; Supplementary Table S1).
Functional enrichment analysis revealed significant activation of
inflammatory pathways in upregulated DEPs. KEGG and GO
analysis identified enrichment in “regulation of immune system
process”, “inflammatory response” and “PI3K signaling pathway”
(Figures 1C, E; Supplementary Table S2). Specifically, these processes
encompassed “wound healing”, “regulation of coagulation”,

»

“lymphocyte-mediated immunity”, “leukocyte-mediated immunity”,
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FIGURE 1

Differential protein expression and pathway enrichment between WD patients and controls. (A) Volcano plot showing differentially expressed
proteins (DEPs) (adjusted p < 0.05, FC > 1.3 or < 0.769). Red points: upregulated proteins; blue points: downregulated proteins. (B) Heatmap of DEPs
(n = 420), clustered by expression pattern across WD patients (n = 20) and controls (n = 10). (C, D) GO enrichment analysis of upregulated (C) and
downregulated (D) DEPs, highlighting key biological processes (BP), cellular components (CC), and molecular functions (MF). (E, F) KEGG pathway
enrichment of upregulated (E) and downregulated (F) DEPs. Dot size indicates protein count; color gradient reflects p-value significance.
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“immune effector process”, “humoral immune response mediated by
circulating immunoglobulin”, and “defense response to other
organism”. These pathways were closely associated with liver injury
observed in WD. Downregulated DEPs were shown in Figures 1D, F
(Supplementary Table S3), these proteins were significantly enriched
in biological processes related to wound healing, immune responses,
cell proliferation, and locomotion, as well as cellular components
such as vesicles, membranes, and extracellular matrices. Enriched
molecular functions include peptidase activity and cell adhesion
molecule binding. Pathway analysis also revealed involvement in
autoimmune diseases (e.g., Systemic Lupus Erythematosus), signaling
pathways (e.g., RTK PLCG ITPR), and complement cascades.

Differential analysis across WD subtypes

We analyzed the DEPs across HS, BS, MS and health normal
control (NC) group for the distinct DEP profiles in WD. The results
showed that there was the highest variable dominance of up- or
downregulated DEPs in the WD subtype groups (NC vs HS, NC vs
BS, NC vs MS) (Figures 2A, B), supporting a specific
molecular mechanism.

To identify core proteins driving WD pathogenesis, an
intersection analysis was performed on DEPs from HS, BS, and
MS versus NC, yielding 69 shared key proteins (Figure 2C,
Supplementary Table S4). The functional enrichment analysis
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reveals that DEPs are significantly involved in metabolic
processes, immune responses, and stimulus response, with
additional enrichment in multicellular organismal processes,
biological regulation, and development. Moderate enrichment is
seen in locomotion, homeostasis, detoxification, growth, and viral
processes (Figures 2D, E). These findings highlight the widespread
biological impact, particularly in metabolism, immunity, and
regulatory mechanisms.

Drug target identification and hub protein
analysis

Retrieval from DrugBank identified three approved WD
therapies: zinc, penicillamine, and triethylenetetramine, with
known targets shown in Figure 3A. By intersecting the target
proteins with DEPs, we identified eight hub proteins: ITTHI,
Complement component 4 binding protein alpha (C4BPA), TTR,
CP, Coagulation factor II (F2), Orosomucoid 2 (ORM2),
Complement component 4 binding protein beta (C4BPB), and
S100 calcium binding protein A9 (S100A9) (Figure 3B). To
evaluate the ability of these eight proteins to discriminate between
patients and healthy individuals, ROC curves were constructed. The
results demonstrated that most of these proteins exhibited excellent
diagnostic performance, with AUC values exceeding
0.9 (Figure 3C).
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FIGURE 2

Subtype-specific protein expression and key pathway analysis. (A) Bar chart showing the number of DEPs in hepatic (HS), brain (BS), and mixed (MS)
subtypes compared to controls (15), and between subtypes. (B) Heatmap of DEPs among different subtypes. (C) Venn diagram of overlapping DEPs
across all subtypes vs. controls, yielding 69 key proteins. (D, E) GO functional enrichment (D) and pathway interaction network (E) of the 69 key

proteins, annotated to inflammation, metabolism, and immune response.

The hub proteins were found to be associated with pathways
including the immune system, inflammatory response, and cellular
metabolism. In the context of the immune system, these proteins play
a role in generating antibodies to combat foreign pathogens or
autoantigens. However, the toxic effects of copper may interfere
with this process, leading to abnormal antibody production and
compromised immune function. Additionally, in WD, copper
deposition can trigger acute inflammatory responses, resulting in
tissue damage and dysfunction. Specifically, copper-induced
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inflammation may activate pro-inflammatory signaling cascades,
exacerbating hepatic and brain injury. Copper metabolic
abnormalities in WD can disrupt the positive regulation of protein
metabolic processes, leading to abnormalities in protein synthesis or
degradation. This suggests that various metabolic pathways in WD
patients may be abnormally activated, contributing to the disease’s
pathophysiology (Figure 3D). Expression boxplots of these proteins
across different groups showed that all hub proteins were
downregulated in the disease group compared to controls, while
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FIGURE 3

Drug target analysis and hub protein characterization. (A) Network diagram of WD therapeutic targets from DrugBank (nodes: drugs; edges: targets).
(B) Venn diagram showing overlap between DrugBank targets and DEPs, identifying 8 hub proteins. (C) ROC curves for hub proteins, with AUC
values indicating predictive accuracy. (D) KEGG pathway enrichment of hub proteins, highlighting immune and metabolic pathways. (E) Boxplots of
hub protein expression in WD subtypes and controls (NC, control group; HS, hepatic subtype; BS, brain subtype; MS, mixed subtype; *p< 0.05, **p <

0.01, ***p < 0.001, ****p < 0.0001).

there were no significant differences in expression among the hepatic,

brain, and mixed subtypes (Figure 3E).

Subsequently, hub proteins were grouped by high and low

expression to identify differentially regulated proteins, followed by
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GSEA to explore potential regulatory pathways. Results indicated
that ITIH1 and TTR were significantly associated with the PI3K-
Akt signaling pathway (Figures 4A-F). CP, a marker associated with
copper metabolism, is closely related to WD and can serve as a
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FIGURE 4
GSEA analysis of hub proteins in WD and ELISA validation. (A—F) Gene Set Variation Analysis (GSVA) plots showing regulation pathway of C4BPA,
C4BPB, F2, ITIH1, SI00A9, and TTR. (G) Target protein expression of WD patients and controls with ELISA (**p<0.01).

biological indicator for WD detection (22, 23). Therefore, ELISA
validation was performed for TTR, ITIH1, and CP. The levels of
TTR, ITIHI, and CP in the serum of WD patients were significantly
lower than those in the control group (Figure 4G), suggesting that

Immune infiltration analysis in WD

CIBERSORT analysis was conducted to profile the distribution
of 22 immune cell types across WD patient and control samples
these proteins are involved in the core pathological mechanisms
of WD.

(Figure 5A). The results revealed significant differences in the
proportions of plasma cells, CD4+ memory activated T cells, and
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YO T cells between the disease and control groups (Figure 5B).
Among then, compared with the NC group, the WD group showed
a significant downregulation in plasma cells and Y5 T cells (P < 0.01,
P < 0.05), while a significant upregulation was observed in CD4+
memory activated T cells (P < 0.05). Correlation analysis further
demonstrated associations between hub protein expression and
immune cell composition (Figure 5C). These findings highlight
immune cell dysregulation as a key feature of WD pathogenesis and
suggest potential crosstalk between hub protein-mediated pathways
and immune cell trafficking.

Single-cell reveals the immune
microenvironment of WD

Using the publicly available scRNA-seq dataset GSE254082 (3
WD patients vs. 3 liver hemangioma controls), we characterized
hepatic immune cell heterogeneity. UMAP visualization identified
eight distinct cell clusters, including hepatocytes, macrophages, T/
NK cells, and endothelial cells, etc. (Figures 6A, B) WD samples
showed a significant increase in macrophage proportion and
reduction in T/NK cells compared to controls (Figure 6C).
Marker protein analysis between WD patients and controls is
shown in Figure 6D. GSVA further indicated enrichment of the
PI3K-Akt-mTOR pathway in macrophages from WD patients
(Figure 6E), linking macrophage activation to the pro-fibrotic and
inflammatory phenotype observed in WD livers.

Differential analysis between hepatic and
brain subtypes

To identify subtype-specific biomarkers, we applied LASSO
regression to 59 DEPs distinguishing hepatic and brain subtypes,
yielding 10 candidate proteins (Figures 7A, B; Supplementary Table
S5). SVM-REF further ranked these candidates, and intersection
analysis identified six key proteins: Fibulin 1 (FBLN1), Glutamic-
Oxaloacetic Transaminase 2 (GOT2), Hydroxyacylglutathione
Hydrolase (HAGH), Insulin-like Growth Factor Binding Protein
3 Receptor (ISLR), Monoacylglycerol Acyltransferase 1 (MAGAT1),
and Proteoglycan 4 (PRG4) (Figure 7C). Expression analysis
showed FBLN1 and HAGH were upregulated in brain subtype,
while GOT2, ISLR, MAGAT1, and PRG4 were elevated in hepatic
subtype (Figure 7D). ROC curve analysis demonstrated robust
diagnostic accuracy for all six proteins, with AUC values higher
than 0.9 (Figure 7E). These findings provide a theoretical basis for
the development of new therapeutic strategies and
therapeutic targets.

Discussion

WD is characterized by an exceptionally wide range of
symptomatic variability and is recognized as a rare hereditary
disorder with potentially fatal outcomes (24). Therefore, in-depth
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studies on the pathogenesis and potential therapeutic targets of WD
are of great significance. This study integrated proteomics and
single-cell transcriptomics to explore the molecular mechanisms
of WD. Through comparative analysis of WD patients and healthy
controls, 420 DEPs were identified. Proteomic analysis uncovered
420 DEPs linked to inflammation and metabolic dysfunction, with
eight hub proteins (ITIH1, C4BPA, TTR, CP, F2, ORM2, C4BPB,
S100A9) demonstrating robust diagnostic accuracy (AUC > 0.9). In
addition, ELISA validation was performed for ITIH1 and TTR
(which may be involved in the regulation of the PI3K-Akt signaling
pathway) and CP (used for biological detection of WD), and the
results showed a significant downregulation trend in ITIHI, TTR,
and CP, providing new targets and evidence for the clinical
diagnosis and treatment of WD. Since proteomics is based on the
expression levels of entire cell populations and ignores the
heterogeneity of the hepatic immune microenvironment, sScRNA-
seq technology, which enables high-throughput analysis at the
single-cell level, fully preserves the diversity of individual cells in
the data. Results from immune infiltration and single-cell
transcriptomics analyses indicated that WD patients exhibit
immune microenvironment imbalance, manifested as abnormal
proportions of peripheral blood immune cells, activation of
hepatic macrophages, and a reduction in neutrophils. More
importantly, the PI3K-Akt signaling pathway was significantly
enriched at multiple levels, suggesting that it plays a central role
in disease progression. These findings collectively reveal the
interactions between copper toxicity, immune dysregulation, and
subtype-specific pathways, providing directions for precise
treatment. Furthermore, we identified six key proteins (FBLNI,
GOT2, HAGH, ISLR, MAGAT1, and PRG4) that can effectively
distinguish between the hepatic and brain subtypes of WD. These
findings collectively highlight the interplay between copper toxicity,
immune dysregulation, and subtype-specific pathways, providing a
roadmap for precision therapy.

In WD, copper toxicity disrupts metabolic processes and
induces endoplasmic reticulum stress, which in turn leads to
protein misfolding and defective secretion (25). These
pathological changes activate innate immune responses and pro-
inflammatory signaling pathways, ultimately resulting in tissue
damage (26). Therefore, therapeutic strategies targeting the
regulation of inflammatory responses or the restoration of
metabolic homeostasis are expected to serve as effective
supplements to traditional copper-lowering therapies (27). This
study identified 8 key candidate molecules (ITTH1, C4BPA, TTR,
CP, F2, ORM2, C4BPB, S100A9), whose expression was generally
downregulated in WD patients, suggesting their potential as
biomarkers for the early diagnosis of WD. These proteins play
crucial roles in maintaining normal physiological functions of the
body, particularly in immune and inflammatory responses (ITIHI,
C4BPA, C4BPB, ORM2, S100A9), substance transport (TTR), metal
metabolism and antioxidant defense (CP), and the coagulation
system (F2) (28, 29). Furthermore, previous studies have shown
that downregulation of ITIH1 can promote the progression of
hepatocellular carcinoma by activating the PI3K/AKT signaling
pathway (30); TTR reduces the occurrence of diabetic retinopathy
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FIGURE 5

Immune cell infiltration analysis. (A) Stacked bar plot of immune cell proportions in WD patients and controls. (B) Boxplots comparing immune cells
between groups (*p < 0.05, **p < 0.01). (C) Correlation between hub proteins and immune cell types.

by regulating the VEGFA/PI3K/AKT axis (31). Meanwhile, studies
have reported that the PI3K-Akt pathway is closely associated with
WD. For example, Zhang et al. found that activating the PI3K-AKT
signaling pathway can alleviate cognitive impairment in WD (32).
Notably, no studies have yet linked ITTH1 and TTR to the PI3K-Akt
pathway in WD, while this study is the first to suggest that ITTH1
and TTR may be involved in the regulation of the PI3K-Akt
signaling pathway in WD. These findings provide an important
molecular biological basis for elucidating the pathogenesis of WD
and offer new insights into exploring potential diagnostic markers
and therapeutic targets.

To reveal the diversity and dynamic changes of different
immune cells, we performed immune infiltration analysis and
single-cell transcriptome data analysis. Immune infiltration
analysis showed that the composition of immune cells in WD
patients was altered, including an increase in activated CD4+
memory T cells and a decrease in plasma cells and yd T cells.
These changes indicate that WD is undergoing a shift toward
chronic immune activation and autoimmunity, and this immune
deficiency mediates the development of liver cirrhosis, which is
associated with abnormalities in various innate and adaptive

Frontiers in Immunology

immune components (33). Single-cell analysis revealed an
imbalance in the immune microenvironment of WD patients,
characterized by a reduction in T/NK cells and neutrophils and an
increase in macrophages. Previous studies have indicated that
immune cells play a crucial role in the pathogenesis of WD-related
liver injury (34, 35). For example, Li et al. reported that an imbalance
in immune cell populations can exacerbate tissue damage under
copper-overload conditions (36). Macrophages, in particular, are
known to be involved in the inflammatory response triggered by
copper toxicity (37). Interestingly, this study found that the PI3K-
Akt-mTOR pathway is enriched in macrophages of WD patients,
further confirming the critical role of this pathway in WD. Genes in
the PI3K-Akt pathway have been implicated in hepatocyte apoptosis
and fibrosis triggered by copper overload (38, 39), suggesting its pro-
inflammatory and pro-fibrotic effects in WD liver pathology. This
pathway activation can lead to a pro-fibrotic and inflammatory
phenotype, as observed in WD livers. This finding is consistent with
previous studies on Gandoufumu Decoction (GDFMD), which
alleviates copper-induced liver injury by activating the PI3K-Akt-
mTOR pathway to inhibit excessive autophagy (40). The results of
proteomic and single-cell analyses in this study further confirm that
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the PI3K-Akt pathway plays an important role in the pathogenesis of
WD, suggesting that interventions targeting this pathway may be
beneficial for the treatment of WD.

To further explore subtype-specific biomarkers that can facilitate
precision diagnosis and treatment, this study specifically screened and
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identified six candidate proteins (FBLN1, GOT2, HAGH, ISLR,
MAGAT]I, and PRG4) that can effectively distinguish between the
hepatic and brain subtypes of WD. Among them, FBLN1 and HAGH
are upregulated in the brain subtype, while GOT2, ISLR, MAGAT1,
and PRG4 show increased expression in the hepatic subtype. These
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Identification of subtype-specific biomarkers. (A) Coefficient path plot. The horizontal axis represents the logarithm of the regularization parameter A
(lambda) in LASSO regression, and the vertical axis represents the coefficient values of each feature (variable). Each line in the plot represents the
path of a feature’s coefficient as the regularization parameter A changes. (B) Mean Squared Error (MSE) plot. The A value that minimizes the MSE is
selected as the optimal regularization parameter. (C) Venn diagram of top proteins from LASSO and SVM-REF. (D) Expression profiles of 6
biomarkers in hepatic (HS) and brain (BS) subtypes (*p < 0.05). (E) ROC curves evaluating protein diagnostic accuracy (AUC values indicated).

unique expression patterns may reflect differences in tissue-specific
pathogenic mechanisms. FBLN1, an important extracellular matrix
protein, is significantly upregulated in Alzheimer’s disease and brain
metastases of non-small cell lung cancer (41, 42). GOT2 is involved in
key metabolic pathways that could maintain liver cell homeostasis (43).
HAGH is a neurology-related protein that is positively correlated with
muscle strength. During childhood obesity, it has been found that
muscle strength can maintain better brain health (44). ISLR has been
implicated in hepatic stellate cell activation and fibrosis progression
(45). MAGAT1 may be essential for liver regeneration after ischemia/
reperfusion injury (46). PRG4, though originally linked to joint
lubrication, has emerging roles in hepatic protection and anti-
inflammatory responses (47). In the realm of precision medicine,
biomarkers are essential for accurate diagnosis and tailored
treatment. Recently, research on hepatocellular carcinomas and
cholangiocarcinoma also demonstrated that subtype-specific
biomarkers can enhance the accuracy of disease diagnosis and guide
personalized therapeutic strategies (48, 49). Our identified biomarkers,
with their high diagnostic accuracy (AUC > 0.9), could enhance current
WD diagnostic strategies and enable the development of subtype-
directed treatments. Targeting the associated pathways in distinct WD
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subtypes may lead to more effective, individualized
therapeutic approaches.

However, this study has certain limitations. The sample size was
relatively small, which may affect the representativeness of the
results and limit their generalization. Moreover, while we have
identified potential biomarkers and pathways related to WD, the in-
depth functional validation of these biomarkers and the exploration
of the precise molecular mechanisms underlying the pathways are
still lacking. Future studies should aim to recruit larger sample
cohorts and conduct more in-depth mechanistic investigations to
address these limitations and further advance our understanding of
WD. Moreover, exploring the interplay between the immune
system, copper metabolism, and other organ systems in WD will
provide a more comprehensive understanding of the disease.

Conclusion

This study comprehensively integrates proteomic analysis and
single-cell transcriptomic analysis. Eight proteins with high
diagnostic accuracy were identified, among which ITIHI1 and
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TTR may affect WD by regulating the PI3K-Akt pathway. In
addition, we also explored six key proteins that can effectively
distinguish between hepatic and brain subtypes of WD.
Therefore, the findings of this study contribute to a deeper
understanding of the pathogenesis of WD, aiming to provide new
strategies for the clinical treatment of WD.
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