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Background: Immune checkpoint inhibitors (ICIs) have transformed cancer

therapy; however, their efficacy remains limited in certain tumor subtypes,

including those deficient in methylthioadenosine phosphorylase (MTAP).

MTAP-deficient cancers are characterized by immunosuppressive tumor

microenvironments (TMEs) and poor T cell infiltration, as suggested by large-

scale transcriptomic analyses. Yet, the underlying mechanisms and therapeutic

vulnerabilities remain poorly defined.

Methods: We employed murine tumor models and transcriptomic profiling to

investigate the immunosuppressive features of MTAP-deficient tumors. To

identify actionable vulnerabilities, we conducted a high-throughput screen

using the LOPAC1280 compound library. Functional assays were performed to

evaluate the effects of candidate compounds on tumor growth and

immune signaling.

Results: MTAP-deficient tumors exhibited significantly reduced CD45+ immune

cell infiltration and resistance to ICI therapy. Transcriptomic analyses revealed

that MTAP-deficient cancer cells reprogram immune signaling pathways and

suppress the expression of CXCL10, a key chemokine for T cell recruitment,

thereby contributing to a non-inflamed, “cold” TME. High-throughput screening

revealed an increased dependence on glutamate metabolism in MTAP-deficient

cells. Several glutamate pathway inhibitors, including the clinically tested

glutaminase inhibitor CB-839, selectively impaired their growth. Remarkably,

CB-839 also restored CXCL10 expression, particularly under immune co-culture

conditions, indicating a dual effect of direct cytotoxicity and immune activation.
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Conclusion: These findings uncover a novel link between glutamate metabolism

and immune modulation in MTAP-deficient tumors. Our study provides

mechanistic and preclinical support for targeting glutamate pathways to both

suppress tumor growth and convert immune-cold tumors into more

immunoresponsive states, offering a promising strategy to enhance ICI efficacy

in this challenging cancer subtype.
KEYWORDS

MTAP deficiency, immunosuppression, tumor microenvironment, CXCL10,
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Introduction

Immune checkpoint inhibitors (ICIs) transformed the

treatment landscape for multiple malignancies by offering

superior clinical benefit and reduced toxicity compared to

traditional chemotherapies (1, 2). U.S. Food and Drug

Administration (FDA)-approved ICIs, such as the anti-PD-L1

antibody atezolizumab and the anti-PD-1 antibody nivolumab,

have demonstrated therapeutic efficacy in cancers including non-

small cell lung cancer (NSCLC) and renal cell carcinoma (RCC).

Despite these advances, objective response rates (ORRs) remain

modest, approximately 20-30% in most patients, due to intrinsic

resistance mechanisms (3, 4). A major contributor to this limited

efficacy is the presence of a non-inflamed or “cold” tumor

microenvironment (TME), characterized by low immune

infiltration and immunosuppressive signaling (5). Tumors with

inadequate CD8+ cytotoxic T lymphocyte recruitment are less

likely to respond to ICIs. Additionally, immune-related adverse

events and the lack of reliable predictive biomarkers further limit

their clinical utility. These challenges highlight the importance of

understanding tumor-intrinsic mechanisms of immune resistance.

One emerging mechanism of immune evasion involves deletion

of chromosome 9p21, which occurs in multiple cancer types and is

associated with poor immune infiltration (6). Among the genes

frequently lost in this region is methylthioadenosine phosphorylase

(MTAP), an enzyme involved in the methionine and adenine

salvage pathways. We previously demonstrated that MTAP

functions as a metastasis suppressor (7, 8), and that MTAP-

deficient cancer cells reprogram immune-related pathways and

cytokine profiles, contributing to the establishment of an

immunosuppressive “cold” TME (9). MTAP is an indispensable

enzyme in catalyzing the breakdown of 5’-methylthioadenosine

(MTA), a byproduct of polyamine synthesis (10). Loss of MTAP

results in MTA accumulation, which can interfere with various

signaling and epigenetic processes. In particular, MTA-mediated

inhibition of methyltransferase-dependent pathways may impair

chemokine/cytokine production, thereby contributing to immune

suppression within the TME (11–13).
02
MTAP deficiency also profoundly alters tumor metabolism.

Metabolomic analyses have shown that MTAP loss affects glycolytic

flux and disrupts sulfur-containing amino acid and purine

metabolism (14, 15). These metabolic changes create synthetic

vulnerabilities that are being explored therapeutically. Current

strategies include methionine restriction, inhibition of de novo

purine synthesis, suppression of S-adenosylmethionine (SAM)

production via MAT2A inhibitors, and inhibition of protein

arginine methyltransferase 5 (PRMT5)-mediated arginine

methylation (16–22). While preclinical studies support selective

efficacy in MTAP-deficient tumors, clinical translation has been

limited by toxicity and small patient cohorts. Moreover, whether

these metabolic strategies can enhance antitumor immunity or

synergize with ICIs remains largely unknown, underscoring the

need to investigate the immunologic consequences of MTAP loss.

Given that MTAP deletion occurs in approximately 15% of

human cancers (10), identifying novel, well-tolerated therapies that

target both metabolic vulnerabilities and immunosuppressive

features is a critical unmet need. In this study, we employed the

Library of Pharmacologically Active Compounds (LOPAC1280), a

high-throughput screening platform containing well-characterized

small molecules, to identify agents capable of selectively suppressing

tumor growth and modulating immune-relevant pathways in

MTAP-deficient cancer cells. Our findings provide new insight

into how tumor metabolism modulates immune resistance

associated with MTAP loss, with potential implications for

enhancing tumor immunogenicity and expanding the efficacy of

immune-based therapies.
Materials and methods

Reagents

RPMI-1640 medium, fetal bovine serum, penicillin/

streptomycin/Amphotericin B, and red blood cell (RBC) lysis

buffer were purchased from Thermo Fisher Scientific (Waltham,

MA, USA). Quantikine Human CXCL10/IP-10 ELISA Kit was
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1634342
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chang et al. 10.3389/fimmu.2025.1634342
purchased from R&D Systems (Minneapolis, MN, USA). CB-839

(telaglenastat) was purchased from Selleck Chemicals (Houston,

TX, USA).
Cell lines and cell culture

CL1–0 and 786–0 MTAP-intact (WT) and MTAP-knockout

(KO) cells as well as CL1–5 and ACHN control (Mock) and MTAP-

overexpressing (MTAP) cells were established and maintained at

37°C in a humidified atmosphere of 5% CO2 as previously described

(7–9). To establish MTAP-knockout Lewis lung carcinoma (LLC)

cells, we used lentiviruses generated by co-transfecting HEK293T

cells with an MTAP sgRNA-containing lentiviral vector and a

packaging DNA mix using Lipofectamine 2000. The lentiviral

vector was constructed by synthesizing, annealing, and cloning

the following oligonucleotides into the LentiCRISPRv2 expression

vector: oligo 1 (5’- CACCGTCTCACCTTCACCGCCGTGC-3’)

and oligo 2 (5’- AAACGCACGGCGGTGAAGGTGAGAC-3’).

Cells were infected at three different Multiplicities of Infection

(MOIs) in polybrene (8 µg/mL)-containing medium. Twenty-four

hours after infection, the cells were treated with puromycin (final

concentration 2 µg/mL) and puromycin-resistant clones were

selected and sequenced to confirm the gene-editing results.
In vivo animal experiments

All mouse experiments and procedures were approved and

periodically reviewed by the Institutional Animal Care and Use

Committee (IACUC) at UC Davis. Eight-week-old C57BL/6J mice

were purchased from the Jackson Laboratory and housed four mice

per cage and fed autoclaved food ad libitum. For tumorigenicity

assay, 1×106 cells were suspended in 100 ml PBS and implanted

subcutaneously into the dorsal region of mice. Tumor growth was

examined twice or thrice a week, and tumor volume was estimated

by the formula LW2/2, where L is the length and W is the width of

the tumor. After 21 days, the mice were euthanized by CO2

inhalation at a displacement rate of 20% of the chamber volume

per minute, and the tumor xenografts were removed, weighted,

and photographed.
Hematoxylin and eosin staining and
immunohistochemistry

Formalin-fixed, paraffin-embedded (FFPE) tissue sections

(4 µm) were deparaffinized, rehydrated, and stained using the

Hematoxylin and Eosin Stain Kit (Vector Laboratories,

Burlingame, CA, USA) according to the manufacturer’s protocol.

FFPE sections were also used for immunohistochemical analysis of

MTAP and CD45 expression. For immunohistochemistry, the

protocol was adapted from the manufacturer ’s paraffin

immunohistochemistry guidelines (Cell Signaling Technology,
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Danvers, MA, USA). Tissue sections were deparaffinized in a

xylene substitute, rehydrated through graded alcohol solutions,

and subjected to antigen retrieval using 10 mM sodium citrate

(pH 6.0) at a sub-boiling temperature. Endogenous peroxidase

activity was blocked with 3% hydrogen peroxide, followed by

serum blocking. Sections were incubated overnight at 4°C with

anti-MTAP antibody (Novus Biologicals, Littleton, CO, USA) or

anti-CD45 antibody (Cell Signaling Technology, Danvers, MA,

USA). Immunostaining was detected using the VECTASTAIN

ABC system (Vector Laboratories, Burlingame, CA, USA)

following the manufacturer’s instructions. Stained sections were

mounted and examined under a light microscope.
Peripheral blood mononuclear cells
isolation and co-culture

PBMCs were isolated from whole blood (STEMCELL

Technologies, Cambridge, MA, USA) using a density gradient

centrifugation method. For co-culture assays, cancer cells were

mixed with isolated PBMCs at a ratio of 1:10 and co-cultured for

24 hours. After co-culture, cancer cells and PBMCs were separately

harvested, washed with PBS, and processed for further assays.
Real-time quantitative reverse transcription
PCR

Total RNA was extracted from cancer cells using the TRIzol

reagent (Invitrogen, Carlsbad, CA, USA). cDNAs were reversely

transcribed using SuperScript III Reverse Transcriptase (Invitrogen).

The pr imers used were as fo l lows : CXCL9 forward

primer 5’-CCAGTAGTGAGAAAGGGTCGC-3’ and reverse

primer 5’-AGGGCTTGGGGCAAATTGTT-3’; CXCL10 forward

primer 5’-CCAATTTTGTCCACGTGTTGAG-3’ and reverse

primer 5’-GCTCCCCTCTGGTTTTAAGGA-3’; CXCL11 forward

primer 5’-TTAAACAAACATGAGTGTGAAGGG-3’ and reverse

primer 5’-CGTTGTCCTTTATTTTCTTTCAGG-3’; SLC38A2

forward primer 5’-AGCCAACAGCTCTTGTACCTGC-3’ and

reverse primer 5’-GGAAGAACAGCAGGATGACAGAC-3’;

SLC3A2 forward primer 5’-CCAGAAGGATGATGTCGCTCAG-3’

and reverse primer 5’-GAGTAAGGTCCAGAATGACACGG-3’;

SLC7A5 forward primer 5’-GCCACAGAAAGCCTGAGCTTGA-3’

and reverse primer 5’-ATGGTGAAGCCGATGCCACACT-3’;

SLC7A11 forward primer 5’-TCCTGCTTTGGCTCCATGAACG-3’

and reverse primer 5’-AGAGGAGTGTGCTTGCGGACAT-3’; TBP

forward primer 5’-CACGAACCACGGCACTGATT-3’ and reverse

primer 5’-TTTTCTTGCTGCCAGTCTGGAC-3’. The housekeeping

gene TBP was utilized as the reference gene in quantitative real-time

RT-PCR assay. Quantitative real-time RT-PCR was conducted using

the SYBR Green system and performed according to the

manufacturer’s instructions of the ViiA 7 Real-Time PCR System

(Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA).

The relative expression level of the target gene compared with that of
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the TBP was defined as –DCT = – [CTtarget gene – CTTBP]. The target

gene/TBP mRNA ratio was calculated as 2-DCT x K, where K is

a constant.
Promoter-luciferase reporter assay

The constructs containing 1000 bp (1K) or 2000 bp (2K) upstream

of the CXCL10 transcription start site were cloned into the pGL3-

Basic luciferase reporter vector (Promega Corporation, Madison, WI,

USA). The resulting constructs were verified by DNA sequencing.

CL1–0 cells were co-transfected with the CXCL10 promoter-luciferase

constructs and the phRL-TK vector, which served as an internal

control to normalize for transfection efficiency. The pGL3-Basic

empty vector was used as a negative control. Luciferase activity was

measured using the Dual-Luciferase Reporter Assay Kit (Promega),

following the manufacturer’s instructions. Firefly luciferase activity

was normalized to Renilla luciferase activity to calculate relative

promoter activity for each condition.
Immunoblotting

The cells were collected and prepared as whole-cell lysates with

lysis buffer (50 mM Tris-HCl [pH 7.4], 1% Triton X-100, 10%

glycerol, 150 mM NaCl, 1 mM EDTA, 20 mg/mL leupeptin, 1 mM

PMSF, and 20 mg/mL aprotinin). Total proteins were separated via

SDS-PAGE and transferred to polyvinylidene fluoride (PVDF)

membranes, followed by immunoblotting with anti-phospho-

STAT1, anti-STAT1, anti-phospho-p65, anti-p65, anti-b-actin
(Cell Signaling Technology, Danvers, MA, USA), anti-MTAP

(Novus Biologicals, Littleton, CO, USA) antibodies and

chemiluminescence detection. The protein expression levels were

quantified by ImageJ software (National Institutes of Health,

Bethesda, MD, USA).
LOPAC 1280 compound library screening
and drug treatment

The LOPAC 1280 library (Sigma-Aldrich, Cat# LO1280) was

used to identify selective inhibitors for MTAP-deficient cancer cells.

CL1–0 MTAP-WT and MTAP-KO cells were seeded in 96-well

plates and treated the following day with either vehicle (DMSO) or

individual compounds at 2 or 20 mM for 72 hours. Cell viability was

then assessed using MTT assays. Compounds exhibiting dose-

dependent cytotoxicity and a viability difference greater than 40%

between MTAP-WT and MTAP-KO cells were selected for

further analysis.
Statistical analysis

Data from at least three independent experiments are presented

as the mean ± standard deviation (SD). Quantitative variables were
Frontiers in Immunology 04
analyzed using an unpaired two-tailed Student’s t-test. All analyses

were performed using GraphPad Prism software (version 10.4.1,

Boston, MA, USA). Statistical tests were two-sided, and p-values <

0.05 were considered statistically significant.
Results

MTAP deficiency promotes tumor growth
and reduces immune cell infiltration in vivo

To assess the role of MTAP in regulating antitumor immunity,

we employed an immunocompetent murine model using Lewis

lung carcinoma (LLC) cells with or without MTAP expression.

MTAP-intact (wild-type, WT) and MTAP-knockout (KO) cells

were subcutaneously injected into the contralateral flanks of

syngeneic C57BL/6J mice. By day 21, tumors derived from

MTAP-KO cells exhibited significantly accelerated growth and

greater tumor volume compared to their WT counterparts

(Figure 1A). Consistently, excised MTAP-KO tumors were

markedly larger and heavier than MTAP-WT tumors across all

animals (Figures 1B,C). Histological evaluation revealed notable

differences in tumor architecture. Hematoxylin and eosin (H&E)

staining indicated increased vascularization and stromal

remodeling in MTAP-KO tumors relative to WT (Figure 1D,

top), top. Immunohistochemical analysis confirmed strong MTAP

expression in WT tumors and its absence in KO tumors (Figure 1D,

middle). Notably, CD45+ immune cell infiltration was significantly

reduced in MTAP-deficient tumors, suggesting impaired

recruitment of leukocytes (Figure 1D, bottom). These findings

suggest that MTAP loss enhances tumor progression and is

associated with reduced immune cell infiltration, highlighting the

importance of MTAP in antitumor immune responses.
Transcriptomic analysis reveals impaired
immune signaling and reduced CXCL10
expression in MTAP-deficient cancer cells

To elucidate the molecular mechanisms by which MTAP

regulates antitumor immune responses, we performed bulk RNA

sequencing to analyze transcriptomic alterations in MTAP-WT

(WT) and MTAP-KO (KO) cancer cells co-cultured with

peripheral blood mononuclear cells (PBMCs) (WT+PBMC and

KO+PBMC). We focused on genes with a fragments per kilobase

of transcript per million mapped reads (FPKM) value ≥1 and

identified those with at least a two-fold change in expression

when comparing WT vs. WT+PBMC, KO vs. KO+PBMC, and

WT+PBMC vs. KO+PBMC. This analysis yielded 61 differentially

expressed genes, ranked by fold change between WT+PBMC and

KO+PBMC (Figure 2A). Of these, 43 genes were upregulated in the

WT+PBMC condition, while only 18 genes were upregulated in KO

+PBMC cells, supporting our in vivo findings that MTAP deficiency

suppresses immune activation. Notably, CXCL10 (IP-10, interferon

gamma-induced protein 10), a chemokine critical for T cell
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recruitment and a positive prognostic marker for response

to immune checkpoint blockade (23), was significantly

downregulated in KO+PBMC cells. Additionally, several

interferon-inducible (IFI) genes were also suppressed in MTAP-

deficient cells, suggesting impaired interferon signaling in the

absence of MTAP.

Since CXCL9, CXCL10, and CXCL11 are ligands for chemokine

receptor CXCR3, and play a crucial role in leukocyte migration and

activation (24), we further assessed their expression using RT-qPCR

analysis. Baseline expression levels of CXCL9, CXCL10, and

CXCL11 were relatively low and comparable between MTAP-WT

and MTAP-KO CL1–0 and 786–0 cancer cells, as well as between

CL1–5Mock andMTAP-expressing cells (Figures 2B–D). However,

upon co-culture with PBMCs, expression of these chemokines was

robustly induced in MTAP-expressing cells but significantly

blunted in MTAP-KO and Mock cells. Among the three, CXCL10

exhibited the most pronounced differential induction, further

underscoring its central role in MTAP-mediated immune

responses. To determine the source of CXCL10 production, we

performed ELISA assays on culture supernatants and confirmed

that CXCL10 secretion was significantly reduced in MTAP-KO

cells, indicating that cancer cells, not PBMCs, were the primary

contributors to CXCL10 levels (Figure 2E). Further analysis using

the TCGA pan-cancer dataset (25) consolidated the positive

correlation between MTAP and CXCL10 expression (Figure 2F).

To explore upstream regulatory mechanisms, we conducted

luciferase reporter assays using cloned CXCL10 promoter
Frontiers in Immunology 05
constructs. MTAP-KO cancer cells displayed significantly lower

luciferase activity, and deletion mapping localized the responsible

regulatory elements to the proximal 1-kb region of the CXCL10

promoter (Figure 2G). We further investigated potential upstream

regulators of CXCL10 by examining STAT1 and NF-kB p65, two

key transcription factors known to drive CXCL10 expression.

Phosphorylation of both factors following PBMC co-culture was

minimally affected by MTAP status, suggesting that CXCL10

suppression is not primarily mediated through impaired STAT1

or NF-kB signaling (Figure 2H). Collectively, these findings

demonstrate that MTAP deficiency suppresses CXCL10

transcription and secretion in response to immune cell contact,

thereby limiting chemokine-mediated immune cell recruitment.

This suggests that MTAP plays a critical role in shaping tumor

immunogenicity through regulation of interferon-driven

chemokine expression.
High-throughput screening identifies
glutamate signaling as a vulnerability in
MTAP-deficient cancer cells

Having uncovered the mechanistic role of MTAP deficiency in

promoting immune evasion, we next sought to identify therapeutic

strategies that selectively target MTAP-deficient cancer cells while

potentially enhancing antitumor immune responses. To this end,

we utilized the LOPAC1280, a well-characterized high-throughput
FIGURE 1

Murine model of MTAP-deficient cancer. (A) Tumor growth of subcutaneously injected MTAP-WT and MTAP-KO LLC murine lung cancer cells in C57BL/
6J mice was measured every 2–3 days and analyzed at Day 21 (six mice per group). (B) A representative photo of primary tumors is shown. Each row of
paired tumors was derived from the same mouse. (C) Tumor weight was measured 21 days post-injection (*p < 0.05). (D) Representative images of H&E
staining and MTAP and CD45 IHC staining in tumor sections. Numbers indicate the count of CD45+ cells per field.
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FIGURE 2

Dysregulation of CXCL10 in MTAP-deficient cancer. (A) Heatmap of FPKM values for differentially expressed genes in CL1–0 WT/KO cancer cells co-
cultured with or without PBMCs, shown across three biological replicates. (B-D) RT-qPCR analysis of CXCL9, CXCL10, and CXCL11 mRNA expression
in MTAP-expressing and MTAP-deficient CL1-0 (B), 786-0 (C), and CL1-5 (D) cancer cells co-cultured with PBMCs (*p < 0.05). (E) ELISA analysis of
CXCL10 levels in conditioned media from CL1–0 WT/KO cancer cells co-cultured with PBMCs (left), isolated cancer cells (middle), and isolated
PBMCs (right) at 3, 6, 12, and 24 hours. PBMCs were isolated from the peripheral blood of three individual donors. (F) Correlation between MTAP
and CXCL10 expression in 991 patient samples from the TCGA pan-cancer dataset. r indicates the Pearson correlation coefficient. (G) Luciferase
reporter assays of CXCL10 promoter activity in MTAP-WT and MTAP-KO CL1–0 cancer cells with or without PBMC co-culture. “1K” and “2K” indicate
constructs containing the proximal 1-kb and 2-kb regions of the CXCL10 promoter, respectively. (H) Western blot analysis of phospho-STAT1 and
phospho-p65 in MTAP-WT and -KO cancer cells following PBMC co-culture. Numbers indicate the quantification relative to b-actin from three
independent Western blots.
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screening library composed of pharmacologically active small

molecules (Figure 3A). CL1–0 MTAP-WT and MTAP-KO cells

were screened across multiple dosages to evaluate compound

specificity and differential sensitivity. Initial screening using MTT

assays identified 53 candidate compounds with selective

cytotoxicity against MTAP-KO cancer cells. Remarkably, four of

these compounds were involved in glutamate-related signaling

pathways (Figure 3B): spermidine trihydrochloride and spermine

tetrahydrochloride are modulators of NMDA-type glutamate

receptors (Figures 3C,D); AIDA acts as an antagonist of

metabotropic glutamate receptors (Figure 3E); and BPTES

inhibits glutaminase, a key enzyme in glutamine-to-glutamate

conversion (Figure 3F). These findings suggest that MTAP-

deficient cancer cells are particularly susceptible to disruption of

glutamate signaling. To further explore this metabolic vulnerability,

we tested CB-839, a clinically advanced analog of BPTES with

improved solubility and potent antiproliferative activity (26). CB-

839 was evaluated across four matched pairs of MTAP-expressing
Frontiers in Immunology 07
and MTAP-deficient cancer cell lines. Strikingly, CB-839 exhibited

strong selective efficacy in MTAP-deficient cells at concentrations

as low as 0.3 mM (Figure 3G). Together, these findings demonstrate

that MTAP-deficient cancer cells display a critical dependence on

glutamate metabolism. Targeting glutamate signaling may

therefore represent a promising therapeutic strategy in MTAP-

deleted malignancies.
Glutaminase inhibition preferentially
enhances CXCL10 expression in MTAP-
deficient cancer cells

To further understand the regulatory mechanisms underlying

glutamate dependency in MTAP-deficient cancer cells, we

examined the expression of glutaminase 1 (GLS1), the target of

CB-839, and key glutamine/glutamate transporters. RT-qPCR

analysis revealed a slight decrease in GLS1 expression in MTAP-
FIGURE 3

Screening of novel inhibitors targeting MTAP-deficient cancer. (A) Schematic overview of the drug screening strategy for identifying compounds
selectively targeting MTAP-KO cells. (B) Classification of compounds from the LOPAC 1280 library based on selectivity for MTAP-KO cells. Red bars
indicate glutamate-related pathways. (C-F) MTT assay results for spermidine trihydrochloride, spermine tetrahydrochloride, and AIDA (glutamatergic
pathway) and BPTES (oxidative stress pathway) in MTAP-WT and MTAP-KO cells (*p < 0.05). (G) CB-839 treatment response in MTAP-expressing and
MTAP-deficient cancer cells was assessed by MTT assays (*p < 0.05).
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deficient cells, despite their increased sensitivity to CB-839

treatment. Interestingly, MTAP-deficient cells showed a modest

upregulation of the glutamine transporter SLC38A2, while the

glutamine antiporter complex SLC3A2-SLC7A5 and the

glutamate-cystine antiporter SLC7A11 were moderately

downregulated (Figure 4A). These changes suggest a metabolic

shift favoring increased glutamine uptake and reduced glutamate

export, potentially reinforcing intracellular glutamate dependence

in MTAP-deficient cells. Given the selective vulnerability of

MTAP-deficient cancer cells to CB-839 treatment and the

immunoregulatory role of CXCL10, we next evaluated whether

glutaminase inhibition could enhance CXCL10 expression. As

shown in Figure 4B, basal level of CXCL10 was minimal in

cancer cells cultured alone (green bar). Co-culture with PBMCs

induced CXCL10 expression in bothMTAP-expressing andMTAP-

deficient cells, but the magnitude of induction was significantly

higher in MTAP-expressing cells (purple bar). While CB-839

treatment had little effect on CXCL10 expression (blue bar), pre-

treatment with CB-839 followed by PBMC co-culture led to a

marked increase in CXCL10, particularly in MTAP-deficient cells
Frontiers in Immunology 08
(red bar). These findings suggest that CB-839 effectively enhances

CXCL10 expression in an immune-competent context, with

preferential effects in MTAP-deficient tumors. This finding

supports the potential of glutaminase inhibition not only to

impair tumor metabolism but also to augment chemokine-driven

immune responses, offering a dual therapeutic strategy for MTAP-

deficient malignancies.
Discussion

In this study, we demonstrated that MTAP plays a dual role in

cancer by regulating both tumor progression and immune

responses. MTAP-deficient cancer cells showed impaired

induction of key chemokines, CXCL9, CXCL10, and CXCL11,

particularly in response to immune cell interaction, thereby

contributing to the development of an immunosuppressive “cold”

tumor microenvironment. Through a targeted high-throughput

screen using the LOPAC1280 compound library, we identified

pharmacological agents capable of both suppressing malignant
FIGURE 4

Alterations in glutamine transport and the effect of CB-839 on CXCL10 expression in MTAP-deficient cancer. (A) Expression analysis of glutaminase 1
(GLS1) and glutamine transporter genes SLC38A2, SLC3A2, SLC7A5, and SLC7A11 in MTAP-expressing and MTAP-deficient cancer cells by RT-qPCR
assays. Expression levels were normalized to CL1–0 WT or CL1–5 Mock (*p < 0.05, ns: not significant). (B) RT-qPCR analysis of CXCL10 mRNA levels
in MTAP-expressing and MTAP-deficient cancer cells under different conditions: treatment with/without 5 µM CB-839 for 24 hours and co-culture
with/without PBMCs for 24 hours (*p < 0.05). Expression levels were normalized to the respective control groups: CL1–0 WT, 786–0 WT, CL1–5
Mock, and ACHN Mock.
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phenotypes and partially restoring immune-related gene expression

in MTAP-deficient cells. These findings suggest new therapeutic

avenues for overcoming the limitations of current MTAP-targeted

strategies and enhancing antitumor immunity.

Previous large-scale functional screens identified PRMT5 as a

synthetic lethal target in MTAP-deleted cancer cells (17–19). This

led to the development of therapeutic strategies targeting the

methionine-MAT2A-SAM-PRMT5-MTA axis (20). Subsequent

efforts focused on MAT2A inhibition and more recently, MTA-

cooperative PRMT5 inhibitors, which selectively exploit elevated

MTA levels in MTAP-deficient tumors to achieve higher specificity

while sparing MTAP-proficient cells (27–29). Several of these

agents are currently undergoing evaluation in phase 1/2 clinical

trials. While early data appear encouraging, concerns remain about

toxicity to normal tissues and the long-term effects on the tumor

immune landscape. Additionally, their potential to synergize with

ICIs is yet to be explored in clinical settings.

In contrast, we focused on CB-839, a clinically advanced GLS

inhibitor with a favorable safety profile and ongoing trials in various

malignancies, including triple-negative breast cancer, non-small cell

lung cancer, and mesothelioma (30), and metastatic renal cell

carcinoma (31). Although clinical responses to CB-839 have been

variable across tumor types (32, 33), our findings suggest that

MTAP-deficient tumors represent a distinct subset with

heightened vulnerability to GLS inhibition. CB-839 targets GLS, a

key enzyme in glutamine metabolism that fuels glutamate and a-
ketoglutarate production essential for tumor bioenergetics and

redox balance (34). Importantly, CB-839 has been shown to

improve ICI responses in murine melanoma models by

remodeling the TME and enhancing effector T cell infiltration

(35). In our study, CB-839 alone did not induce CXCL10 in

cancer cells but selectively impaired the growth of MTAP-

deficient cancer cells and restored CXCL10 expression under

immune co-culture, suggesting a dual mechanism involving both

tumor cell-intrinsic cytotoxicity and immune cell-mediated

feedback. Further evaluation of CB-839 in combination with

immunotherapy will be important to define the translational

potential of integrating glutaminase inhibition with immune

checkpoint blockade in MTAP-deficient tumors.

Altered tumor metabolism plays a central role in shaping

immune responses by affecting nutrient competition, cytokine

signaling, and immune cell function. Studies have shown that

amino acids such as arginine, asparagine, aspartate, serine, and

glutamine are often regionally depleted within tumor cores

compared to the periphery (36). Among them, glutamine is

particularly critical for mitochondrial metabolism, glutathione

synthesis, and non-essential amino acid production (37). As a

result, targeting glutamine metabolism has emerged as a

promising therapeutic strategy. Approaches such as suppressing

glutamine uptake via the ASCT2/SLC1A5 transporter (38) or

inhibiting GLS activity (26, 39) have shown efficacy in preclinical

models. Notably, ASCT2 inhibition with V9302 synergized with

anti-PD-L1 therapy through an IFN-g-driven mechanism (40),
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emphasizing the immunomodulatory potential of targeting

glutamine metabolism. Our findings further support this concept:

GLS inhibition via CB-839 not only selectively impaired MTAP-

deficient tumor growth but also restored CXCL10 expression,

particularly in immune co-culture. Given that CXCL10 is critical

for T cell recruitment, these findings suggest that glutaminase

inhibition may help reverse immune suppression in MTAP-

deficient tumors and sensitize them to immunotherapy.

CXCL10 has emerged as a favorable prognostic biomarker for

immunotherapy responsiveness across multiple cancer types (23,

41–43). Given its critical role in recruiting T cells, strategies to

enhance CXCL10 expression in the TME are actively being explored

as a means to improve immune infiltration and response to

checkpoint blockade. At the transcriptional level, CXCL10 is

regulated by STAT1 and NF-kB p65, which bind to IFN-

stimulated and NF-kB response elements following IFN-g or

IL-1b signaling (44). However, our data indicate that CXCL10

suppression in MTAP-deficient cells may not be regulated through

the two transcription factors. The cGAS-STING-TBK1-IRF3 pathway

also induces CXCL10 expression as part of a type I interferon response

to cytosolic DNA (45). Notably, many of these immune pathways can

be modulated by protein arginine methyltransferases (PRMTs) in an

MTA-sensitive manner (46–48), suggesting a mechanistic link between

MTAP loss, MTA accumulation, and impaired chemokine signaling.

Several recent strategies have been shown to boost CXCL10 levels,

including combination regimens such as PEM/CDDP with MEK1/2

inhibitors, which enhance CD8+ T cell infiltration and synergize with

anti-PD-L1 therapy (49). Moreover, CXCL10-engineered dendritic cell

vaccines have shown promise in enhancing T cell recruitment and

overcoming ICI resistance (50). These approaches highlight CXCL10 as

a pivotal mediator of TME remodeling. Our data show that glutaminase

inhibition can restore CXCL10 expression in MTAP-deficient cells,

offering a promising strategy to “warm up” immunologically

silent tumors.

Future mechanistic studies are warranted to define how MTAP

deficiency alters tumor glutamate metabolism to suppress CXCL10

expression, and whether CB-839-mediated upregulation of CXCL10

is sufficient to restore T cell infiltration and activation in MTAP-

deficient tumors. It will also be important to delineate the crosstalk

between tumor cells and diverse immune cell populations within

the TME, particularly in the context of metabolic modulation. In

parallel, further investigation into potential resistance mechanisms,

such as compensatory metabolic pathways or altered nutrient

uptake, as well as the safety considerations identified in early-

phase clinical trials, will be critical for advancing glutaminase

inhibitors toward therapeutic application in MTAP-deficient

cancers. In conclusion, this study reveals how MTAP loss

contributes to immune evasion and identifies glutamate

metabolism as a therapeutically actionable vulnerability. Our

findings support further evaluation of glutaminase inhibition,

particularly CB-839, as a means to restore antitumor immunity in

MTAP-deficient cancers and to enhance the efficacy of immune

checkpoint blockade in tumors that are otherwise resistant.
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