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Cannabis use is associated
with alterations in NLRP3
inflammasome related
gene expression in monocyte-
derived macrophages from
people living with HIV
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Ali Boustani1, Matthew Spencer1, Leeann Shu1,
Antoine Chaillon2, Melanie Crescini1, Debralee Cookson1,
Ronald J. Ellis1,3, Scott L. Letendre1,2, Jennifer Iudicello1

and Jerel Adam Fields1*

1Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,
2Department of Medicine, University of California San Diego, La Jolla, CA, United States, 3Department
of Neurosciences, University of California San Diego, La Jolla, CA, United States
Introduction: Human immunodeficiency virus (HIV) infection is often associated

with chronic inflammation and cognitive dysfunction in people living with HIV

(PWH). The nucleotide-binding oligomerization domain-like receptor containing

pyrin domain 3 (NLRP3) inflammasome plays a crucial role in the secretion of

pro-inflammatory cytokines, specifically interleukin (IL)-18 and IL-1b. Cannabis
use and certain phytocannabinoids, such as cannabidiol (CBD), may provide

therapeutic benefits in conditions associated with chronic inflammation.

Methods: In this cross-sectional study, we investigated the relationship between

cannabis use and NLRP3-related gene expression in monocyte-derived

macrophages (MDMs) from PWH (n = 43) and people without HIV (PWoH; n =

22). Participants were categorized as naïve, moderate, or daily cannabis users.

Donor-derived MDMs were treated with CBD (30 mM), IL-1b (20 ng/mL), or CBD

+ IL-1b for 24 hours to examine effects onNLRP3-related gene expression. Gene

expression data were analyzed using one-way and two-way ANOVA with Holm-

Sidak’s multiple comparisons tests. Correlations between gene expression and

clinical parameters were assessed using Pearson's correlation coefficient.

Statistical significance was determined at p < 0.05.

Results:MDMs without treatment from PWH exhibited 83% higher NLRP3mRNA

expression compared to MDMs from PWoH. Furthermore, MDMs without

treatment from moderate cannabis users expressed 61% less IL1b mRNA

compared to naïve users, and MDMs from daily users expressed a 64%

increase in IL18 expression compared to moderate users. Additionally, MDMs

treated with CBD and IL-1b showed a 22% decrease in NLRP3 mRNA expression

compared to IL-1b treated MDMs. When treated with CBD and IL-1b, we

observed a significant increase in both IL1b (3-fold, p < 0.01) and IL18 (2-fold, p

< 0.01) expression compared to vehicle. The relationship between NLRP3 mRNA
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expression in MDMs and global deficit scores in PWH not using cannabis was

inverse to that relationship in PWH using cannabis.

Discussion: Overall, these findings suggest that CBD, as consumed through

cannabis use, may mitigate NLRP3 activation in PWH, potentially offering

therapeutic benefits for chronic inflammation. However, the unexpected

effects on downstream cytokine mRNA expression, combined with product

heterogeneity, underscore the need for future mechanistic studies to fully

delineate cannabinoid–inflammasome interactions in the context of HIV.
KEYWORDS

NLRP3 inflammasome, HIV-associated neuroinflammation, cannabis, CBD, monocyte-
derived macrophages
1 Introduction

HIV-1 infection is associated with immune dysregulation,

contributing to both disease progression and the development of

comorbidities (1). While antiretroviral therapy (ART) has

successfully transformed HIV from a fatal disease into a

manageable chronic condition (2), neurological complications

such as neurocognitive impairment (NCI) remain a major

concern (3). While the cause of NCI in PWH is often

multifactorial, chronic inflammation within the central nervous

system (CNS) is a primary etiology (1, 4–6). Consequently, there is a

need to better understand mechanisms of chronic inflammation in

people living with HIV (PWH).

Chronic inflammation is characterized by a prolonged,

multifaceted, and often maladaptive immune response that

underlies the pathogenesis of numerous diseases, including

autoimmune disorders (7, 8), cancers (9), and neurodegenerative

diseases (10, 11). This persistent inflammatory state is likely driven

by a complex interplay of factors, including ongoing viral

replication, immune dysregulation, chronic activation of

inflammatory pathways, and possibly chronic exposure to ART

(12–17). Among these pathways, the nucleotide-binding

oligomerization domain-like receptor containing pyrin domain 3

(NLRP3) inflammasome has emerged as a critical mediator of

inflammation in PWH. The NLRP3 inflammasome is a critical

component of humans’ innate immune response and a potential

target for modulating chronic inflammation in PWH (18). NLRP3

is a cytosolic multiprotein complex that detects and responds to a

wide array of pathogenic and endogenous danger signals, like

adenosine triphosphate and lipopolysaccharides (19). Three

proteins form the NLRP3 complex: the NLRP3 sensor protein, an

apoptosis-associated speck-like protein containing a caspase

recruitment domain adaptor protein, and the effector protein pro-

caspase-1 (20–22). Expression of the NLRP3 complex is ubiquitous

in most tissues and cell types, even those of non-myeloid lineage

(23–30). A wide variety of stimuli such as viral RNA, bacteria, and
02
protozoan pathogens can trigger the active inflammasome NLRP3

complex (31–33). Upon activation, NLRP3 recruits and activates

caspase-1, which processes pro-inflammatory cytokines like

interleukin (IL)-1b and IL-18 into their active forms, thereby

amplifying the inflammatory response (34). These inflammatory

cytokines are then released from the cell through membrane pores

opened by gasdermin D, another protein that is cleaved and

activated by caspase-1 (35). PWH who are immunological non-

responders exhibit increased NLRP3 and caspase-1 gene expression

(36). While essential for host defense against infections,

dysregulation of the NLRP3 inflammasome has been implicated

in the pathogenesis of various inflammatory diseases, including type

2 diabetes, Crohn ’s Disease, Alzheimer ’s disease, and

atherosclerosis (37–40). HIV-induced cellular stress signals, and

ART, make the NLRP3 inflammasome a central player in sustaining

chronic inflammation in PWH via the release of inflammasome

genes IL1b and IL18.

There are three distinct types of macrophages in the brain which

are critically important in HIV infection, pathogenesis, and immune

response (41, 42). Perivascular macrophages and microglia are

resident in the parenchyma of the brain (43, 44); While monocyte-

derived macrophages (MDMs) are trafficked into the brain after

infection occurs using a “Trojan horse” mechanism (45). MDMs

often act as latent HIV reservoirs producing HIV proteins and

avoiding the cytopathic effects of the virus (46–48). These MDM

cells also drive systemic inflammation by secreting pro-inflammatory

cytokines such as IL-1b, IL-6, and TNF-a, which disrupt endothelial

tight junctions and increase blood brain barrier (BBB) permeability

(49, 50). They also release chemokines and neurotoxic factors which

trigger neuroinflammation, oxidative stress, and neurotoxic damage

(51–53). Additionally, antiretroviral drugs have variable BBB

penetration efficiency, which makes these MDMs difficult to target

(54–57). Given their resistance to ART and their sustenance of

chronic inflammation, MDMs are crucial targets for understanding

viral persistence, CNS implications, and the chronic inflammation

seen in PWH.
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Cannabis use among PWH is common and has shown

therapeutic potential for managing HIV-related comorbidities.

The cannabinoids delta-9-tetrahydrocannabinol (THC) and

cannabidiol (CBD) are known for their anti-inflammatory

properties, which may help mitigate neuroinflammation

associated with neurodegenerative diseases (58, 59). Recent

cannabis use has been associated with lower inflammatory

biomarkers in PWH (60); however, the influence of differing

cannabis use frequencies on NLRP3 activation and downstream

inflammatory pathways in PWH remain poorly understood. These

individuals also exhibit reduced circulation of inflammatory

biomarkers, decreased viral DNA in tissues, and a lower

prevalence of NCI (61–63). Notably, cannabis use among PWH

occurs at rates 25% higher than in the general population,

emphasizing the importance of understanding its effects on the

NLRP3 inflammasome within the context of HIV infection (64).

While cannabis is associated with anti-inflammatory and

neuroprotective benefits, the specific pathways through which it

exerts these effects in the context of HIV are not yet fully

understood. The interplay between the NLRP3 inflammasome

and HIV remains an active area of research, with significant

implications for understanding how cannabis may modulate

immune responses and chronic inflammation in this population.

Thus, this study is the first of its kind to investigate the role of the

NLRP3 inflammasome in MDMs generated from a cohort of PWH

with variable cannabis-use patterns. We propose that varying

patterns of cannabis use among PWH may differentially modulate

NLRP3 inflammasome activation, leading to alterations in chronic

inflammation and subsequent neurological outcomes. Specifically,

we hypothesize that PWH who use cannabis at moderate to daily

frequencies will express lower levels of NLRP3mRNA, compared to

non-users. The findings presented here reveal that HIV affects

NLRP3 expression, and this is modulated by cannabis use.

Further investigation of the NLRP3 pathway reveals that cannabis

use patterns heavily influence NLRP3-related cytokine response in

PWH as well. Insights gained from this research could inform the

development of tailored therapeutic strategies for managing chronic

inflammation in PWH. Such strategies may ultimately improve

health outcomes and quality of life for PWH.
2 Materials and methods

2.1 Study population

This study recruited PWH (n = 43) and people without HIV

(PWoH; n = 22) with varying demographic characteristics (e.g., age,

sex, race, education; Table 1). Participants were grouped based on

their HIV status and cannabis use patterns following recruitment and

comprehensive evaluations as part of an NIH-funded and UCSD

IRB-approved study conducted at the HIVNeurobehavioral Research

Program (HNRP) in San Diego, California, USA. All PWH were on

stable ART for at least six months and virally suppressed. Before the

assessment, current cannabis users were asked to maintain their
Frontiers in Immunology 03
regular use pattern. Participants were classified into three cannabis

use groups based on consistent cannabis use patterns over the six

months prior to assessment: naïve (never used or no use in the past 60

days and low use of cannabis in the past five years [i.e., ≤ 6 times per

year]), moderate (1 to 6 days per week), or daily (7 days per week).

Participants were administered a comprehensive medical, laboratory

(including venous blood collection and urine drug screen), and

neurobehavioral assessments. Individuals who tested positive for

substances (other than cannabis for the regular cannabis use

groups) were excluded or rescheduled to minimize the potentially

confounding effects of acute substance use. Additional exclusion

criteria include uncontrolled medical, psychiatric, or neurological

conditions; comorbidity of infection; a DSM diagnosis of moderate to

severe drug use disorder other than cannabis within the past five

years, or mild use disorder within the past six months (excluding

tobacco); moderate to severe alcohol use disorder within the past

twelve months.
2.2 Neurocognitive assessment

The neurocognitive assessment included a comprehensive battery

of neuropsychological tests with appropriate normative data assessing

cognitive domains sensitive to HIV and cannabis use. As previously

described (65), the Global Deficit Score (GDS) is a composite

measure used to assess overall neurocognitive functioning by

summarizing performance across multiple cognitive tests.

Individual test scores are first converted into demographically

corrected T-scores, which are then transformed into deficit scores

based on the following scale: T-score ≥ 40 = deficit score of 0; T-score

35 – 39 = deficit score of 1; T-score 30 – 34 = deficit score of 2; T-

score 25 – 29 = deficit score of 3; T-score 20 – 24 = deficit score of 4;

T-score ≤ 19 = deficit score of 5. Once all individual deficit scores are

assigned, they are averaged to produce the GDS, with higher scores

indicating greater overall cognitive impairment. This method

accounts for both the severity and breadth of impairments across

different cognitive domains. A cutoff of GDS ≥ 0.5 was used to

indicate NCI (66).
TABLE 1 Demographic, clinical and cannabis use characteristics of study
population.

Variable
HIV-

(n = 22)
HIV+

(n = 43)
Overall
(n = 65)

Sex (% male) 72.2 95.3 87.7

Age (years ± SEM) 47.2 ± 3.5 59.7 ± 1.7 55.5 ± 1.8

Cannabis User (% yes) 45.5 51.2 47.7

Duration of Infection
(years ± SEM)

25.9 ± 3.9

Duration of current antiretroviral regime
(months ± SEM)

50.0 ± 8.5

Global Deficit Score
(>0.5 impaired ± SEM)

0.31 ± 0.08 0.46 ± 0.08 0.42 ± 0.06
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2.3 Separation and treatment of
monocyte-derived macrophages

As illustrated in Figure 1, peripheral blood mononuclear cell

(PBMC) isolation was performed on donor blood using

HISTOPAQUE-1077 (Sigma Life Sciences; #10771) and density

gradient centrifugation at 400g for 30 minutes. The PBMC layer

was collected, diluted 1:1 with 1X PBS, and centrifuged at 250g for 10

minutes. Cells were washed, centrifuged, and resuspended three times

in 1X PBS before resuspension in Iscove’s Modified Dulbecco’s

Medium (IMDM; Gibco; #12440053) supplemented with 10%

human serum (Millipore Sigma; #H5667) and 1% penicillin/

streptomycin (Gibco; #15140122). Automated cell counting was

performed on a Countess™ 3 FL (ThermoFisher Scientific;

#AMQAF2000) using 0.4% trypan blue solution (Amresco;

#K940100ML). Cells were plated in 24-well plates (Corning; #3524)

at 400, 000 cells/well for RNA testing or 96-well plates (Thermo

Scientific; #164588) at 100, 000 cells/well for immunocytochemistry

analyses. Cells were maintained in a humidified incubator at 5% CO2

and 37 °C. Monocytes were isolated via plastic adhesion and non-

adherent cells were removed with media exchanges every 2–3 days.

After seven days, matured monocyte-derived macrophages were pre-

treated for one hour with cannabidiol (Cerilliant Supelco; #C-045; 30

mM) or delta-9-tetrahydrocannabinol (Cerilliant; #T-005; 10 mM)

before incubating with IL-1b (Invivogen; #6409-44-01; 20 ng/mL)

for 6 hours prior to RNA isolation or 24 hours prior to fixation and

immunostaining. Selected concentrations and treatment durations

were based on prior studies demonstrating reproducible

immunomodulatory effects in primary macrophages while
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minimizing cytotoxicity (67, 68). All conditions were treated in

biological triplicate.
2.4 Real-time quantitative polymerase
chain reaction

Total RNA was isolated from MDMs with the Qiagen RNeasy

Plus Mini Kit (Qiagen; #74136) following kit-provided instructions.

RNA was quantified with a Nanodrop 1000 spectrophotometer and

reverse transcribed to cDNA using the High Capacity cDNA (Applied

Biosystems; #4368814) kit per manufacturer instructions. To quantify

the expression of mRNA targets, Taqman (ThermoFisher) probes for

NLRP3 (4331182), IL1b (4331182), IL18 (4331182), and ACTB

(Applied Biosystems; #4310881E) were incubated with the cDNA.

Multiplex relative quantification assays were performed on a

QuantStudio 3 Real-Time PCR machine (ThermoFisher). Fold

changes were calculated against controls using the comparative Ct

method, as previously described (69), and were analyzed in

technical duplicates.
2.5 Detection and measurement of
interleukin-18

Secreted IL-18 protein levels were quantified in cell culture

supernatants using a commercially available Human IL-18 ELISA

kit (RayBiotech; Norcross, GA; #ELH-IL18), according to the

manufacturer’s instructions. Samples and standards were processed
FIGURE 1

Schematic representation of donor-derived monocyte-derived macrophages’ isolation, culture, and treatment. PBMC, peripheral blood mononuclear
cells; IMDM, Iscove’s Modified Dulbecco’s Medium; CBD, cannabidiol; IL-1b, interleukin-1b; Design created with the aid of BioRender.
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in duplicate, and absorbance was measured at 450 nm using a

Synergy HTX plate reader (BioTek Instruments Inc.; Winooski, VT).
2.6 Statistical analysis

Data are presented as mean ± SEM with statistical analyses that

include one-way and two-way ANOVAwith Cohen’s d and effect size

analysis when appropriate. Statistical significance was determined at

p < 0.05 for all data, with individual p-values reported when near the

significance threshold. All sample sizes and data normalizations are

listed in the figure or the figure legends. Data was analyzed on

GraphPad Prism 10.3 software (San Diego, CA, USA).
3 Results

3.1 HIV infection is associated with
increased NLRP3 gene expression

To examine how NLRP3, IL1b, and IL18mRNA expression was

influenced by the presence of the HIV prior to treatment, we

divided our RT-qPCR results by HIV status. An unpaired t-test

revealed a statistically significant 83% increase in NLRP3 fold

change among PWH (P = 0.006; Figure 2A). Further analysis

using Cohen’s d indicated a large effect size for the NLRP3 target

gene (Figure 2A). Although IL1b and IL18 fold changes appeared

elevated in PWH compared to PWoH, the unpaired t-test did not

indicate statistical significance for these genes. Cohen’s d analysis

showed a medium effect size for IL1b and a small effect size for IL18

when comparing PWH and PWoH (Figure 2B, C). These results

suggest an association between HIV disease and increased NLRP3

mRNA expression in MDMs.
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3.2 Cannabis use is associated with
differential regulation of NLRP3 and
downstream IL1b and IL18 gene expression

Donor MDMs were then categorized according to their

cannabis use patterns to examine associations with NLRP3

mRNA and downstream IL1b and IL18 mRNA. These

comparisons were made in PWH and PWoH combined as well as

with the groups separated. We did not observe a significant

association between cannabis use groups and NLRP3 fold change

(Figure 3A). When stratified by HIV status, there were no

significant associations between cannabis use groups and NLRP3

fold change (Figure 3B). Our analysis showed a 61% decrease in

IL1bmRNA expression from naïve to moderate cannabis users (P =

0.025; Figure 3C). When stratified by HIV status, there were no

significant associations between cannabis use groups and IL1b fold

change (Figure 3D). Upon analyzing IL18 mRNA expression in

PWH and PWoH we observed a 64% increase in expression with

daily cannabis users compared to moderate users, which

approached statistical significance (P = 0.06; Figure 3E). We

observed an 82% increase in IL18 expression in daily cannabis

users relative to naïve users among PWH (P = 0.05; Figure 3F).

These results suggest that cannabis use is associated with differential

regulation of IL1b and IL18 mRNA expression.
3.3 The CBD + IL-1b treatment group is
associated with decreased NLRP3 gene
expression and increased IL1b and IL18
gene expression

MDMs were treated with IL-1b, CBD, and a combination of

CBD + IL-1b (C+I), revealing significant differences in NLRP3
FIGURE 2

HIV infection is associated with increased NLRP3 mRNA expression. Relative mRNA expression for (A) NLRP3, (B) IL1b, and (C) IL18 grouped by HIV
status. Data were analyzed using unpaired t-tests and Cohen’s d for effect sizes; normalized to HIV- MDMs; group size indicated within bars;
**p < 0.01.
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mRNA expression across the treatment groups. MDMs treated with

IL-1b showed a 35% increase in NLRP3 mRNA expression

compared to the vehicle group (P = 0.002; Figure 4A). In

contrast, CBD-treated MDMs exhibited a 47% decrease relative to
Frontiers in Immunology 06
the vehicle group (P < 0.001; Figure 4A). Importantly, the C+I

treatment led to a significant 22% reduction compared to IL-1b
alone (P = 0.007; Figure 4A). When results were stratified by HIV

status, statistical significance varied. In HIV-negative MDMs, CBD
FIGURE 3

Cannabis use is associated with differential expression of inflammasome-related mRNA: NLRP3, IL1b, and IL18. Relative gene expression stratified by
cannabis use for NLRP3 with the (A) donors combined and (B) grouped by HIV status, IL1b with the (C) donors combined and (D) grouped by HIV
status, and IL18 with the (E) donors combined and (F) grouped by HIV status. Data represented as mean ± SEM and analyzed using (A, C, E) one-way
ANOVA and (B, D, F) two-way ANOVA with Holm-Sidak’s multiple comparisons tests; normalized to HIV- naïve MDMs; group size indicated within
bars; *p < 0.05, **p < 0.01.
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FIGURE 4

CBD + IL-1b treatment is associated with decreased NLRP3 mRNA expression and increased IL1b and IL18 mRNA expression in MDMs. Relative
NLRP3 expression stratified by treatment (IL-1b, CBD, and CBD + IL-1b) with donors (A) combined and (B) grouped by HIV- and HIV +. Relative IL1b
expression stratified by treatment with donors (C) combined and (D) grouped by HIV- and HIV +. Relative IL18 expression stratified by treatment
with donors (E) combined and (F) grouped by HIV- and HIV +. Data represented as mean ± SEM and analyzed using (A, C, E) one-way ANOVA and
(B, D, F) two-way ANOVA with Holm-Sidak’s multiple comparisons tests; normalized to untreated MDMs; Group size indicated within bars; *p < 0.05,
**p < 0.01, ***p < 0.001.
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treatment alone resulted in a 54% decrease from vehicle levels,

though no other treatment showed statistically relevant differences

(P = 0.03; Figure 4B). In HIV-positive MDMs, IL-1b treatment

resulted in a 58% increase in expression, while CBD treatment alone

produced a significant 44% decrease compared to the vehicle (P <

0.001; P = 0.005; Figure 4B). These findings suggest an association

between CBD addition and decreased NLRP3 mRNA expression.

We then examined IL1b mRNA expression across treatment

groups. Before stratifying by HIV status, the IL-1b-treated group

showed a 537-fold increase in IL1b expression compared to the

vehicle group (P < 0.001; Figure 4C). The C+I group exhibited a 924-

fold increase over vehicle and a significant 72% increase compared to

IL-1b alone (Ps = 0.001; Figure 4C). When divided by HIV status,

HIV-negative donors showed a 480-fold increase when compared

against vehicle (P = 0.01; Figure 4D). Furthermore, the IL1b
expression increased 668-fold in the C+I group compared to the

vehicle (P < 0.001; Figure 4D). HIV-positive cells treated with IL-1b
expressed a 447-fold increase and those treated with C+I expressed an

824-fold increase in IL1b mRNA expression relative to vehicle (Ps <

0.001; Figure 4D). The C+I treatment further increased expression by

84% over the IL-1b treatment alone (P < 0.001; Figure 4D).

Finally, we examined IL18 mRNA expression. IL18 mRNA

expression in HIV-negative and HIV-positive cells treated with IL-

1b showed a 121% increase compared to the vehicle (P = 0.02;

Figure 4E). Furthermore, those treated with C+I expressed a 260%

increase over vehicle (P < 0.001; Figure 4E). Cells treated with the C+I

combination exhibited an additional significant 61% increase over IL-

1b treatment alone (P < 0.001; Figure 4E). This pattern persisted

when data were stratified by HIV status. In HIV-negative donors,

IL18 expression increased by 134% from vehicle to IL-1b treatment

and by 283% from vehicle to C+I (Ps < 0.001; Figure 4F). C+I treated

HIV-negative MDMs’ IL18 expression increased 62% from IL-1b (P

< 0.001; Figure 4F). Among people with HIV, we observed a 112%

increase from vehicle to IL-1b treatment and a 237% increase when

treated with C+I (Ps < 0.001; Figure 4F). C+I treated HIV-positive

MDMs’ IL18 expression increased 55% from IL-1b (P < 0.001;

Figure 4F). These findings in our IL1b and IL18 cytokine analyses

indicate that the combination of CBD and IL-1b is associated with

increased inflammatory cytokine mRNA expression in MDMs.

Similar results were observed with THC and THC + IL-1b
treatments. In HIV-positive MDMs, THC increased NLRP3

expression by 42% compared to vehicle, while THC + IL-1b
increased expression by 33% compared to vehicle (P < 0.001; P =

0.005; Supplementary Figure 1A). However, when comparing the

combined treatment to IL-1b alone, no statistically significant

differences were observed.
3.4 Cannabis use is associated with highest
CBD + IL-1b induced changes in NLRP3,
IL1b, and IL18 gene expression in people
with HIV

To further elucidate the impact of CBD and IL-1b treatment on

NLRP3-related mRNA expression, we stratified our data by
Frontiers in Immunology 08
cannabis use patterns and compared across treatment group.

Among all naïve cannabis donors, IL-1b-treated cells showed a

50% increase in NLRP3 mRNA compared to the vehicle while the

CBD-treated cells exhibited a significant 47% decrease relative to

the vehicle (Ps = 0.01; Figure 5A). The combined C+I treatment

reducedNLRP3mRNA expression by 69% compared to IL-1b alone
(P = 0.01; Figure 5A). In PWoH naïve cannabis frequency group,

CBD treatment decreased NLRP3 fold change by 43% compared to

the vehicle, and the combined treatment further decreased

expression by 47% compared to vehicle or (P = 0.002; P = 0.003;

Figure 5B). Furthermore, the HIV-negative naïve MDMs that

received the C+I treatment expressed 55% less NLRP3 mRNA

when compared to the IL-1b treatment (P = 0.002; Figure 5B).

The HIV-positive naïve MDMs expressed a 67% increase in NLRP3

expression when treated with IL-1b alone (P = 0.004; Figure 5C).

Since NLRP3mRNA expression was higher in PWH versus PWoH,

these results suggest that HIV disease is associated with elevated

NLRP3 mRNA expression.

We next analyzed IL1b mRNA expression stratified by cannabis

use patterns and compared across treatment group. In the combined

group, naïve cannabis users showed a 552-fold increase in IL1b
mRNA expression following IL-1b treatment (P < 0.001; Figure 5D).

Similarly, the C+I treatment group exhibited a 664-fold increase over

the control (P < 0.001; Figure 5D). The combined moderate using

group expressed a marked 790-fold increase compared to vehicle and

a 277% increase from IL-1b alone (P < 0.001; P = 0.006; Figure 5D).

Furthermore, the combined daily users treated with IL-1b expressed a
456-fold increase in IL1b gene expression (P = 0.02; Figure 5D).

Similarly, those donors treated with C+I expressed a 960-fold increase

over vehicle and a 110% increase over IL-1b alone (P < 0.001; P =

0.008; Figure 5D). In HIV-negative donors alone, the naïve group

treated with IL-1b demonstrated a 591-fold increase, while the

combined C+I group showed a 607-fold increase, both compared

to vehicle treatment (Ps = 0.004; Figure 5E). HIV-negative daily users

exhibited a similar trend with a 780-fold increase from vehicle to C+I

treatment reaching statistical significance (P < 0.001; Figure 5E).

Among PWH alone, naïve users demonstrated a 531-fold increase

from vehicle to IL-1b treatment and a 733-fold increase from vehicle

to C+I treatment (Ps < 0.001; Figure 5F). In PWHmoderate cannabis

users, the C+I treatment resulted in an 817-fold increase over the

control, with an additional 38% increase over IL-1b treatment (P <

0.001; P = 0.009; Figure 5F). HIV-positive daily users exhibited a

similar trend to the HIV-negative donors with a 1093-fold increase

from vehicle to C+I treatment reaching statistical significance (P <

0.001; Figure 5F).

When comparing IL18 mRNA expression by cannabis use

patterns across PWH and PWoH, similar trends emerged in all

three cannabis use groups. The naïve users IL18 gene expression

increased 112% in the IL-1b treatment and 249% in the C+I

treatment compared to vehicle, while the C+I treatment was also

65% higher than IL-1b treatment alone (Ps < 0.001; Figure 5G). The

naïve users IL18 gene expression increased 136% in the IL-1b
treatment and 232% in the C+I treatment compared to vehicle,

while the C+I treatment was also 40% higher than IL-1b treatment

alone (Ps < 0.001; P < 0.001; P = 0.02; Figure 5G). Daily users IL18
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expression showed the same significant differences with a 136%

increase from vehicle to IL-1b, a 285% increase from vehicle to C+I,

and notably a 63% increase from IL-1b to C+I (Ps < 0.001;

Figure 5G). In analyzing PWoH, we found that naïve and

moderate cannabis users had 182% and 320% increases from

vehicle to C+I, respectively (P < 0.001; P = 0.002; Figure 5H).

Daily cannabis users’ IL18 gene expression showed a significant

186% increase from vehicle to IL-1b, a 393% increase from vehicle

to C+I, and a 72% increase from IL-1b to C+I (P = 0.002; P < 0.001;

P < 0.001; Figure 5H). In PWH, naïve cannabis users showed a

117% increase in IL18 gene expression between vehicle and IL-1b
treatments and a larger 278% increase from vehicle to C+I (Ps <

0.001; Figure 5I). This group also showed a 74% increase from IL-1b
to C+I (P < 0.001; Figure 5I). Moderate cannabis users in the HIV-

positive group displayed a significant 140% increase between vehicle

and IL-1b treatments and a 209% increase from vehicle to C+I

treatments (Ps < 0.001; Figure 5I). Daily cannabis users showed a
Frontiers in Immunology 09
162% increase from vehicle to C+I treatment (P = 0.006; Figure 5I).

These results, alongside our IL1b analysis, suggest that in the

context of HIV, increasing cannabis use may be associated with

decreasing IL18 expression and increasing IL1b expression.
3.5 Quantification of secreted IL-18 from
monocyte-derived macrophages stratified
by HIV status and cannabis use

To complement the transcriptional findings, we quantified IL-

18 secretion in MDM supernatants under the same stimulation

conditions. As shown in Figure 6, IL-18 levels did not significantly

differ between cannabis-naïve and cannabis-using donors without

HIV (Figure 6A) or across cannabis use frequency groups

(Figure 6C). In contrast, cannabis-using donors with HIV

displayed significantly lower basal IL-18 secretion compared with
FIGURE 5

Cannabis use is associated with elevated CBD + IL-1b induced changes in NLRP3, IL1b, and IL18 mRNA expression in HIV+ MDMs. Relative NLRP3
expression stratified by cannabis use patterns (naïve, moderate, and daily) and grouped by (A) HIV- and HIV+, (B) HIV-, and (C) HIV+. Relative IL1b
expression stratified by cannabis use patterns and grouped by (D) HIV- and HIV+, (E) HIV-, and (F) HIV+. Relative IL18 expression stratified by
cannabis use and grouped by (G) HIV- and HIV+, (H) HIV-, and (I) HIV+. Data represented as mean ± SEM and analyzed using two-way ANOVA with
Holm-Sidak’s multiple comparisons tests; normalized to untreated MDMs; Group size indicated within bars; *p < 0.05, **p < 0.01, ***p < 0.001.
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cannabis-naïve donors (P < 0.05; Figure 6B), with a similar

downward trend across stimulation conditions (Figure 6D). These

results suggest that cannabis exposure may modulate

inflammasome-related cytokine release in PWH, consistent with

the transcriptional changes observed.
3.6 Correlation of NLRP3-related gene
expression with immune and
neurocognitive parameters

We then generated matrices to assess the impact of HIV status

on the correlations between the RT-qPCR results and clinical

testing data. These analyses revealed various shifts in correlation,

suggesting areas for further investigation. Notably, HIV-negative

donors exhibited strong positive and strong negative correlations,

many of which were diminished or neutral in HIV-positive donors.

Specifically, the global deficit score (GDS) tended to show negative

correlations in PWoH, whereas these correlations appeared either

positive or neutral in PWH (Figure 7A, B).
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3.7 IL-1b stimulation is associated with
reversing the relationship between NLRP3
gene expression and Global Deficit Score
(GDS) in cannabis using PWH

To explore the influence of cannabis use on the relationship

between NLRP3 gene expression and GDS, we generated

scatterplots and calculated linear regressions for each treatment

group and stratified by cannabis use patterns (naïve and moderate/

daily) and HIV status. Among the eight resulting graphs, two

showed statistical significance. HIV-positive donors who reported

cannabis use exhibited a strong negative correlation, with increased

NLRP3mRNA expression associated with decreased GDS inMDMs

treated with IL-1b (P = 0.002; Figure 8F). Similarly, a strong

negative correlation was observed in HIV-positive cannabis users,

where increased NLRP3 mRNA expression correlated with

decreased GDS in MDMs treated with CBD + IL-1b (P = 0.002;

Figure 8H). These findings suggest that cannabis use is associated

with altering the relationship between NLRP3 mRNA expression

and GDS in HIV-positive individuals who use cannabis.
FIGURE 6

Quantification of secreted IL-18 from monocyte-derived macrophages stratified by HIV status and cannabis use. MDMs from people without HIV
[HIV−; (A, C)] and people with HIV [HIV+; (B, D)] were stimulated with vehicle, IL-1b (10 ng/mL), cannabidiol (CBD; 30 mM), or CBD + IL-1b for 24
hours and IL-18 levels were measured in culture supernatants by immunoassay. (A, B) Comparisons between cannabis-naïve and cannabis-using
participants. (C, D) Comparisons across cannabis use frequency groups (naïve, moderate, daily). Data represented as mean ± SEM and analyzed
using two-way ANOVA with Holm-Sidak’s multiple comparisons tests; *p < 0.05.
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4 Discussion

This is the first study to demonstrate the relationship between

HIV disease, cannabis use, and the mRNA expression of NLRP3-

related genes in MDMs from PWH and PWoH. This research

primarily investigates inflammasome priming in MDMs,

specifically evaluating the mRNA expression of NLRP3-related

genes in response to cytokines. Consistent with previous findings,

this study demonstrated a significant increase in NLRP3 mRNA

expression in PWH compared to PWoH, consistent with the role of

NLRP3 in chronic neuroinflammation in HIV (36, 70–75). The

observed differential regulation of NLRP3 and downstream

inflammasome genes like IL1b and IL18 suggests distinct immune

mechanisms, with NLRP3 being more consistently elevated in

PWH, while IL1b and IL18 responses varied, possibly reflecting

unique regulatory pathways in chronic inflammation (76–78).

Additionally, this work sheds light on the significance of

inflammasome priming in CBD-treated MDMs from PWH that
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use cannabis. Specifically, and as described in greater detail below,

the effects of cannabis use on inflammasome-related genes varied by

HIV status and cannabis use patterns, underscoring the complex

role of cannabinoids in modulating inflammatory pathways in HIV

disease. These findings, in conjunction with the observed

association between NLRP3 activation and GDS in PWH, indicate

the potential for cannabis-induced immune priming to exacerbate

neuroinflammatory processes and worsen cognitive outcomes in

PWH. As PWH live longer on ART and face a greater risk of age-

related neuroinflammatory conditions, these findings point to the

need for novel therapeutic strategies targeting NLRP3 to manage

neuropathogenesis associated with cognitive dysfunction.

NLRP3 plays a pivotal role in HIV-related neuroinflammation,

contributing to persistent immune activation even in ART-treated

individuals, where chronic inflammation often persists despite viral

suppression (17, 70, 73, 75). Interestingly, certain ART components,

such as abacavir, can further activate NLRP3, complicating

treatment strategies (79). Activation of NLRP3 triggers the
FIGURE 7

Correlation of NLRP3-related gene expression with immune and neurocognitive parameters. Correlation heatmaps comparing the relationship
between NLRP3, IL1b, and IL18 mRNA expression under different treatment conditions (Vehicle, IL-1b, CBD, CBD + IL-1b) and clinical parameters in
(A) PWoH and (B) PWH. Expression data for each gene-treatment group are correlated with age, global deficit score (GDS), white blood cell (WBC)
count, leukocytes percentage (neutrophil, lymphocytes, and monocytes), and domain-specific neurocognitive performance scores (T-scores: global,
verbal, executive, speed of information processing (100), learning, recall, working memory, and motor); Pearson correlation coefficients are
represented by color intensity; PWoH (n = 19) & PWH (n = 41).
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production of pro-inflammatory cytokines such as IL-1b and IL-18,

which contribute to the neurodegenerative processes observed in

HIV-associated cognitive dysfunction (80). IL-1b, a central pro-

inflammatory cytokine, is closely tied to NLRP3 activation and has

been implicated in exacerbating neuroinflammatory responses in

the CNS (75, 81). In parallel, IL-18, which shares a common

processing pathway with IL-1b, also plays a critical role in

neuroinflammation and has been linked to both peripheral and

central immune activation in PWH (82, 83). Prior studies have

suggested that NLRP3 expression is more consistently elevated in

chronic inflammatory states, while IL-1b and IL-18 responses are

more variable depending on the specific cytokine milieu and degree

of inflammasome activation (78). The activation of NLRP3 in

macrophages contributes to sustained immune-mediated damage,

as well as heightened expression of pro-inflammatory cytokines like

IL-1b and IL-18. The observed differences in IL1b and IL18

expression align with the findings of prior studies, which suggest

that NLRP3 activation often results in variable downstream

cytokine expression, depending on the local immune

environment and degree of activation (36, 78, 84). The consistent

upregulation of NLRP3 in HIV-positive MDMs underscores its

central involvement in neuroinflammatory pathways linked to

cognitive dysfunction. This evidence reinforces NLRP3’s potential

as a therapeutic target for mitigating neuroinflammation and

improving outcomes in HIV-associated cognitive impairment.

Inflammasome priming is a crucial aspect of NLRP3 activation,

especially in HIV-related neuroinflammation, where viral

components serve as potent priming agents (85–87). This priming

effect is compounded by the immune-modulatory effects of

cannabis, which can either suppress or enhance inflammasome
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activation depending on the context (88, 89). In the context of this

study, priming may contribute to heightened cytokine responses

even in the presence of anti-inflammatory agents like CBD. Indeed,

the paradoxical observation that CBD co-treatment with IL-1b
reduced NLRP3 mRNA expression while increasing IL1b and

IL18 mRNA expression suggests that CBD may differentially

regulate the priming and activation phases of the inflammasome.

Prior studies have shown that CBD can inhibit NF-kB–dependent
transcription of NLRP3 while simultaneously promoting pro-

cytokine gene transcription through selective NF-kB modulation

or epigenetic mechanisms such as histone acetylation (90–92). Such

dual regulation could uncouple inflammasome priming from

downstream cytokine expression, helping to explain the divergent

transcriptional patterns observed here. Moreover, the differential

expression of IL1b, IL18, and NLRP3 across cannabis use patterns

provides insights into how cannabis influences immune regulation

in PWH. Specifically, the heightened expression of IL18 alongside

IL1b in daily cannabis users may reflect the primed state of the

immune system, which responds more robustly to stimuli,

potentially contributing to sustained neuroinflammatory states

that worsen neurocognitive outcomes. The complex interplay

between viral priming and cannabinoid modulation of immune

responses raises important questions about the potential risks of

cannabis use in PWH, particularly concerning its impact on chronic

inflammation and cognitive outcomes. Understanding this two-step

process—priming followed by activation—is essential when

evaluating potential interventions targeting chronic inflammation

in PWH. The protein-level findings further support the

interpretation that cannabis exposure modulates inflammasome

activity in HIV-positive individuals. Specifically, reduced basal IL-
FIGURE 8

IL-1b stimulation is associated with reversing the relationship between NLRP3 gene expression and Global Deficit Score (GDS) in cannabis using
PWH. Correlation graphs comparing NLRP3 gene expression and GDS in PWH naïve donors (A) before treatment and after (B) IL-1b, (C) CBD, or
(D) CBD + IL-1b treatment. Correlation graphs comparing GDS and NLRP3 gene expression in PWH using cannabis (E) before treatment and after
(F) IL-1b, (G) CBD, or (H) CBD + IL-1b treatment. Individual significance (p-value) and goodness of fit coefficient (r2) determined with Pearson’s
correlation coefficient and listed within plots; statistical significance was determined at p < 0.05.
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18 secretion in cannabis users aligns with downregulation of NLRP3

expression, suggesting a dampening of inflammasome priming and

cytokine release. However, due to sample availability, IL-1b
secretion could not be reliably measured across all donor groups,

representing a limitation of the current study. Future work should

employ multiplexed immunoassays to capture the full spectrum of

inflammasome effector cytokines, enabling a more comprehensive

functional assessment of inflammasome activation.

Cannabis use produced contrasting effects on inflammasome-

related gene expression, with moderate use reducing IL1b levels,

while daily use increased IL18 expression, particularly in HIV-

positive donors. This dual role of cannabinoids aligns with previous

research showing that their effects can vary based on dosage,

frequency, and cannabinoid type (60, 61, 63, 93). For example,

while CB2 activation has been linked to reduced NLRP3 expression,

chronic or high-dose exposure to cannabinoids has been associated

with heightened IL-18 production (61, 94–98). This suggests that

cannabinoids can initially exert anti-inflammatory effects but may

prime the immune system for pro-inflammatory responses over

time, particularly in PWH. Interestingly, reduced NLRP3 mRNA

levels following IL-1b exposure were primarily observed in PWH

who used cannabis, potentially indicating that cannabis use could

exert anti-inflammatory effects in specific contexts, such as when

combined with pro-inflammatory stimuli. This finding underscores

the potential for cannabis to modulate immune responses

differently depending on prior exposure and baseline

inflammation, which may explain the observed variability among

cannabis-naïve versus cannabis-exposed donors. The protein-level

findings further support the interpretation that cannabis exposure

modulates inflammasome activity in HIV-positive individuals.

Specifically, reduced basal IL-18 secretion in cannabis users aligns

with downregulation of NLRP3 expression, suggesting a dampening

of inflammasome priming and cytokine release. However, due to

sample availability, IL-1b secretion could not be reliably measured

across all donor groups, representing a limitation of the current

study. Future work should employ multiplexed immunoassays to

capture the full spectrum of inflammasome effector cytokines,

enabling a more comprehensive functional assessment of

inflammasome activation. Given the complexity of NLRP3

regulation and its interaction with cannabinoids, future studies

should also aim to optimize cannabinoid-based interventions to

balance anti-inflammatory benefits with potential risks of

immune priming.

We also explored whether treatment-specific changes in MDM

gene expression were associated with clinical and biological measures.

By correlating NLRP3, IL1b, and IL18 expression under different

stimulation conditions (vehicle, IL-1b, CBD, and CBD + IL-1b)
with demographic, immune, and neurocognitive outcomes, we

sought to capture inter-individual variability that may not be

apparent when stratifying solely by cannabis use groups. This

approach provides a framework for identifying treatment-responsive

molecular signatures that could inform personalized medicine

strategies, particularly in the context of HIV-associated

inflammation and cognitive dysfunction. The association between

NLRP3 expression and cognitive impairment, as measured by GDS,
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further supports NLRP3’s role in HIV-associated NCI (75). Elevated

NLRP3 expression correlated with higher GDS scores, suggesting that

inflammasome activation may contribute to cognitive decline in this

population. This finding is consistent with studies demonstrating that

chronic neuroinflammation, driven by increased IL-1b and IL-18,

contributes to neurodegeneration and cognitive impairment in PWH

(75, 83, 99). Notably, significant negative correlations were observed

between NLRP3 expression and GDS in the HIV-positive cannabis

group following IL-1b stimulation and CBD + IL-1b stimulation,

relationships that were absent in HIV-positive cannabis-naïve

individuals. These findings suggest that cannabis use modifies the

link between inflammasome regulation and neurocognitive

performance, potentially reflecting an altered balance between

protective and maladaptive immune responses in PWH who use

cannabis. The differences in cannabis effects by usage patterns are

further complicated by varying administration routes (e.g., smoking,

edibles, vaping), which influence cannabinoid bioavailability and

immune responses. Nevertheless, CBD’s impact on NLRP3

expression demonstrated consistent anti-inflammatory effects across

both HIV- and HIV+ MDMs, with a notable decrease in NLRP3

expression. Additionally, the combination of CBD with IL-1b
treatment resulted in reduced NLRP3 expression compared to IL-1b
alone, suggesting CBD’s potential to counteract pro-inflammatory

stimuli in a primed immune environment. However, CBD’s effects

appeared more pronounced among cannabis-naïve donors, indicating

that baseline cannabinoid exposure may alter responsiveness to

subsequent treatments. To complement our CBD findings, we also

examined the effects of THC on inflammasome-related gene

expression. As shown in Supplementary Figure 1, THC exposure

reduced NLRP3 expression in HIV+ MDMs and modulated IL1b and

IL18 expression in patterns partially overlapping with, but also distinct

from, those observed with CBD. These results emphasize that CBD

and THC regulate inflammasome activity through different

mechanisms. Importantly, these findings highlight that the

immunological impact of cannabis use in PWH cannot be attributed

to a single cannabinoid, and that future studies should consider the

combined effects of CBD and THC, which often co-occur in cannabis

products and may produce additive or divergent effects on immune

regulation. Additionally, exploring the potential of inhibiting NLRP3

activation to reduce inflammasome-driven neuroinflammation

presents a promising avenue for therapeutic development. Careful

consideration of cannabinoid composition, dosage, and frequency of

use will be crucial to developing safe and effective therapies targeting

NLRP3 in PWH. Collectively, these findings emphasize the

significance of NLRP3 as both a pathogenic factor and a therapeutic

target in managing HIV-related cognitive decline.

While this study enhances our understanding of how cannabis

use and CBD influence NLRP3-related gene expression in PWH, it

is crucial to recognize several limitations that may impact the

interpretation and generalizability of our findings. Firstly, our

analysis focused exclusively on mRNA expression without

measuring corresponding protein levels. This limitation was

primarily due to the restricted number of MDMs that could be

obtained from each donor, which prevented us from performing

assays requiring large cell inputs, such as immunoblotting for
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cleaved caspase-1. Future work with greater sample availability

should employ methods that require fewer cells, such as FAM-

FLICA staining or multiplex cytokine secretion assays, to

functionally validate inflammasome activation. Secondly, the use

of MDMs as a model for inflammation restricts our findings to

per iphera l ce l l s , which may not ful ly represent the

neuroinflammatory processes occurring within the CNS. To

further ensure the validity of our MDM model, we monitored

conditioned media for viral reactivation. p24 ELISA detection

occurred only in control experiments where MDMs were exposed

to exogenous HIV (HIV-1JRFL), while no p24 was detected in

untreated donor-derived MDMs (data not shown), confirming

that viral emergence did not occur under our experimental

conditions. Furthermore, not measuring the cannabinoid response

in perivascular macrophages or microglia is limiting because

MDMs are not resident CNS cells. This limitation inhibits an all-

encompassing conclusion of brain macrophage’s role in NLRP3-

related inflammation from being formed. Moreover, while we

demonstrated associations between cannabis use and changes in

NLRP3-related gene expression, the lack of additional markers to

differentiate immune cell subtypes limits the scope of our

interpretations. Additionally, our study relied on a cross-sectional

design and did not include longitudinal assessments, which are

necessary to establish causal relationships between cannabis use,

NLRP3 inflammasome activity, and cognitive outcomes in PWH.

While we included PWH with varying patterns of self-reported

cannabis use, this may not fully capture the diversity of cannabis use

behaviors or other confounding factors, such as ART regimens, that

could influence NLRP3 expression and inflammation. We did not

include objective measures (e.g., urine toxicology, cannabinoid

blood levels) to confirm recent use; such data enhance the

reliability of group classifications. Lastly, this study does not

account for the specific compositions of cannabis products used

by donors, such as the levels of minor cannabinoids or other

cannabis-derived compounds, which may contribute to the

observed effects. Future studies should aim to include assessments

of protein levels, incorporate longitudinal designs, evaluate

neuroimmune interactions with other immune cells in the CNS,

and explore the roles of broader cannabis-derived compounds in

modulating NLRP3 inflammasome activity.
5 Conclusion

In conclusion, this study demonstrates a significant role for the

NLRP3 inflammasome in chronic neuroinflammation associated with

HIV disease, with findings showing increased NLRP3 mRNA

expression in MDMs from PWH. Additionally, the study reveals

that cannabis use influences inflammasome-related gene expression,

with differential effects on IL1b and IL18 depending on usage patterns

and HIV disease status. While these subgroup findings are intriguing,

they should be considered exploratory given the small sample sizes.

Nevertheless, these results provide translational evidence for the

potential of targeting NLRP3 to manage HIV-associated NCI,

especially as PWH live longer on ART. The anti-inflammatory
Frontiers in Immunology 14
properties of CBD, shown by its ability to reduce NLRP3 expression,

offer promising avenues for therapeutic interventions aimed at

mitigating neuroinflammation. Future studies with larger and more

diverse cohorts will be crucial to further evaluate the effects of different

cannabis compositions, including THC/CBD ratios, and to establish

the potential risks and benefits of cannabinoid-based therapies in

PWH. Additionally, expanding the analysis to include broader

inflammasome pathways and other pro-inflammatory cytokines will

provide a more comprehensive understanding of immune responses

in HIV. Given the need for effective strategies to address

neuroinflammation in PWH, these findings support further

exploration of NLRP3 inhibitors, including cannabinoids like CBD,

to mitigate chronic inflammation and improve cognitive outcomes.

Prospective clinical trials are essential to evaluate the efficacy and

safety of these interventions, with a focus on modulating NLRP3

activity without compromising immune function. Careful

consideration of cannabinoid type, dose, and usage patterns will be

critical to developing therapies that mitigate inflammation without

exacerbating downstream inflammatory responses.
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SUPPLEMENTARY FIGURE

THC exposure is associated with increased NLRP3 mRNA expression in PWH.

NLRP3 gene expression stratified by treatment (IL-1b, THC, and THC + IL-1b)
grouped by (A) HIV- and HIV+ with (B) HIV- and (C) HIV+ grouped by
cannabis use. IL1b gene expression stratified by treatment and grouped by

(D) HIV- and HIV+ with (E) HIV- and (F) HIV+ grouped by cannabis use. IL18
gene expression stratified by and grouped by (G) HIV- and HIV+ with (H) HIV-

and (I) HIV+ grouped by cannabis use. Data represented as mean ± SEM and
analyzed using two-way ANOVA with Holm-Sidak’s multiple comparisons

tests; normalized to untreated MDMs; Group size indicated within bars; *p <

0.05, **p < 0.01, ***p < 0.001.
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