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Introduction: The rapid evolution of artificial intelligence (Al) technologies has
catalyzed a paradigm shift in the landscape of biomarker-driven disease diagnostics,
particularly in the context of integrating antibody and nucleic acid indicators. Within this
transformative setting, Al offers unprecedented potential for decoding complex
molecular interactions across heterogeneous data sources, facilitating early and
precise disease identification. However, the effective deployment of Al in this domain
mandates enhanced model interpretability, robust cross-domain generalization, and
biologically grounded learning strategies—challenges that resonate deeply with
contemporary research focused on antibody and nucleic acid diagnostics.

Methods: Traditional methodologies for biomarker discovery—such as linear
regression, random forests, and even standard deep neural networks—struggle to
accommodate the multi-scale dependencies and missingness typical of omics
datasets. These models often lack the structural alignment with biological
processes, resulting in limited translational utility and poor generalization to new
biomedical contexts. To address these limitations, we propose a novel framework
that integrates a biologically informed architecture, BioGraphAl, and a semi-
supervised learning strategy, adaptive contextual knowledge regularization (ACKR).
BioGraphAl employs a hierarchical graph attention mechanism tailored to capture
interactions across genomic, transcriptomic, and proteomic modalities. These
interactions are guided by biological priors derived from curated pathway databases.
Results: This architecture not only supports cross-modal data fusion under
incomplete observations but also promotes interpretability via structured
attention and pathway-level embeddings. ACKR complements this model by
incorporating weak supervision signals from large-scale biomedical corpora and
structured ontologies, ensuring biological plausibility through latent space
regularization and group-wise consistency constraints.

Discussion: Together, BioGraphAl and ACKR represent a step toward
overcoming critical barriers in biomarker-driven disease diagnostics. By
grounding computational predictions in biological priors and enhancing
interpretability through structured embeddings, this framework advances the
translational applicability of Al for early and precise disease identification.

Al-driven diagnostics, biomarker discovery, antibody and nucleic acid analysis, graph-
based modeling, domain knowledge integration
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1 Introduction

Artificial intelligence (AI) is revolutionizing diagnostics by
enabling precise, rapid, and scalable interpretation of complex
biological data (1). The detection and analysis of antibody and
nucleic acid biomarkers are fundamental for the early diagnosis and
monitoring of various diseases, including infectious diseases,
cancers, and autoimmune disorders (2). However, traditional
diagnostic approaches face limitations in sensitivity, specificity,
and scalability (3). Not only do they often require labor-intensive
procedures and specialized reagents, but they also struggle to adapt
to the growing complexity of high-throughput biomarker data (4).
Al-driven analysis provides a transformative solution by enabling
automated feature extraction, pattern recognition, and predictive
modeling from heterogeneous datasets (5). Moreover, Al
technologies can integrate multi-modal biomarker information,
revealing previously undetectable disease signatures (6).
Therefore, leveraging Al in the analysis of antibody and nucleic
acid biomarkers is not only essential for enhancing diagnostic
accuracy and efficiency but also critical for advancing
personalized medicine (7).

Early systems for biomarker interpretation were constructed
using knowledge-centric modeling frameworks, where analytical
decisions were derived from structured protocols and expert-
defined diagnostic heuristics (8). These frameworks relied on
curated rules and logical branching to process outputs such as
polymerase chain reaction amplification thresholds or enzyme-
linked immunoassay signal intensities (9). While effective for
routine diagnostics, their rule-based nature made it difficult to
adapt to novel biomarker types or subtle immunological
variations in rare diseases (10). Manual updates were required to
incorporate new biological insights, leading to challenges in
scalability and responsiveness. As a result, these initial systems,
though interpretable, were increasingly outpaced by the growing
volume and complexity of molecular data emerging from modern
diagnostics (11).

With the advent of more sophisticated computational
techniques, subsequent methods began to utilize empirical data to
infer diagnostic relationships and classify biomarker profiles (12).
By analyzing training datasets derived from molecular experiments,
statistical models could be constructed to predict disease states
based on features extracted from gene expression levels, sequence
motifs, or antibody reactivity curves (13). This approach enhanced
adaptability and allowed diagnostic tools to account for more
biological variation across patients. Nevertheless, these models
typically required careful manual feature selection and could
falter in the presence of high-dimensional noise or incomplete
annotations (14). Moreover, their reliance on preprocessed data
limited their ability to uncover latent patterns inherent in raw,
unstructured biomolecular inputs (15). These limitations catalyzed
the emergence of advanced learning systems capable of
automatically discerning complex, nonlinear biomarker signatures.

In recent years, the application of advanced neural architectures
has enabled unprecedented modeling capabilities for diagnostic
biomarker analysis (16). Neural networks designed for structured
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biological inputs—such as CNNs for genomic sequences or
transformers for transcriptomics—can directly learn from raw
data without extensive preprocessing (17). These models are
capable of capturing intricate associations within multi-omics
datasets and discovering predictive signals previously hidden
from traditional analytics (18). In particular, transfer learning
using pre-trained biological models has proven effective in
improving performance on small clinical datasets by leveraging
representations learned from larger biomedical corpora. However,
such models still pose challenges in interpretability, computational
demand, and integration with regulatory clinical workflows (19). As
a result, current research emphasizes hybrid frameworks that
combine high-capacity representation learning with domain-
aware biological constraints to ensure clinical relevance and
operational transparency.

While the use of graph-based and multi-modal AI techniques
has been explored in prior research, the conceptual innovation of
this framework lies in the explicit integration of structured
biological knowledge at both the architectural and training levels.
The proposed BioGraphAI model is not a generic graph attention
network but is architected to encode curated biological pathways as
topological priors, enforcing biologically meaningful message
propagation across omic modalities. These priors, sourced from
databases such as KEGG and Reactome, guide the design of
modular attention mechanisms and pathway-level embeddings,
enabling biologically interpretable inference. The training
paradigm introduced as adaptive contextual knowledge
regularization (ACKR) departs from conventional semi-
supervised learning by incorporating contextual biological
information through pseudo-labels and ontological alignment.
The framework applies latent regularization techniques that
enforce intra-group compactness and inter-group separation in
the embedding space, reflecting known biological hierarchies.
Pathway context alignment mechanisms are used to constrain the
latent variables according to biological pathway activations inferred
from input features. This strategic design establishes a biologically
grounded latent space that enhances model generalizability and
interpretability. The integration of these biologically guided
mechanisms into both model structure and learning dynamics
distinguishes the framework from existing multi-modal models
and supports its applicability in real-world translational diagnostics.

Based on the above limitations of symbolic, machine learning,
and deep learning methods in biomarker analysis, we propose an
integrative AI framework that combines the interpretability of
symbolic systems, the adaptability of machine learning, and the
representational strength of pre-trained models. Our approach
employs a hybrid architecture wherein a pre-trained transformer
model encodes raw biomarker sequences and signal profiles into
context-aware embeddings, which are then processed through a
rule-guided classifier for decision making. This design allows the
system to benefit from data-driven learning while maintaining
clinical interpretability through biologically informed constraints.
Not only does our method address the problem of generalizing
across diverse datasets and disease types, but it also facilitates
the integration of domain knowledge without rigid rule
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dependencies. Furthermore, our approach supports real-time
adaptation to new biomarkers and diagnostic targets, making it
suitable for scalable and personalized diagnostic pipelines. By
bridging symbolic, machine learning, and deep learning
paradigms, our framework represents a significant advancement
in Al-driven biomarker diagnostics.

The proposed approach offers several significant benefits:

* A novel hybrid architecture combining pre-trained
transformer embeddings with symbolic decision-making
modules improves interpretability and performance in
multi-biomarker analysis.

* The method generalizes across disease types and supports
multi-modal input (antibody profiles, sequencing data),
offering high scalability and real-world applicability.

* Experimental results demonstrate superior accuracy (up to
15% improvement) and robustness over traditional ML and
DL baselines on benchmark diagnostic datasets.

2 Related work
2.1 Al in biomarker discovery

The integration of AI into biomarker discovery has
revolutionized the identification of novel antibody and nucleic
acid markers with diagnostic relevance (20). Traditional
biomarker discovery methods are often limited by high
dimensionality, noise in biological data, and the intricate
heterogeneity of disease mechanisms. AI models, particularly
machine learning (ML) and deep learning (DL) algorithms, offer
the capacity to process complex datasets and uncover subtle
patterns that may elude conventional statistical approaches (21).
Machine learning approaches such as random forests, support
vector machines, and gradient boosting machines have been
widely utilized for feature selection and classification tasks. These
methods enable the identification of potential biomarkers by
discerning informative features from multi-omics datasets,
including proteomics, transcriptomics, and genomics (22). In the
context of antibody-based biomarkers, Al algorithms have been
applied to epitope prediction, immune repertoire analysis, and the
classification of antibody binding profiles (23). For instance,
recurrent neural networks (RNNs) and transformers have shown
promise in modeling antibody sequences to predict antigen binding
affinity and specificity. Such models accelerate the identification of
diagnostic antibodies and support the rational design of
immunoassays (24). Al techniques have significantly advanced
the analysis of nucleic acid biomarkers, including DNA
methylation patterns, RNA expression profiles, and microRNA
signatures. Integrative frameworks that combine multi-modal
data sources enable comprehensive modeling of disease-associated
regulatory networks (23, 2020). For example, graph-based neural
networks have been employed to capture interactions among genes,
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transcription factors, and epigenetic modifications, yielding
improved insights into disease pathogenesis and candidate
biomarker panels. Despite these advancements, challenges remain
regarding the interpretability, generalizability, and reproducibility
of Al-driven biomarker models (25). The black-box nature of deep
learning often hinders clinical translation, emphasizing the need for
interpretable AI models validated on independent cohorts.
Moreover, standardized benchmarks and robust evaluation
protocols are essential to ensure the reliability of biomarker
discovery pipelines (26).

2.2 Disease-specific diagnostic modeling

AT has been instrumental in constructing disease-specific
diagnostic models leveraging antibody and nucleic acid
biomarkers (27). Disease diagnostics traditionally relied on
histopathological examination and single-molecule assays, which
may lack sensitivity or specificity for early and differential diagnosis.
Al-driven models provide a data-centric approach that integrates
multiomic biomarkers to yield predictive models tailored to
particular disease phenotypes (28). In oncology, for instance, Al-
based classifiers have been developed to predict cancer subtypes,
metastasis risk, and therapy responsiveness based on circulating
tumor DNA (ctDNA), exosomal RNA, and autoantibody profiles
(29). These models employ ensemble learning methods and neural
networks to enhance the discriminatory power of biomarker panels.
Similarly, in infectious diseases, machine learning techniques have
facilitated rapid and accurate detection by analyzing host immune
responses and pathogen-derived nucleic acid sequences (30).
Algorithms such as logistic regression and decision trees have
been adapted to incorporate serological data for real-time
diagnostics of diseases like COVID-19, dengue, and HIV.
Neurodegenerative disorders also benefit from AlI-enhanced
diagnostics, with models trained on cerebrospinal fluid
biomarkers and blood-based transcriptomic profiles (31). For
example, support vector machines and multi-layer perceptrons
have been applied to Alzheimer’s disease diagnosis using
amyloid-beta, tau protein levels, and RNA sequencing data. These
approaches improve early detection and enable personalized
treatment planning. A critical component of these models is the
feature engineering process, which involves the extraction and
transformation of raw biomarker data into meaningful features.
Techniques such as principal components analysis (PCA), t-
distributed stochastic neighbor embedding (t-SNE), and
autoencoder-based dimensionality reduction are commonly used
to capture essential patterns while mitigating data noise and
redundancy (32). The performance of Al-based diagnostic models
is often evaluated using metrics like accuracy, sensitivity, specificity,
area under the receiver operating characteristic curve (AUC-ROC),
and precision-recall curves (33). Cross-validation and external
validation on independent datasets are crucial for establishing the
robustness and generalizability of the models across diverse
populations and clinical settings (34).
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2.3 Integration of multi-omic data

One of the most promising areas in Al-driven diagnostics is the
integration of multi-omic data, combining antibody and nucleic acid
biomarkers with additional biological layers such as metabolomics,
lipidomics, and clinical phenotypes. This integrative approach
enhances the resolution and context of disease signatures, enabling
a systems-level understanding of pathophysiological processes (35).
AT methods facilitate the fusion of heterogeneous datasets through
multi-modal learning frameworks. Techniques like multi-view
learning, canonical correlation analysis (CCA), and matrix
factorization are employed to capture shared information across
different omic platforms (36). Deep learning models, including
variational autoencoders (VAEs) and multi-modal transformers,
are particularly adept at learning joint representations from diverse
input modalities, which aids in comprehensive biomarker profiling
(37). In the clinical domain, multi-omic integration has led to the
development of composite biomarkers that outperform single-omic
counterparts in diagnostic accuracy. For instance, combining
autoantibody panels with RNA-seq data has improved diagnostic
stratification in autoimmune diseases and cancers. Similarly, the
fusion of DNA methylation and microRNA profiles has enhanced
diagnostic precision in cardiovascular and metabolic disorders (38).
The challenge of data integration is compounded by issues such as
data heterogeneity, batch effects, missing values, and varying scales of
measurement. AI models incorporate strategies such as imputation,
normalization, and domain adaptation to address these issues (39).
Moreover, transfer learning and federated learning paradigms enable
knowledge sharing across datasets while preserving data privacy, an
essential consideration in healthcare applications. The interpretability
of multi-omic AT models remains a key concern for clinical adoption.
Model-agnostic interpretation tools like SHAP (SHapley Additive
exPlanations) and LIME (Local Interpretable Model-agnostic
Explanations) have been introduced to elucidate the contribution of
individual features, aiding clinicians in understanding and trusting
model decisions (40). This direction signifies a paradigm shift from
isolated biomarker discovery to holistic, data-driven disease
modeling. It aligns with the vision of precision medicine by
enabling more accurate, individualized, and actionable diagnostics
through the synergistic use of Al and multi-omic data (41).

3 Method
3.1 Overview

In this section, we outline the key methodological innovations
of our approach to biomarker analysis leveraging A, with a focus
on how the subsequent sections elaborate these contributions in
formal and technical depth. The central theme of this work revolves
around enhancing the interpretability, generalization, and domain
adaptation of AI models in biomarker-driven biomedical studies.
Al-based biomarker analysis demands a careful balance between
model expressiveness and biological validity. Classical statistical
methods often fail in handling the high dimensionality,
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nonlinearity, and heterogeneity of omics datasets. Conversely,
modern deep learning approaches, while flexible, are often
perceived as “black-box” systems that lack the transparency and
robustness required for clinical translation.

To bridge this gap, we re-express the biomarker identification
process as a structured inference task, where latent biological
mechanisms are modeled as intermediate representations that
mediate between raw input data and observable phenotypic
outcomes in Section 3.2. In Section 3.3, we present our proposed
architecture, BioGraphAlI, which models interactions among features
using a hierarchical graph attention mechanism. This design allows
for capturing dependencies across genomic, transcriptomic,
proteomic, and clinical modalities, while also preserving sparsity
patterns reflective of known biological pathways. Importantly,
BioGraphAlI incorporates modular attention heads constrained by
prior network topologies, such as KEGG or Reactome, to enhance
interpretability. Furthermore, it facilitates cross-modal information
fusion without requiring complete data availability across all
modalities, a common challenge in real-world biomarker cohorts.
Section 3.4 introduces a novel training paradigm, ACKR, that
integrates weak supervision signals from unlabeled biomedical
corpora, such as PubMed abstracts and curated ontologies. ACKR
operates by injecting pseudo-labels and relational constraints derived
from these external sources into the training loss, thereby regularizing
the latent space toward biologically meaningful configurations. This
strategic fusion of supervised and semi-supervised learning enables
our model to generalize effectively from limited annotated datasets
while remaining grounded in established biomedical knowledge.

Although BioGraphAlI is not structured as a conventional
ensemble of separately trained machine learning (ML) or deep
learning (DL) models, it effectively integrates ensemble-like learning
strategies at multiple levels. Each data modality—such as genomic,
transcriptomic, and proteomic—is first processed through dedicated
transformation layers tailored to its distributional properties. These
layers can be viewed as specialized subnetworks akin to individual ML/
DL components. A cross-modal attention mechanism fuses these
representations by learning dynamic interaction weights across
modalities, thereby facilitating the selective integration of predictive
cues. This fusion serves a similar role to ensemble prediction by
synthesizing outputs from distinct modality encoders within a
unified latent space. The resulting representations are further refined
via graph-guided pathway embeddings and probabilistic latent
prediction (PLP) modules, which collectively operate as an integrated
decision-making ensemble. By leveraging modality-specific processing
and structured interaction modeling, BioGraphAI embodies the spirit
of ensemble learning while maintaining the advantages of a coherent,
end-to-end differentiable architecture.

3.2 Preliminaries

We begin by formally defining the problem setting and notation
used throughout this work. Let D = {(x;,y,)}Y; denote a cohort of
N patient samples, where x; € R? represents the d-dimensional
biomolecular feature vector, and y; € ) denotes the associated
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phenotype or clinical outcome label. Our objective is to learn a
mapping fy: R? —) parameterized by 6, such that fy(x;) accurately
predicts y; while ensuring that 6 reflects interpretable
biomarker mechanisms.

We assume that the feature space x; can be decomposed into
modular omic blocks (Equation 1):

e
x; = [x! ),xl(- ), vees

x(M], (1)

where each x\™ & R corresponds to the m-th omics modality
and Eff:ldm =d. Let G = (V, £ denote a domain-informed
biological graph with |V|=d vertices representing molecular
features and edges £ encoding known regulatory or physical
interactions. This graph will serve as a prior structure for
modeling higher order feature dependencies.

To capture both direct and mediated influences between
molecular features and clinical outcomes, we postulate a latent
variable model where the prediction process is structured as
(Equation 2):

i ~pWlz), 7 ~ pzlxy), (2)

where z; € R? is a low-dimensional latent representation that
serves as a surrogate biomarker embedding.

In many biomedical datasets, missing data are prevalent due to
technical constraints or limited assay coverage. We model
missingness explicitly through a mask vector m; €{0,1}%, and
define the observed input as X; = m; ©x;, where ® denotes
element-wise multiplication. Accordingly, the conditional
likelihood becomes (Equation 3):

P()’i|ii)=/}7(}’i|li) p(zi|x;) dz;. (3)

To incorporate prior knowledge from the biological graph G, we
define a feature interaction kernel K & R%*? based on diffusion or
adjacency propagation (Equation 4):

K = exp (-BL), @)

where L is the graph Laplacian of G and f3 controls the diffusion
strength. This kernel governs a graphstructured feature
transformation (Equation 5):

xX'P=K-%;. (5)

Furthermore, we model inter-omic interactions as cross-
modality tensors. Let T,,, & R%*% represent the learnable
affinity between modality m and n. The cross-modal fusion
embedding is then (Equation 6):

(mn) _ (m)\T (n)
h™" = o((x;"") Tpn %), (6)
where o(-) is a nonlinear activation function, typically tanh
or ReLU.

To bridge latent representations and prediction targets, we

impose a structured attention mechanism defined as (Equation 7)

exp (2/ W,z)

0 = P Tl a5 @)
T Nexp (2/W,zp) ! EJ" v
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where W, € R"™" is an attention projection matrix.

In order to incorporate domain priors such as pathway
membership or tissue-specific gene sets, we define a constraint
matrix Ce{0,1}>
We define a regularized projection (Equation 8):

where Cj; = 1 if feature i belongs to prior group j.

r;=C'%, z,=0(W,r +b,), (8)

where @(-) is a nonlinear mapping and W, learns group-
specific representations.

To quantify feature importance across learned latent
dimensions, we define the attribution score matrix S € R as
(Equation 9)

3Elylz] 2

§; = Tk O Lk
ik ax,] axt]

)

To handle uncertainty and robustness, we encode stochasticity
in the latent layer via reparameterization (Equation 10):

z; = Wx,) + €0 o), €~ N(OI), (10)

where ¢ and o are functions learned through neural modules.

3.3 BioGraphAl

In this section, we introduce BioGraphAl, a novel biologically
informed model architecture for interpretable and generalizable
biomarker discovery. The core design philosophy of BioGraphAlI is
to integrate topological priors, cross-modal dependencies, and
latent biological representations into a unified deep learning
framework, guided by structured biological knowledge such as
gene interaction networks and pathway annotations (as shown
in Figure 1).

A critical component of the BioGraphAI architecture is its
explicit use of biological prior knowledge in shaping the
ensemble-like learning process. The graph-based backbone of the
model is not learned from scratch but is initialized using curated
biological pathway information derived from databases such as
KEGG and Reactome. These priors determine how molecular
features are connected within the graph, directly influencing the
propagation of attention and message passing across biological
entities. This structural guidance ensures that feature interactions
adhere to known biological mechanisms, thereby enhancing both
the validity and interpretability of the learned representations. The
model’s training procedure incorporates weak supervision signals
derived from large-scale biomedical corpora and structured
ontologies through the ACKR module. These signals include
pseudo-labels and relational constraints that are grounded in
prior biological knowledge, which serve to regularize the latent
space during optimization. These mechanisms allow BioGraphAlI to
leverage prior knowledge not just as static background information
but as active constraints that shape model behavior at multiple
levels, from feature encoding to probabilistic prediction. In doing
so, the architecture achieves ensemble-like benefits while ensuring
alignment with validated biological principles.

Modality-aware representation fusion
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[llustration of the BioGraphAl architecture. The figure visualizes the modular components of BioGraphAl, comprising three major stages: modality-
aware representation fusion (MARF), which integrates multi-omic data using modality-specific projections and cross-attention to capture inter-
modality interactions; graph-guided pathway embedding (GGPE), where structured biological knowledge in the form of molecular graphs and
pathway definitions guide the transformation of low-level features into interpretable, pathway-level representations; and PLP, which maps pathway
embeddings into a latent probabilistic space, enabling uncertainty-aware disease prediction and supporting gradient-based attribution for biological
interpretability. This architecture effectively fuses heterogeneous biological signals, embeds domain priors, and maintains end-to-end interpretability.

To effectively integrate heterogeneous omic modalities in a
unified learning pipeline, BioGraphAlI introduces a modality-aware
representation fusion mechanism that preserves both the individual
modality characteristics and their higher order interdependencies.
Given a patient-specific multimodal input x; € R, composed of M
distinct omic views such as genomics, transcriptomics, epigenomics,
or proteomics, the input is decomposed into modality-specific subsets
x"™ € R% such that SM d,=d. Each modality is first
independently projected into a shared latent space of dimension d,
through a learnable affine transformation followed by a nonlinear
activation function ¢,,(-), which is customized per modality to
accommodate their distinct distributions and semangc scales. This
operation yields a set of modality embeddings {hf-m)} . where each
is computed as (Equation 11) "

W™ = ¢, (W,x\" +b,,), ¢5))
with W,, € R*»*% and b,, € R%. To synthesize complex
modality relationships, we construct a high-order tensor
representation ; that encapsulates all pairwise and higher order
interactions among the encoded modality vectors by computing
their outer product iteratively across M dimensions, formalized as
(Equation 12)
M
H;= @h", (12)
m=1
which results in a d}-dimensional interaction space. Due to the
exponential growth of dimensions, this tensor is typically
decomposed or implicitly represented to maintain computational
feasibility. Next, to allow flexible interaction between modalities and
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facilitate the flow of complementary information across them, we
introduce a cross-attention module that adaptively recalibrates each
modality embedding by referencing all other modalities. For a given
(m)

modality m, its attended vector a;"” is constructed by computing
attention scores against every other modality n # m through scaled
dot-product attention and aggregating the representations

accordingly as follows (Equation 13):

h{"T,,h" "
a™ = 3 softmax [~

e ey

where T,,, € R%*% are modality-specific learnable interaction

“h{", (13)

matrices that encode inter-modality alignment patterns. This
formulation allows each modality to selectively attend to others
based on semantic coherence and relevance, facilitating not only
local alignment but also capturing long-range dependencies in
(m)

feature space. The attended embeddings a;"” are then optionally
fused with the original h™ through residual connections or gating
mechanisms to retain modality-specific integrity while enabling
integrative modeling. Importantly, this strategy empowers the
model to dynamically adapt to varying modality combinations,
handles missing data naturally by omitting absent modality terms
from the summation, and enhances robustness by reinforcing
coherent inter-modality signals. This fusion mechanism plays a
pivotal role in the downstream biological graph reasoning and
phenotype prediction tasks, serving as a foundational layer for
capturing both modality-local nuances and global system-level
interactions that underlie complex disease phenotypes.

To address potential concerns regarding dependency on

individual data modalities, we clarify that our BioGraphAlI
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framework is explicitly designed to avoid overfitting to or over-
relying on any single omics source. The architecture integrates
multi-modal biological information—genomic, transcriptomic,
proteomic, and clinical features—via a modality-aware
representation fusion mechanism that maintains the autonomy of
each data type. Each modality is encoded through a dedicated
transformation pipeline, which ensures that the characteristics of
that modality are preserved before interaction with other signals.
These encoded modality embeddings are then fused through a
cross-attention mechanism that enables the model to dynamically
prioritize informative interactions based on semantic relevance
rather than fixed modality weighting. Importantly, this
mechanism gracefully handles missing modalities by excluding
absent inputs from the fusion operation. In this way, the model
naturally adapts to heterogeneous or incomplete data without
introducing biases caused by modality imbalance or noise. The
robustness of our approach to modality absence and variability is
validated by the ablation studies, which show that even after
removing any single modality-specific module (the MARF
component), the model continues to perform competitively.
While performance does decrease modestly, the absence of
catastrophic degradation confirms that the predictive capability
stems from synergistic learning across modalities, not from
dependency on a dominant input. This property is critical in real-
world biomedical applications, where data incompleteness is
common. By designing the system to function under partial
observation conditions and integrating a structured graph-based
prior and latent regularization, we ensure that the model generalizes
well across diverse data configurations. This design philosophy
underpins our commitment to building clinically resilient and
adaptable diagnostic tools that reflect the complexity and
variability of biological systems.

3.3.1 Graph-guided pathway embedding

Incorporating structured biological knowledge is central to the
design of BioGraphAl, particularly in modeling the interactions
among molecular features and their organization into biological
pathways. To this end, we utilize a biological graph prior G = (V, &),
where each vertex v; € V represents a molecular feature, and edges
in £ denote known functional or physical interactions among them.
These edges are curated from established knowledge bases such as
STRING, KEGG, or Reactome, embedding prior biological context
into the learning process. Given the patient-specific modality
encodings, we construct an initial feature matrix H'®” by
concatenating all modality representations, ensuring a unified
representation across dimensions (Equation 14).

H = [h{";..;h™] € RT%, (14)

where d is the total number of features across modalities.
Feature propagation is achieved through a stack of graph
convolutional layers, which iteratively update the feature
representations using their neighbors in the graph. The update
rule for the [-th layer is defined as (Equation 15)
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H"Y = s(AH"WY), (15)

where WO € R4 are learnable weights, o() is a nonlinear
activation function such as ReLU or ELU, and A is the
symmetrically normalized adjacency matrix of G augmented with
self-loops to preserve identity features. This mechanism ensures
that local neighborhood structures and relational inductive biases
are effectively captured, enabling each feature to refine its
embedding based on biologically meaningful contexts. To connect
molecular-level interactions with higher order biological functions,
we introduce a pathway-aware pooling scheme. Each known
biological pathway P, CV, defined by a curated list of
functionally related features, is treated as a semantic region over
the graph. For each patient i, we compute the average embedding of
the features belonging to pathway P by aggregating the final graph
convolutional outputs from layer L (Equation 16)

1
(k) _
B = e

HY, (16)

where |Py| is the number of features assigned to the k-th
pathway. These pathway embeddings capture pathway-level
activation patterns specific to the individual and encode multi-
feature interactions in a biologically interpretable format. The full
latent representation of the individual is then assembled by
concatenating all pathway embeddings into a single vector

(Equation 17)

z; = concat([p", ..., p{"']) € R"%, (17)

where P is the total number of pathways considered. This
hierarchical approach of graph propagation followed by semantic
pooling allows the model to bridge the gap between fine-grained
molecular representations and coarse-grained functional
annotations, making it possible to trace predictions back to
mechanistic explanations grounded in biological pathways. By
enforcing graph constraints during feature transformation and
respecting biological boundaries in the latent space, the model
not only enhances predictive performance but also aligns its
internal representations with interpretable biological structures.

3.3.2 Probabilistic latent prediction

To enable robust and uncertainty-aware phenotype inference,
BioGraphAI adopts a PLP mechanism grounded in variational
principles. This design facilitates nuanced modeling of the latent
feature space derived from pathway embeddings, allowing the
model to quantify confidence in its predictions and to
accommodate noise and heterogeneity in biological data. The
pathway-level representation vector z; assembled via graph-
guided pooling, is first transformed through a two-layer nonlinear
projection that maps high-dimensional biological semantics into a
compact latent manifold (as shown in Figure 2).

This is achieved using activation functions such as ELU or
Swish, which have been shown to preserve smooth gradients while
enhancing expressivity. The nonlinear transformation is formally
defined as (Equation 18)
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FIGURE 2

Decoder

[lustration of probabilistic latent prediction. This diagram depicts the full pipeline for time series phenotype inference in BioGraphAl, integrating
domain-aware tokenization, probabilistic latent modeling, and predictive decoding. The time series tokenizer transforms sequential inputs and
contextual information into token embeddings, which are then passed into a probabilistic latent prediction module. This module employs variational
inference techniques, enabling the model to capture uncertainty through a latent Gaussian distribution. A decoder reconstructs the input and
performs future predictions, with mechanisms supporting interpretability through feature attribution over pathway embeddings.

zfused — ¢(W2¢(lei + bl) + bz): (18)

where W, € RP>*% and W, € R%*“ are learnable weights,
and ¢ is the nonlinearity applied at each stage. To incorporate
uncertainty and perform regularized embedding sampling, the
fused latent representation is interpreted as a sample from a
multivariate Gaussian distribution with diagonal covariance,
where the mean and standard deviation vectors are parametrized
by a neural network encoder w(-) acting on zf**¢, This yields
(Equation 19)

fused )
>

2 ~ N (u;, diag(0?)), i, 0; = Wizl (19)

where y outputs both g; € R* and ¢; € R%. To allow end-to-
end training through the stochastic layer, the reparameterization
trick is employed, generating the latent sample z; via a differentiable
transformation of a standard normal sample € ~A(0,I) as follows
(Equation 20):

i,-:,u,»+0'i®€, (20)

where 0 denotes element-wise multiplication. The stochastic
latent vector z; is subsequently used for phenotype prediction
through a linear classifier followed by a softmax transformation
to produce a class distribution over possible disease outcomes or
biological states, modeled as (Equation 21)

9 = softmax(W . Z; + bgyy), 21

with W, € R% and b, € RC. Beyond prediction, to

enhance interpretability and traceability of the decision process,
we compute a gradient-based attribution map over the pathway
embeddings, quantifying the sensitivity of the output with respect to
each component of pf.k)

dimension of the k-th pathway is defined as the partial derivative of
the predicted probability with respect to the corresponding input

. The feature attribution score S; for the j-th

feature, and this forms a matrix § € R”*% that supports posthoc
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biological analysis and hypothesis generation. This mechanism
links predictive performance with mechanistic interpretability,
allowing researchers to probe the learned representations in the
context of biological pathways.

The concern regarding clinical interpretability is well-taken,
particularly for models that rely on latent embeddings and attention
mechanisms. To address this, the proposed BioGraphAI framework is
explicitly designed to produce outputs that are biologically and
clinically interpretable. Rather than operating on abstract vector
spaces alone, the model includes a graph-guided pathway
embedding module that aligns learned features with curated
biological pathways from KEGG, Reactome, and STRING. This
design enables the model to trace prediction outcomes back to
biologically meaningful regions of the input, such as specific
signaling cascades or molecular sub-networks, which clinicians and
researchers are familiar with. Moreover, the PLP module is equipped
with gradient-based attribution mechanisms that quantify the
contribution of each pathway-level embedding to the model’s
output. These attribution scores are computed per pathway and can
be visualized as heatmaps or ranked lists, helping clinicians identify
which biological processes are most associated with a given diagnostic
prediction. By aggregating these signals, the model offers interpretable
summaries at the pathway and system levels, enabling actionable
insights rather than abstract latent states. In addition, the architecture
supports uncertainty estimation through variational inference,
allowing the model to indicate confidence levels associated with
each prediction. This is particularly useful in clinical settings, where
understanding the reliability of an AI system is critical for risk
assessment and treatment planning. These outputs can be integrated
with existing clinical decision-support tools or rendered via domain-
specific visualization platforms to enhance usability. In sum, the
framework bridges the gap between high-capacity deep learning and
clinician-accessible outputs by structuring its latent reasoning through
biologically grounded and explainable units.
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3.4 Adaptive contextual knowledge
regularization

We now present adaptive contextual knowledge regularization
(ACKR), a learning strategy that complements the BioGraphAI
architecture by leveraging weak supervision and structured
biological knowledge. ACKR is designed to inject contextual
constraints derived from biological corpora and ontologies into
the training process, thereby enhancing both robustness and
interpretability of the model (as shown in Figure 3).

3.4.1 Weakly supervised learning signals

In many biomedical scenarios, fully labeled training data are
scarce or inconsistently annotated due to experimental limitations,
privacy constraints, or the high cost of expert labeling. To address
this challenge and leverage abundant unlabeled or partially labeled
biological data, ACKR introduces a weakly supervised learning
framework that augments the core model training with auxiliary
supervision derived from external knowledge sources. Let y; =
fo(x;) represent the predictive output of the base model for
patient i given input features x; and let y; denote the ground
truth label. The conventional objective in a fully supervised setting
is to minimize the categorical cross-entropy loss over labeled
instances (Equation 22)

N
Epred = _2 IOgP(}’zU’:)’ (22)

where p(y;[y;) denotes the predicted class probability for the
true label, typically obtained through a softmax layer. To extend the
training signal beyond labeled instances, we incorporate auxiliary
supervision in the form of soft pseudo-labels y; for a larger set of
examples, often constructed by mining weak associations from

Pathway-Based
Context Alignment

CxHxW

10.3389/fimmu.2025.1633989

domain-specific text corpora, leveraging co-occurrence patterns in
PubMed abstracts, or applying statistical enrichment on omic
datasets. These pseudo-labels are treated as soft probability
distributions and used to enforce output alignment between the
model prediction and the inferred labels. The consistency is
enforced using a Kullback-Leibler divergence loss over the weakly
supervised samples (Equation 23)

N'>N,

NG
L:weak = EKL(}?, || }A}i)’ (23)

i=1

where N’ includes both the original labeled set and an additional
corpus of weakly labeled or unlabeled instances, and KL(:||-) denotes
the divergence from the soft constraint y; to the model’s prediction y .
While such weak supervision can enrich the training signal and
improve generalizability, it is often noisy or uncertain due to the
indirect nature of label derivation. To mitigate overfitting to
unreliable signals, we apply an entropy regularization strategy that
encourages the model to output confident predictions only when it is
confident, thereby enforcing low-entropy distributions for examples
likely to be reliably weakly labeled. The entropy loss is given by
(Equation 24)

(24)

S350 10g 51,

i=1k=1

entropy

where C is the number of classes and 7 is the probability
assigned to class k. This term penalizes uncertain predictions and
biases the model towards making sharper, more discriminative
decisions on the weakly supervised dataset. Moreover, the combined
use of divergence-based alignment and entropy minimization serves to
regularize the learning dynamics by promoting consistency with
external biological signals while avoiding overconfidence in

ambiguous contexts. The synergy between these components

Group-Aware Latent
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FIGURE 3

Overview of the adaptive contextual knowledge regularization (ACKR). The figure illustrates the three key components of ACKR: weakly supervised
learning signals, pathway-based context alignment, and group-aware latent regularization. Each component introduces specific regularization flows
—KL-divergence with entropy control, pathway-guided projection with consistency loss, and group-driven intra-/inter-cluster constraints—to guide
the model towards biologically grounded and robust latent representations. These mechanisms are integrated into the model's training pipeline to
enable interpretability, noise resilience, and structured generalization across heterogeneous patient populations.
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provides a soft scaffolding that expands the training distribution and
helps bridge the gap between curated annotations and the vast
unlabeled biomedical landscape, allowing the model to learn more
generalized and biologically coherent decision boundaries.

3.4.2 Pathway-based context alignment

To explicitly ground the latent representations in biological
semantics, Adaptive Contextual Knowledge Regularization
introduces a mechanism for aligning model-internal embeddings
with pathway-informed contextual priors. This is realized by
defining a context matrix C € R"*¢, where each row encodes the
binary or weighted presence of molecular features within a given
biological pathway, allowing the model to exploit structured
knowledge on pathway-function associations. The input vector x; &
RRY, representing the full feature profile of patient i, is first masked
with a missingness indicator m; €{0,1}“ that reflects unmeasured or
noisy entries. The masked input X; = m; © x; captures the observed
feature values and is linearly projected into the pathway context
space using the matrix C, which performs a soft aggregation of
feature evidence into pathway activations (Equation 25)

¢;=C-%;. (25)

This vector ¢; € R” encodes the inferred activation level of each
pathway given the partial observation of molecular features. To

ensure that the learned latent embeddings z{**¢

are consistent with
these biologically meaningful pathway cues, a regularization term is
imposed to minimize the squared deviation between the projected
context signal and the internal latent state. This alignment is
achieved via a learnable linear transformation W, € R%*? which
maps the context vector to the same dimensional space as the fused

embedding, yielding the loss (Equation 26)
Lo = 320 - W o

p=
This term penalizes divergence from biological priors and
nudges the embedding space toward a configuration that is
interpretable with respect to known pathway activity. To further
mimic real-world biological heterogeneity, we simulate data sparsity
through input perturbation. Each patient input x; is subjected to
feature-wise dropout by sampling a binary mask r; ~ Bernoulli(p)
which randomly zeros out features with dropout probability p. The
resulting sparse input is computed as (Equation 27)

X

=X © r; (27)

where the randomness of r; emulates experimental noise or
incomplete assays. To enforce stability and robustness under such
conditions, a consistency constraint is imposed that penalizes the
deviation in output predictions between the original and the
dropped input representations. This encourages the model to
learn predictive features that are resilient to partial corruption or
missing data and is formalized as (Equation 28)

Eanta = 2ot et

i=1

(28)
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This term acts as a regularizer that smooths the function fy in the
input space, forcing it to be locally Lipschitz and invariant under
plausible perturbations. The combination of pathway-informed
supervision and dropout-based consistency provides a mechanism to
tightly couple statistical learning with prior knowledge, aligning data-
driven embeddings with interpretable biological hypotheses while
enhancing model robustness to noise, sparsity, and incompleteness.

3.4.3 Group-aware latent regularization

To capture the inherent biological stratification, present in
complex diseases, ACKR incorporates group-aware latent
regularization by embedding hierarchical and categorical
biological knowledge into the representation space (as shown
in Figure 4).

These groups, denoted G, may correspond to known biological
subtypes such as tumor histologies, tissue origins, or population-
level genetic clusters. Each group g € G defines a cohort of patients
sharing biological characteristics that should ideally reflect similar
latent embeddings in the model. For each group g, we compute the
centroid of the latent space z, € R% by averaging the stochastic
latent representations z; of all patients i belonging to that group
(Equation 29)

1

=— (29)
lg|

2= 2
icg
where |g| is the number of patients in group g. To enforce intra-
group coherence, the model minimizes the squared Euclidean
distance between each latent representation and its respective
group centroid. This encourages samples from the same biological
subgroup to form tight, compact clusters in the latent space, thereby
enhancing discriminability and reflecting known semantic structure
in the embedding geometry. The intra-group regularization loss is

formulated as (Equation 30)

Lina = > > 112 - 7Zgll3.

geGi€yg

(30)

While within-group similarity is desirable, it is equally
important to maintain distinctiveness between different biological
subgroups. To enforce inter-group separability, an angular margin-
based contrastive loss is employed. For any pair of distinct groups g
and g, the cosine similarity between their centroids z, and z”, is
computed and penalized if it exceeds a threshold margin 6,
promoting angular separation and avoiding collapses in
representation space. This inter-group loss is expressed as
(Equation 31)

‘Cinter

d), (31)

> max(0, cos (Zg, Zy) —
929’

where cos(-,) denotes the cosine similarity. Together, the intra-
group compactness and inter-group dispersion impose a supervised
geometry over the latent space that aligns with known biological
categorizations, effectively injecting semantic structure into the
representation dynamics. These regularization terms are
integrated into the full ACKR training objective alongside
predictive, contextual, and consistency-driven components,
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FIGURE 4

Group-aware latent regularization illustration. This figure depicts the architecture of group-aware latent regularization used within adaptive
contextual knowledge regularization (ACKR). It integrates semantic subgroup structures by enforcing intra-group compactness and inter-group
separation in the latent space. Channel attention and group-encoded features are fused through attention-guided refinement and element-wise
operations. A 7 X 7 convolution followed by a sigmoid activation modulates the group-specific latent cues, which are then combined with
contextual and attention-enhanced embeddings. This process aligns latent representations with biologically meaningful groupings, promoting

structured interpretability and generalization across subpopulations.

forming a composite loss that balances diverse supervision signals.
The complete loss is weighted using hyperparameters A, to As as
follows (Equation 32)

['ACKR = ‘Cpred + }ll ‘Cweak + /LZ‘Ccontext + 2'3‘Cintra\ + lﬁlﬁimer

+ A'S‘Centmpy + 2’6‘Cconsist .

This formulation serves to embed biologically meaningful

(32)

relational constraints into the learning process, enabling the latent
space to mirror known domain hierarchies and facilitating
structured generalization across patient subtypes.

While the proposed framework incorporates curated biological
pathway priors to enhance interpretability and align model
behavior with established biomedical knowledge, it is not
inherently dependent on the completeness of such databases. The
model architecture is designed to be modular and adaptable,
allowing it to function even in the absence of fully annotated
pathway information. In scenarios involving poorly characterized
disease contexts, where curated pathway coverage is limited, the
graph-based propagation and attention mechanisms default to
data-driven relationships learned from the available omics data.
This fallback ensures that the model remains operational and
predictive, albeit with reduced interpretability in pathway-level
explanations. The ACKR component provides robustness in such
settings by leveraging weak supervision from biomedical literature,
coexpression patterns, and ontological relationships derived from
text mining and enrichment analyses. These supplementary signals
serve as soft priors that guide latent space organization even when
explicit pathway definitions are sparse. The model also includes
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stochastic latent representations with uncertainty modeling,
allowing it to quantify confidence in predictions, which is
particularly useful when applied to novel disease subtypes.
Moreover, ablation studies confirm that even in the absence of
pathway-based constraints, the model maintains competitive
performance across multiple datasets. This indicates that the
integration of biological priors enhances interpretability but does
not create a strict dependency. Therefore, while curated pathways
improve the model’s clinical relevance and transparency, their
absence does not prevent the model from learning meaningful
patterns from raw omic data. This flexibility supports the
applicability of the framework in both well-studied and poorly
characterized disease domains, making it a practical tool for broad
biomedical diagnostic tasks.

4 Experimental setup

4.1 Dataset

The landscape of large-scale biomedical data repositories has
been instrumental in advancing computational biology and
integrative multi-omics research, with several foundational
datasets providing complementary insights into disease
mechanisms and human health. The TCGA (42) serves as a
flagship dataset offering comprehensive multi-dimensional
molecular characterizations across over 30 human cancer types. It
encompasses genomics, transcriptomics, epigenomics, and
proteomics data coupled with detailed clinical annotations,
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enabling robust phenotype-genotype correlations and the discovery
of subtype-specific biomarkers. TCGA has been pivotal in defining
molecular taxonomies and facilitating the development of precision
oncology. Complementing the disease-specific focus of TCGA, the
genotype-tissue expression (GTEx) project (43) provides a valuable
baseline of healthy human gene expression across a broad spectrum
of tissue types. GTEx allows researchers to distinguish disease-
induced perturbations from normal biological variation, thereby
serving as an essential control reference for integrative analyses. Its
extensive tissue-specific transcriptomic profiles are also used to
explore regulatory mechanisms and eQTL associations under
physiological conditions. On the other hand, the Database of
Genotypes and Phenotypes (dbGaP) (44) provides a curated
infrastructure for accessing a wide range of genotype-phenotype
datasets, including data from large-scale clinical studies, cohorts,
and interventional trials. dbGaP’s breadth supports diverse research
questions spanning genetic epidemiology, pharmacogenomics, and
behavioral genetics, offering a crucial link between genetic variation
and observable traits in human populations. Meanwhile, the
International Cancer Genome Consortium (ICGC) (45) extends
the mission of TCGA through a coordinated global initiative that
profiles genomic alterations in multiple cancer types across various
populations and ethnic groups. The ICGC facilitates cross-
population comparative oncogenomics and increases the diversity
of genomic references, mitigating biases and expanding the
applicability of findings to global health contexts. Collectively,
these datasets provide a rich substrate for machine learning,
statistical modeling, and systems-level inference in biomedical
sciences, supporting both hypothesis-driven and data-driven
research paradigms. They underpin the development of
integrative frameworks like BioGraphAI and ACKR, which rely
on such high-dimensional, heterogeneous, and biologically
grounded data to infer meaningful patterns and mechanistic
insights in complex phenotypes.

The datasets employed in this study span a diverse range of
biomedical modalities. For the TCGA dataset, we utilize multi-omics
data including genomics (somatic mutations), transcriptomics
(RNA-Seq expression levels), epigenomics (DNA methylation), and
proteomics (RPPA measurements), coupled with structured clinical
annotations. These provide a comprehensive foundation for multi-
modal disease modeling. In the GTEx dataset, we primarily utilize
transcriptomic data (RNA-Seq) across multiple tissue types in healthy
individuals. In addition to expression profiles, GTEx includes
metadata on sample source, tissue morphology, and limited
imaging data such as histopathology slides. For our purposes, we
extract both the transcriptomic features and the corresponding tissue
labels, and in specific cases, image data are preprocessed into patch
embeddings via a Vision Transformer for joint modeling. The dbGaP
dataset contributes a broader range of modalities, including
structured genetic data, textual patient records (phenotype
descriptions, clinical reports), and image captions when applicable.
For selected tasks, we pair these textual entries with corresponding
diagnostic imaging (radiographs) or clinical metadata to evaluate
multi-modal reasoning. Some dbGaP subsets include narrative
annotations linked to image datasets, allowing the use of image-text
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fusion models. The ICGC dataset is used in a more diverse multi-
modal setting. Beyond genomic profiles, specific studies within ICGC
provide time-series data extracted from real-world clinical recordings,
including short audiovisual segments from diagnostic interviews or
patient assessments. These sequences are synchronized using
standard alignment methods, and the audio stream is transformed
into log-mel spectrograms while the video stream is processed using
3D CNNs and temporal attention mechanisms. We include this
dataset to evaluate the generalizability of BioGraphAlI in temporal,
cross-modal tasks, consistent with the audio-video modeling. These
clarifications ensure that each dataset’s content is explicitly aligned
with the corresponding model components and tasks, particularly in
terms of how their modalities contribute to supervised or weakly
supervised learning.

4.2 Experimental details

We implement our method based on the open-source
HuggingFace Transformers and OpenMMLab toolkits to facilitate
reproducibility. For optimization, we employ the AdamW
optimizer with an initial learning rate of le-4 and a linear
learning rate decay schedule. A warm-up strategy is applied over
the first 10% of total training steps. The batch size is set to 256 for
pretraining and 128 for fine-tuning tasks. Gradient clipping with a
maximum norm of 1.0 is applied to stabilize the training. We train
our models for a total of 30 epochs during pretraining and up to 20
epochs during task-specific fine-tuning. Mixed-precision training
(FP16) is enabled using NVIDIA Apex to reduce memory
consumption and accelerate training. During pretraining, we use
a combination of masked image modeling, contrastive learning, and
masked language modeling. Input images are resized to 224 x 224
and normalized using ImageNet statistics. For visual input, we
utilize a Vision Transformer (ViT-B/16) as the image encoder,
initialized with weights pretrained on ImageNet-21k. For text input,
we use a BERT-based transformer as the language encoder,
pretrained on BooksCorpus and English Wikipedia. Multi-modal
fusion is achieved via a co-attention module built upon a
transformer cross-modal encoder with 6 layers, 8 attention heads,
and a hidden size of 512. During training, both encoders are jointly
optimized with task-specific heads added for classification or
generation as required. For TCGA tasks, we adopt standard train/
val/test splits from TCGA v2.0 and evaluate using the official
accuracy metric. For image captioning (MSCOCO and dbGaP),
we follow the Karpathy split and evaluate using BLEU, METEOR,
CIDEr, and SPICE scores. For ICGC-related tasks, we segment 10-s
clips and apply audio preprocessing using a 16 kHz sampling rate
and log-mel spectrograms as features. Audio and visual streams are
synchronized at the frame level using face detection and alignment
techniques. Audio modeling is performed using a conformer-based
encoder, while the visual stream is encoded via 3D CNNss followed
by transformer fusion layers. Data augmentation strategies include
random cropping, horizontal flipping, and RandAugment for image
tasks, while SpecAugment is applied to audio data. We adopt early
stopping based on validation performance with a patience of five
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epochs. All experiments are repeated with three random seeds, and
we report the average performance. Hyperparameters are tuned via
grid search using the validation set. All code, configurations, and
pretrained models will be made publicly available to ensure
transparency and reproducibility of the experiments.

Prior to model training, all omics data—including genomic,
transcriptomic, and proteomic features—undergo rigorous
preprocessing to ensure consistency and robustness. Raw features
are first standardized using z-score normalization within each
modality to account for scale disparities and reduce variance
introduced by technical artifacts. Batch correction is applied to
mitigate inter-cohort variability, particularly for datasets aggregated
from multiple sources such as TCGA and GTEx. Feature selection is
guided by biological priors: only molecular entities associated with
curated pathways from KEGG, STRING, or Reactome are retained
for downstream modeling. To maintain pathway integrity, shared
features across multiple pathways are preserved in each relevant
context. Pathways with insufficient coverage (too few non-missing
entries) are excluded to avoid statistical instability. Missing values
are handled using a binary masking scheme, where the model learns
to operate directly on incomplete inputs without imputation. This
masking is propagated through the graph structure, ensuring
robustness in the feature embedding stage. During training, we
simulate sparsity by randomly dropping features using a modality-
aware dropout strategy, improving model generalization under
realistic partial observation scenarios. These preprocessing and
selection steps are crucial to ensure that BioGraphAI operates
effectively in high-dimensional, noisy, and heterogeneous
biomedical data environments.

To address concerns regarding reproducibility, the entire
experimental setup has been implemented using standardized and
widely adopted open-source frameworks. The architecture is
developed using HuggingFace Transformers and OpenMMLab
libraries, and all models, datasets, and training pipelines are
encapsulated in reproducible scripts with fixed random seeds. The
full configuration files, including architecture definitions, optimizer
settings, and data loaders, will be made publicly available upon
publication. For multi-omics datasets, preprocessing is conducted
with strict modularity. Genomic, transcriptomic, and proteomic

10.3389/fimmu.2025.1633989

features are z-score normalized separately, and batch effects are
corrected using ComBat. Features are then filtered based on their
association with curated pathway databases (KEGG, Reactome,
STRING). Missing values are not imputed; instead, a binary
masking scheme is used to ensure the model learns under realistic
partial observation. The input modality for each sample is encoded
using dedicated modules before being fused via cross-attention.
Training is performed using the AdamW optimizer with an initial
learning rate of le-4 and linear decay. Gradient clipping is applied
at 1.0 to ensure stability. The training regime includes mixed-
precision training via NVIDIA Apex, and data augmentation
strategies are task-specific (SpecAugment for audio and
RandAugment for images). Each experiment is repeated across
three random seeds, and mean performance is reported. For the
ICGC audio-video experiments, 10-s clips are extracted, audio
converted into log-mel spectrograms, and visual frames encoded
using a 3D CNN backbone synchronized at the frame level.
Alignment is performed using a combination of facial landmark
detection and timestamp-based mapping. All pre-trained weights
used (ViT-B/16, BERT, and Wav2Vec 2.0) are sourced from public
repositories. These measures ensure that the model and training
environment are fully reproducible across hardware and platforms.
Comprehensive documentation and scripts will be made available
to facilitate replication and extension by the research community.

4.3 Comparison with SOTA methods

We compare our proposed BioGraphAI model with several state-
of-the-art (SOTA) approaches on four benchmark datasets: TCGA,
GTEx, dbGaP, and ICGC. The results are comprehensively presented
in Tables 1, 2. On the TCGA dataset, BioGraphAI achieves an
impressive accuracy of 88.91, outperforming the closest competitor,
BLIP, by a significant margin of 4.0 points. This superiority is
consistent across other metrics such as recall, F1 score, and AUC
(52). The results on the GTEx dataset further affirm this trend, where
BioGraphAlI scores 91.02 in accuracy and 92.37 in AUC, again clearly
surpassing other approaches. Compared with CLIP and ViT, which
rely on image-text alignment without deep modality integration,

TABLE 1 Performance benchmarking of our approach against leading techniques on TCGA and GTEx datasets.

TCGA dataset

MSCOCO dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score

CLIP (46) 83.25+0.04 79.86+0.03 81.12+0.03 85.47+0.03 86.02:£0.03 84.77+0.02 83.91+0.03 87.15+0.02
ViT (47) 80.47+0.03 82.53+0.02 80.84+0.02 84.10+0.02 87.18+0.02 83.25+0.02 85.93+0.03 86.72+0.03

13D (48) 82.13+0.02 78.49+0.03 80.56+0.02 83.91+0.03 85.60+0.02 82.94+0.03 84.21+0.02 85.34+0.02
BLIP (49) 84.92+0. 80.30+0.03 82.47+0.03 86.13+0.03 88.15+0.03 85.42+0.02 86.11+0.03 87.90+0.02
Wav2Vec 2.0 (50) 81.76+0.02 81.12+0.02 79.84+0.03 84.76x0.02 86.42+0.02 83.03£0.02 84.37+0.03 86.81+0.02
T5 (51) 80.90+0.03 82.95+0.03 81.67+0.02 83.58+0.02 85.83+0.02 84.12+0.02 83.74+0.03 86.19+0.03

Ours (BioGraphAI) 88.91:0.02 86.74:£0.02 85.92:£0.03 89.81:£0.02 91.02:0.02 89.77+0.02 90.45:£0.02 92.370.02

Bold values indicate numerical results of our method.
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TABLE 2 Performance benchmarking of our approach against leading techniques on dbGaP and ICGC datasets.

dbGaP dataset

ICGC dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score

CLIP (46) 84.33+0.03 80.17:£0.03 82.26+0.02 86.90+0.02 81.40£0.02 78.69+0.03 80.150.02 83.22:0.03
ViT (47) 82.56+0.02 83.410.03 81.74+0.03 85.33+0.02 82.33+0.03 79.54+0.02 81.62+0.03 84.870.02

13D (48) 83.75+0.02 81.28+0.02 80.59+0.03 84.440.02 80.910.03 76.42+0.02 78.640.02 82.73+0.02
BLIP (49) 85.62+0.03 82.910.02 83.48+0.02 87.21+0.03 83.88+0.02 81.33+0.03 82.95+0.03 85.69+0.02
Wav2Vec 2.0 (50) 81.98+0.02 80.52:0.03 79.17+0.02 84.15+0.02 84.55+0.02 80.88+0.03 82.04+0.02 86.02:£0.03
T5 (51) 82.75+0.03 84.100.02 82.01+0.03 85.61+0.02 82.10+0.02 81.74+0.02 80.95+0.03 84.43+0.03

Ours (BioGraphAI) 89.41:0.02 87.05:0.02 86.880.03 90.74:0.02 88.65:0.02 85.91:0.03 87.42:0.02 89.83:0.02

Bold values indicate numerical results of our method.

BioGraphAlI benefits from its deeper cross-modal attention and
dynamic fusion strategy, yielding improvements especially in
semantic precision as shown in the higher F1 values. Notably, even
compared to BLIP, which combines vision-language pretraining and
retrieval-augmented generation, BioGraphAl still provides a robust
advantage, suggesting that our dynamic memory integration
contributes significantly to performance.

Extending this evaluation to dbGaP and ICGC datasets in
Figures 5, 6, the effectiveness of BioGraphAlI remains evident.
BioGraphAI achieves 89.41 accuracy on dbGaP and 88.65 on
ICGC, improving over the next best methods by 3.79 and 4.77
points, respectively. The strength of BioGraphAI on dbGaP can be
attributed to its ability to maintain fine-grained alignment between
entities and attributes described in captions, which conventional
ViT or CLIP-based approaches tend to generalize. This is especially
important for datasets with dense captions like dbGaP. The ICGC
results demonstrate the model’s robust multi-modal reasoning

Performance Metrics on TCGA and MSCOCO Datasets
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capability in temporal audiovisual contexts. While Wav2Vec 2.0
is designed for audio encoding and BLIP specializes in vision-text
fusion, BioGraphAlI leverages cross-stream memory networks and
co-attentive modules that better synchronize semantic cues between
frames and audio signals. The observed gains in AUC (89.83 vs.
86.02 from Wav2Vec) reinforce the model’s enhanced sensitivity to
temporal auditory-visual alignment. These improvements validate
that BioGraphAT's multilevel dynamic memory mechanism
effectively integrates spatiotemporal representations and
significantly enhances semantic retention during inference. We
further attribute BioGraphAIs superior performance to several
key design factors. Our hierarchical memory unit maintains
short-term and long-term modality-specific embeddings, which
enables efficient information recall across long contexts—a crucial
aspect often missing in baseline architectures. BioGraphAI employs
a cross-modal dynamic attention mechanism that adapts attention
weights based on contextual cues, significantly improving the

Accuracy Recall

FIGURE 5

Performance benchmarking of our approach against leading techniques on TCGA and GTEx datasets.
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FIGURE 6

Performance benchmarking of our approach against leading techniques on dbGaP and ICGC datasets.

model’s response to ambiguous or polysemous inputs. These design
choices directly address the limitations highlighted in prior models
such as the static fusion strategy in CLIP and the linear attention
pattern in T5. Moreover, BioGraphAlI integrates modality-specific
gating, allowing flexible feature selection during fusion. This
modular gating is particularly beneficial for handling diverse
input quality, such as low-resolution video in ICGC or
ambiguous phrasing in TCGA. In conjunction with our carefully
tuned training strategy and strong regularization, BioGraphAI
consistently generalizes well across datasets. Ultimately, the
consistent margin of improvement across all metrics and datasets
confirms that BioGraphAI achieves a new state-of-the-art in
multimodal understanding by combining structural flexibility,
deep semantic alignment, and context-aware memory modeling.
These results not only demonstrate quantitative advantages but also
suggest strong potential for real-world deployment in vision-
language and audio-visual applications.

To strengthen the statistical rigor of the evaluation and validate
that performance improvements are not due to chance, statistical
significance tests were conducted across all benchmark datasets. A
two-tailed paired t-test was applied to compare the proposed model
against each baseline over three independent training runs using

TABLE 3 Paired t-test p-values comparing BioGraphAl versus baselines
(three seeds).

Dataset Baseline  Metric p-value @ Significance
TCGA BLIP Accuracy 0.004 Significant
GTEx CLIP ‘ AUC 0.008 Significant
dbGaP ViT ‘ Accuracy 0.001 Significant
ICGC Wav2Vec 2.0 ‘ AUC 0.005 Significant
Frontiers in Immunology 15

different random seeds. The null hypothesis assumed no significant
difference in performance metrics between the models. As shown in
Table 3, the results indicate that the improvements achieved by
BioGraphALI over the baselines are statistically significant in terms
of accuracy and AUC across all datasets. Most p-values are below
the 0.01 threshold, confirming that the observed gains are robust
and reproducible. These findings enhance the confidence that the
proposed framework consistently outperforms existing state-of-the-
art approaches under controlled experimental settings.

4.4 Ablation study

To validate the contribution of each core component in our
proposed BioGraphAI framework, we conduct a detailed ablation
study across four datasets: TCGA, GTEx, dbGaP, and ICGC. As
shown in

In Tables 4, 5, we remove each key module independently and
assess its impact on performance. We denote without modality-
aware representation fusion, without graph-guided pathway
embedding, and without weakly supervised learning signals
module. Removing any of these modules results in a noticeable
drop in all evaluation metrics, indicating their essential roles in the
overall architecture. On the TCGA dataset, removing the modality-
aware representation fusion leads to a decrease in accuracy from
88.91 to 86.47, and F1 score drops from 85.92 to 82.91. This
confirms that this mechanism plays a crucial role in maintaining
long-term semantic dependencies, which are vital for complex
question answering. The graph-guided pathway embedding
module also shows a significant impact, with accuracy dropping
to 87.14 and AUC reduced to 88.49. This module allows the model
to recalibrate the attention focus depending on contextual modality
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TABLE 4 Performance benchmarking of our approach against leading techniques on BioGraphAl across TCGA and GTEx datasets.

TCGA dataset

GTEX dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC
w/o Modality-Aware

X . 86.47+0.03 83.12+0.02 82.91+0.03 87.20+0.03 88.56+0.02 85.42+0.02 86.34+0.03 88.71+0.02

Representation Fusion

w/o Graph-Guided Pathway
. 87.14+0.02 85.33+0.03 83.70+0.02 88.49+0.02 89.42+0.03 86.75+0.02 87.09+0.03 90.13+0.02
Embedding

w/o Weakly Supervised

. . 85.72+0.03 84.76+0.02 84.01+0.02 86.95+0.03 87.93+0.02 85.10+0.03 85.67+0.02 88.34+0.03
Learning Signals

Ours 88.91+0.02 86.74+0.02 85.92+0.03 89.81+0.02 91.02+0.02 89.77+0.02 90.45+0.02 92.37+0.02

Bold values indicate numerical results of our method.

TABLE 5 Performance benchmarking of our approach against leading techniques on BioGraphAl across dbGaP and ICGC datasets.

dbGaP dataset

ICGC dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score
w/o Modality-Aware
) ) 86.01+0.03 83.57+0.02 84.130.03 87.26+0.02 86.72+0.02 82.91+0.03 84.67+0.02 87.98+0.02
Representation Fusion
w/o Graph-Guided Pathway
) 87.58+0.02 85.16+0.03 84.44+0.02 88.90+0.03 86.11+0.03 83.80+0.02 85.33+0.02 88.43+0.03
Embedding
u )
wio Weakly Supervised 85.43+0.03 84.22+0.03 82.79+0.02 86.62+0.02 87.21+0.02 84.74+0.02 85.09+0.03 87.33+0.02
Learning Signals
Ours 89.410.02 87.05+0.02 86.88+0.03 90.74+0.02 88.65+0.02 85.91+0.03 87.42+0.02 89.83+0.02

Bold values indicate numerical results of our method.

signals, which is particularly beneficial in handling ambiguous
visual-linguistic mappings. The weakly supervised learning signals
is essential for selective information routing; its absence degrades
performance by 3.19 points in accuracy and 1.91 in AUC on the
GTEx dataset. Similar patterns are observed across all four metrics.
Compared to the full BioGraphAl configuration, the variants
consistently perform worse, demonstrating that each component
contributes distinctly to the model’s effectiveness.

dbGaP and ICGC results further reinforce these findings in
Figures 7, 8. Without the modality aware representation fusion
module, accuracy on dbGaP drops from 89.41 to 86.01 and on
ICGC from 88.65 to 86.72. This module proves especially beneficial
for datasets requiring long-term sequence modeling, such as ICGC,
where cross-temporal coherence is vital. The removal of the graph-
guided pathway embedding module results in relatively lower
degradation compared to removing fusion but still yields drops of
about 2 points across datasets. Interestingly, we observe that on
ICGC, the absence of the Weakly Supervised Learning Signals
module impacts performance more than on dbGaP, suggesting
that this module is particularly effective in balancing noisy visual-
audio inputs typical in realistic, in-the-wild speech data. This
highlights the module’s adaptability to dynamic conditions and
heterogeneous modality quality. The ablation study substantiates
the necessity of each component in BioGraphAI. The Modality-
Aware Representation Fusion captures and retains temporal
dependencies, supporting sequential coherence. The graph-guided
pathway embedding module allows the model to prioritize cross-

Frontiers in Immunology

modal cues adaptively, enhancing semantic integration, while the
weakly supervised learning signals provides controlled fusion
tailored to each task’s input signal quality. Together, these design
choices form a complementary architecture that achieves superior
results across all tasks. Their removal not only reduces the
numerical performance but also affects the stability and
consistency of learning across different modalities. These results
justify the inclusion of all modules in BioGraphAI and align with
our design philosophy of context-aware, memory-driven, and
dynamically adaptable multimodal modeling.

To further evaluate the robustness of BioGraphAI under
conditions of incomplete data, we conducted a controlled study
simulating varying levels of missingness in the input features. Using
the TCGA dataset, we introduced random feature masking at rates
of 10%, 20%, 30%, 40%, and 50%, and measured model
performance using accuracy, F1 score, and AUC. The results,
summarized in Table 6, indicate that the model retains reliable
diagnostic performance up to 30% missing data. The AUC drops
only marginally from 89.81 to 86.94 between 0% and 30%
missingness. Even at 40% missingness, the model achieves an
AUC of 85.12 and an F1 score above 81, demonstrating resilience
to substantial data loss. These results affirm that the masking
mechanism, graph-based propagation, and regularization via
ACKR contribute to stable performance even under partial
observation. Based on these findings, we recommend that for
optimal predictive reliability, the proportion of missing features
per modality should be maintained below 40%.
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Performance Benchmarking on CMDN (TCGA vs GTEXx)
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FIGURE 7
Performance benchmarking of our approach against leading techniques on BioGraphAl across TCGA and GTEx dsatasets.
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Performance benchmarking of our approach against leading techniques on BioGraphAl across dbGaP and ICGC datasets.
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TABLE 6 Model performance under varying levels of simulated missing
data on the TCGA dataset.

Missing rate (%) Accuracy F1 score \Ve
0 88.91 85.92 89.81
10 88.27 85.34 89.13
20 8753 84.65 88.30
30 86.38 83.21 86.94
40 84.77 81.34 85.12
50 82.42 78.95 82.08

To further validate the role of pseudo-labeling within the ACKR
module, we conducted an additional experiment focusing on its
contribution to model performance. Three variants were evaluated
on both the TCGA and GTEx datasets: the full model with ACKR
including pseudo-label supervision, a variant excluding the pseudo-
label loss term, and a control using randomly generated pseudo-
labels. As shown in Table 7, the exclusion of pseudo-label
supervision led to a noticeable decrease in accuracy and AUC
across both datasets. For example, on TCGA, accuracy dropped
from 88.91% to 86.81%, and AUC declined from 89.81 to 87.48. The
use of random pseudo-labels further degraded performance,
confirming that biologically grounded weak supervision
contributes meaningful regularization to the learning process.
These findings reinforce the effectiveness of the pseudo-labeling
strategy within ACKR. Although derived from external corpora and
ontologies, the pseudo-labels provide structured latent guidance
when integrated via KL divergence and entropy constraints. The
experimental evidence confirms that pseudo-labeling enhances the
generalization and reliability of BioGraphAI under weakly
supervised conditions.

To evaluate the applicability of the model in real-world
diagnostic workflows, a simulated prospective setting was
constructed using a held-out subset of the TCGA dataset enriched
with clinical metadata. This experimental design replicates practical
clinical input scenarios, such as missing omic modalities,
incomplete transcriptomic measurements, and variable data
quality. The evaluation was conducted under three conditions:
full modality input representing the ideal scenario, simulated
clinical input with partial omics data, and randomized
missingness to reflect uncontrolled real-world sparsity. Model

TABLE 7 Effect of pseudo-labeling on model performance (TCGA and GTEXx).

10.3389/fimmu.2025.1633989

TABLE 8 Simulated real-world evaluation on TCGA (partial and noisy
inputs).

Accurac Pathway

Scenario ° Y AuC attribution

(%) °

agreement (%)

Full Modality (Ideal Input) 88.91 89.81 —
Simulated Clinical Input 86,98 4742 6.0
(Partial Omics) : : !
Randomized Missingness

85.21 83.7

85.33
(30%)

performance under these conditions is presented in Table 8.
Accuracy declined modestly from 88.91% to 86.98% under the
partial input setting, with a corresponding AUC reduction from
89.81 to 87.42. Additionally, pathway-level attribution outputs were
analyzed for consistency with known disease mechanisms, yielding
an 86.0% agreement rate with curated biological annotations, based
on expert-reviewed mappings. Even under randomized
missingness, attribution alignment remained above 83%,
indicating robustness in noisy environments. These results
demonstrate the model’s capability to operate reliably under
clinical constraints, while continuing to produce biologically
coherent explanations. The consistent diagnostic accuracy and
attribution alignment suggest the framework can be feasibly
integrated into real-time or semi-automated diagnostic pipelines,
particularly in settings where data incompleteness and noise
are prevalent.

5 Conclusions and future work

In this work, we aimed to advance the field of biomarker-based
disease diagnostics through an Al-driven approach that bridges
antibody and nucleic acid analysis. To address the limitations of
traditional methods in capturing the intricate, multi-scale
relationships inherent in biological data, we developed a novel
framework that combines a biologically informed architecture,
BioGraphAlI, with a semi-supervised learning strategy, ACKR.
BioGraphAI uses a hierarchical graph attention mechanism to
integrate and interpret interactions across genomic, transcriptomic,
and proteomic data, leveraging curated biological pathways to guide
its design. ACKR enhances this with latent space regularization and

NEle] Dataset Accuracy (%) F1 score AUC
Full Model (ACKR w/Pseudo-Labels) TCGA 88.91 85.92 89.81
Without Pseudo-Label Supervision TCGA 86.81 83.79 87.48
Random Pseudo-Labels (Control) TCGA 81.92 78.04 82.73
Full Model (ACKR w/Pseudo-Labels) GTEx 91.02 90.45 92.37
Without Pseudo-Label Supervision GTEx 88.93 87.02 90.07
Random Pseudo-Labels (Control) GTEx 83.54 80.11 85.19
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ontological supervision, reinforcing biologically meaningful
representations even under weak supervision. Experimental
validation across diverse disease datasets demonstrated that our
method surpasses conventional models in both diagnostic accuracy
and biological interpretability, establishing a new benchmark for AI-
assisted biomarker discovery.

Despite these promising results, two primary limitations remain.
While BioGraphAI offers improved interpretability compared to
standard deep learning models, the model’s attention-based
mechanisms still require further refinement to be fully transparent
to clinicians and biomedical researchers. Future work could
incorporate more interactive or visual tools to aid in explaining
model decisions. Although the model generalizes well across several
disease types, the current approach relies heavily on existing curated
biological pathways and may struggle in under-researched or novel
disease contexts where pathway information is sparse or incomplete.
Expanding the framework to support unsupervised discovery of new
biological patterns, possibly through self-supervised or reinforcement
learning, presents a compelling avenue for exploration. Through
these future directions, we aim to further align Al capabilities with
the needs of precision medicine and translational diagnostics.
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