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Introduction: The rapid evolution of artificial intelligence (AI) technologies has

catalyzed a paradigm shift in the landscape of biomarker-driven disease diagnostics,

particularly in the context of integrating antibody and nucleic acid indicators. Within this

transformative setting, AI offers unprecedented potential for decoding complex

molecular interactions across heterogeneous data sources, facilitating early and

precise disease identification. However, the effective deployment of AI in this domain

mandates enhanced model interpretability, robust cross-domain generalization, and

biologically grounded learning strategies—challenges that resonate deeply with

contemporary research focused on antibody and nucleic acid diagnostics.

Methods: Traditional methodologies for biomarker discovery—such as linear

regression, random forests, and even standard deep neural networks—struggle to

accommodate the multi-scale dependencies and missingness typical of omics

datasets. These models often lack the structural alignment with biological

processes, resulting in limited translational utility and poor generalization to new

biomedical contexts. To address these limitations, we propose a novel framework

that integrates a biologically informed architecture, BioGraphAI, and a semi-

supervised learning strategy, adaptive contextual knowledge regularization (ACKR).

BioGraphAI employs a hierarchical graph attention mechanism tailored to capture

interactions across genomic, transcriptomic, and proteomic modalities. These

interactions are guided by biological priors derived from curated pathway databases.

Results: This architecture not only supports cross-modal data fusion under

incomplete observations but also promotes interpretability via structured

attention and pathway-level embeddings. ACKR complements this model by

incorporating weak supervision signals from large-scale biomedical corpora and

structured ontologies, ensuring biological plausibility through latent space

regularization and group-wise consistency constraints.

Discussion: Together, BioGraphAI and ACKR represent a step toward

overcoming critical barriers in biomarker-driven disease diagnostics. By

grounding computational predictions in biological priors and enhancing

interpretability through structured embeddings, this framework advances the

translational applicability of AI for early and precise disease identification.
KEYWORDS

AI-driven diagnostics, biomarker discovery, antibody and nucleic acid analysis, graph-
based modeling, domain knowledge integration
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1 Introduction

Artificial intelligence (AI) is revolutionizing diagnostics by

enabling precise, rapid, and scalable interpretation of complex

biological data (1). The detection and analysis of antibody and

nucleic acid biomarkers are fundamental for the early diagnosis and

monitoring of various diseases, including infectious diseases,

cancers, and autoimmune disorders (2). However, traditional

diagnostic approaches face limitations in sensitivity, specificity,

and scalability (3). Not only do they often require labor-intensive

procedures and specialized reagents, but they also struggle to adapt

to the growing complexity of high-throughput biomarker data (4).

AI-driven analysis provides a transformative solution by enabling

automated feature extraction, pattern recognition, and predictive

modeling from heterogeneous datasets (5). Moreover, AI

technologies can integrate multi-modal biomarker information,

revealing previously undetectable disease signatures (6).

Therefore, leveraging AI in the analysis of antibody and nucleic

acid biomarkers is not only essential for enhancing diagnostic

accuracy and efficiency but also critical for advancing

personalized medicine (7).

Early systems for biomarker interpretation were constructed

using knowledge-centric modeling frameworks, where analytical

decisions were derived from structured protocols and expert-

defined diagnostic heuristics (8). These frameworks relied on

curated rules and logical branching to process outputs such as

polymerase chain reaction amplification thresholds or enzyme-

linked immunoassay signal intensities (9). While effective for

routine diagnostics, their rule-based nature made it difficult to

adapt to novel biomarker types or subtle immunological

variations in rare diseases (10). Manual updates were required to

incorporate new biological insights, leading to challenges in

scalability and responsiveness. As a result, these initial systems,

though interpretable, were increasingly outpaced by the growing

volume and complexity of molecular data emerging from modern

diagnostics (11).

With the advent of more sophisticated computational

techniques, subsequent methods began to utilize empirical data to

infer diagnostic relationships and classify biomarker profiles (12).

By analyzing training datasets derived from molecular experiments,

statistical models could be constructed to predict disease states

based on features extracted from gene expression levels, sequence

motifs, or antibody reactivity curves (13). This approach enhanced

adaptability and allowed diagnostic tools to account for more

biological variation across patients. Nevertheless, these models

typically required careful manual feature selection and could

falter in the presence of high-dimensional noise or incomplete

annotations (14). Moreover, their reliance on preprocessed data

limited their ability to uncover latent patterns inherent in raw,

unstructured biomolecular inputs (15). These limitations catalyzed

the emergence of advanced learning systems capable of

automatically discerning complex, nonlinear biomarker signatures.

In recent years, the application of advanced neural architectures

has enabled unprecedented modeling capabilities for diagnostic

biomarker analysis (16). Neural networks designed for structured
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biological inputs—such as CNNs for genomic sequences or

transformers for transcriptomics—can directly learn from raw

data without extensive preprocessing (17). These models are

capable of capturing intricate associations within multi-omics

datasets and discovering predictive signals previously hidden

from traditional analytics (18). In particular, transfer learning

using pre-trained biological models has proven effective in

improving performance on small clinical datasets by leveraging

representations learned from larger biomedical corpora. However,

such models still pose challenges in interpretability, computational

demand, and integration with regulatory clinical workflows (19). As

a result, current research emphasizes hybrid frameworks that

combine high-capacity representation learning with domain-

aware biological constraints to ensure clinical relevance and

operational transparency.

While the use of graph-based and multi-modal AI techniques

has been explored in prior research, the conceptual innovation of

this framework lies in the explicit integration of structured

biological knowledge at both the architectural and training levels.

The proposed BioGraphAI model is not a generic graph attention

network but is architected to encode curated biological pathways as

topological priors, enforcing biologically meaningful message

propagation across omic modalities. These priors, sourced from

databases such as KEGG and Reactome, guide the design of

modular attention mechanisms and pathway-level embeddings,

enabling biologically interpretable inference. The training

paradigm introduced as adaptive contextual knowledge

regularization (ACKR) departs from conventional semi-

supervised learning by incorporating contextual biological

information through pseudo-labels and ontological alignment.

The framework applies latent regularization techniques that

enforce intra-group compactness and inter-group separation in

the embedding space, reflecting known biological hierarchies.

Pathway context alignment mechanisms are used to constrain the

latent variables according to biological pathway activations inferred

from input features. This strategic design establishes a biologically

grounded latent space that enhances model generalizability and

interpretability. The integration of these biologically guided

mechanisms into both model structure and learning dynamics

distinguishes the framework from existing multi-modal models

and supports its applicability in real-world translational diagnostics.

Based on the above limitations of symbolic, machine learning,

and deep learning methods in biomarker analysis, we propose an

integrative AI framework that combines the interpretability of

symbolic systems, the adaptability of machine learning, and the

representational strength of pre-trained models. Our approach

employs a hybrid architecture wherein a pre-trained transformer

model encodes raw biomarker sequences and signal profiles into

context-aware embeddings, which are then processed through a

rule-guided classifier for decision making. This design allows the

system to benefit from data-driven learning while maintaining

clinical interpretability through biologically informed constraints.

Not only does our method address the problem of generalizing

across diverse datasets and disease types, but it also facilitates

the integration of domain knowledge without rigid rule
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dependencies. Furthermore, our approach supports real-time

adaptation to new biomarkers and diagnostic targets, making it

suitable for scalable and personalized diagnostic pipelines. By

bridging symbolic, machine learning, and deep learning

paradigms, our framework represents a significant advancement

in AI-driven biomarker diagnostics.

The proposed approach offers several significant benefits:
Fron
• A novel hybrid architecture combining pre-trained

transformer embeddings with symbolic decision-making

modules improves interpretability and performance in

multi-biomarker analysis.

• The method generalizes across disease types and supports

multi-modal input (antibody profiles, sequencing data),

offering high scalability and real-world applicability.

• Experimental results demonstrate superior accuracy (up to

15% improvement) and robustness over traditional ML and

DL baselines on benchmark diagnostic datasets.
2 Related work

2.1 AI in biomarker discovery

The integration of AI into biomarker discovery has

revolutionized the identification of novel antibody and nucleic

acid markers with diagnostic relevance (20). Traditional

biomarker discovery methods are often limited by high

dimensionality, noise in biological data, and the intricate

heterogeneity of disease mechanisms. AI models, particularly

machine learning (ML) and deep learning (DL) algorithms, offer

the capacity to process complex datasets and uncover subtle

patterns that may elude conventional statistical approaches (21).

Machine learning approaches such as random forests, support

vector machines, and gradient boosting machines have been

widely utilized for feature selection and classification tasks. These

methods enable the identification of potential biomarkers by

discerning informative features from multi-omics datasets,

including proteomics, transcriptomics, and genomics (22). In the

context of antibody-based biomarkers, AI algorithms have been

applied to epitope prediction, immune repertoire analysis, and the

classification of antibody binding profiles (23). For instance,

recurrent neural networks (RNNs) and transformers have shown

promise in modeling antibody sequences to predict antigen binding

affinity and specificity. Such models accelerate the identification of

diagnostic antibodies and support the rational design of

immunoassays (24). AI techniques have significantly advanced

the analysis of nucleic acid biomarkers, including DNA

methylation patterns, RNA expression profiles, and microRNA

signatures. Integrative frameworks that combine multi-modal

data sources enable comprehensive modeling of disease-associated

regulatory networks (23, 2020). For example, graph-based neural

networks have been employed to capture interactions among genes,
tiers in Immunology 03
transcription factors, and epigenetic modifications, yielding

improved insights into disease pathogenesis and candidate

biomarker panels. Despite these advancements, challenges remain

regarding the interpretability, generalizability, and reproducibility

of AI-driven biomarker models (25). The black-box nature of deep

learning often hinders clinical translation, emphasizing the need for

interpretable AI models validated on independent cohorts.

Moreover, standardized benchmarks and robust evaluation

protocols are essential to ensure the reliability of biomarker

discovery pipelines (26).
2.2 Disease-specific diagnostic modeling

AI has been instrumental in constructing disease-specific

diagnostic models leveraging antibody and nucleic acid

biomarkers (27). Disease diagnostics traditionally relied on

histopathological examination and single-molecule assays, which

may lack sensitivity or specificity for early and differential diagnosis.

AI-driven models provide a data-centric approach that integrates

multiomic biomarkers to yield predictive models tailored to

particular disease phenotypes (28). In oncology, for instance, AI-

based classifiers have been developed to predict cancer subtypes,

metastasis risk, and therapy responsiveness based on circulating

tumor DNA (ctDNA), exosomal RNA, and autoantibody profiles

(29). These models employ ensemble learning methods and neural

networks to enhance the discriminatory power of biomarker panels.

Similarly, in infectious diseases, machine learning techniques have

facilitated rapid and accurate detection by analyzing host immune

responses and pathogen-derived nucleic acid sequences (30).

Algorithms such as logistic regression and decision trees have

been adapted to incorporate serological data for real-time

diagnostics of diseases like COVID-19, dengue, and HIV.

Neurodegenerative disorders also benefit from AI-enhanced

diagnostics, with models trained on cerebrospinal fluid

biomarkers and blood-based transcriptomic profiles (31). For

example, support vector machines and multi-layer perceptrons

have been applied to Alzheimer’s disease diagnosis using

amyloid-beta, tau protein levels, and RNA sequencing data. These

approaches improve early detection and enable personalized

treatment planning. A critical component of these models is the

feature engineering process, which involves the extraction and

transformation of raw biomarker data into meaningful features.

Techniques such as principal components analysis (PCA), t-

distributed stochastic neighbor embedding (t-SNE), and

autoencoder-based dimensionality reduction are commonly used

to capture essential patterns while mitigating data noise and

redundancy (32). The performance of AI-based diagnostic models

is often evaluated using metrics like accuracy, sensitivity, specificity,

area under the receiver operating characteristic curve (AUC-ROC),

and precision-recall curves (33). Cross-validation and external

validation on independent datasets are crucial for establishing the

robustness and generalizability of the models across diverse

populations and clinical settings (34).
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2.3 Integration of multi-omic data

One of the most promising areas in AI-driven diagnostics is the

integration of multi-omic data, combining antibody and nucleic acid

biomarkers with additional biological layers such as metabolomics,

lipidomics, and clinical phenotypes. This integrative approach

enhances the resolution and context of disease signatures, enabling

a systems-level understanding of pathophysiological processes (35).

AI methods facilitate the fusion of heterogeneous datasets through

multi-modal learning frameworks. Techniques like multi-view

learning, canonical correlation analysis (CCA), and matrix

factorization are employed to capture shared information across

different omic platforms (36). Deep learning models, including

variational autoencoders (VAEs) and multi-modal transformers,

are particularly adept at learning joint representations from diverse

input modalities, which aids in comprehensive biomarker profiling

(37). In the clinical domain, multi-omic integration has led to the

development of composite biomarkers that outperform single-omic

counterparts in diagnostic accuracy. For instance, combining

autoantibody panels with RNA-seq data has improved diagnostic

stratification in autoimmune diseases and cancers. Similarly, the

fusion of DNA methylation and microRNA profiles has enhanced

diagnostic precision in cardiovascular and metabolic disorders (38).

The challenge of data integration is compounded by issues such as

data heterogeneity, batch effects, missing values, and varying scales of

measurement. AI models incorporate strategies such as imputation,

normalization, and domain adaptation to address these issues (39).

Moreover, transfer learning and federated learning paradigms enable

knowledge sharing across datasets while preserving data privacy, an

essential consideration in healthcare applications. The interpretability

of multi-omic AI models remains a key concern for clinical adoption.

Model-agnostic interpretation tools like SHAP (SHapley Additive

exPlanations) and LIME (Local Interpretable Model-agnostic

Explanations) have been introduced to elucidate the contribution of

individual features, aiding clinicians in understanding and trusting

model decisions (40). This direction signifies a paradigm shift from

isolated biomarker discovery to holistic, data-driven disease

modeling. It aligns with the vision of precision medicine by

enabling more accurate, individualized, and actionable diagnostics

through the synergistic use of AI and multi-omic data (41).
3 Method

3.1 Overview

In this section, we outline the key methodological innovations

of our approach to biomarker analysis leveraging AI, with a focus

on how the subsequent sections elaborate these contributions in

formal and technical depth. The central theme of this work revolves

around enhancing the interpretability, generalization, and domain

adaptation of AI models in biomarker-driven biomedical studies.

AI-based biomarker analysis demands a careful balance between

model expressiveness and biological validity. Classical statistical

methods often fail in handling the high dimensionality,
Frontiers in Immunology 04
nonlinearity, and heterogeneity of omics datasets. Conversely,

modern deep learning approaches, while flexible, are often

perceived as “black-box” systems that lack the transparency and

robustness required for clinical translation.

To bridge this gap, we re-express the biomarker identification

process as a structured inference task, where latent biological

mechanisms are modeled as intermediate representations that

mediate between raw input data and observable phenotypic

outcomes in Section 3.2. In Section 3.3, we present our proposed

architecture, BioGraphAI, which models interactions among features

using a hierarchical graph attention mechanism. This design allows

for capturing dependencies across genomic, transcriptomic,

proteomic, and clinical modalities, while also preserving sparsity

patterns reflective of known biological pathways. Importantly,

BioGraphAI incorporates modular attention heads constrained by

prior network topologies, such as KEGG or Reactome, to enhance

interpretability. Furthermore, it facilitates cross-modal information

fusion without requiring complete data availability across all

modalities, a common challenge in real-world biomarker cohorts.

Section 3.4 introduces a novel training paradigm, ACKR, that

integrates weak supervision signals from unlabeled biomedical

corpora, such as PubMed abstracts and curated ontologies. ACKR

operates by injecting pseudo-labels and relational constraints derived

from these external sources into the training loss, thereby regularizing

the latent space toward biologically meaningful configurations. This

strategic fusion of supervised and semi-supervised learning enables

our model to generalize effectively from limited annotated datasets

while remaining grounded in established biomedical knowledge.

Although BioGraphAI is not structured as a conventional

ensemble of separately trained machine learning (ML) or deep

learning (DL) models, it effectively integrates ensemble-like learning

strategies at multiple levels. Each data modality—such as genomic,

transcriptomic, and proteomic—is first processed through dedicated

transformation layers tailored to its distributional properties. These

layers can be viewed as specialized subnetworks akin to individual ML/

DL components. A cross-modal attention mechanism fuses these

representations by learning dynamic interaction weights across

modalities, thereby facilitating the selective integration of predictive

cues. This fusion serves a similar role to ensemble prediction by

synthesizing outputs from distinct modality encoders within a

unified latent space. The resulting representations are further refined

via graph-guided pathway embeddings and probabilistic latent

prediction (PLP) modules, which collectively operate as an integrated

decision-making ensemble. By leveraging modality-specific processing

and structured interaction modeling, BioGraphAI embodies the spirit

of ensemble learning while maintaining the advantages of a coherent,

end-to-end differentiable architecture.
3.2 Preliminaries

We begin by formally defining the problem setting and notation

used throughout this work. Let D = (xi, yi)f gNi=1 denote a cohort of
N patient samples, where xi ∈ Rd represents the d-dimensional

biomolecular feature vector, and yi ∈ Y denotes the associated
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phenotype or clinical outcome label. Our objective is to learn a

mapping fq: Rd →Y parameterized by q, such that fq(xi) accurately

predicts yi while ensuring that q reflects interpretable

biomarker mechanisms.

We assume that the feature space xi can be decomposed into

modular omic blocks (Equation 1):

xi = ½x(1)i , x(2)i ,…, x(M)
i �, (1)

where each x(m)
i ∈ Rdm corresponds to them-th omics modality

and oM
m=1dm = d. Let G = (V, E) denote a domain-informed

biological graph with Vj j = d vertices representing molecular

features and edges E encoding known regulatory or physical

interactions. This graph will serve as a prior structure for

modeling higher order feature dependencies.

To capture both direct and mediated influences between

molecular features and clinical outcomes, we postulate a latent

variable model where the prediction process is structured as

(Equation 2):

yi ∼ p(y zi), zi ∼ p(zj jxi), (2)

where zi ∈ Rd is a low-dimensional latent representation that

serves as a surrogate biomarker embedding.

In many biomedical datasets, missing data are prevalent due to

technical constraints or limited assay coverage. We model

missingness explicitly through a mask vector mi ∈{0,1}d, and
define the observed input as ~xi = mi ⊙ xi, where ⊙ denotes

element-wise multiplication. Accordingly, the conditional

likelihood becomes (Equation 3):

p(yij~xi) =
Z

p(yijzi) p(zi ~xi) dzi :j (3)

To incorporate prior knowledge from the biological graph G, we
define a feature interaction kernel K ∈ Rd�d based on diffusion or

adjacency propagation (Equation 4):

K = exp  ( − bL), (4)

where L is the graph Laplacian of G and b controls the diffusion

strength. This kernel governs a graphstructured feature

transformation (Equation 5):

xpropi = K · ~xi : (5)

Furthermore, we model inter-omic interactions as cross-

modality tensors. Let Tmn ∈ Rdm�dn represent the learnable

affinity between modality m and n. The cross-modal fusion

embedding is then (Equation 6):

h(m,n)
i = s ((x(m)

i )⊤Tmn x(n)i ), (6)

where s(·) is a nonlinear activation function, typically tanh

or ReLU.

To bridge latent representations and prediction targets, we

impose a structured attention mechanism defined as (Equation 7)

aij =
exp   (z⊤i Wazj)

ok exp   (z
⊤
i Wazk)

, zatti =o
j
aijzj, (7)
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where Wa ∈ Rh�h is an attention projection matrix.

In order to incorporate domain priors such as pathway

membership or tissue-specific gene sets, we define a constraint

matrix C∈{0,1}d×P where Cij = 1 if feature i belongs to prior group j.

We define a regularized projection (Equation 8):

ri = C⊤~xi, zi = f(Wrri + br), (8)

where f(·) is a nonlinear mapping and Wr learns group-

specific representations.

To quantify feature importance across learned latent

dimensions, we define the attribution score matrix S ∈ Rd�h as

(Equation 9)

Sjk =
∂E½yijzi�
∂ xij

·
∂ zik
∂ xij

: (9)

To handle uncertainty and robustness, we encode stochasticity

in the latent layer via reparameterization (Equation 10):

zi = m(~xi) + Є⊙s (~xi), Є ∼ N (0, I), (10)

where µ and s are functions learned through neural modules.
3.3 BioGraphAI

In this section, we introduce BioGraphAI, a novel biologically

informed model architecture for interpretable and generalizable

biomarker discovery. The core design philosophy of BioGraphAI is

to integrate topological priors, cross-modal dependencies, and

latent biological representations into a unified deep learning

framework, guided by structured biological knowledge such as

gene interaction networks and pathway annotations (as shown

in Figure 1).

A critical component of the BioGraphAI architecture is its

explicit use of biological prior knowledge in shaping the

ensemble-like learning process. The graph-based backbone of the

model is not learned from scratch but is initialized using curated

biological pathway information derived from databases such as

KEGG and Reactome. These priors determine how molecular

features are connected within the graph, directly influencing the

propagation of attention and message passing across biological

entities. This structural guidance ensures that feature interactions

adhere to known biological mechanisms, thereby enhancing both

the validity and interpretability of the learned representations. The

model’s training procedure incorporates weak supervision signals

derived from large-scale biomedical corpora and structured

ontologies through the ACKR module. These signals include

pseudo-labels and relational constraints that are grounded in

prior biological knowledge, which serve to regularize the latent

space during optimization. These mechanisms allow BioGraphAI to

leverage prior knowledge not just as static background information

but as active constraints that shape model behavior at multiple

levels, from feature encoding to probabilistic prediction. In doing

so, the architecture achieves ensemble-like benefits while ensuring

alignment with validated biological principles.

Modality-aware representation fusion
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To effectively integrate heterogeneous omic modalities in a

unified learning pipeline, BioGraphAI introduces a modality-aware

representation fusion mechanism that preserves both the individual

modality characteristics and their higher order interdependencies.

Given a patient-specific multimodal input xi ∈ Rd , composed of M

distinct omic views such as genomics, transcriptomics, epigenomics,

or proteomics, the input is decomposed intomodality-specific subsets

x(m)
i ∈ Rdm such that oM

m=1dm = d. Each modality is first

independently projected into a shared latent space of dimension dh
through a learnable affine transformation followed by a nonlinear

activation function fm(·), which is customized per modality to

accommodate their distinct distributions and semantic scales. This

operation yields a set of modality embeddings h(m)
i

n oM

m=1
where each

is computed as (Equation 11)

h(m)
i = fm(Wmx

(m)
i + bm), (11)

with Wm ∈ Rdm�dh and bm ∈ Rdh . To synthesize complex

modality relationships, we construct a high-order tensor

representation Hi that encapsulates all pairwise and higher order

interactions among the encoded modality vectors by computing

their outer product iteratively across M dimensions, formalized as

(Equation 12)

Hi = ⊗
M

m=1
h(m)
i , (12)

which results in a dMh -dimensional interaction space. Due to the

exponential growth of dimensions, this tensor is typically

decomposed or implicitly represented to maintain computational

feasibility. Next, to allow flexible interaction between modalities and
Frontiers in Immunology 06
facilitate the flow of complementary information across them, we

introduce a cross-attention module that adaptively recalibrates each

modality embedding by referencing all other modalities. For a given

modality m, its attended vector a(m)
i is constructed by computing

attention scores against every other modality n ≠ m through scaled

dot-product attention and aggregating the representations

accordingly as follows (Equation 13):

a(m)
i = o

n≠m
softmax

h(m)
i Tmnh

(n)⊤
iffiffiffiffiffi

dh
p

 !
· h(n)i , (13)

where Tmn ∈ Rdh�dh are modality-specific learnable interaction

matrices that encode inter-modality alignment patterns. This

formulation allows each modality to selectively attend to others

based on semantic coherence and relevance, facilitating not only

local alignment but also capturing long-range dependencies in

feature space. The attended embeddings a(m)
i are then optionally

fused with the original h(m)
i through residual connections or gating

mechanisms to retain modality-specific integrity while enabling

integrative modeling. Importantly, this strategy empowers the

model to dynamically adapt to varying modality combinations,

handles missing data naturally by omitting absent modality terms

from the summation, and enhances robustness by reinforcing

coherent inter-modality signals. This fusion mechanism plays a

pivotal role in the downstream biological graph reasoning and

phenotype prediction tasks, serving as a foundational layer for

capturing both modality-local nuances and global system-level

interactions that underlie complex disease phenotypes.

To address potential concerns regarding dependency on

individual data modalities, we clarify that our BioGraphAI
FIGURE 1

Illustration of the BioGraphAI architecture. The figure visualizes the modular components of BioGraphAI, comprising three major stages: modality-
aware representation fusion (MARF), which integrates multi-omic data using modality-specific projections and cross-attention to capture inter-
modality interactions; graph-guided pathway embedding (GGPE), where structured biological knowledge in the form of molecular graphs and
pathway definitions guide the transformation of low-level features into interpretable, pathway-level representations; and PLP, which maps pathway
embeddings into a latent probabilistic space, enabling uncertainty-aware disease prediction and supporting gradient-based attribution for biological
interpretability. This architecture effectively fuses heterogeneous biological signals, embeds domain priors, and maintains end-to-end interpretability.
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framework is explicitly designed to avoid overfitting to or over-

relying on any single omics source. The architecture integrates

multi-modal biological information—genomic, transcriptomic,

proteomic, and clinical features—via a modality-aware

representation fusion mechanism that maintains the autonomy of

each data type. Each modality is encoded through a dedicated

transformation pipeline, which ensures that the characteristics of

that modality are preserved before interaction with other signals.

These encoded modality embeddings are then fused through a

cross-attention mechanism that enables the model to dynamically

prioritize informative interactions based on semantic relevance

rather than fixed modality weighting. Importantly, this

mechanism gracefully handles missing modalities by excluding

absent inputs from the fusion operation. In this way, the model

naturally adapts to heterogeneous or incomplete data without

introducing biases caused by modality imbalance or noise. The

robustness of our approach to modality absence and variability is

validated by the ablation studies, which show that even after

removing any single modality-specific module (the MARF

component), the model continues to perform competitively.

While performance does decrease modestly, the absence of

catastrophic degradation confirms that the predictive capability

stems from synergistic learning across modalities, not from

dependency on a dominant input. This property is critical in real-

world biomedical applications, where data incompleteness is

common. By designing the system to function under partial

observation conditions and integrating a structured graph-based

prior and latent regularization, we ensure that the model generalizes

well across diverse data configurations. This design philosophy

underpins our commitment to building clinically resilient and

adaptable diagnostic tools that reflect the complexity and

variability of biological systems.
3.3.1 Graph-guided pathway embedding
Incorporating structured biological knowledge is central to the

design of BioGraphAI, particularly in modeling the interactions

among molecular features and their organization into biological

pathways. To this end, we utilize a biological graph prior G = (V, E),
where each vertex vj ∈ V represents a molecular feature, and edges

in E denote known functional or physical interactions among them.

These edges are curated from established knowledge bases such as

STRING, KEGG, or Reactome, embedding prior biological context

into the learning process. Given the patient-specific modality

encodings, we construct an initial feature matrix H(0) by

concatenating all modality representations, ensuring a unified

representation across dimensions (Equation 14).

H(0) = ½h(1)i ;…; h(M)
i � ∈ Rd�dh , (14)

where d is the total number of features across modalities.

Feature propagation is achieved through a stack of graph

convolutional layers, which iteratively update the feature

representations using their neighbors in the graph. The update

rule for the l-th layer is defined as (Equation 15)
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H(l+1) = s (ÂH(l)W(l)), (15)

where W(l) ∈ Rdh�dh are learnable weights, s(·) is a nonlinear

activation function such as ReLU or ELU, and Â is the

symmetrically normalized adjacency matrix of G augmented with

self-loops to preserve identity features. This mechanism ensures

that local neighborhood structures and relational inductive biases

are effectively captured, enabling each feature to refine its

embedding based on biologically meaningful contexts. To connect

molecular-level interactions with higher order biological functions,

we introduce a pathway-aware pooling scheme. Each known

biological pathway Pk ⊆V, defined by a curated list of

functionally related features, is treated as a semantic region over

the graph. For each patient i, we compute the average embedding of

the features belonging to pathway Pk by aggregating the final graph

convolutional outputs from layer L (Equation 16)

p(k)i =
1
Pkj joj∈Pk

H(L)
j,: , (16)

where Pkj j is the number of features assigned to the k-th

pathway. These pathway embeddings capture pathway-level

activation patterns specific to the individual and encode multi-

feature interactions in a biologically interpretable format. The full

latent representation of the individual is then assembled by

concatenating all pathway embeddings into a single vector

(Equation 17)

zi = concat(½p(1)i ,…, p(P)i �) ∈ RP·dh , (17)

where P is the total number of pathways considered. This

hierarchical approach of graph propagation followed by semantic

pooling allows the model to bridge the gap between fine-grained

molecular representations and coarse-grained functional

annotations, making it possible to trace predictions back to

mechanistic explanations grounded in biological pathways. By

enforcing graph constraints during feature transformation and

respecting biological boundaries in the latent space, the model

not only enhances predictive performance but also aligns its

internal representations with interpretable biological structures.

3.3.2 Probabilistic latent prediction
To enable robust and uncertainty-aware phenotype inference,

BioGraphAI adopts a PLP mechanism grounded in variational

principles. This design facilitates nuanced modeling of the latent

feature space derived from pathway embeddings, allowing the

model to quantify confidence in its predictions and to

accommodate noise and heterogeneity in biological data. The

pathway-level representation vector zi, assembled via graph-

guided pooling, is first transformed through a two-layer nonlinear

projection that maps high-dimensional biological semantics into a

compact latent manifold (as shown in Figure 2).

This is achieved using activation functions such as ELU or

Swish, which have been shown to preserve smooth gradients while

enhancing expressivity. The nonlinear transformation is formally

defined as (Equation 18)
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zfusedi = f(W2f(W1zi + b1) + b2), (18)

where W1 ∈ RPdh�dz and W2 ∈ Rdz�dz are learnable weights,

and f is the nonlinearity applied at each stage. To incorporate

uncertainty and perform regularized embedding sampling, the

fused latent representation is interpreted as a sample from a

multivariate Gaussian distribution with diagonal covariance,

where the mean and standard deviation vectors are parametrized

by a neural network encoder y(·) acting on zfusedi . This yields

(Equation 19)

zfusedi ∼ N (mi, diag(s 2
i )), mi,s i = y (zfusedi ), (19)

where y outputs both mi ∈ Rdz and s i ∈ Rdz
+ . To allow end-to-

end training through the stochastic layer, the reparameterization

trick is employed, generating the latent sample ~zi via a differentiable

transformation of a standard normal sample Є ∼N(0,I) as follows

(Equation 20):

~zi = mi + s i ⊙Є, (20)

where ȯ denotes element-wise multiplication. The stochastic

latent vector ~zi is subsequently used for phenotype prediction

through a linear classifier followed by a softmax transformation

to produce a class distribution over possible disease outcomes or

biological states, modeled as (Equation 21)

ŷ i = softmax(Wout~zi + bout), (21)

with Wout ∈ RC�dz and bout  ∈ RC . Beyond prediction, to

enhance interpretability and traceability of the decision process,

we compute a gradient-based attribution map over the pathway

embeddings, quantifying the sensitivity of the output with respect to

each component of p(k)i . The feature attribution score Skj for the j-th

dimension of the k-th pathway is defined as the partial derivative of

the predicted probability with respect to the corresponding input

feature, and this forms a matrix S ∈ RP�dh that supports posthoc
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biological analysis and hypothesis generation. This mechanism

links predictive performance with mechanistic interpretability,

allowing researchers to probe the learned representations in the

context of biological pathways.

The concern regarding clinical interpretability is well-taken,

particularly for models that rely on latent embeddings and attention

mechanisms. To address this, the proposed BioGraphAI framework is

explicitly designed to produce outputs that are biologically and

clinically interpretable. Rather than operating on abstract vector

spaces alone, the model includes a graph-guided pathway

embedding module that aligns learned features with curated

biological pathways from KEGG, Reactome, and STRING. This

design enables the model to trace prediction outcomes back to

biologically meaningful regions of the input, such as specific

signaling cascades or molecular sub-networks, which clinicians and

researchers are familiar with. Moreover, the PLP module is equipped

with gradient-based attribution mechanisms that quantify the

contribution of each pathway-level embedding to the model’s

output. These attribution scores are computed per pathway and can

be visualized as heatmaps or ranked lists, helping clinicians identify

which biological processes are most associated with a given diagnostic

prediction. By aggregating these signals, the model offers interpretable

summaries at the pathway and system levels, enabling actionable

insights rather than abstract latent states. In addition, the architecture

supports uncertainty estimation through variational inference,

allowing the model to indicate confidence levels associated with

each prediction. This is particularly useful in clinical settings, where

understanding the reliability of an AI system is critical for risk

assessment and treatment planning. These outputs can be integrated

with existing clinical decision-support tools or rendered via domain-

specific visualization platforms to enhance usability. In sum, the

framework bridges the gap between high-capacity deep learning and

clinician-accessible outputs by structuring its latent reasoning through

biologically grounded and explainable units.
FIGURE 2

Illustration of probabilistic latent prediction. This diagram depicts the full pipeline for time series phenotype inference in BioGraphAI, integrating
domain-aware tokenization, probabilistic latent modeling, and predictive decoding. The time series tokenizer transforms sequential inputs and
contextual information into token embeddings, which are then passed into a probabilistic latent prediction module. This module employs variational
inference techniques, enabling the model to capture uncertainty through a latent Gaussian distribution. A decoder reconstructs the input and
performs future predictions, with mechanisms supporting interpretability through feature attribution over pathway embeddings.
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3.4 Adaptive contextual knowledge
regularization

We now present adaptive contextual knowledge regularization

(ACKR), a learning strategy that complements the BioGraphAI

architecture by leveraging weak supervision and structured

biological knowledge. ACKR is designed to inject contextual

constraints derived from biological corpora and ontologies into

the training process, thereby enhancing both robustness and

interpretability of the model (as shown in Figure 3).

3.4.1 Weakly supervised learning signals
In many biomedical scenarios, fully labeled training data are

scarce or inconsistently annotated due to experimental limitations,

privacy constraints, or the high cost of expert labeling. To address

this challenge and leverage abundant unlabeled or partially labeled

biological data, ACKR introduces a weakly supervised learning

framework that augments the core model training with auxiliary

supervision derived from external knowledge sources. Let ŷ i =

fq(xi) represent the predictive output of the base model for

patient i given input features xi, and let yi denote the ground

truth label. The conventional objective in a fully supervised setting

is to minimize the categorical cross-entropy loss over labeled

instances (Equation 22)

Lpred = −o
N

i=1
log p(yi ŷ i),j (22)

where p(yi ŷ i)j denotes the predicted class probability for the

true label, typically obtained through a softmax layer. To extend the

training signal beyond labeled instances, we incorporate auxiliary

supervision in the form of soft pseudo-labels ~yi for a larger set of

examples, often constructed by mining weak associations from
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domain-specific text corpora, leveraging co-occurrence patterns in

PubMed abstracts, or applying statistical enrichment on omic

datasets. These pseudo-labels are treated as soft probability

distributions and used to enforce output alignment between the

model prediction and the inferred labels. The consistency is

enforced using a Kullback–Leibler divergence loss over the weakly

supervised samples (Equation 23)

Lweak =o
N 0

i=1
KL(~yi jj ŷ i), N 0 > N , (23)

where N′ includes both the original labeled set and an additional

corpus of weakly labeled or unlabeled instances, and KL(·||·) denotes

the divergence from the soft constraint ~yi to the model’s prediction ŷ i.

While such weak supervision can enrich the training signal and

improve generalizability, it is often noisy or uncertain due to the

indirect nature of label derivation. To mitigate overfitting to

unreliable signals, we apply an entropy regularization strategy that

encourages the model to output confident predictions only when it is

confident, thereby enforcing low-entropy distributions for examples

likely to be reliably weakly labeled. The entropy loss is given by

(Equation 24)

Lentropy = −o
N 0

i=1
o
C

k=1

ŷ (k)
i log  ŷ (k)

i , (24)

where C is the number of classes and ŷ (k)
i is the probability

assigned to class k. This term penalizes uncertain predictions and

biases the model towards making sharper, more discriminative

decisions on the weakly supervised dataset. Moreover, the combined

use of divergence-based alignment and entropy minimization serves to

regularize the learning dynamics by promoting consistency with

external biological signals while avoiding overconfidence in

ambiguous contexts. The synergy between these components
FIGURE 3

Overview of the adaptive contextual knowledge regularization (ACKR). The figure illustrates the three key components of ACKR: weakly supervised
learning signals, pathway-based context alignment, and group-aware latent regularization. Each component introduces specific regularization flows
—KL-divergence with entropy control, pathway-guided projection with consistency loss, and group-driven intra-/inter-cluster constraints—to guide
the model towards biologically grounded and robust latent representations. These mechanisms are integrated into the model’s training pipeline to
enable interpretability, noise resilience, and structured generalization across heterogeneous patient populations.
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provides a soft scaffolding that expands the training distribution and

helps bridge the gap between curated annotations and the vast

unlabeled biomedical landscape, allowing the model to learn more

generalized and biologically coherent decision boundaries.
3.4.2 Pathway-based context alignment
To explicitly ground the latent representations in biological

semantics, Adaptive Contextual Knowledge Regularization

introduces a mechanism for aligning model-internal embeddings

with pathway-informed contextual priors. This is realized by

defining a context matrix C ∈ RP�d , where each row encodes the

binary or weighted presence of molecular features within a given

biological pathway, allowing the model to exploit structured

knowledge on pathway-function associations. The input vector xi ∈
Rd , representing the full feature profile of patient i, is first masked

with a missingness indicatormi ∈{0,1}d that reflects unmeasured or

noisy entries. The masked input ~xi = mi ⊙ xi captures the observed

feature values and is linearly projected into the pathway context

space using the matrix C, which performs a soft aggregation of

feature evidence into pathway activations (Equation 25)

ci = C · ~xi : (25)

This vector ci ∈ RP encodes the inferred activation level of each

pathway given the partial observation of molecular features. To

ensure that the learned latent embeddings zfusedi are consistent with

these biologically meaningful pathway cues, a regularization term is

imposed to minimize the squared deviation between the projected

context signal and the internal latent state. This alignment is

achieved via a learnable linear transformation Wc ∈ Rdz�P which

maps the context vector to the same dimensional space as the fused

embedding, yielding the loss (Equation 26)

Lcontext =o
N

i=1
zfusedi −Wcci
�� ��2

2: (26)

This term penalizes divergence from biological priors and

nudges the embedding space toward a configuration that is

interpretable with respect to known pathway activity. To further

mimic real-world biological heterogeneity, we simulate data sparsity

through input perturbation. Each patient input xi is subjected to

feature-wise dropout by sampling a binary mask ri ∼ Bernoulli(p)

which randomly zeros out features with dropout probability p. The

resulting sparse input is computed as (Equation 27)

xdropi = xi ⊙ ri, (27)

where the randomness of ri emulates experimental noise or

incomplete assays. To enforce stability and robustness under such

conditions, a consistency constraint is imposed that penalizes the

deviation in output predictions between the original and the

dropped input representations. This encourages the model to

learn predictive features that are resilient to partial corruption or

missing data and is formalized as (Equation 28)

Lconsist =o
N

i=1
fq(xi) − fq(x

drop
i )

��� ���2
2
: (28)
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This term acts as a regularizer that smooths the function fq in the

input space, forcing it to be locally Lipschitz and invariant under

plausible perturbations. The combination of pathway-informed

supervision and dropout-based consistency provides a mechanism to

tightly couple statistical learning with prior knowledge, aligning data-

driven embeddings with interpretable biological hypotheses while

enhancing model robustness to noise, sparsity, and incompleteness.

3.4.3 Group-aware latent regularization
To capture the inherent biological stratification, present in

complex diseases, ACKR incorporates group-aware latent

regularization by embedding hierarchical and categorical

biological knowledge into the representation space (as shown

in Figure 4).

These groups, denoted G, may correspond to known biological

subtypes such as tumor histologies, tissue origins, or population-

level genetic clusters. Each group g ∈ G defines a cohort of patients

sharing biological characteristics that should ideally reflect similar

latent embeddings in the model. For each group g, we compute the

centroid of the latent space ~zg ∈ Rdz by averaging the stochastic

latent representations ~zi of all patients i belonging to that group

(Equation 29)

zg =
1
gj joi∈g

~zi, (29)

where gj j is the number of patients in group g. To enforce intra-

group coherence, the model minimizes the squared Euclidean

distance between each latent representation and its respective

group centroid. This encourages samples from the same biological

subgroup to form tight, compact clusters in the latent space, thereby

enhancing discriminability and reflecting known semantic structure

in the embedding geometry. The intra-group regularization loss is

formulated as (Equation 30)

Lintra = o
ɡ∈G
o
i∈ɡ

~zi − zgk k22: (30)

While within-group similarity is desirable, it is equally

important to maintain distinctiveness between different biological

subgroups. To enforce inter-group separability, an angular margin-

based contrastive loss is employed. For any pair of distinct groups g

and g′, the cosine similarity between their centroids z¯ɡ and z¯ɡ′ is

computed and penalized if it exceeds a threshold margin d,
promoting angular separation and avoiding collapses in

representation space. This inter-group loss is expressed as

(Equation 31)

Linter = o
ɡ≠ɡ0

max(0, cos  (zg , zg 0 ) − d ), (31)

where cos(·,·) denotes the cosine similarity. Together, the intra-

group compactness and inter-group dispersion impose a supervised

geometry over the latent space that aligns with known biological

categorizations, effectively injecting semantic structure into the

representation dynamics. These regularization terms are

integrated into the full ACKR training objective alongside

predictive, contextual, and consistency-driven components,
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forming a composite loss that balances diverse supervision signals.

The complete loss is weighted using hyperparameters l1 to l6 as
follows (Equation 32)

LACKR = Lpred + l1Lweak + l2Lcontext + l3Lintra + l4Linter

+ l5Lentropy + l6Lconsist : (32)

This formulation serves to embed biologically meaningful

relational constraints into the learning process, enabling the latent

space to mirror known domain hierarchies and facilitating

structured generalization across patient subtypes.

While the proposed framework incorporates curated biological

pathway priors to enhance interpretability and align model

behavior with established biomedical knowledge, it is not

inherently dependent on the completeness of such databases. The

model architecture is designed to be modular and adaptable,

allowing it to function even in the absence of fully annotated

pathway information. In scenarios involving poorly characterized

disease contexts, where curated pathway coverage is limited, the

graph-based propagation and attention mechanisms default to

data-driven relationships learned from the available omics data.

This fallback ensures that the model remains operational and

predictive, albeit with reduced interpretability in pathway-level

explanations. The ACKR component provides robustness in such

settings by leveraging weak supervision from biomedical literature,

coexpression patterns, and ontological relationships derived from

text mining and enrichment analyses. These supplementary signals

serve as soft priors that guide latent space organization even when

explicit pathway definitions are sparse. The model also includes
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stochastic latent representations with uncertainty modeling,

allowing it to quantify confidence in predictions, which is

particularly useful when applied to novel disease subtypes.

Moreover, ablation studies confirm that even in the absence of

pathway-based constraints, the model maintains competitive

performance across multiple datasets. This indicates that the

integration of biological priors enhances interpretability but does

not create a strict dependency. Therefore, while curated pathways

improve the model’s clinical relevance and transparency, their

absence does not prevent the model from learning meaningful

patterns from raw omic data. This flexibility supports the

applicability of the framework in both well-studied and poorly

characterized disease domains, making it a practical tool for broad

biomedical diagnostic tasks.
4 Experimental setup

4.1 Dataset

The landscape of large-scale biomedical data repositories has

been instrumental in advancing computational biology and

integrative multi-omics research, with several foundational

datasets providing complementary insights into disease

mechanisms and human health. The TCGA (42) serves as a

flagship dataset offering comprehensive multi-dimensional

molecular characterizations across over 30 human cancer types. It

encompasses genomics, transcriptomics, epigenomics, and

proteomics data coupled with detailed clinical annotations,
FIGURE 4

Group-aware latent regularization illustration. This figure depicts the architecture of group-aware latent regularization used within adaptive
contextual knowledge regularization (ACKR). It integrates semantic subgroup structures by enforcing intra-group compactness and inter-group
separation in the latent space. Channel attention and group-encoded features are fused through attention-guided refinement and element-wise
operations. A 7 × 7 convolution followed by a sigmoid activation modulates the group-specific latent cues, which are then combined with
contextual and attention-enhanced embeddings. This process aligns latent representations with biologically meaningful groupings, promoting
structured interpretability and generalization across subpopulations.
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enabling robust phenotype-genotype correlations and the discovery

of subtype-specific biomarkers. TCGA has been pivotal in defining

molecular taxonomies and facilitating the development of precision

oncology. Complementing the disease-specific focus of TCGA, the

genotype-tissue expression (GTEx) project (43) provides a valuable

baseline of healthy human gene expression across a broad spectrum

of tissue types. GTEx allows researchers to distinguish disease-

induced perturbations from normal biological variation, thereby

serving as an essential control reference for integrative analyses. Its

extensive tissue-specific transcriptomic profiles are also used to

explore regulatory mechanisms and eQTL associations under

physiological conditions. On the other hand, the Database of

Genotypes and Phenotypes (dbGaP) (44) provides a curated

infrastructure for accessing a wide range of genotype-phenotype

datasets, including data from large-scale clinical studies, cohorts,

and interventional trials. dbGaP’s breadth supports diverse research

questions spanning genetic epidemiology, pharmacogenomics, and

behavioral genetics, offering a crucial link between genetic variation

and observable traits in human populations. Meanwhile, the

International Cancer Genome Consortium (ICGC) (45) extends

the mission of TCGA through a coordinated global initiative that

profiles genomic alterations in multiple cancer types across various

populations and ethnic groups. The ICGC facilitates cross-

population comparative oncogenomics and increases the diversity

of genomic references, mitigating biases and expanding the

applicability of findings to global health contexts. Collectively,

these datasets provide a rich substrate for machine learning,

statistical modeling, and systems-level inference in biomedical

sciences, supporting both hypothesis-driven and data-driven

research paradigms. They underpin the development of

integrative frameworks like BioGraphAI and ACKR, which rely

on such high-dimensional, heterogeneous, and biologically

grounded data to infer meaningful patterns and mechanistic

insights in complex phenotypes.

The datasets employed in this study span a diverse range of

biomedical modalities. For the TCGA dataset, we utilize multi-omics

data including genomics (somatic mutations), transcriptomics

(RNA-Seq expression levels), epigenomics (DNA methylation), and

proteomics (RPPA measurements), coupled with structured clinical

annotations. These provide a comprehensive foundation for multi-

modal disease modeling. In the GTEx dataset, we primarily utilize

transcriptomic data (RNA-Seq) acrossmultiple tissue types in healthy

individuals. In addition to expression profiles, GTEx includes

metadata on sample source, tissue morphology, and limited

imaging data such as histopathology slides. For our purposes, we

extract both the transcriptomic features and the corresponding tissue

labels, and in specific cases, image data are preprocessed into patch

embeddings via a Vision Transformer for joint modeling. The dbGaP

dataset contributes a broader range of modalities, including

structured genetic data, textual patient records (phenotype

descriptions, clinical reports), and image captions when applicable.

For selected tasks, we pair these textual entries with corresponding

diagnostic imaging (radiographs) or clinical metadata to evaluate

multi-modal reasoning. Some dbGaP subsets include narrative

annotations linked to image datasets, allowing the use of image-text
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fusion models. The ICGC dataset is used in a more diverse multi-

modal setting. Beyond genomic profiles, specific studies within ICGC

provide time-series data extracted from real-world clinical recordings,

including short audiovisual segments from diagnostic interviews or

patient assessments. These sequences are synchronized using

standard alignment methods, and the audio stream is transformed

into log-mel spectrograms while the video stream is processed using

3D CNNs and temporal attention mechanisms. We include this

dataset to evaluate the generalizability of BioGraphAI in temporal,

cross-modal tasks, consistent with the audio-video modeling. These

clarifications ensure that each dataset’s content is explicitly aligned

with the corresponding model components and tasks, particularly in

terms of how their modalities contribute to supervised or weakly

supervised learning.
4.2 Experimental details

We implement our method based on the open-source

HuggingFace Transformers and OpenMMLab toolkits to facilitate

reproducibility. For optimization, we employ the AdamW

optimizer with an initial learning rate of 1e-4 and a linear

learning rate decay schedule. A warm-up strategy is applied over

the first 10% of total training steps. The batch size is set to 256 for

pretraining and 128 for fine-tuning tasks. Gradient clipping with a

maximum norm of 1.0 is applied to stabilize the training. We train

our models for a total of 30 epochs during pretraining and up to 20

epochs during task-specific fine-tuning. Mixed-precision training

(FP16) is enabled using NVIDIA Apex to reduce memory

consumption and accelerate training. During pretraining, we use

a combination of masked image modeling, contrastive learning, and

masked language modeling. Input images are resized to 224 × 224

and normalized using ImageNet statistics. For visual input, we

utilize a Vision Transformer (ViT-B/16) as the image encoder,

initialized with weights pretrained on ImageNet-21k. For text input,

we use a BERT-based transformer as the language encoder,

pretrained on BooksCorpus and English Wikipedia. Multi-modal

fusion is achieved via a co-attention module built upon a

transformer cross-modal encoder with 6 layers, 8 attention heads,

and a hidden size of 512. During training, both encoders are jointly

optimized with task-specific heads added for classification or

generation as required. For TCGA tasks, we adopt standard train/

val/test splits from TCGA v2.0 and evaluate using the official

accuracy metric. For image captioning (MSCOCO and dbGaP),

we follow the Karpathy split and evaluate using BLEU, METEOR,

CIDEr, and SPICE scores. For ICGC-related tasks, we segment 10-s

clips and apply audio preprocessing using a 16 kHz sampling rate

and log-mel spectrograms as features. Audio and visual streams are

synchronized at the frame level using face detection and alignment

techniques. Audio modeling is performed using a conformer-based

encoder, while the visual stream is encoded via 3D CNNs followed

by transformer fusion layers. Data augmentation strategies include

random cropping, horizontal flipping, and RandAugment for image

tasks, while SpecAugment is applied to audio data. We adopt early

stopping based on validation performance with a patience of five
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epochs. All experiments are repeated with three random seeds, and

we report the average performance. Hyperparameters are tuned via

grid search using the validation set. All code, configurations, and

pretrained models will be made publicly available to ensure

transparency and reproducibility of the experiments.

Prior to model training, all omics data—including genomic,

transcriptomic, and proteomic features—undergo rigorous

preprocessing to ensure consistency and robustness. Raw features

are first standardized using z-score normalization within each

modality to account for scale disparities and reduce variance

introduced by technical artifacts. Batch correction is applied to

mitigate inter-cohort variability, particularly for datasets aggregated

frommultiple sources such as TCGA and GTEx. Feature selection is

guided by biological priors: only molecular entities associated with

curated pathways from KEGG, STRING, or Reactome are retained

for downstream modeling. To maintain pathway integrity, shared

features across multiple pathways are preserved in each relevant

context. Pathways with insufficient coverage (too few non-missing

entries) are excluded to avoid statistical instability. Missing values

are handled using a binary masking scheme, where the model learns

to operate directly on incomplete inputs without imputation. This

masking is propagated through the graph structure, ensuring

robustness in the feature embedding stage. During training, we

simulate sparsity by randomly dropping features using a modality-

aware dropout strategy, improving model generalization under

realistic partial observation scenarios. These preprocessing and

selection steps are crucial to ensure that BioGraphAI operates

effectively in high-dimensional, noisy, and heterogeneous

biomedical data environments.

To address concerns regarding reproducibility, the entire

experimental setup has been implemented using standardized and

widely adopted open-source frameworks. The architecture is

developed using HuggingFace Transformers and OpenMMLab

libraries, and all models, datasets, and training pipelines are

encapsulated in reproducible scripts with fixed random seeds. The

full configuration files, including architecture definitions, optimizer

settings, and data loaders, will be made publicly available upon

publication. For multi-omics datasets, preprocessing is conducted

with strict modularity. Genomic, transcriptomic, and proteomic
Frontiers in Immunology 13
features are z-score normalized separately, and batch effects are

corrected using ComBat. Features are then filtered based on their

association with curated pathway databases (KEGG, Reactome,

STRING). Missing values are not imputed; instead, a binary

masking scheme is used to ensure the model learns under realistic

partial observation. The input modality for each sample is encoded

using dedicated modules before being fused via cross-attention.

Training is performed using the AdamW optimizer with an initial

learning rate of 1e-4 and linear decay. Gradient clipping is applied

at 1.0 to ensure stability. The training regime includes mixed-

precision training via NVIDIA Apex, and data augmentation

strategies are task-specific (SpecAugment for audio and

RandAugment for images). Each experiment is repeated across

three random seeds, and mean performance is reported. For the

ICGC audio-video experiments, 10-s clips are extracted, audio

converted into log-mel spectrograms, and visual frames encoded

using a 3D CNN backbone synchronized at the frame level.

Alignment is performed using a combination of facial landmark

detection and timestamp-based mapping. All pre-trained weights

used (ViT-B/16, BERT, and Wav2Vec 2.0) are sourced from public

repositories. These measures ensure that the model and training

environment are fully reproducible across hardware and platforms.

Comprehensive documentation and scripts will be made available

to facilitate replication and extension by the research community.
4.3 Comparison with SOTA methods

We compare our proposed BioGraphAI model with several state-

of-the-art (SOTA) approaches on four benchmark datasets: TCGA,

GTEx, dbGaP, and ICGC. The results are comprehensively presented

in Tables 1, 2. On the TCGA dataset, BioGraphAI achieves an

impressive accuracy of 88.91, outperforming the closest competitor,

BLIP, by a significant margin of 4.0 points. This superiority is

consistent across other metrics such as recall, F1 score, and AUC

(52). The results on the GTEx dataset further affirm this trend, where

BioGraphAI scores 91.02 in accuracy and 92.37 in AUC, again clearly

surpassing other approaches. Compared with CLIP and ViT, which

rely on image-text alignment without deep modality integration,
TABLE 1 Performance benchmarking of our approach against leading techniques on TCGA and GTEx datasets.

Model
TCGA dataset MSCOCO dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

CLIP (46) 83.25±0.04 79.86±0.03 81.12±0.03 85.47±0.03 86.02±0.03 84.77±0.02 83.91±0.03 87.15±0.02

ViT (47) 80.47±0.03 82.53±0.02 80.84±0.02 84.10±0.02 87.18±0.02 83.25±0.02 85.93±0.03 86.72±0.03

I3D (48) 82.13±0.02 78.49±0.03 80.56±0.02 83.91±0.03 85.60±0.02 82.94±0.03 84.21±0.02 85.34±0.02

BLIP (49) 84.92±0. 80.30±0.03 82.47±0.03 86.13±0.03 88.15±0.03 85.42±0.02 86.11±0.03 87.90±0.02

Wav2Vec 2.0 (50) 81.76±0.02 81.12±0.02 79.84±0.03 84.76±0.02 86.42±0.02 83.03±0.02 84.37±0.03 86.81±0.02

T5 (51) 80.90±0.03 82.95±0.03 81.67±0.02 83.58±0.02 85.83±0.02 84.12±0.02 83.74±0.03 86.19±0.03

Ours (BioGraphAI) 88.91±0.02 86.74±0.02 85.92±0.03 89.81±0.02 91.02±0.02 89.77±0.02 90.45±0.02 92.37±0.02
Bold values indicate numerical results of our method.
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BioGraphAI benefits from its deeper cross-modal attention and

dynamic fusion strategy, yielding improvements especially in

semantic precision as shown in the higher F1 values. Notably, even

compared to BLIP, which combines vision-language pretraining and

retrieval-augmented generation, BioGraphAI still provides a robust

advantage, suggesting that our dynamic memory integration

contributes significantly to performance.

Extending this evaluation to dbGaP and ICGC datasets in

Figures 5, 6, the effectiveness of BioGraphAI remains evident.

BioGraphAI achieves 89.41 accuracy on dbGaP and 88.65 on

ICGC, improving over the next best methods by 3.79 and 4.77

points, respectively. The strength of BioGraphAI on dbGaP can be

attributed to its ability to maintain fine-grained alignment between

entities and attributes described in captions, which conventional

ViT or CLIP-based approaches tend to generalize. This is especially

important for datasets with dense captions like dbGaP. The ICGC

results demonstrate the model’s robust multi-modal reasoning
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capability in temporal audiovisual contexts. While Wav2Vec 2.0

is designed for audio encoding and BLIP specializes in vision-text

fusion, BioGraphAI leverages cross-stream memory networks and

co-attentive modules that better synchronize semantic cues between

frames and audio signals. The observed gains in AUC (89.83 vs.

86.02 from Wav2Vec) reinforce the model’s enhanced sensitivity to

temporal auditory-visual alignment. These improvements validate

that BioGraphAI’s multilevel dynamic memory mechanism

effectively integrates spatiotemporal representations and

significantly enhances semantic retention during inference. We

further attribute BioGraphAI’s superior performance to several

key design factors. Our hierarchical memory unit maintains

short-term and long-term modality-specific embeddings, which

enables efficient information recall across long contexts—a crucial

aspect often missing in baseline architectures. BioGraphAI employs

a cross-modal dynamic attention mechanism that adapts attention

weights based on contextual cues, significantly improving the
TABLE 2 Performance benchmarking of our approach against leading techniques on dbGaP and ICGC datasets.

Model
dbGaP dataset ICGC dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

CLIP (46) 84.33±0.03 80.17±0.03 82.26±0.02 86.90±0.02 81.40±0.02 78.69±0.03 80.15±0.02 83.22±0.03

ViT (47) 82.56±0.02 83.41±0.03 81.74±0.03 85.33±0.02 82.33±0.03 79.54±0.02 81.62±0.03 84.87±0.02

I3D (48) 83.75±0.02 81.28±0.02 80.59±0.03 84.44±0.02 80.91±0.03 76.42±0.02 78.64±0.02 82.73±0.02

BLIP (49) 85.62±0.03 82.91±0.02 83.48±0.02 87.21±0.03 83.88±0.02 81.33±0.03 82.95±0.03 85.69±0.02

Wav2Vec 2.0 (50) 81.98±0.02 80.52±0.03 79.17±0.02 84.15±0.02 84.55±0.02 80.88±0.03 82.04±0.02 86.02±0.03

T5 (51) 82.75±0.03 84.10±0.02 82.01±0.03 85.61±0.02 82.10±0.02 81.74±0.02 80.95±0.03 84.43±0.03

Ours (BioGraphAI) 89.41±0.02 87.05±0.02 86.88±0.03 90.74±0.02 88.65±0.02 85.91±0.03 87.42±0.02 89.83±0.02
Bold values indicate numerical results of our method.
FIGURE 5

Performance benchmarking of our approach against leading techniques on TCGA and GTEx datasets.
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model’s response to ambiguous or polysemous inputs. These design

choices directly address the limitations highlighted in prior models

such as the static fusion strategy in CLIP and the linear attention

pattern in T5. Moreover, BioGraphAI integrates modality-specific

gating, allowing flexible feature selection during fusion. This

modular gating is particularly beneficial for handling diverse

input quality, such as low-resolution video in ICGC or

ambiguous phrasing in TCGA. In conjunction with our carefully

tuned training strategy and strong regularization, BioGraphAI

consistently generalizes well across datasets. Ultimately, the

consistent margin of improvement across all metrics and datasets

confirms that BioGraphAI achieves a new state-of-the-art in

multimodal understanding by combining structural flexibility,

deep semantic alignment, and context-aware memory modeling.

These results not only demonstrate quantitative advantages but also

suggest strong potential for real-world deployment in vision-

language and audio-visual applications.

To strengthen the statistical rigor of the evaluation and validate

that performance improvements are not due to chance, statistical

significance tests were conducted across all benchmark datasets. A

two-tailed paired t-test was applied to compare the proposed model

against each baseline over three independent training runs using
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different random seeds. The null hypothesis assumed no significant

difference in performance metrics between the models. As shown in

Table 3, the results indicate that the improvements achieved by

BioGraphAI over the baselines are statistically significant in terms

of accuracy and AUC across all datasets. Most p-values are below

the 0.01 threshold, confirming that the observed gains are robust

and reproducible. These findings enhance the confidence that the

proposed framework consistently outperforms existing state-of-the-

art approaches under controlled experimental settings.
4.4 Ablation study

To validate the contribution of each core component in our

proposed BioGraphAI framework, we conduct a detailed ablation

study across four datasets: TCGA, GTEx, dbGaP, and ICGC. As

shown in

In Tables 4, 5, we remove each key module independently and

assess its impact on performance. We denote without modality-

aware representation fusion, without graph-guided pathway

embedding, and without weakly supervised learning signals

module. Removing any of these modules results in a noticeable

drop in all evaluation metrics, indicating their essential roles in the

overall architecture. On the TCGA dataset, removing the modality-

aware representation fusion leads to a decrease in accuracy from

88.91 to 86.47, and F1 score drops from 85.92 to 82.91. This

confirms that this mechanism plays a crucial role in maintaining

long-term semantic dependencies, which are vital for complex

question answering. The graph-guided pathway embedding

module also shows a significant impact, with accuracy dropping

to 87.14 and AUC reduced to 88.49. This module allows the model

to recalibrate the attention focus depending on contextual modality
FIGURE 6

Performance benchmarking of our approach against leading techniques on dbGaP and ICGC datasets.
TABLE 3 Paired t-test p-values comparing BioGraphAI versus baselines
(three seeds).

Dataset Baseline Metric p-value Significance

TCGA BLIP Accuracy 0.004 Significant

GTEx CLIP AUC 0.008 Significant

dbGaP ViT Accuracy 0.001 Significant

ICGC Wav2Vec 2.0 AUC 0.005 Significant
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signals, which is particularly beneficial in handling ambiguous

visual-linguistic mappings. The weakly supervised learning signals

is essential for selective information routing; its absence degrades

performance by 3.19 points in accuracy and 1.91 in AUC on the

GTEx dataset. Similar patterns are observed across all four metrics.

Compared to the full BioGraphAI configuration, the variants

consistently perform worse, demonstrating that each component

contributes distinctly to the model’s effectiveness.

dbGaP and ICGC results further reinforce these findings in

Figures 7, 8. Without the modality aware representation fusion

module, accuracy on dbGaP drops from 89.41 to 86.01 and on

ICGC from 88.65 to 86.72. This module proves especially beneficial

for datasets requiring long-term sequence modeling, such as ICGC,

where cross-temporal coherence is vital. The removal of the graph-

guided pathway embedding module results in relatively lower

degradation compared to removing fusion but still yields drops of

about 2 points across datasets. Interestingly, we observe that on

ICGC, the absence of the Weakly Supervised Learning Signals

module impacts performance more than on dbGaP, suggesting

that this module is particularly effective in balancing noisy visual-

audio inputs typical in realistic, in-the-wild speech data. This

highlights the module’s adaptability to dynamic conditions and

heterogeneous modality quality. The ablation study substantiates

the necessity of each component in BioGraphAI. The Modality-

Aware Representation Fusion captures and retains temporal

dependencies, supporting sequential coherence. The graph-guided

pathway embedding module allows the model to prioritize cross-
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modal cues adaptively, enhancing semantic integration, while the

weakly supervised learning signals provides controlled fusion

tailored to each task’s input signal quality. Together, these design

choices form a complementary architecture that achieves superior

results across all tasks. Their removal not only reduces the

numerical performance but also affects the stability and

consistency of learning across different modalities. These results

justify the inclusion of all modules in BioGraphAI and align with

our design philosophy of context-aware, memory-driven, and

dynamically adaptable multimodal modeling.

To further evaluate the robustness of BioGraphAI under

conditions of incomplete data, we conducted a controlled study

simulating varying levels of missingness in the input features. Using

the TCGA dataset, we introduced random feature masking at rates

of 10%, 20%, 30%, 40%, and 50%, and measured model

performance using accuracy, F1 score, and AUC. The results,

summarized in Table 6, indicate that the model retains reliable

diagnostic performance up to 30% missing data. The AUC drops

only marginally from 89.81 to 86.94 between 0% and 30%

missingness. Even at 40% missingness, the model achieves an

AUC of 85.12 and an F1 score above 81, demonstrating resilience

to substantial data loss. These results affirm that the masking

mechanism, graph-based propagation, and regularization via

ACKR contribute to stable performance even under partial

observation. Based on these findings, we recommend that for

optimal predictive reliability, the proportion of missing features

per modality should be maintained below 40%.
TABLE 4 Performance benchmarking of our approach against leading techniques on BioGraphAI across TCGA and GTEx datasets.

Model
TCGA dataset GTEX dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Modality-Aware
Representation Fusion

86.47±0.03 83.12±0.02 82.91±0.03 87.20±0.03 88.56±0.02 85.42±0.02 86.34±0.03 88.71±0.02

w/o Graph-Guided Pathway
Embedding

87.14±0.02 85.33±0.03 83.70±0.02 88.49±0.02 89.42±0.03 86.75±0.02 87.09±0.03 90.13±0.02

w/o Weakly Supervised
Learning Signals

85.72±0.03 84.76±0.02 84.01±0.02 86.95±0.03 87.93±0.02 85.10±0.03 85.67±0.02 88.34±0.03

Ours 88.91±0.02 86.74±0.02 85.92±0.03 89.81±0.02 91.02±0.02 89.77±0.02 90.45±0.02 92.37±0.02
Bold values indicate numerical results of our method.
TABLE 5 Performance benchmarking of our approach against leading techniques on BioGraphAI across dbGaP and ICGC datasets.

Model
dbGaP dataset ICGC dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Modality-Aware
Representation Fusion

86.01±0.03 83.57±0.02 84.13±0.03 87.26±0.02 86.72±0.02 82.91±0.03 84.67±0.02 87.98±0.02

w/o Graph-Guided Pathway
Embedding

87.58±0.02 85.16±0.03 84.44±0.02 88.90±0.03 86.11±0.03 83.80±0.02 85.33±0.02 88.43±0.03

w/o Weakly Supervised
Learning Signals

85.43±0.03 84.22±0.03 82.79±0.02 86.62±0.02 87.21±0.02 84.74±0.02 85.09±0.03 87.33±0.02

Ours 89.41±0.02 87.05±0.02 86.88±0.03 90.74±0.02 88.65±0.02 85.91±0.03 87.42±0.02 89.83±0.02
Bold values indicate numerical results of our method.
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FIGURE 7

Performance benchmarking of our approach against leading techniques on BioGraphAI across TCGA and GTEx dsatasets.
FIGURE 8

Performance benchmarking of our approach against leading techniques on BioGraphAI across dbGaP and ICGC datasets.
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To further validate the role of pseudo-labeling within the ACKR

module, we conducted an additional experiment focusing on its

contribution to model performance. Three variants were evaluated

on both the TCGA and GTEx datasets: the full model with ACKR

including pseudo-label supervision, a variant excluding the pseudo-

label loss term, and a control using randomly generated pseudo-

labels. As shown in Table 7, the exclusion of pseudo-label

supervision led to a noticeable decrease in accuracy and AUC

across both datasets. For example, on TCGA, accuracy dropped

from 88.91% to 86.81%, and AUC declined from 89.81 to 87.48. The

use of random pseudo-labels further degraded performance,

confirming that biologically grounded weak supervision

contributes meaningful regularization to the learning process.

These findings reinforce the effectiveness of the pseudo-labeling

strategy within ACKR. Although derived from external corpora and

ontologies, the pseudo-labels provide structured latent guidance

when integrated via KL divergence and entropy constraints. The

experimental evidence confirms that pseudo-labeling enhances the

generalization and reliability of BioGraphAI under weakly

supervised conditions.

To evaluate the applicability of the model in real-world

diagnostic workflows, a simulated prospective setting was

constructed using a held-out subset of the TCGA dataset enriched

with clinical metadata. This experimental design replicates practical

clinical input scenarios, such as missing omic modalities,

incomplete transcriptomic measurements, and variable data

quality. The evaluation was conducted under three conditions:

full modality input representing the ideal scenario, simulated

clinical input with partial omics data, and randomized

missingness to reflect uncontrolled real-world sparsity. Model
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performance under these conditions is presented in Table 8.

Accuracy declined modestly from 88.91% to 86.98% under the

partial input setting, with a corresponding AUC reduction from

89.81 to 87.42. Additionally, pathway-level attribution outputs were

analyzed for consistency with known disease mechanisms, yielding

an 86.0% agreement rate with curated biological annotations, based

on expert-reviewed mappings. Even under randomized

missingness, attribution alignment remained above 83%,

indicating robustness in noisy environments. These results

demonstrate the model’s capability to operate reliably under

clinical constraints, while continuing to produce biologically

coherent explanations. The consistent diagnostic accuracy and

attribution alignment suggest the framework can be feasibly

integrated into real-time or semi-automated diagnostic pipelines,

particularly in settings where data incompleteness and noise

are prevalent.
5 Conclusions and future work

In this work, we aimed to advance the field of biomarker-based

disease diagnostics through an AI-driven approach that bridges

antibody and nucleic acid analysis. To address the limitations of

traditional methods in capturing the intricate, multi-scale

relationships inherent in biological data, we developed a novel

framework that combines a biologically informed architecture,

BioGraphAI, with a semi-supervised learning strategy, ACKR.

BioGraphAI uses a hierarchical graph attention mechanism to

integrate and interpret interactions across genomic, transcriptomic,

and proteomic data, leveraging curated biological pathways to guide

its design. ACKR enhances this with latent space regularization and
TABLE 6 Model performance under varying levels of simulated missing
data on the TCGA dataset.

Missing rate (%) Accuracy F1 score AUC

0 88.91 85.92 89.81

10 88.27 85.34 89.13

20 87.53 84.65 88.30

30 86.38 83.21 86.94

40 84.77 81.34 85.12

50 82.42 78.95 82.08
TABLE 7 Effect of pseudo-labeling on model performance (TCGA and GTEx).

Setting Dataset Accuracy (%) F1 score AUC

Full Model (ACKR w/Pseudo-Labels) TCGA 88.91 85.92 89.81

Without Pseudo-Label Supervision TCGA 86.81 83.79 87.48

Random Pseudo-Labels (Control) TCGA 81.92 78.04 82.73

Full Model (ACKR w/Pseudo-Labels) GTEx 91.02 90.45 92.37

Without Pseudo-Label Supervision GTEx 88.93 87.02 90.07

Random Pseudo-Labels (Control) GTEx 83.54 80.11 85.19
TABLE 8 Simulated real-world evaluation on TCGA (partial and noisy
inputs).

Scenario
Accuracy

(%)
AUC

Pathway
attribution

agreement (%)

Full Modality (Ideal Input) 88.91 89.81 —

Simulated Clinical Input
(Partial Omics)

86.98 87.42 86.0

Randomized Missingness
(30%)

85.21 85.33 83.7
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ontological supervision, reinforcing biologically meaningful

representations even under weak supervision. Experimental

validation across diverse disease datasets demonstrated that our

method surpasses conventional models in both diagnostic accuracy

and biological interpretability, establishing a new benchmark for AI-

assisted biomarker discovery.

Despite these promising results, two primary limitations remain.

While BioGraphAI offers improved interpretability compared to

standard deep learning models, the model’s attention-based

mechanisms still require further refinement to be fully transparent

to clinicians and biomedical researchers. Future work could

incorporate more interactive or visual tools to aid in explaining

model decisions. Although the model generalizes well across several

disease types, the current approach relies heavily on existing curated

biological pathways and may struggle in under-researched or novel

disease contexts where pathway information is sparse or incomplete.

Expanding the framework to support unsupervised discovery of new

biological patterns, possibly through self-supervised or reinforcement

learning, presents a compelling avenue for exploration. Through

these future directions, we aim to further align AI capabilities with

the needs of precision medicine and translational diagnostics.
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