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Introduction: There is an urgent need for influenza vaccine strategies that
enhance protection against influenza virus drift and across different subtypes.
The conserved viral nucleoprotein (NP) is the most abundant viral protein during
replication, and a target for broadly protective cellular immune responses.
Methods: Guided by annual WHO-recommended seasonal vaccine strains, we
engineered synthetic DNA vaccine candidates encoding vaccine-aligned
common consensus (VACC) immunogens designed to represent the immune
diversity of seasonal HIN1 and H3N2 virus NP proteins (pVACC-NPHZ1;
pVACC-NPH3).

Results: Both pVACC-NPH1 and pVACC-NPH3 DNA vaccines induced robust
cellular immune responses in mice, including the induction of durable responses.
Immunization with a single dose of either DNA vaccine 14 days prior to lethal A/
California/2009 HIN1 virus challenge provided protection against mortality.
Single dose co-administration of pVACC-NPH3 with an HA-expressing DNA
vaccine (pHAH1) and plasmid-encoded adjuvant plL-12 afforded improved
protection against morbidity and mortality in a high-dose challenge model.
Discussion: These data highlight the potential of heterologous cellular immunity
induced by engineered NP immunogens to complement HA-based approaches
to significantly improve challenge outcomes.
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1 Introduction

Seasonal influenza viruses infect approximately 1 billion people
each year (1), causing respiratory illnesses across both hemispheres.
An estimated 3-5 million of these cases result in severe illness, with
290-650, 000 deaths annually (2). Although yearly vaccination
against circulating influenza A virus (IAV) HIN1 and H3N2, and
B virus strains is recommended, genetic variation necessitates
annual reformulation (3-6). Broad and universal influenza
vaccines are urgently needed to protect from circulating and
newly emerging influenza viruses. In addition to strategies that
induce broadly protective antibodies against the viral surface
hemagglutinin (HA) protein (7-10), synthetic immunogen
approaches (11-14) that direct protective immunity to target
highly conserved epitopes or proteins could provide important
adjunctive protection to decrease pathogenesis and severe disease.

The influenza nucleoprotein (NP) is the most abundantly
expressed protein during viral replication and the major
component of the virion ribonucleoprotein complex (15). It plays
a critical role in viral replication, involving organization of RNA
packing, nuclear trafficking, VRNA transcription. and replication
(16). NP is well-conserved within influenza subtypes (17-21),
making it a promising target for inducing cellular immune
responses. NP has been shown to induce robust CD8" T cell
responses in preclinical models (22, 23) and humans (24).
Computational modeling of influenza isolates has revealed
stretches of highly conserved amino acids within NP. Peptide
vaccines based on such epitopes elicit robust CD8" T cell
responses and are protective against [AV challenge in mice (18).
Epidemiological studies indicate that anti-NP CD8" T cell
immunity can contribute to protection from severe disease in
humans (25). These data suggest that NP based therapies have
the potential to elicit broad anti-influenza cellular immunity.

Synthetic plasmid DNA vaccines have advanced significantly
over the past ten years, demonstrating robust induction of humoral
and cellular immune responses (26). The first DNA vaccine
received EUA for use in humans during COVID-19 (27) and
several T cell-based DNA vaccines are being evaluated for
infectious diseases and delivery of cancer neoepitopes (28) to
elicit CD8+ T cell responses. Current inactivated vaccines elicit
poor CD8" T cell responses compared to live attenuated influenza
vaccines (LAIV) (29-31). Although LAIV vaccines can induce
CD8" T cell responses, the master donor virus used to make all
LAIVs contains the internal genes, including NP, of A/Ann Arbor/
6/60 or A/Leningrad/17/57 H2N2 viruses and is thus mismatched
to modern circulating strains. To this end, studies matching LAIV
vaccines to currently circulating viruses can increase induction of
CD8" T cell responses (32). Building on this prior research, we
hypothesized that plasmid DNA-encoded NP consensus
immunogens could expand the breadth of protection, eliciting
broad cellular immunity which could reduce IAV pathogenesis.

Here, we describe the design and evaluation of synthetic IAV-NP
immunogens engineered based on WHO-recommended vaccine
strains to induce robust anti-influenza cellular immunity in vivo.
Two plasmid DNA-encoded vaccine-aligned common consensus
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(VACC) immunogens representing the NPs from seasonal A/HIN1
(VACC-NP™) or A/H3N2 (VACC-NP™) viruses induced robust
cellular immune responses, with both independently providing single
dose protection against mortality in mice intranasally challenged with
an A/California/2009 virus. We delivered these antigens alone or in
combination with plasmid-encoded IL-12 (pIL-12) which has been
demonstrated to enhance cellular responses to DNA antigens in mice,
non-human primates (33, 34), and humans in clinical trials (35-37).
Heterologous pVACC-NP™ combination with plasmid-encoded
hemagglutinin (HA) from HINI A/California/07/2009 (pHA™)
and pIL-12 afforded complete protection from IAV-associated
morbidity and mortality, further highlighting the potential for
synthetic VACC-NP* candidates to reduce pathogenesis and
provide immune protective benefit across IAV subtypes.

2 Methods
2.1 Plasmid design

The amino acid sequences for NP proteins from WHO
recommended HINI and H3N2 vaccine strains selected from 2000-
2019 vaccine strains (38) were downloaded from the GISAID.org
database. HIN1 NP accession #: A/New Caledonia/20/1999 (EPI ISL
649), A/Solomon Islands/3/2006 (EPI1224787), A/Brisbane/59/2007
(EPI ISL 154495), A/California/07/2009 (EPI ISL 391380), A/
Michigan/45/2015 (EPI ISL 199532)A/Brisbane/02/2018 (EPI ISL
344858), A/Wisconsin/588/2019 (EPI ISL 404527), A/Hawaii/70/
2019 (EPI ISL 397028). H3N2 NP accession #: A/Moscow/10/1999
(EPI ISL 2695), A/Fujian/411/2002 (EPI ISL 107711), A/California/7/
2004 (EPI ISL 113070), A/Wisconsin/67/2005 (EPI ISL 154528), A/
Brisbane/10/2007 (EPI ISL 176458), A/Perth/16/2009 (EPI ISL
176456), A/Victoria/361/2011 (EPI ISL 101506), A/Switzerland/
9715293/2013 (EPI ISL 166310), A/Hong Kong/4801/2014 (EPI ISL
233740), A/Singapore/INFIMH-16-0019/2016 (EP12397166), A/
Kansas/14/2017 (EPI ISL 292575), A/Hong Kong/45/2019 (EPI ISL
347938). HINP or H3NP vaccine-consensus designs were constructed
through sequence alignment analysis in MEGA 11.0.10 (39) using
ClustalW alignment and an unrooted phylogenetic tree was generated
using the maximum-likelihood method, with maximum parsimony
(40). Pairwise distances were calculated in MEGA. 11.0.10. Sequence
identity visualization was performed in Treeviewer (41). Additional
alignment of sequences were performed in Geneious Prime (version
2023.2.1). mRNA expression was confirmed by qPCR using the
following primers: NPP' Forward: (5-GATCTCTGTG
CAGCCTACCT-3’), Reverse (5-ATCACTTCTGTGCGCATGTC-
3", NP™ Forward (5-TCTGCCTTTGACGAGAGGAG-3), Reverse
(5-CCGCCAGATTCTCCTGATCT-3’), and mouse GAPDH
(NM_008084) CAT#: MP205604) Forward (5-CATCACTGCC
ACCCAGAAGACTG-3’), Reverse (5-ATGCCAGTGAGC
TTCCCGTTCAG3?’), all will amplicon sizes of 120 base pairs.
Analysis was performed using comparative delta-delta CT analysis.
DNA plasmid encoding the full-length codon-optimized, HA protein
of A/California/07/2009 HIN1pdm09 cloned into the pVaxl vector
(pHA™) was previously described in (42). The plasmid-encoded
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adjuvant mouse interleukin 12 (IL12) has been previously described
in (43).

2.2 Cell lines and virus propagation

Influenza A Virus, A/California/07/2009 NYMC X-179A
HIN1pdmo09 (Ca09-X179A) (IRR catalog: FR-246), was obtained
through the International Reagent Resource, Influenza Division,
WHO Collaborating Center for Surveillance, Epidemiology and
Control of Influenza, Centers for Disease Control and Prevention,
Atlanta, GA, USA. This is a reassortant virus with the HA, NA, and
PB1 genes from HIN1pdm09 and remaining genes from A/Puerto
Rico/8/1934. MDCK-SIAT1 cells (Sigma Cat# 5071502) were
maintained in Minimum Essential Medium (Eagle’s) (Corning Cat #
MT10009CV) with 1% Penicillin/Streptomycin (Gibco Cat
#15140122), and 2% fetal bovine serum (Peak Cat #PS-FB4). For
virus propagation, cell monolayers were infected with MOI 0.001 of
Ca09-X179A in the presence of 2 pg/mL TPCK-treated Trypsin
(ThermoFisher Cat# 20233) and maintained with 1% Pen/Strep,
0.3% bovine serum albumin (Gibco Cat # 15260037) for 3 days.
Virus was collected and ultracentrifuged on a sucrose gradient to
prepare mouse challenge stocks. Challenge stocks were titered by
determining the 50% tissue culture infectious dose (TCID50) on
MDCK-SIAT1 cells and an initial mouse 50% lethal dose (LD50)
experiment was performed to determine the minimum infectious dose
for challenge.

2.3 Animals, immunization, and challenge

C57BL/6] (Stock # 000664) and DBA/2] (Stock # 000671) female
mice were purchased from the Jackson Laboratory and were housed in
the Wistar Institute Animal Facility. All procedures were done in
accordance with the guidelines from the Wistar Institute Animal Care
and Use Committee. Between 2 pig to 10 pug of DNA plasmid encoding
the VACC-NP™ or VACC-NP™ or full length HA DNA (pHA™)
(42) with or without a DNA plasmid encoding for the molecular
adjuvant IL-12, in 30 QUL water was injected in the tibialis anterior (TA)
muscle. Delivery was immediately followed with two 0.1 Amp electric
constant current square-wave pulses by the CELLECTRA-3P
electroporation device (Inovio Pharmaceuticals) to increase
transfection efficiency. Immunized or naive DBA/2] mice were
intranasally infected with 10 LD50 or 100 LD50 of Ca09-X179A
respectively in 50 Wl MEM Eagle’s (without antibiotics). Mice were
then monitored for the subsequent 21 days, for weight loss and
mortality. Any mouse reaching 80% of their original body weight
was considered to have reached humane endpoint and was
subsequently euthanized. A subset of mice (n=3 per group) was
euthanized on day 6 post infection, and lungs were collected for
histopathological analysis. The vaccine and challenge schedules are
indicated in each figure.
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2.4 Western blot

HEK293T cells (ATCC Cat# CRL-3216) were cultured in
DMEM medium with 10% FBS at 37 °C/5% CO2 condition and
transfected with pDNA using Lipofectamine 3000 transfection
reagent (Thermo Fisher Scientific Cat# L300000) following the
manufacturer’s protocol. Forty-eight hours later, supernatant and
cell lysates were harvested using 1x cell lysis buffer (Cell signaling
Cat# 9803). Proteins were separated on a 4-12% BIS-TRIS gel
(Thermo Fisher Scientific Cat# NP0322BOX), then following
transfer, blots were incubated with an anti-NP monoclonal
antibody (Thermo Fisher Cat# PA5-32242), then visualized with
horseradish peroxidase (HRP)-conjugated anti-rabbit IgG (Sigma
Cat# SAB3701359).

2.5 Peptide reagents

Individual antigen-matched 15mer peptides with 1lmer
overlaps were synthesized (Genscript, Piscataway, NJ) for NP™!
and NP™, Peptides were resuspended as a single peptide pool for
flow cytometry, four peptide pools for ELISPOT, or 23 peptides per
pool for epitope mapping. Individual NP peptides and pool
information is listed in Supplementary Table S1. HA peptide
pools are as previously described (42). All pools were resuspended
in dimethyl sulfoxide (DMSO).

2.6 Flow cytometry

Immunized mice were euthanized, and spleens and lungs were
harvested and stored in RPMI 1640 media (Invitrogen Cat#
11875093) supplemented with 10% FBS and 1% Penicillin/
Streptomycin (R10). Spleens were processed to single-cell
suspension and red blood cells were removed by ACK lysing
buffer (Gibco Cat# A1049201). Lungs were processed using the
lung dissociation kit/GentleMACS system (Miltenyi Cat# 130-095-
927) according to manufacturer’s instruction. Red blood cells were
removed by ACK lysing buffer (Gibco Cat# A1049201), and single
cells isolated via density gradient centrifugation using lymphosep
(MP Biomedicals Cat#: 0916922-CF). Cells were then filtered and
counted before being plated for flow cytometry. Cells (1, 000, 000
per well) were seeded in 100 pL of R10 and stimulated with NP,
the NP™, or Ca09 HA peptide pools (5 pg/mL per peptide final
concentration) in the presence of Protein Transport Inhibitor
(eBioscience, San Diego, CA, USA Cat# 00-4980-03). R10 alone
and cell Stimulation Cocktail containing phorbol 12-myristate 13-
acetate (PMA) and ionomycin (500X, eBioscience, San Diego, CA,
USA Cat# 00-4970-93) in R10 were used as negative and positive
controls, respectively. Plates were incubated for 6 h at 37 °C with 5%
CO2. After stimulation, cells were stained with LIVE/DEAD zombie
aqua for viability. CD3, CD4, CD8, TNF-o, IFNy, and IL-2
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fluorochrome conjugated antibodies (BioLegend) were used for
surface and intracellular staining. The samples were run on a BD
FACSymphonyTM A5 SE flow cytometer (BD Biosciences) and
analyzed in FlowJo software. Gates were set using fluorescence
minus one (FMO) for each stain. Data was exported and analyzed in
GraphPad Prism 10.

2.7 ELISpot

Isolates splenocytes and lung lymphocytes (pulmocytes) were
subjected to IFNy ELISpot assay according to the manufacturer’s
instructions (Mabtech Cat# 3321-4APW-10). Briefly, plates were
washed four times with sterile PBS and blocked with R10 media for
two hours. Splenocytes from each animal were seeded in duplicate
wells with 200, 000 cells per well in 100uL R10. Cells were
stimulated with NP™', NP™ or HA™' peptide pools (5ug/ml per
peptide). The peptide pools and matrix peptide pools are listed in
Supplementary Table S1. Negative and positive controls were
stimulated with DMSO or PMA/ionomycin respectively. Plates
were incubated at 37 °C in 5% CO2 for 18 hours and were then
developed following the manufacturer’s protocol. Plates were
scanned and counted using the Mabtech RIs™ FluoroSpot/
ELISpot reader.

2.8 Histopathology and
immunohistochemistry

Whole murine lungs were collected into 10% buftered neutral-
buffered formalin for routine histopathological processing.
Formalin fixed tissues were paraffin embedded and 4 um sections
were cut and routinely stained with Hematoxylin and Eosin (H&E).
Immunohistochemical detection was performed on 4 pum tissue
sections using a polyclonal antibody against the IAV nucleoprotein
(anti-NP)(Thermo Fisher Cat# PA5-32242). Whole slides were
scanned using a Hamamatsu Nanozoomer S60 slide scanner and
analyzed using NDP.view 2. Scale bars equal 2.5 mm on whole slide
lung images and 50 um on lung section images.

2.9 RNA-seq

Formalin-fixed paraffin-embedded (FFPE) lung tissue scrolls of
10puM thickness were used for total RNA extraction. Total RNA was
quantitated using the Qubit 2.0 Fluorometer (Thermo Fisher,
Waltham, MA) and quality of RNA was assessed using the 4200
Tapestation (Agilent, Santa Clara, CA). Libraries for differential
gene expression studies were prepared using the Quant Seq 3
mRNA-Seq V2 Library Prep Kit FWD (Lexogen, Vienna, Austria)
as per manufacturer’s instructions starting with an input of 350ng
of RNA and 16 cycles of final PCR amplification. Overall library size
was determined using the 4200 Tapestation and libraries were
quantitated using the Qubit 2.0 Fluorometer. Libraries were
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pooled and Next Generation Sequencing with a single-end 76 bp
run length was done on the Hiseq 1000 (Illumina, San Diego, CA).
A minimum of 10M reads per sample was acquired for each sample.
Using Cutadapt (44), we removed adapters and polyA in each
sample, followed by alignment to the mm10 genome using Bowtie2
within the RSEM pipeline (v1.3.3). Only reads mapping to coding
regions were retained. Raw counts and TPM values were generated
for downstream analyses. Differential gene expression analysis was
conducted using DESeq2 (v1.38.0). Genes with fewer than 10 raw
counts were excluded, and DEGs were identified using FDR < 5%
and |log2 fold change| > 3. Functional enrichment was performed
using Gene Ontology, KEGG pathways, and Ingenuity Pathway
Analysis (IPA). Computational analyses were conducted on a
Linux-based high-performance computing environment with
tools Bowtie2 (v2.4.5), RSEM (v1.3.3), DESeq2 (v1.38.0), and IPA.
Inhibited and activated pathway analysis is included as
Supplementary Tables S2-S5, S6).”

2.10 Software and statistical analysis

Data was represented in GraphPad Prism version 10. All
sequence alignments were determined in MEGA 11.0.10 (39) and
Treeviewer (41), flow cytometry data was analyzed using FlowJo
version 10.10.0. Image slides were scanned using a Hamamatsu
Nanozoomer S60 slide scanner and analyzed using NDP.view vs2.
Details on statistical analysis are included in the legend for each
figure. The p-value significance is indicated as follows: *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001, and comparisons are not
significant (ns), unless otherwise denoted.

2.11 Data and code availability

The published article includes all data sets generated or
analyzed during this study. Sequencing data was submitted to
NCBI GEO database under accession number GSE306862.

3 Results

3.1 Design and expression of VACC-NP*
immunogens

NP amino acid sequences for annual seasonal A/HIN1 vaccines
strains were obtained from GISAID.org (Supplementary Figures S1,
S2) and aligned to produce unrooted phylogenetic trees
(Supplementary Figure S1B). Analysis highlighted a >10% amino
acid distance between pre-2009 and post-HIN1pdm2009 viruses
consistent with the major antigenic shift caused by introduction of a
classical swine NP into the A/HIN1pdm09 lineage viruses (45, 46).
We therefore focused our design on contemporary HINI viruses
and generated a single vaccine-aligned consensus construct
(VACC) design, using sequence alignments and phylogenetic
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Design and in vitro expression of VACC-NPX immunogens. NP amino acid alignments of seasonal A/HIN1 post-HIN1pdm09 and A/H3N2 vaccine strains
(GISAID.org), (A, D). Unrooted phylogenetic trees for A/HIN1 post-HIN1pdmO09 and A/H3N2 vaccine strains (B, E). Plasmid maps of pVACC-NP" and
PVACC-NP™ synthetic DNA constructs (C, F). mRNA expression of VACC-NP* by quantitative PCR following in vitro transfection (G). Western blot of
pVACC-NP"! and pVACC-NPH HEK29T supernatants probed for anti-IAV-NP (H). Immunofluorescence staining of HEK293T cells transfected with pVACC-
NP* plasmids and stained for IAV-NP (I). Data are representative of two independent transfection experiments. Symbols (G) represent duplicate assays of

three separate wells. ***p<0.001, ****P<0.0001 by Kruskal-Wallis ANOVA.

analysis to weigh amino acids towards post-HIN1pdm2009 NPs
(Figures 1A, B). VACC amino acid sequences were codon-
optimized for mammalian expression and subcloned into the
pVaxl plasmid DNA backbone to generate the pVACC-NP™
construct (Figure 1C). Similarly, A/H3N2 vaccines strains were
obtained from GISAID.org (Supplementary Figures SI, S3). A
VACC-NP™ construct was designed based on sequence
alignments and phylogenetic analysis (Figures 1D, E) and cloned
into the pVax1 backbone to generate the pVACC-NP™ construct
(Figure 1F). The overall pairwise distances were determined to be
<0.2% for post-HIN1pdm09 TAV-NP™" and <1.1% for IAV-NP™>.
We confirmed mRNA expression of VACC-NP* via quantitative
PCR (Figure 1G) following in vitro transfection. Protein expression
in transfected HEK 293cells was confirmed via supernatant western
blot (Figure 1H), and immunofluorescence staining of IAV-NP
(Figure 1I). Together these data demonstrate that the consensus
alignment approach generates novel synthetic molecules that
express in vitro and are detected by commercial anti-NP antibodies.
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3.2 A single immunization with DNA-
encoded pVACC-NP* vaccines induces
strong cellular responses and supports
protection from influenza-associated
morbidity and mortality in vivo

An initial dosing study in C57BL/6] mice was performed to
assess the immunogenicity of 10 pg and 25 ug of the pV ACC-NP™
plasmid following a two-dose injection regimen. Both doses
induced robust IFNYy spot-forming units (SFU) in spleens
(Supplementary Figure S4). The difference between the two doses
was not statistically significant, therefore we selected the lower 10 pg
dose for evaluation as a single immunization regimen for both
pVACC-NP™ and pVACC-NP™ immunogens. C57BL/6] mice
were immunized once with 10 pg of pVACC-NP™" or pVACC-
NP™ immunogens and cellular responses were evaluated by
ELISpot assay fourteen days later (Figure 2A). pVACC-NP™!
induced significant NP™'-specific IENy SFU in the spleens of
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A single immunization with VACC-NP* constructs is immunogenic and protects against mortality in an HIN1pdm09 mouse infection model. C57BL/
6J mice were immunized with 10pg of pVACC-NPX plasmids and euthanized fourteen days post-immunization for cellular analyses (A). IFNy spot-
forming units (SFUs) in spleens following stimulation with HINP peptides or H3NP peptides (n=5 mice per group) (B, C). DBA/2J mice received a
single administration of the pVACC-NP"* or pVACC-NP™ synthetic DNA vaccines (10ug, n=10 mice/group). After 14 days, the mice were intranasally
challenged with 10 LD50 of HIN1 Ca09-X179A and monitored daily until day 21 post-challenge. On day 6 post-infection, a subset of mice (n=3) was
euthanized lungs were collected and processed for histopathological analyses (D). Survival probability (E). Weight loss as percent of starting weight
(F). Hematoxylin and eosin staining (G), and IAV-NP immunohistochemistry staining (H) of lung sections from representative mice at 6 days post-
infection. Scale bars equal 2.5 mm on whole slide lung images. Data are representative of two independent experiments with n=5/group (A-C) and
n=10/group (D—H). Bars represent group means and error bars represent SEM (B, C). Lines Symbols represent group averages; bars represent SD (F).
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by Two-way ANOVA (B, C), Dunnett's multiple comparison (F), or Mantel-Cox Log-rank test (E).

immunized mice as compared to empty plasmid (pVaxl)
immunized controls (Figure 2B),. Similarly, pVACC-NP™?
resulted in significant induction of NP™?-specific IFNYy responses
(Figure 2C). These data demonstrate that pVACC-NP* constructs
induce strong cellular immunity in vivo.

To evaluate the protective efficacy of these constructs, we used
the DBA/2] mouse model of wild-type IAV challenge. DBA/2] mice
were immunized once with 10 pg of pV ACC-NP™!, pVACC-NP™,
or left unimmunized (naive), and challenged fourteen days later
with 10 LD50 of HIN1 Ca09-X179A (Figure 2D). Strikingly, we
observed 90% survival among receiving pVACC-NP™" and 100%
survival among pVACC-NP™® immunized animals, while all naive
animals succumbed to infection (Figure 2E). Despite surviving the
challenge, all pVACC-NP* immunized animals displayed weight
loss similar to that observed in naive animals (Figure 2F), and this
was reflected by H&E staining of lungs harvested 6 days post-
infection (Figure 2G). Dense cellular infiltrates were observed in the
lungs of naive and pVACC-NP™' immunized animals. pVACC-
NP™ immunized animals displayed decreased cellular infiltrates
and increased airway space (Figure 2G). Similarly, when sections
were stained for HIN1 NP antigen, naive animals displayed
significant NP-positive staining throughout their lungs. pVACC-
NP™' immunized animals had decreased NP antigen and only

minimal staining was observed in the lungs of pVACC-NP™
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immunized mice (Figure 2H). Together, these data highlight the
potential for a VACC-NP* immunogen to provide benefit against
disease and death following a single immunization.

3.3 Epitope mapping of VACC-NP*-
induced cellular responses

A matrix system was used to organize vertical and horizontal
peptide pools to identify immunodominant epitopes following
immunization with either pVACC-NP™' and pVACC-NP™
(Supplementary Table S1). NP vaccines were co-formulated with
gene-encoded adjuvant pIL-12, previously reported to enhance
cellular (35, 37) and humoral (47) responses in humans and in
preclinical models (33, 34, 48, 49) (Supplementary Figure S5A).
Using this matrix format enables higher throughput identification
of epitopes with limited samples (Supplementary Table S1).
Immunodominant epitopes are identified if they demonstrate
strong IFNY responses in one vertical pool and one horizontal
pool in the matrix. The peptides are then determined at the
intersection of these two pools. In this way, we identified linear
peptides ASNENVETM among NP™' peptides Supplementary
Figures S5B, C) and ASNENMDNM among NP™* peptides
(Supplementary Figures S5D, E), consistent with those described
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for murine H2-Db in the literature (50, 51). pVACC—NPH3 also
elicited strong responses to the SAAFEDLRLLSFIRG peptide
reported by Lambe et al. (51). Importantly, stimulation with the
overlapping peptide pools containing the identified
immunodominant epitopes (pool 4 for pV ACC-NP™" and pools 3
and 4 for pVACC-NP™) resulted in significant increases in IFNy
secretion from immunized mice (Figures 2A, B). These data
demonstrate that the pVACC-NP* constructs can elicit responses
consistent with previously identified epitopes, as well as can expand
unique responses.

3.4 pVACC-NP* antigens are amenable to
co-delivery with HA immunogens

Current seasonal influenza vaccines are either inactivated virus,
live attenuated virus, or recombinant protein vaccines, driving
primarily HA-directed antibody responses. We hypothesized that
a synthetic VACC-NP™ immunogen can provide adjunctive
protection when administered in combination with an HA
vaccine. Both pVACC-NP™!' and pVACC-NP™ constructs
induced similar immunogenicity and protective efficacy however
pVACC-NP™ demonstrated reduced lung pathogenesis following
infection. Thus, we selected the heterologous pVACC-NP™ for
evaluation alone and in combination with a pHA™" antigen. C57BL/
6] mice were immunized once with one of the following
formulations: 12.5ug of empty plasmid vector (pVaxl); 10ug of
pVACC-NP™ alone; pVACC-NP™ plus 0.5ug pIL-12; 2ug pHA™!
alone; pVACC-NP™ plus pHA™; or a combination of pHA™!,
pVACC-NP™, and pIL-12 (Combo). Mice were euthanized
fourteen days post-immunization and cellular responses were
quantified by intracellular cytokine staining (ICS) (Figures 3A, B).

PH3

Following N peptide stimulation, we observed statistically

significant increases in IFNY" CD8" effector cells in the spleens of
animals immunized with pV ACC-NP™? alone, those co-immunized
with pVACC-NP™ and pIL-12, or those immunized with the
combination of pVACC—NPH3, pIL-12, and pHAHl(Combo), as
compared to those receiving empty plasmid control (pVaxl)
(Figure 3C). We similarly observed statistically significant
increases in the frequency of CD1070t"IFNy" effector CD8" T
cells among these mice as compared to pVaxl-immunized
controls (Figure 3D). Cellular responses were assayed from lungs
as it is the primary site of influenza infection and replication. We
observed statistically significant increases in IFNy" CD8" effector
cells among isolated pulmocytes of animals immunized with
pVACC-NP™ alone, those co-immunized with pVACC-NP™
and pIL-12, or those immunized with the combination of
pVACC-NP™, pIL-12, and pHAM™' (Combo), as compared to
those receiving pVaxl (Figure 3E). We also observed statistically
significant increases in the frequency of CD1070'TFNy" effector
CD8" T cells among the pulmocytes of these mice as compared to
pVaxl-immunized controls (Figure 3F). In both the spleens and
lungs, the addition of pIL-12 to pVACC-NP™ trended toward
increased IFNY secretion compared to NP alone, but did not meet
statistical significance.
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Splenocytes stimulated with matched HA peptides
demonstrated increased effector function among all groups
receiving pHA™', however only animals receiving pHA™' alone
had statistically significant increases in frequencies of IFNY"
(Figure 3G) and CD1070.'IFNy" (Figure 3H) effector CD8" T
cells compared to those immunized with empty vector. Among
pulmocytes, we observed trends toward increased effector function
among all groups receiving pHA™' with statistically significant
increases in IFNy" (Figure 3I), and CD1070'TFNy" (Figure 3])
effector CD8" T cell frequencies of animals receiving pHA™" only,
compared to those immunized with empty vector. Mice receiving
pVACC-NP™ or pVACC-NP™ plus pIL-12 did not respond to HA
peptide stimulation, highlighting the specificity of these vaccines.
Lower responses were observed in the pHA™'+ pVACC-NP™
group, suggesting potential interference when both antigens are
co-delivered. Overall, these data suggest that combination delivery
of pVACC-NP* antigens with HA antigens can elicit robust NP-
directed cellular responses in both the periphery and mucosa.

3.5 Heterologous pVACC-NP"*® enhances
protective efficacy of the pHA™* DNA
vaccine against IAV HIN1pdmOQ9 challenge

In the DBA/2] mouse model, a single immunization with
pHA™" alone induces complete protection against morbidity and
mortality from a 10 LD5, homologous Ca09-X179A challenge (52).
At the higher challenge inoculum of 100 LDs, mice immunized
with 10 ug pHA™" are completely protected from death but display
significant weight loss before recovering (Supplementary Figures
S6A-C). However, animals receiving either 1 ug or 0.5 ug of pHA™
succumb to infection (Supplementary Figure S6B) and display
significant weight loss (Supplementary Figure S6C). This sub-
protective model was next used to evaluate the protective efficacy

P"3 and

following combination delivery of the pVACC-N
pHAHl vaccines.

DBA/2J mice were immunized once with 10pg pVACC-NP™
and 0.5ug of pIL-12, or 10ug of pHA™" and 0.5ug of pIL-12, or co-
immunized with a combination formulation of pHA™', pVACC-
NP™, and pIL-12 (Combo) (Figure 4A). Animals were challenged
fourteen days post-immunization with 100 LD5, Ca09-X179A.
Animals which received pVACC-NP™ and pIL-12 succumbed to
this lethal challenge by day 7, as did naive animals, however 100% of
mice which received pHA™ and pIL-12 or the combination vaccine
survived challenge (Figure 4B). All pHA™" and pIL-12 immunized
animals lost significant weight but survived challenge (100%).
Interestingly, only the Combo group afforded complete protection
from both mortality (Figure 4B) and morbidity as measured by
weight loss (Figure 4C). H&E staining revealed dense cellular
infiltrates in the lungs of naive and pVACC-NP™’-only
immunized mice (Figure 4D). pHA™'-only and combination-
immunized mouse lungs displayed more open airway space but
had intermediate cellular infiltration and modest evidence of
alveolar wall thickening (Figure 4D). When sections were stained
for NP antigen, naive animals had significant, dispersed NP antigen
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FIGURE 3

pVACC-NP* immunogens are amenable to co-delivery with HA immunogens and gene-encoded adjuvant plL-12. (A) C57BL/6J mice were immunized
once with one of the following formulations: 12.5ug of empty plasmid vector (pVax1); 10ug of pVACC-NP"® alone; pVACC-NP™ plus 0.5ug of plasmid-
encoded mouse IL-12 (+plL-12); 2ug of plasmid-encoded A/California/07/2009 HA (pHA™Y alone; pVACC-NP™ plus pHA™: or a combination of pHA™,
PVACC-NP"3, and plL-12 (Combo). Mice were euthanized fourteen days post-immunization for cellular analyses. (B) Gating strategy for intracellular
cytokine staining using IFNy" splenocytes as an example. Cytokine positive CD4* or CD8" T cells were gated from single/live/CD3"/CD62L"/CD44*
cells. IFNy* (C) and IFNy*CD107* effector CD8+ T cells (D) in spleens following stimulation with H3 NP peptides. IFNy* (E) and IFNy*CD107" effector
CD8+ T cells (F) in lungs following stimulation with H3 NP peptides. IFNy* (G) and IFNy*CD107" effector CD8+ T cells (H) in spleens following
stimulation with HIN1 HA peptides. IFNy" (1) and IFNy*CD107* effector CD8+ T cells (J) in lungs following stimulation with HIN1 HA peptides. Data are
representative of one independent experiment with n=5/group. Symbols represent individual animals, bars represent the group mean, and error bars
represent SD. *p<0.05, **p<0.01, ***p<0.001, ****P<0.0001 by Kruskal-Wallis ANOVA.
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HA and NP combination improves protection from IAV induced morbidity DBA/2J mice were immunized once with 10ug of pHA and 0.5ug of
plL-12, 10ug pVACC- NP "% and 10ug of pIL-12, or co-immunized with pHA™, pVACC-NP", and 0.5ug of IL-12 (Combo), and challenged with
100 LD50 Ca09-X179A virus 14 days later. Lungs were collected from 3 representative animals per group 6 days post-challenge and the
remaining animals were monitored daily (A). Survival probability (B). Body weight as percent of starting weight (C). H&E (D), and NP antigen-
stained (E) representative lungs from animals euthanized at day 6 post-challenge. Data are representative of two independent experiments with
n=10/group. Symbols represent group averages, bars represent SD (C). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by Dunnett's multiple

comparison (C), or Mantel-Cox Log-rank test (B).

staining (Figure 4E). pVACC-NP™-only immunized mouse lungs
exhibited dense NP antigen staining which was localized to the
alveolar spaces. In pHA™'-only immunized mouse lungs, NP
staining was faint and dispersed, whereas Combination-
immunized lungs display minimal NP positivity (Figure 4E).
Taken together, these data support that the combination delivery
of NP with HA antigens can improve challenge outcomes.

3.6 Inhibitory gene expression signatures
are detected in lun%s during infection in
mice receiving pHA™ or pVACC-NP"® DNA

vaccines

To evaluate the impact of DNA vaccination on host
transcription signatures, differential gene expression (DEG) in
naive, pHA™, and pVACC-NP™ vaccinated mice were profiled
by 3’'mRNA-Seq following infection with 10 LDs, Ca09-X179A. A
mock (uninfected) group receiving PBS alone was run in parallel
and included as control. Principal component analysis indicated
distinct clustering of the mock, naive, and vaccinated groups, with
both pHAM™!' and pVACC-NP™ co-localizing (Figure 5A). We
compared DEGs between mock animals and those that were
either naive (unvaccinated) (Figure 5B), immunized with pHAHl

Frontiers in Immunology

09

(Figure 5C), or immunized with pVACC—NPH3 (Figure 5D).
Compared with mock, DEG analysis of the naive group found 2,
538 genes downregulated (blue) and 3, 459 genes upregulated (red).
pHA™! analysis found 1, 511 genes downregulated and 1, 545 genes
upregulated. Finally, DEG analysis of pVACC-NP™ indicated 1,
666 genes down and 1, 525 genes upregulated. The top 20 DEGs in
total are displayed on each of the volcano plots. We next compared
DEG signatures for pHA™ (Figure 5E) and pVACC-NP™?
(Figure 5F) vaccinated mice with the naive (unvaccinated) group.
DEG analysis for pHA™! found 2, 088 downregulated genes and 1,
694 upregulated genes. Analysis for pVACC-NP™ found 2, 716
genes downregulated and 2, 301 genes upregulated. Again, the top
20 up and downregulated genes in total are highlighted for each
comparison. Influenza infection was associated with significant
increases in virus-associated and inflammatory gene signatures,
including CXC-motif chemokine ligand-10 or interferon gamma
induced protein-10 (CXCL10/IP-10), a well-characterized influenza
infection-induced inflammatory mediator (53-56). Importantly,
immunization with either pHA™' or pVACC-NP™ significantly
decreased CXCL-10 gene expression. For pV ACC-NP™ vaccinated
animals this decrease was statistically significant, and we
observed statistically significant increases in other inflammatory
mediators including CCL2 (57), CXCL-9 (54), and CCL7 (58).
Together with our challenge data, these results suggest that DNA
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FIGURE 5

Differential gene expression (DEG) analysis of pHA™ and pVACC-NP™® DNA vaccines during infection. Mice (DBA/2J) were immunized with one
dose of pHAM! or pVACC-NP™ and 14 days later, challenged with 10 LD50 of Ca09-X179A virus. Total RNA was extracted from FFPE scrolls of lung
harvested at day-6 post-infection. Control groups included mock (unvaccinated, uninfected) and naive (unvaccinated, infected). (A) PCA analysis of
all four groups. Volcano plots comparing infection versus mock are shown for (B) naive, (C) pHA"?, and (D) pVACC-N
vaccinated versus unvaccinated mice are shown for (E) pHA™, and (F) pVACC-NP"®. The top 10 upregulated and 10 downregulated genes are
highlighted for all volcano plots. (G) Ingenuity pathway analysis comparing significant gene signatures associated with viral infection, immune cells,
cytokines, and other pathways across all groups. Data representing pHA"! or pVACC-NP" are from one independent experiment with n=3/group.
Data representing naive and mock are from 2 independent experiments with n=3 and n=2 per group (total n=5/group).
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immunization with influenza antigens supports decreased
influenza-associated inflammation.

Pathway analysis identified the activation of pathways
associated with viral infection, immune cells, cytokines, cellular
pathways, and other pathways naive (unvaccinated, infected) group,
compared with the mock (unvaccinated, uninfected) control
animals (Figure 5G, Supplementary Figure S7). Very few
significant differences in DEG signatures based on p-value were
observed between pHAM™' or pVACC-NP™ vaccinated animals
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compared with the mock group and all had a false discovery rate
(FDR) >10% and low significance (Supplementary Figures S7B, C).
Analysis of pHA™' or pVACC-NP™ vaccinated signatures found
the converse, where pathways associated with viral infection,
immune cells, cytokines, and cellular pathways were overall
inhibited (Figure 5G, Supplementary Figures S8, S9). Overall,
these data highlight the protective impact of pHA™ or pVACC-
NP™® priming to control genes associated with response to
IAV infection.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1632121
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gary et al.

3.7 DNA-encoded VACC-NP* antigens
induce durable T cell responses in mice

To evaluate the longevity of pVACC-NP*-induced cellular
responses, C57BL/6] mice were immunized twice, separated by
three weeks with pVACC-NP™! alone, pV ACC-NP™ alone, or co-
immunized with each immunogen and plasmid-encoded IL-12
(+pIL-12) and rested for ~200 days (6 months) (Supplementary
Figure S10A). T cell responses were detected by IFNy ELISPOT assay
with the spleens and lungs of mice following immunization. At this
memory timepoint, significant anti-NP responses in the spleen and
lungs for both pVACC-NP™!' (Supplementary Figures S10B, D,
respectively) and pVACC-NP™ (Supplementary Figure S6C, E,
respectively) compared to naive controls. Co-delivery of pIL-12
demonstrated long-term enhancement of IFNY secretion in both

compartments compared with animals receiving pVACC-NpH!

(Supplementary Figures S10B, D, respectively) and pV ACC-NP™?
(Supplementary Figures S10C, E, respectively). These data indicate
that VACC-NP* DNA vaccines can elicit robust and long-lived
cellular responses in vivo and highlight the potent contribution of
molecular adjuvant pIL-12 to enhancing cellular immunity at acute

and memory timepoints post-vaccination.

4 Discussion

Conventional seasonal influenza vaccines induce antibodies
primarily directed against the surface HA glycoprotein. This
protection is most optimal against matched and minimally mutated
strains, with hemagglutination inhibition (HAI) titers >1:40
associated with protection in 50% of people (59, 60). Even
moderate antigenic drift can dramatically reduce vaccine
effectiveness of traditional inactivated and LAIV vaccines (61, 62).
In parallel, cellular immune responses inducing both CD4" and CD8"*
T cell responses can provide important early protection (63, 64) and
TAV clearance [reviewed in (65) and (66)] including correlating with
decreased recovery time (67). Therefore, directing immune responses
to highly conserved internal antigens could be a viable approach to
supplement anti-HA directed antibodies with anti-IAV targeting
cellular responses. Of these internal antigens, the conserved IAV
NP is an attractive target for broad and universal influenza strategies
(16-19) and, in humans, anti-NP cytotoxic T lymphocyte responses
can reduce pathogenesis and confer important heterosubtypic
protection (68). Here, we describe the design and immunogenicity
of two new synthetic NP immunogens guided by the genetic
sequences obtained from the seasonal IAV-HINI and IAV-H3N2
WHO-recommended vaccine strains. Our data demonstrates the
ability of single NP DNA immunization to rapidly to protect
against mortality in a Ca09-X179A challenge model and further
shows additive activity in combination with a pHA™ DNA vaccine,
achieving full protection when administered only two weeks before
lethal challenge.

Synthetic NP immunogens have been evaluated in various
platforms including DNA (69-71), mRNA (72, 73), and viral
vector-based platforms such as adenovirus (74) and modified
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vaccinia Ankara (MVA) (75, 76) vectors. In addition to strain-
matched designs, approaches to targeting IAV-NP include CD8" T
cell epitope-based strains and oligomerized forms (77, 78). Here, we
designed a synthetic consensus immunogen with the goal of
inducing broadly protective cellular responses. This vaccine-
aligned common consensus approach, or VACC, leverages our
synthetic-consensus (SynCon) approach (79-83) to generate
single NP immunogens representing conserved features of the
IAV-NP"" and proteins. The number of sequenced circulating
influenza strains has dramatically increased with advancements in
sequencing technologies and one approach for immunogen design
is to computationally align thousands of TAV NP sequences to
generate a single sequence (84). Alternatively, the pVACC approach
focuses specifically on vaccine strains; Since the 1970s, the
WHO has provided recommendations for the composition of
seasonal influenza vaccines. This requires yearly surveillance
involving analysis of clinical specimens, disease burden, and
epidemiological data to understand representative viruses in the
human population and their distribution by country and region
(85). The selected vaccine viruses could therefore be considered as
representative of the diversity of major influenza viruses circulating
in the human population in a current year. Using this as a guide, the
VACC-NP* candidates therefore encompass yearly NP variation.
Although fewer sequences are aligned, the VACC approach reduces
bias from sequence variability and quality. Supporting our
approach, vaccination with these de novo DNA immunogens
induced strong T cell responses in the spleen and lungs and
protected against lethal Ca09-X179A challenge in mice.

Both pVACC-NP™' and pVACC-NP™ elicited robust T cell
responses that were durable in mice and our data show the
protective potency of targeting the IAV-NP, achieving single dose
protection 14 days following delivery in mice. Interestingly,
although both VACC-NP constructs protected against death, we
observed interesting superior prevention of IAV-associated
pathogenesis in the lungs of DBA/2] mice immunized with the
heterologous pVACC-NP'™ DNA vaccine. In our studies, the Ca09-
X179A challenge virus contains the internal proteins including NP
from A/Puerto Rico/8/1934 (PR8). The HIN1pdmO09 triple
reassortant event, resulted in introduction of a classical swine NP,
resulting in the PR8-NP being 8.7% different in sequence to Ca09.
Interestingly, the synthetic VACC-NP™® design is almost
equidistant, with 9.0% different from the PR8-NP and 10.7%
from Ca09, respectively (Supplementary Figure S11). Further
studies with mouse-adapted IAV and different mouse strains
could provide additional input into this heterologous protection.
pVACC-NP™ displayed better in vivo immunogenicity in both
spleen and lungs. In other work, we have demonstrated the
importance of nucleotide and amino acid changes towards in vivo
expression (86, 87) and it is possible that this could contribute to the
difference in immunogenicity observed between these constructs.

While NP generates a robust cytotoxic T lymphocyte (CTL)
response and can potentially contribute to humoral immunity (88),
it remains likely that an HA immunogen component will be
essential in IAV vaccine formulations to provide robust antibody-
mediated protection. We evaluated the inclusion of pIL-12 in NP-
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only and HA+NP formulations in these studies. Addition of pIL-12
to NP-only formulations led to trends toward increased NP-specific
T cell responses. This pattern of increased NP-specific T cell
responses was also observed when pIL-12 was added to the
combination of pVACC-NP™ and pHA™'. However, for HA-
specific T cell responses, only groups receiving pHA™' generated
HA-specific cellular responses. The generation of T cell responses
against both HA and NP peptides highlights the potential for both
antigens to be co-administered, at least in mice. Importantly, mice
immunized with a suboptimal dose of pHA™ or pVACC-NP™?
alone did not achieve complete protection. However, pHA™" plus
pVACC-NP™ co-immunized animals were completely protected
from morbidity and mortality. These data indicate that pVACC-
NP™, and indeed other NP immunogens, can play a role to
complement HA-based vaccine-induced immunity. Additional
studies dissecting this synergy, likely due to T cell immunity,
would be interesting and evaluation in mice and larger models
would be informative for dose titration and combination studies.
Interestingly, we observed lower T cell responses when both pHA™!
plus pVACC-NP™ were co-delivered, consistent with potential
interference which could impede immune responses. Although
protective in the DBA/2] mouse model, further studies dissecting
immune responses associated with HA and NP antigen
combination will be important to understanding the impact of
this decreased immunogenicity.

One possible limitation of our approach is the focus on human
seasonal TAV-HI1 and TAV-H3. As highlighted, the current
circulating human IAV-H3 viruses have varied minimally over
the past 20 years (<1.1%). In 2009, the introduction of the
reassortant A/HIN1pdm09 swine flu viruses into the human
population resulted in the introduction of a classical swine HIN1
NP into humans (45, 46), a significant antigenic shift (>10%). We
therefore focused the VACC-NP"!' design based on post-
HIN1pdm09 viruses. To further address major antigenic shift
events, additional consideration of animal (for example swine) H1
and H3 circulating strains would be valuable. Although there is no
global body selecting vaccine strains for animals, similar
surveillance of strains circulating in animals is being undertaken
by various agencies such as the United States and European Centers
for Disease Control (CDC) and others, alerting to emerging
influenza strains with potential for zoonotic crossover into
humans. Yearly monitoring and selection of predominantly
circulating animal IAV would be valuable for narrowing down
and selecting strains for inclusion in immunogen design. Such
animal TAV-H1 and TAV-H3 NP immunogens could be
incorporated as multivalent combinations to elicit broader cellular
immune responses against potential emerging viruses.

It should be emphasized, that our study demonstrates the
potency of pVACC candidates to rapidly induce protective
immune responses with a single immunization, achieving
protection against a 10 LD50 challenge within only 14 days with
immunogens designed to elicit primarily T cell responses. These
data are further supported by transcriptomic analysis identifying
genes and pathways associated with inhibitory control of viral
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infection and inflammation in pHA™' or pVACC-NP™?
vaccinated mice. These include inhibition of genes associated with
innate immune cell activation, cross-talk, and lymphocyte
activation and indicative of vaccine-related immune priming to
control infection. Further, we show that the NP> immunogen can
adjuvant the pHA™' vaccine in a more stringent 100 LD50
challenge model. Our approach to generating synthetically
designed NP antigens based on yearly vaccine strains can be
broadly applied to other highly conserved influenza internal
proteins with potential to generate robust protective CTL
responses. Additional studies evaluating protective efficacy in
H3N2 challenges and other heterologous subtypes would be
valuable. Further studies evaluating protective efficacy at later
time points following maturation of the immune response and
the inclusion of prime-boost regimens will also be valuable. The NP
antigen co-delivery has potential to enhance various vaccine
platofmrs and further study with commercially available, seasonal
HA-based vaccine regimens and other delivery platforms would be
insightful. In summary, these data support the incorporation of the
VACC design approach for continued development of broad and

efficacious influenza interventions.
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SUPPLEMENTARY TABLE 1

Influenza NP peptides and pools for ICS and ELISpot assays. (A) pVACC-NPH1
peptides and pools. (B) pVACC-NPH3 peptides and pools. (C) Peptide matrix
pool design schematic.

SUPPLEMENTARY TABLE 2
Ingenuity Pathway analysis of naive versus mock mice.

SUPPLEMENTARY TABLE 3
Ingenuity Pathway analysis of pHA™ versus mock mice.

SUPPLEMENTARY TABLE 4
Ingenuity Pathway analysis of pVACC-NP™® versus mock mice.

SUPPLEMENTARY TABLE 5
Ingenuity Pathway analysis of pHA”1 versus naive mice.

SUPPLEMENTARY TABLE 6

Ingenuity Pathway analysis of pVACC-NPH®

versus naive mice
SUPPLEMENTARY FIGURE 1

(A)The HIN1 and H3N2 vaccine strains included in the generation of the
vaccine pVACC-NPH and pVACC-NP™, (B) A phylogenetic tree

SUPPLEMENTARY FIGURE 2

Multiple sequence alignment of NP proteins of seasonal A/HIN1 vaccine
strains, performed in Geneious Prime. Dots represent complete identity of the
residue in all the sequences. The green bar on top represents the level of
conservation of the residues between strains, deep green indicates most
conserved, yellow indicates a poorly conserved position.

SUPPLEMENTARY FIGURE 3

Multiple sequence alignment of NP proteins of seasonal A/H3N2 vaccine
strains, performed in Geneious Prime. Dots represent complete identity of the
residue in all the sequences. The green bar on top represents the level of
conservation of the residues between strains, deep green indicates most
conserved, yellow indicates a poorly conserved position.

SUPPLEMENTARY FIGURE 4

A 2-injection regimen of VACC-N induces robust immune responses in
C57BL/6J mice. C57BL/6J mice were immunized with 10ug or 25ug of
PVACC-NP"™3 plasmid at a 21-day interval and euthanized seven days post-

PH3
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immunization for cellular analyses (A). IFNy spot-forming units (SFUs) in
spleens following stimulation with H3NP peptides (n=5 mice per group) (B).

SUPPLEMENTARY FIGURE 5

Identification of pVACC-NPX immunodominant T cell epitopes. (A) C57BL/6J mice
were immunized twice, separated by three weeks with 10ug of pVACC- NP*. Matrix
peptide pools were used to stimulate isolated splenocytes. (B) HIN1-NP specific
IFNy secretion as measured by ELISpot. (C) Identified HIN1-NP immunodominant
peptides. (D) H3N2-NP specific IFNy secretion as measured by ELISpot. (E)
Identified H3N2-NP immunodominant peptides. Data are representative of one
experiment with n=5/group. Symbols represent the average of duplicate assays
per animal, bars represent group mean, error bars represent SEM.

SUPPLEMENTARY FIGURE 6

pHAMLis sub-protective in high-dose IAV challenge: (A) Immunofluorescence
staining of HEK293T cells transfected with pHAy; plasmid and stained for IAV-
NP. (B) Mice were immunized once with 10ug, 1ug, or 0.5ug of plasmid-
encoded A/California/07/2009 HA (pHA™) and challenged with 100 LD50 of
Ca09-X179A virus fourteen days later. (C) Survival probability. (D) Body
weights as percent of starting weight. Data are representative of one
experiment with n=10/group. Symbols represent group mean, error bars
represent SD. ***p<0.001, ****p<0.0001 Mantel-Cox Log-rank test (C) ns =
not significant by Dunnett's multiple comparison test (D).

SUPPLEMENTARY FIGURE 7

VACC-NP*immunogens induce robust and durable cellular responses in vivo.
(A) Female C57BL/6J mice were immunized twice separated by three weeks
and mice were rested for 200 days (six months) with 10 ug of pVACC-NP™* or
pVACC-NP™® alone, or co-immunized with pVACC-NP* and 0.5ug of
plasmid-encoded IL-12 (+plL-12). (B) NP™-specific IFNy spot-forming units
(SFU) in spleens and (D) lungs. (C) NPH-specific IFNy spot-forming units (SFU)
in spleens (E) and lungs. Data are representative of one experiment with n=5/
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