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Sudden fluctuations in environmental temperatures are primarily caused by
climate change. Aquatic organisms such as shrimp are poikilothermic animals,
making them highly vulnerable to rising water temperatures, which can trigger
stress responses and reduce aquaculture productivity. Hepatopancreas is of vital
importance to the immunity, metabolism and detoxification of shrimp. In this
study, the shrimp Litopenaeus vannamei were continuously exposed to high
temperature (HT) stress at 33 °C for 7 days, and the hepatopancreatic
histopathology, immune-related indexes, and metabolite patterns were
explored. The results showed that HT stress caused abnormal morphological
changes in the hepatopancreas of the shrimp, with the hepatic tubules becoming
twisted, atrophied, and even ruptured and autolyzed. At the molecular level,
stress-related indexes, such as Nrf2, GPx, and HSP70 genes expression were
increased, while SOD and HSP90 genes were decreased; immune-related
indexes, such as ALF, Crus, and proPO genes expression were increased,
whereas Pen3 gene was decreased; inflammation-related genes (JNK and
TNFo) and apoptosis-related genes (Casp9 and Casp3) expression were
increased; autophagy-related indexes, such as Atg3, Atgl6, and Beclinl genes
expression were increased. Furthermore, HT stress caused the alterations in the
metabolic patterns of the hepatopancreas, such as amino acid biosynthesis and
metabolism, pentose and glucuronate interconversions, pantothenate and CoA
biosynthesis, pyrimidine metabolism, and glycerophospholipid metabolism.
Functional metabolites, such as tryptophan, arachidonic acid, cinnamic acid
derivatives, vitamins, etc., were identified as biomarker candidates. The results
revealed that HT stress induced comprehensive histomorphological and
functional impairments in the hepatopancreas of L. vannamei through a
cascade of oxidative damage, immune dysregulation, and metabolic disturbance.
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1 Introduction

Pacific white shrimp Litopenaeus vannamei is one of the most
widely cultivated shrimp species globally, which is critical for
securing high-quality animal protein supplies and promoting the
fishery economy (1). The global aquaculture production of L.
vannamei exceeded 4.5 million tons in 2023, with China
accounting for over 2.2 million tons. Shrimp are poikilothermic
animals, highly susceptible to water temperature fluctuations. Both
elevated and reduced temperatures can have significant impacts on
shrimp, reducing their survival rate. Under the background of
global warming, extreme high temperature (HT) events are
becoming increasingly frequent, posing a huge challenge to the
aquaculture industry (2, 3). In tropical and subtropical shrimp
farming areas, the water temperature in summer usually exceeds 32
°C in shrimp ponds (4-6), sometimes reaching as high as 34 °C (7-
9). HT stress can disrupt the physiological balance of shrimp as
ectothermic animals, leading to metabolic disorders, weakened
immunity, stunted growth, and even mass mortality, which
seriously threatens shrimp farming and causes economic losses
(10-14). Therefore, exploring the physiological responses of shrimp
to HT stress is conducive to formulating anti-stress strategies.

HT stress has been shown to adversely impact shrimp, mainly
focusing on inducing stress responses and disrupting immune
homeostasis. For instance, HT stress can trigger oxidative stress
responses in shrimp, leading to the accumulation of reactive oxygen
species (ROS) and altering the activity of antioxidant enzymes (15,
16). HT stress can induce the up-regulation of heat shock protein
(HSPs) gene expression in L. vannamei, including HSP60, HSP70,
and HSP90 (17, 18). Furthermore, HT stress can also disrupt the
immune homeostasis of L. vannamei by affecting hemolymph
osmolality, total hemocyte count (THC), and phenoloxidase
activity (19). Additionally, HT stress compromises intestinal
health of L. vannamei by damaging mucosal morphology, altering
immune parameters, and inducing microbial community variations
(1, 20).

HT stress also exerts notable impacts on shrimp metabolic
processes. For instance, previous studies have demonstrated that
HT stress influences glucose metabolism in the gills of L. vannamei,
promoting a shift toward anaerobic carbohydrate utilization (21).
Additionally, HT stress alters hemolymph glucose levels in L.
vannamei, while having no significant impact on cholesterol,
acylglycerol, or total protein contents (21). Metabolomic analyses
further reveal that acute HT stress (33 °C) induces substantial
metabolic alterations in the hemolymph of L. vannamei,
particularly in the metabolism of “arachidonic acid”,
“phenylalanine” and “alanine, aspartate and glutamate”, as well as
in the biosynthesis of “phenylalanine, tyrosine and tryptophan” (1).
Although numerous studies have explored the negative impacts of
HT stress on shrimp health, the research remains insufficiently in-
depth, lacking investigations into the mechanisms at different
biological levels. A more comprehensive investigation is needed to
elucidate the underlying mechanisms across multiple
biological levels.
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The hepatopancreas, as an important immune and metabolic
organ of the shrimp, plays a key role in responding to
environmental stress. In this study, we aim to systematically
explore the effects of HT stress on the physiological functions in
the hepatopancreas of L. vannamei by integrating immune
indicators and metabonomics. Firstly, the morphological changes
of the hepatopancreas were explored. Then, the characteristics of
immune responses were analyzed based on the indicators related to
stress, antibacterial, inflammation, apoptosis and autophagy.
Finally, the metabolic pathways and potential metabolite markers
were identified based on metabonomics methods. These results
indicated that HT stress damaged the hepatopancreas structure and
function of the shrimp via oxidative, immune, and metabolic
disruption, which can provide insights for understanding HT
stress adaptation and developing HT-resistant aquaculture
strategies in shrimp.

2 Materials and methods
2.1 Shrimp and their rearing conditions

The shrimp L. vannamei used in this study were procured from
an indoor shrimp pond in Shenzhen (China), with an average body
weight of 6.3 £ 0.5 g. These shrimp had undergone strict pathogen
detection, were specific pathogen-free, and had normal appearances
without clinical symptoms of diseases. Before the HT stress
exposure experiment, the shrimp individuals were acclimated for
7 days in tanks holding 300 L of aerated seawater. The rearing
conditions were maintained through continuous water aeration and
daily water exchange to ensure optimal water quality for shrimp
culture, including a stable temperature of 28 + 0.2 °C, pH 8.1-8.2,
and salinity 30. The shrimp were fed commercial compound feed
twice daily, with the feces and uneaten residues promptly removed
from the tanks to maintain water cleanliness.

2.2 HT stress experiment and sampling

In this study, 33 °C was selected as the experimental
temperature for HT stress exposure, based on actual shrimp
farming practices in tropical and subtropical regions, as well as
the previous research reports on high-temperature stress in shrimp
(1, 20). After a 7-day acclimation period in tanks, the shrimp were
randomly divided into two groups: a control (CK) group and a HT
group. Each group consisted of three replicate tanks, with each tank
containing 300 L of seawater and 50 shrimp. The CK group was
maintained in normal seawater at a constant temperature of 28 +
0.2 °C. For the HT group, the water temperature was set at 33 °C. A
constant-temperature heater was used to gradually increase the
temperature from 28 °C to 33 °C at a rate of 1 °C per hour, then
maintained at constant temperature. Each tank’s water was changed
daily. Prior to water exchange, we preheated the water to 33 °C in
advance and then replaced the water in all the tanks of the HT
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group, thus preventing fluctuations in water temperature. All the
rearing conditions except temperature were maintained
consistently between the acclimation and experimental phases,
with stable parameters of pH 8.1-8.2 and salinity 30. During the
stress experiment, the shrimp were fed twice daily, with the feces
and uneaten feed removed from the tank promptly.

After 7 days of stress, the hepatopancreas samples were
collected randomly for analysis. Since shrimp are aquatic
invertebrates with considerable individual variations, to reduce
the differences among individuals, the hepatopancreas from five
shrimp per tank were pooled and stored in RNAFollow solution for
the mRNA expression analysis. For metabolomics analysis, two
samples were collected from each tank, with each sample consisting
of a mixture of the hepatopancreases from five shrimp, meaning
there were six samples per group. Additionally, the hepatopancreas
from three shrimp per tank was sampled for the
histomorphological analysis.

2.3 Histomorphological analysis

Hepatopancreas samples were fixed in 4% paraformaldehyde
for 24 h. After rinsing with running water for 30 min, the tissues
were dehydrated through a series of ethanol solutions (70%, 80%,
90%, and 100%), washed with xylene, embedded in paraffin, and
sectioned into 4 um slices using a microtome (Leica RM2016,
Shanghai). Following Hematoxylin and Eosin (H&E) staining, the
sections were examined under a microscope (Nikon, Tokyo, Japan).

2.4 Gene expression analysis

Total RNA was isolated from the hepatopancreas samples using
TRIzol reagent (Invitrogen, USA). Following the removal of
genomic DNA and the purification of the RNA, cDNA synthesis
was performed from the RNA using the Servicebio RT First-Strand
c¢DNA Synthesis Kit (Wuhan, China). Real-time quantitative PCR
(qPCR) was carried out with the SGExcel Fast SYBR qPCR Mix Kit
(Sangon Biotech, China) on a Heal Force CG-02 qPCR system
(Shanghai, China). The -actin served as the reference gene, and the
specific QPCR primer sequences are listed in Supplementary Table
S1. Each sample underwent four technical replicates in the qQPCR
analysis. Relative mRNA expression levels of the target genes were
calculated according to the method described by Livak and
Schmittgen (22), presented as fold-changes relative to the
CK group.

2.5 Non-targeted metabolomics analysis
Six hepatopancreas biological replicate samples per group were
subjected to metabolomics analysis. After the pre-treatment of the

hepatopancreas samples, the metabolites were extracted using a
solution of methanol/chloroform and 2-chlorophenylalanine.
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Subsequently, the samples were detected by liquid chromatography-
tandem mass spectrometry (LC-MS/MS). The liquid
chromatography analysis was carried out on a Thermo Ultimate
3000 system, employing an ACQUITY UPLC HSS T3 (150 x 2.1
mm, 1.8 um, Waters) chromatographic column. Mass spectrometry
analysis was performed using a Thermo Q Exactive mass
spectrometer. Data-dependent acquisition (DDA) MS/MS
experiments were conducted using high-energy collision
dissociation scans. To enhance data quality, dynamic exclusion
was applied to filter out redundant information from the MS/MS
spectra, ensuring the acquisition of highly relevant and
accurate data.

Following the quality control, the metabonomic data were
analyzed via partial least squares discriminant analysis (PLS-DA)
to identify differential metabolites between the HT vs CK groups.
Significance criteria were set as P < 0.05 and variable importance in
projection (VIP) > 1.0. Agglomerative hierarchical clustering of the
differential metabolites was performed using the pheatmap package
in R software (v3.3.2). KEGG pathway annotation of differential
metabolites was conducted using MetaboAnalyst software
(www.metaboanalyst.ca), with subsequent analysis of metabolic
pathways and interaction networks. Based on existing literature
reports, we focused specifically on the differential metabolites with
physiological and health-regulating functions, regarding them as
potential biomarkers, and systematically analyzed their
variation characteristics.

2.6 Statistical analysis

All the gene expression data were expressed as mean + standard
error (SE), and subjected to statistical analysis using one-way
ANOVA with SPSS 27.0 software. A P-value < 0.05 was
considered to denote statistical significance.

3 Results

3.1 Histomorphological changes of the
hepatopancreas

In the CK group, the hepatopancreatic tubules of the shrimp
hepatopancreas showed relatively normal morphology, with tight
connections and distinct star-shaped lumens (Figures la, b).
However, in the HT group, the hepatopancreas exhibited
abnormal morphological changes, such as irregular star-shaped
structures of the hepatopancreatic tubules, which were twisted,
atrophied, and detached from the basement membrane; some
hepatopancreatic tubules even showed rupture and autolysis
(Figures 1c, d). In the HT group, the diameter of hepatic tubules
was significantly higher than that in the CK group (P < 0.05), while
the lumen diameter showed a slight increase with no significant
difference (P > 0.05) (Supplementary Figure S1), and the
degeneration index reaching over 63%.
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FIGURE 1

The alterations of the histological structure of the L. vannamei hepatopancreas after HT stress. (a, b) the CK group; (c, d) the HT group. (a, c) 200 Xx;
(b, d) 400 x. A black box indicates the lumen; a black circle indicates a damaged hepatic tubule.

3.2 Changes in hepatopancreatic stress
response indices

Compared with the CK group, oxidative stress related indices,
such as the relative mRNA expression levels of nuclear factor
erythroid-derived 2-like 2 (Nrf2) and glutathione peroxidase
(GPx) genes were significantly increased in the HT group (P <
0.05), while the expression of copper zinc superoxide dismutase
(SOD) gene was significantly decreased (P < 0.05); stress related
proteins, such as the relative mRNA expression levels of HSP70
gene was significantly increased in the HT group (P < 0.05), while
the expression of HSP90 gene was slightly decreased with no
statistical significance (P > 0.05) (Figure 2).

3.3 Changes in hepatopancreatic
immunological indices

Compared with the CK group, immune related indices, such as
the relative mRNA expression levels of anti-lipopolysaccharide
factor AV-K (ALF), crustin (Crus), and prophenoloxidase
(proPO) genes were significantly increased in the HT group (P <
0.05), while the expression of penaeidin 3a (Pen3) gene was
significantly decreased (P < 0.05); the expression of lysozyme
(Lys) gene was slightly decreased with no statistical significance
(P > 0.05) (Figure 3).
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3.4 Changes in hepatopancreatic
inflammatory and apoptotic indices

Compared with the CK group, inflammatory related indices,
such as the relative mRNA expression levels of c-Jun amino-
terminal kinase (JNK) and tumor necrosis factor-o. (TNFc) genes
were significantly increased in the HT group (P < 0.05), while the
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FIGURE 2

The alterations of the stress-related genes expression in the L.
vannamei hepatopancreas after HT stress. The asterisk on the error
bar show significant differences (*P < 0.05, **P < 0.01, ***P < 0.001).
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FIGURE 3

The alterations of the antibacterial-related genes expression in the L.
vannamei hepatopancreas after HT stress. The asterisk on the error
bar show significant differences (*P < 0.05, **P < 0.01, ***P < 0.001).

expression of nuclear factor kappa-B (NF-xB) gene was slightly
increased with no statistical significance (P > 0.05); apoptosis
related indices, such as the relative mRNA expression levels of
caspase-9 (Casp9) and caspase-3 (Casp3) genes were significantly
increased (P < 0.05) in the HT group (Figure 4).

3.5 Changes in hepatopancreatic
autophagic indices

Compared with the CK group, autophagic related indices, such
as the relative mRNA expression levels of autophagy-related protein
3 (Atg3), autophagy-related protein 16 (Atgl6), and Beclinl genes
were significantly increased in the HT group (P < 0.05), while the
expression of autophagy-related protein 12 (Atgl2) and heat shock
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FIGURE 4

The alterations of the inflammation and apoptosis-related genes
expression in the L. vannamei hepatopancreas after HT stress.

The asterisk on the error bar show significant differences (*P < 0.05,
***P < 0.001).
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cognate 70 (Hsc70) genes was slightly increased with no statistical
significance (P > 0.05) (Figure 5).

3.6 Changes in hepatopancreatic
metabolic patterns

3.6.1 Functional analysis of differential
metabolites

The changes of metabolites in the hepatopancreas under HT stress
were further analyzed (Figure 6a). Based on the multivariate statistical
analysis of PLS-DA, there were obvious differences in the metabolic
patterns between the HT and CK group (Figures 6b-d). Compared
with the CK group, a total of 65 differential metabolites were identified
in the HT group, including 52 up-regulated metabolites and 13 down-
regulated metabolites (Supplementary Figure S2).

The pathways involved in these differential metabolites were
further analyzed. A total of 36 pathways were enriched, among
them, “arginine and proline metabolism”, “valine, leucine and
isoleucine biosynthesis”, “tryptophan metabolism”, “alanine,

» o«

aspartate and glutamate metabolism”, “pentose and glucuronate

«

interconversions”, “pantothenate and CoA biosynthesis”,

» o«

“pyrimidine metabolism”, “glycerophospholipid metabolism” were
highly enriched functions (Figure 7a).

The network relationships among these highly enriched
pathways were explored (Figure 8a). Of these, the pathway
“arginine and proline metabolism” was correlated with “alanine,
aspartate and glutamate metabolism” through the metabolite
argininosuccinic acid (C03406); the pathway “aminoacyl-tRNA
biosynthesis” was correlated with “tryptophan metabolism” and
“cysteine and methionine metabolism” through the metabolites L-
tryptophan (C00078) and L-methionine (C00073) respectively; the
pathway “pyrimidine metabolism” was correlated with
“pantothenate and CoA biosynthesis” through the metabolite
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FIGURE 5

The alterations of the autophagy-related genes expression in the L.
vannamei hepatopancreas after HT stress. The asterisk on the error
bar show significant differences (*P < 0.05).
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dihydrouracil (C00429); the pathway “pantothenate and CoA
biosynthesis”, “valine, leucine and isoleucine biosynthesis”,
“alanine, aspartate and glutamate metabolism”, and “aminoacyl-
tRNA biosynthesis” were correlated with each other through the
metabolite L-valine (C00183). Furthermore, Based on the
metabolomics-FELLA enrichment analysis, there was a high
degree of correlation among the pathways “glycine, serine and
threonine metabolism”, “arginine and proline metabolism”, and
“cysteine and methionine metabolism” (Figure 8b).

3.6.2 The change characteristics of differential
metabolite markers

Several differential metabolite markers were rigorously screened
(Figure 7b, Table 1). Among the three carbohydrate and derivatives,
succinic acid and L-lactic acid were increased, but o-D-glucose was
decreased. Among the eleven amino acid and derivatives, 2-
oxoarginine, L-valine, L-methionine, L-tryptophan, indole, 5-
hydroxyindoleacetic acid and saccharopine were increased, but
phosphohydroxypyruvic acid, argininosuccinic acid, kynurenic acid
and imidazoleacetic acid were decreased. Among the eight lipid and
derivatives, lipoxin A4, 12-keto-leukotriene B4, citicoline, 2-
hydroxybutyric acid, and lanosterin were increased, but
glycerophosphocholine, oleic acid, and 13(S)-HpOTrE were
decreased; of the four cofactors and vitamins, folic acid, dethiobiotin
and pyridoxal phosphate were increased, but retinol was decreased.
Among the three organic acids and derivatives, trans-cinnamate, 2-
hydroxycinnamic acid, and subaphylline were increased.

4 Discussion

During summer’s high-temperature seasons, the frequent stress
problems in farmed shrimp have emerged as a critical constraint to
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aquaculture success. The physiological homeostasis of the shrimp
organs is crucial for their defense against environmental stress, and
the prerequisite for this is the integrity of histological morphology.
Liao et al. reported that when L. vannamei is subjected to acute HT
stress, the tissue morphology of the hepatopancreas exhibits
significant damage (23). Such phenomena are also observed in
this study, which will inevitably disrupt the physiological
homeostasis of the shrimp hepatopancreas.

Oxidative stress serves as one of the key mechanisms contributing
to the impacts of environmental stress on shrimp (24). As a key
transcription factor, the Nrf2 regulates the gene expression of
antioxidant enzymes (such as SOD and GPx) by binding to
antioxidant response elements, thus playing a central regulatory role
in safeguarding organisms against oxidative stress (25). HSP70 is a
functional protein that can defend against oxidative stress (26). In this
study, after HT stress, the expressions of Nrf2, GPx, and HSP70 genes
were increased in the hepatopancreas of the shrimp, while the
expressions of SOD and HSP90 genes were decreased. These findings
indicated that HT stress triggered intracellular ROS accumulation,
leading to oxidative stress in the hepatopancreas. The upregulation of
the Nrf2/GPx signaling likely represented the organism’s primary
defensive strategy against oxidative stress, while the downregulation
of SOD might reflect stress-induced suppression of its expression. The
HSP70 and HSP90 genes exhibited differential expression patterns,
suggesting that the organism preferentially activated HSP70 to mount a
rapid stress response, while the downregulation of HSP90 likely
reflected resource reallocation under energy-limiting conditions.

Oxidative stress can induce autophagy via multiple signaling,
which clears the organelles and proteins damaged by oxidative
stress for intracellular stability (27). Autophagy-related genes (such
as Atg3, Atgl2 and Atgl6) and Beclinl play a crucial role in the
autophagy process (28). Hsc70 drives chaperone-mediated
autophagy by transporting substrate proteins to lysosomes for
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TABLE 1 The potential metabolite biomarkers in the L. vannamei
hepatopancreas after HT stress.

Metabolites

Categories

o-D-glucose -0.87 1.32 | Carbohydrate and derivatives
Succinic acid 2.14 1.41 | Carbohydrate and derivatives
L-lactic acid 2.17 1.42 | Carbohydrate and derivatives
:;ZSP hohydroxypyruvie -1.52 1.28 | Amino acid and derivatives
Argininosuccinic acid -0.59 1.39 | Amino acid and derivatives
2-oxoarginine 1.24 130 | Amino acid and derivatives
L-valine 1.13 131 | Amino acid and derivatives
L-methionine 1.22 1.66 | Amino acid and derivatives
L-tryptophan 1.69 1.33 | Amino acid and derivatives
Indole 0.85 1.44 | Amino acid and derivatives
i;?;fdroxyindoleacetic 0.31 1.52 | Amino acid and derivatives
Kynurenic acid -0.98 142 Amino acid and derivatives
Saccharopine 3.38 1.38 | Amino acid and derivatives
Imidazoleacetic acid -1.82 1.92 | Amino acid and derivatives
Lipoxin A4 1.47 1.39 | Lipid and derivatives
12-keto-leukotriene B4 1.77 1.65 | Lipid and derivatives
Glycerophosphocholine -1.41 1.34 | Lipid and derivatives
Citicoline 1.60 147 | Lipid and derivatives

Oleic acid -0.78 1.43 | Lipid and derivatives
2-hydroxybutyric acid 1.49 1.43 | Lipid and derivatives
Lanosterin 1.04 130 | Lipid and derivatives
13(S)-HpOTrE -1.17 1.51 Lipid and derivatives

Folic acid 0.80 1.35 | Cofactors and Vitamins
Retinol -0.62 1.59 | Cofactors and Vitamins
Dethiobiotin 225 1.34 | Cofactors and Vitamins
Pyridoxal phosphate 0.23 135 | Cofactors and Vitamins
Trans-cinnamate 1.99 1.87 | Organic acids and derivatives
2-hydroxycinnamic acid | 2.19 1.50 | Organic acids and derivatives
Subaphylline 1.78 1.33 | Organic acids and derivatives

degradation (29). In this study, after HT stress, the expressions of
Atg3, Atgl6 and Beclinl genes were significantly upregulated, and
the expressions of AtgI2 and Hsc70 genes also tended to be
upregulated, indicating that the autophagy of hepatopancreatic
cells in the shrimp was activated in response to the stress.
Environmental stress can affect the immune defense ability of
aquatic animals. As an important component of the shrimp
immune system, antimicrobial peptides can enhance the stress
resistance of shrimp (30). The prophenoloxidase system
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participates in the melanization immune response in shrimp (31).
In this study, HT stress induced the upregulation of ALF and Crus
in the hepatopancreas of the shrimp, which could enhance
immunity to cope with the damage caused by stress; the high
expression of proPO was beneficial to tissue damage repair and the
formation of a protective barrier. In contrast, the downregulation of
Pen3 and Lys reflected the selective allocation of immune resources,
which might be due to the adaptive inhibition of their synthesis as
energy was prioritized to ensure basic activities under HT stress.
TNF-a, as an inflammatory mediator, can activate the JNK and NF-
KB signalings, promote the expression of inflammation-related
genes, and trigger an inflammatory response (32, 33). In this
study, the upregulation of JNK, NF-kB and TNF« genes indicated
that HT stress induced an inflammatory response in the
hepatopancreas of the shrimp. The JNK signaling can activate the
apoptotic factors Casp9 and Casp3 through various mechanisms,
thereby inducing apoptosis (33, 34). In this study, the upregulation
of Casp9 and Casp3 genes indicated that the apoptosis of the shrimp
hepatopancreas was activated to cope with HT stress.

Metabolomics can quickly identify the physiological changes
occurring in an organism by analyzing the alterations of
metabolites. In this study, HT stress affected the metabolic function
of the shrimp hepatopancreas, especially amino acid metabolism.
Among them, changes in the metabolism of amino acids such as
arginine, proline, and alanine might have been involved in immunity,
osmotic regulation, and energy supply, while the metabolism of
branched-chain amino acids and tryptophan might have supported
protein repair and stress response. In addition, pentose conversion
and glycerophospholipid metabolism affected carbohydrate utilization
and membrane stability; adjustments in pantothenic acid and
coenzyme A biosynthesis might have influenced stress resistance
through energy metabolism. Similar phenomena also exist. For
example, the amino acid metabolism in the hemolymph of the
shrimp under heat stress at 33 °C for 72 h was also affected (1), but
the specific types of amino acids affected were not completely the same
as the results of our study, which might be related to different stress
durations and tissue types.

Amino acids are crucial for maintaining the normal
metabolism, physiological functions, and overall health of the
organism. Tryptophan and its metabolites can regulate the
immune response of aquatic animals and enhance their stress
resistance (35). In this study, the increased of L-tryptophan,
indole and 5-hydroxyindoleacetic acid, as well as the decreased of
kynurenic acid, indicated that the tryptophan metabolism was
involved in the response of the shrimp hepatopancreas to HT
stress. Valine participates in protein synthesis, regulates blood
sugar, supplies energy, and supports nervous system function
(36). Methionine has the functions of synthesizing important
biomolecules, detoxification and exerting antioxidant effects (37).
In this study, the increased levels of L-valine and L-methionine
might be the positive response of the shrimp hepatopancreas to HT
stress, which was helpful to cope with the negative effects of the
stress on the physiological homeostasis.

Lipids are essential for cellular energy supply, membrane
integrity, and signaling (38). In this study, the glycerophospholipid
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A mechanistic deduction of the effects of HT stress on the functional homeostasis of the hepatopancreas in L. vannamei.

metabolism pathway in the shrimp hepatopancreas was also
disrupted. Glycerophospholipids are important lipid components of
cell membranes (39). In this study, the decreased level of the
glycerophosphocholine indicated that HT stress affected the
homeostasis of the biological membranes of the hepatopancreas
cells by influencing lipid homeostasis. Arachidonic acid and its
metabolites are important immunoregulatory substances (40). In
this study, the increased levels of lipoxin A4 and 12-keto-
leukotriene B4 implyed that HT stress might also affect the
immune homeostasis of the shrimp hepatopancreas through the
metabolites of arachidonic acid.

Organic acids have physiological functions such as regulating
energy metabolism and enhancing immunity. Cinnamic acid
exhibits effects of regulating immunity, antioxidant activity, and
anti-inflammation (41); subaphylline is a derivative of
hydroxycinnamic acid (42). In this study, the increased levels of
trans-cinnamate, 2-hydroxycinnamic acid, and subaphylline might
contribute to enhancing the ability of the shrimp hepatopancreas to
defend against high-temperature stress. 2-hydroxybutyric acid is
involved in energy metabolism and immune regulation, and
improves drug-induced liver injury (43). In this study, the
elevated level of 2-hydroxybutyric acid might be beneficial for
coping with the hepatopancreatic injury in the shrimp caused by
HT stress. Fluctuations in vitamin levels were also closely related to
the metabolic function of the hepatopancreas. In this study, after
HT stress, the
pyridoxal phosphate might have been involved in key processes

increased levels of folic acid, dethiobiotin, and

such as one-carbon unit transfer and amino acid metabolism under
stress conditions, providing coenzyme support for cell repair and
the synthesis of immune molecules. In contrast, the decreased level
of retinol, a precursor of vitamin A might have been related to the
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increased demand for epithelial cell repair that it is involved in, and
the accelerated consumption might have indirectly reflected the
degree of damage to the hepatopancreas tissue.

5 Conclusion

This study revealed the negative effects of 33 °C HT stress on the
hepatopancreas of L. vannamei. HT stress induced the structural
damage to the hepatopancreatic tubules, such as distortion, atrophy,
and even rupture. At the molecular level, HT stress activated stress
responses (Nrf2, GPx, HSP70), and the resulting oxidative stress
further induced the upregulation of genes related to inflammation
(NK, TNFc), apoptosis (Casp3, Casp9) and autophagy (Atg3, Atgl6,
Beclinl), thereby causing the disordered expression of immune genes.
Additionally, metabolomic profiling indicated the disturbances in
crucial metabolic pathways including amino acid metabolism,
pentose interconversion, and glycerophospholipid metabolism, with
tryptophan and arachidonic acid identified as potential biomarkers.
We inferred that HT stress induced oxidative stress, caused immune
dysregulation, activated inflammatory and cell death as well as
autophagy pathways, led to hepatopancreatic metabolic disorders.
This eventually triggered hepatopancreatic structural damage and the
impairment of functional homeostasis (Figure 9).
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