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in MRL/lpr mice by Jianpi-Zishen
Formula via modulation of
DNMT1-mediated

Foxp3 methylation

Ming Li*#, Lijun Pang™, Yunfei Li*, Junjie Chen,
Shuangshuang Shang* and Chuanbing Huang***
‘Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine,

Hefei, Anhui, China, ?Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine
of Institute of Herbal Medicine (IHM), Hefei, Anhui, China

Purpose: This study aimed to investigate whether Jianpi-Zishen Formula (JPZS)
modulates the Treg/Th17 balance in MRL/lpr mice through regulation of DNA
methyltransferase 1 (DNMT1)-mediated forkhead box P3 (Foxp3) methylation,
and to elucidate its potential mechanism for improving immune homeostasis in
systemic lupus erythematosus (SLE).

Methods: Forty-eight female MRL/lpr mice were randomized into six groups
(n=8/group): JPZS (low/medium/high doses), 5-aza-CdR (DNMT inhibitor),
DC_517 (DNMT1 inhibitor), and model control. Eight C57BL/6 mice served as
healthy controls. The mice were subjected to the corresponding intervention
measures for eight weeks. The impact of JPZS on the disease progression of
MRL/lpr mice was evaluated using enzyme-linked immunosorbent assay (ELISA)
and serum biochemical parameters. Moreover, immunofluorescence staining
and flow cytometry were employed to investigate alterations in the proportions
of Tregs and Thil7 cells. CD4* T cells were isolated from the spleen for
subsequent investigation, including quantitative real-time PCR, western
blotting, and determination of DNA methylation levels. Furthermore, the
enzymatic activity of CD4* T cell-specific DNA methyltransferases was
quantified using an EpiQuik DNMT detection kit.

Results: JPZS significantly improved the disease development of MRL/lpr mice in
a dose-dependent manner. Flow cytometry and immunofluorescence indicated
JPZS promoted Treg/Thl7 rebalancing. Research has found that Foxp3 is at a
high methylation level in CD4™ T cells of the model group, and the transcription
level of Foxp3 mRNA is downregulated; JPZS can downregulate Foxp3
methylation levels of CD4* T cells in the model group. Further research has
found that the level of Foxp3 methylation is closely related to Dnmtl enzyme
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activity, and JPZS can downregulate Dnmtl enzyme activity, thereby
upregulating the transcription level of Foxp3 mRNA.

Conclusion: JPZS may restore Treg/Thl7 balance in SLE via DNMT1-regulated
Foxp3 demethylation, suggesting an epigenetic mechanism for its
immunomodulatory effects.

Jianpi-Zishen Formula, systemic lupus erythematosus, DNA methylation, Dnmt1, Foxp3,

Treg/Th17 rebalance

Introduction

Systemic lupus erythematosus (SLE) is a prototypic B cell-
driven autoimmune disease characterized by pathogenic
autoantibody production, immune complex deposition, and
multi-organ inflammation (1). While B cell hyperactivity is
central to disease pathogenesis, emerging evidence underscores
the critical role of T cell dysregulation in shaping aberrant
humoral immunity (2). Regulatory T cells (Tregs), characterized
by forkhead box P3 (Foxp3) expression, maintain peripheral
tolerance through suppression of effector T cells and direct
modulation of B cell responses via CTLA-4-mediated inhibition
of CD40L signaling (3-6). Conversely, T follicular helper (Tfh) cells
are programmed death receptor-1 (PD-1)+C-X-C motif chemokine
receptor 5 (CXCR5)+CD4+ T cells that are involved in B cell
differentiation and maturation in germinal centers of secondary
lymphoid tissues (7, 8). Tth cells promote pathogenic B cell
responses in SLE (9). The imbalance between immunosuppressive
Tregs and pro-inflammatory Th17 cells disrupts immune
homeostasis, creating a permissive environment for autoreactive B
cell expansion and autoantibody production in SLE (10, 11).

Epigenetic mechanisms, particularly DNA methylation, play pivotal
roles in regulating T cell lineage commitment and functional stability
(12). DNMT1, the canonical maintenance methyltransferase, ensures
transmission of epigenetic information during mitosis by methylating
hemimethylated CpG dinucleotides at replication foci (13). In
regulatory T cells, DNMT1-dependent methylation of conserved non-
coding sequences within the Foxp3 locus (e.g., CNS2 region) establishes
a repressive chromatin architecture that fine-tunes Foxp3 expression
levels (14). Aberrant DNMT1 activity in SLE has been shown to
promote Foxp3 hypermethylation, leading to reduced Treg stability
and compromised suppressive capacity (15, 16). Concurrently, IL-6-
driven STAT3 activation in Th17 cells induces ten-eleven translocation
(TET) enzyme downregulation, resulting in hypomethylation of RORYt
and IL-17A loci that amplifies their pathogenic potential (17). This
epigenetic dysregulation creates a vicious cycle exacerbating Treg/Th17
imbalance and autoimmune progression.

SLE pathogenesis is deeply rooted in the TCM concept of spleen-
kidney yin deficiency, a syndrome characterized by disrupted Yin-
Yang balance and multi-system immune dysregulation. Modern
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research elucidates this ancient paradigm: spleen yin deficiency
impairs metabolic homeostasis and nutrient transformation,
manifesting as fatigue and edema, while kidney yin depletion
compromises genetic regulation and hormonal balance, linked to
low-grade fever and photosensitivity (18, 19). Critically, yin
deficiency drives a pro-inflammatory state via Th17/Treg
imbalance, with elevated Th17 cells secreting IL-17 and reduced
Treg cells losing immunosuppressive capacity—a phenomenon
validated in SLE patients with active disease (20).

Jianpi-Zishen Formula (JPZS), a refined Liuwei Dihuang Wan,
embodies the TCM principle of “strengthening spleen and
nourishing kidney” through eight synergistic botanicals.
Astragalus membranaceus enhances Treg stability via Foxp3
upregulation (21, 22), while Rehmannia glutinosa inhibits
DNMTI (23), correcting DNA hypomethylation observed in SLE
T cells. Poria cocos suppresses IL-17 production, directly
counteracting Th17-driven inflammation (24). Clinical trials
demonstrate JPZS restores peripheral Treg/Th17 ratios and
reduces SLEDAI scores, though molecular mechanisms remain
under investigation (25, 26). However, the exact mechanism by
which JPZS influences the Treg/Th17 balance has not yet been
thoroughly investigated.

In summary, this study sought to clarify the therapeutic effects
of JPZS in the MRL/lpr mouse model of SLE. By investigating the
modulation of the Treg/Th17 balance and the regulation of Foxp3
methylation through DNMT1, we hope to clarify the underlying
mechanisms of TCM in autoimmune diseases and provide potential
targets for therapeutic intervention.

Materials and methods
Preparation of JPZS extracts

Huangqi [Astragalus membranaeus (Fisch.) Bge.], Tusizi
(Cuscuta chinensis Lam.), Baizhu (Atractylodes macrocephala
Koidz.), Shudihuang (Rehmannia glutinosa Libosch.), Shanyao
(Dioscorea opposita Thunb.), Fuling [Poria cocos (Schw.) Wolf],
Fupenzi (Rubus chingii Hu), and Jinyingzi (Rosa laevigata Michx.)
were purchased from Bozhou Medicine Company (batch number:
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180609), Anhui, China. The JPZS formulation comprises eight
types of processed Chinese medicinal herbs. First, a precise
amount of the aforementioned Chinese medicinal herbs were
meticulously weighed. Subsequently, the herbs were immersed in
water at a volume 10-fold their weight and left to soak for 1 h. They
then underwent two rounds of extraction using boiling water, with
each round lasting 1.5 h. The resulting extracts from both rounds
were combined and filtered. Finally, the filtered solution was
concentrated to 2.522 g/mL of raw dry material using a rotary
evaporator. The concentrated extract (2.522 g raw herb/mL) was
aliquoted and stored at -80°C. High-performance liquid
chromatography (HPLC) fingerprinting (Figure 1) was employed
to ensure batch consistency for this study. Future investigations will
incorporate quantitative standardization based on key marker
compounds identified in the HPLC profile.

High-performance liquid chromatography
analysis of JPZS

The main constituents of the JPZS formulation were analyzed
and quantified using HPLC. The preparation substances used for
analysis included catechin (B21722), gallic acid (B20851), 5-
hydroxymethylfural (B21382), acteoside (B20715), rutin (B20711),
hyperoside (B20631), quercetin (B20257), tiliroside (B21587),
kaempferol (B21126), formononetin (B20836), atractylenolide III
(B20056), astragaloside A (B20564), dioscin (B1176), atractylodin
(B20128), pachytic acid (B20400), and atractylone (B20129). These
substances were obtained from Shanghai Yuanye Biotechnology
Co., Ltd. at Shim-pack GIST C18 column (2x100mm, particle size
2.0 um) using reverse phase HPLC. B methanol (0.01% formic acid)
- A water (0.01% ammonium formate) was used as the mobile phase
during the following gradient elution procedure for 14 min: 0 min,
50% B; 5 min, 100% B; 8 min, 100% B; 8.1 min: 50% B. Flow rate: 0.3
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mL/min. With the column temperature at 40°C, the detection
wavelength was adjusted to 218 nm.

Animals and experimental design

A total of 48 SPF-grade female MRL/Ipr mice and 8 SPF-grade
female C57BL/6 mice (6 weeks old) were purchased from
Shanghai Slac Laboratory Animal Co., Ltd. (Animal license
number: SCXK [Hu] 2022-0004). All mice were housed in the
animal facility of the First Affiliated Hospital of Anhui University
of Chinese Medicine, where the temperature was maintained at 23
+ 2°C, humidity was kept between 40-60%, and a 12-hour light/
dark cycle was followed. Adaptive feeding was conducted for 2
weeks before the start of the experiments. 48 MRL/lpr mice were
randomly divided into six groups with eight mice: model group,
low-dose JPZS group (6.305 g/kg, JPZS-L), medium-dose JPZS
group (12.61 g/Kg, JPZS-M), high-dose JPZS group (25.22 g/kg,
JPZS-H), 5-aza-CdR inhibitor group, and DC_517 inhibitor
group, with eight mice in each group. eight female C57BL/6
mice were used as controls. JPZS group (Low, medium, and
high doses) is administered with corresponding doses of JPZS,
the control, model, 5-aza-CdR inhibitor, and DC_517 inhibitor
groups were given the same volume of physiological saline
solution, once a day for 8 weeks.

5-Aza-2-deoxycytidine (Selleck, cat. S1200) is a DNMT
inhibitor while DC_517 (DAC; MCE, cat. HY-A0004) is a
DNMT1 inhibitor. The 5-aza-CdR inhibitor group and DC_517
inhibitor group mice were intraperitoneally injected with 5-aza-
CdR inhibitor (0.2 mg/mL) and DC_517 inhibitor (1.7 pM) 200
uL respectively, administered once every 2 days, starting from
week 5 and lasting for 4 weeks. The control group, model group,
and JPZS group were intraperitoneally injected with an equal
volume of physiological saline. After 8 weeks of treatment, fresh
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Identification of the chemical components of JPZS. (A) Standard product; (B) JPZS. The main components identified are as follows: 1. catechin,
2. gallic acid, 3. 5-hydroxymethylfurfural, 4. acteoside, 5. rutin, 6. hyperoside, 7. quercetin, 8. tiliroside, 9. kaempferol, 10. formononetin,
11. atractylenolide Ill, 12. astragaloside A, 13. dioscin, 14. atractylodin, 15. pachymic acid, and 16. atractylone.
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blood samples were collected from the orbit and fresh spleen for
further analysis. Initially, there were 8 mice in each group. Due to
insufficient tissue quantity, technical limitations or outlier
elimination in some samples during detection, the actual n value
of different experiments was different. All reported n values
represent the number of independent biological repeats actually
included in statistics. All animal procedures were approved by the
Animal Ethics Committee of Anhui University of Chinese
Medicine (AHUCM-mouse-2022130).

Flow cytometry assay

To detect Th17 cells, 100 UL of fresh mouse whole blood or a
suspension containing 1x10° single-spleen-cells were taken and
placed in a flow cytometry tube. Monoclonal antibodies such as
CD4 (BioLegend, 100510) and IL-17A (BioLegend, 506903) were
added, vortexed, and stained in dark at 4°C for 15 min. Following
staining, 1 mL of hemolysin was added and incubated in the dark
for 15 minutes. To detect Treg cells, 100 pL of fresh mouse whole
blood or a suspension containing 1x10° single-spleen-cells were
taken and placed in a flow cytometry tube. Monoclonal antibodies
such as CD4 (BioLegend, 100510), CD25 (BioLegend, 102027), and
Foxp3 (BioLegend, 320011) were added, vortexed, and stained in
dark at 4°C for 15 min. After staining, 1 mL of hemolysin was added
and incubated for 15 min in the dark (27, 28). Cell detection was
performed using CytoFLEX flow cytometry (Beckman Coulter,
Brea, CytoFLEX, USA), and the data were analyzed with FlowJo
software (BD Biosciences, Franklin Lakes, NJ, USA).

Extraction of CD4"* T cells from mouse
spleen

Suspensions of mouse splenocytes were prepared under aseptic
conditions. Subsequently, CD4" T cells were isolated from the
freshly prepared splenocyte suspension using the magnetic-
activated cell sorting method (Miltenyi, Germany, 130-104-454),
following a negative selection strategy as per the manufacturer’s
instructions. Isolated CD4™ T cells were collected and preserved for
subsequent analyses, including quantitative real-time PCR (qPCR),
western blotting (WB), flow cytometry, and measurement of DNA
methylation levels.

DNA extraction and DNA methylation
analysis

Subsequent methylation analysis of the Foxp3 gene was
performed on CD4+T cells from five experimental groups:
Control (n=4 mice), Model and Model+JPZS (n=8 each), and
Model+5-Aza-CdR and Model+DC-517 (n=5 each). Genomic
DNA was extracted from CD4+T cells using the TIANamp
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Genomic DNA Kit (Tiangen Biotech, China; Cat. DP304),
followed by bisulfite conversion with the EZ DNA Methylation-
Gold™ Kit (Zymo Research, USA) per manufacturer protocols.
Methylation levels of cytosine-phosphate-guanine (CpG)
dinucleotides within the Foxp3 transcription start site region were
quantified via MethleargetTM targeted bisulfite sequencing
(Genesky Biotech, China) using primers designed with FastTarget
V4.1 software (Genesky, China): Foxp3-TSDR forward 5’-
TTGGGTTTTTTTGGTATTTAAGA-3" and reverse 5'-AAATC
TACATCTAAACCCTATTATCACAA-3'. Bisulfite-converted
DNA underwent PCR amplification followed by high-throughput
sequencing on the Illumina HiSeq 2500 platform (Illumina, USA)
with 150-bp paired-end reads.

Total RNA isolation and qPCR

Total RNA was isolated from CD4" T cells using a TRIzol kit (Life
Technologies, cat. 15596018). cDNA was generated using the
PrimeScriptTMRT reagent Kit with gDNA Eraser (TaKaRa, cat.
RR047A). qPCR was performed using the Novostart SYBR qPCR
SuperMix Plus Kit (Novoprotein, E096-01B) and detected using a
PikoReal PCR cycler (Thermo Fisher Scientific, PIKOREAL 96) (29).
The primer sequences were as follows: Foxp3, primer-F 5-TGCCC
ATCTCTGTCTCAATC-3" and primer-R 5-GAAGTTGCTGCTTT
AGGTGG-3'; B-actin, primer-F 5'-AGTGTGACGTTGACATCCGT
-3’ and primer-R 5-TGCTAGGAGCCAGAGCAGTA-3’; Dnmtl,
primer-F 5-ACAGTGACACCCTTTCAGTT-3" and primer-R 5'-
TCTGTGTCTACAACTCTGCG-3'; RORyt, primer-F 5-TGGCA
CACAATCTCTTCCTT-3" and primer-R 5'-CGGTCCTCTGC
TTCTCITAG-3'.

Total cell protein extraction and western
blotting assay

Using RIPA lysis buffer (Beyotime, P0013B), CD4" T cells were
lysed and centrifuged at 14,000 rpm for 15 minutes to extract total
protein. Protein levels were measured with the BCA Protein Assay
Kit (Beyotime, P00150). Gels were created following the guidelines
provided by the SDS-PAGE Gel Preparation Kit (Beyotime,
PG111). Using SDS-polyacrylamide gels (10% SDS), proteins were
separated and transferred onto polyvinylidene fluoride membranes.
After transferring, the membranes were treated with a 10% skim
milk solution in Tris-buffered saline with Tween and then exposed
to primary antibodies targeting Dnmtl (1:1000, Bioss Inc, bs-
0678R) at 4°C for 12 hours. A horseradish peroxidase-conjugated
secondary antibody (1:20000; Zsbio) was then applied to the
membranes for 1 hour. GAPDH antibody (1:5000; Zsbio) was
used as the reference protein for normalization. After washing
with TTBS, signals were detected using an ECL detection kit
(Thermo, 340958). The obtained data were analyzed using
Image] software.
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Detection of dsDNA, complement 3 (C3),
cytokine and enzyme concentrations

Following the manufacturer’s guidelines, serum levels of IL-17,
IL-23, TGF-B1, and IFN-y, anti-dsDNA antibodies,
Immunoglobulin G (IgG) and C3 were measured using an
enzyme-linked immunosorbent assay (ELISA) kit. The IL-17
(JYMO0554Mo), IL-23 (JYM0394Mo), TGF-B1 (JYM0215Mo),
IFN-y (JYMO0540Mo), anti-dsDNA antibodies (JYM1061Mo), IgG
(JYM0031Mo) and C3 antibodies (JYM0293Mo) ELISA kits were
purchased from Wuhan Gene Beauty Biotechnology Co., Ltd. The
absorbance values were measured at a wavelength of 450 nm using a
microplate reader (Rayto RT-6000, China). To determine Dnmtl,
Dnmt3A, and Dnmt3B enzyme activity, nuclear proteins from
CD4" T cells were purified using a nuclear extraction kit
(Epigentek, Brooklyn, NY, USA). EpiQuik DNMT assay kit
(Epigentek, Brooklyn, NY, USA) was used to assess the enzyme
activity of Dnmtl, Dnmt3A, and Dnmt3B.

Immunofluorescence

Mouse spleen tissues (4 UM) were sectioned and subjected to
immunofluorescence staining. Sections were treated with mouse
anti-FOXP3 (Santa, sc-53876) and anti-IL-17A antibodies (Bioss,
bs-2140R) and incubated for 60 minutes at 37°C. The sections were
then incubated for 30 minutes in a dark 37°C incubator using
immunofluorescence secondary antibodies (goat anti-rabbit IgG
[FITC] and goat anti-mouse IgG [CY3]/1:400). Nuclei were
counterstained with DAPI. The images were captured using a
panoramic MIDI scanner (3DHISTECH, Budapest, Hungary).

Statistical analysis

Statistical analyses were performed using IBM SPSS software
(version 26.0; IBM, Armonk, NY, USA), and graphs were created
using GraphPad Prism 8.0 software (GraphPad Software Inc., San
Diego, CA, USA). Student’s t-tests were used to compare data
between two groups. A one-way analysis of variance followed by
Tukey’s post-hoc test was used to assess statistical significance
among multiple groups. Statistical significance was set at P<0.05.

Results
Component analysis of JPZS

The chromatogram of the mixed standard and JPZS is shown in
Figure 1. The chemical components of the JPZS samples were
analyzed using HPLC-MS. In a negative ion mode, we could detect
the existence of gallic acid (found at 169.1 m/z), acteoside (623.15
m/z), catechin (289.1 m/z), hyperoside (463.05 m/z), rutin (609.1
m/z), quercetin (301 m/z), tiliroside (593.1 m/z), kaempferol
(284.85 m/z), formononetin (267.05 m/z), astragaloside A (829.25
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m/z), dioscin (913.4 m/z), and pachymic acid (527.35 m/z). In a
positive ion mode, we could detect the existence of 5-
hydroxymethylfurfural (found at 127.1 m/z), atractylenolide III
(249.1 m/z), atractylone (217.25 m/z), and atractylodin (183.15
m/z).While this analysis confirmed the presence of key bioactive
constituents previously associated with immunomodulation, future
studies employing untargeted metabolomic approaches (e.g.,
UPLC-QTOF-MS/MS) will be undertaken to comprehensively
characterize the entire chemical profile of JPZS, including
potential minor yet potent components.

JPZS improves disease development
in MRL/lpr mice

Female MRL/lpr mice (6-weeks-old) were acclimatized for 2
weeks and randomly allocated to six groups (n=8/group).MRL/lpr
mice were administered saline, JPZS at low/medium/high doses
(6.305/12.61/25.22 g/kg/day), 5-aza-CdR (0.2 mg/mL
intraperitoneal injection), or DC_517 (1.7 uM intraperitoneal
injection) from Week 8 to Week 16 (Figure 2A), with C57BL/6
mice serving as the healthy control group. All mice were sacrificed
at Week 8 for serum and spleen analyses. To investigate the effect of
JPZS on the disease progression of MRL/lpr mice, we measured the
levels of cytokines (TGF-f3, IFN-y, IL-17, and IL-23), dsDNA, IgG,
and C3 in the mouse serum. TGF-f3 levels declined significantly in
the model group (P <0.01), while IFN-y, IL-17, and IL-23 levels
increased significantly (P <0.01) (Figures 2B-E). TGF-B levels
increased significantly following JPZS intervention (P <0.01),
while IFN-y, IL-17, and IL-23 levels decreased significantly
(P <0.01). Compared to the normal control group, the spleen
index of the model group was significantly higher, but decreased
significantly after the intervention (P <0.01) (Figure 2I). Immune
system disorders in SLE are characterized by increased dsDNA and
IgG levels and decreased C3 levels (30, 31). Figures 2F, H show that
the levels of dsDNA and IgG in the serum of the model group were
significantly elevated (P<0.01). After JPZS intervention, both
dsDNA and IgG levels decreased significantly in a dose-
dependent manner (P<0.01). As shown in Figure 2G, C3 levels in
the serum of the model group were significantly reduced. Following
JPZS intervention, C3 levels significantly increased in a dose-
dependent manner (P<0.01). Compared to the normal control
group, the spleen index of the model group was significantly
elevated; however, after JPZS intervention, it decreased
significantly in a dose-dependent manner (P<0.01) (Figure 2I).
These data confirm that JPZS effectively alleviated disease
progression in MRL/lpr mice, with JPZS-H demonstrating the
most significant effects.

Effects of JPZS treatment on Thl7 and
Treg cell balance

The Th17/Treg ratio can directly reflect the autoimmune status
of SLE (32, 33). As demonstrated in Figures 3A-D, the proportion
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FIGURE 2

The JPZS treatment improves MRL/lpr mice disease development. (A—D) The effect of JPZS on the levels of serum cytokines TGF-f, IFN-v, IL-17,
and IL-23 in each group of mice. (E) The effect of JPZS on serum dsDNA levels in various groups of mice. (F) The effect of JPZS on serum C3 levels
in each group of mice. (G) The effect of JPZS on serum anti-IgG levels in various groups of mice. (H) The effect of JPZS on the spleen index of mice
in each group. (I) The effect of JPZS on the spleen index of mice in each group (Groups are the same as B-E). ****P<0.0001.

of Th17 cells in the spleen of the model group mice significantly
increased, while the proportion of Treg cells significantly decreased
(P <0.01); JPZS intervention resulted in a dose-dependent reduction
in the proportion of Th17 cells and an increase in the proportion of
Treg cells (P <0.01). We further observed FOXP3/IL-17A in the
spleen using an immunofluorescence assay (Figures 3G, H) and
found that it was consistent with the flow cytometry results.
The expression of the transcription factors RORyr and Foxp3
mRNA in CD4" T cells was further analyzed based on these
findings. We observed that mRNA levels of RORyf in CD4™ T
cells from the model group were elevated compared to the control
group, while the transcription level of Foxp3 mRNA was
significantly reduced (P <0.01). After JPZS intervention, these
changes were reversed in a dose-dependent manner
(Figures 3E, F). As shown in Figures 1, 2, the imbalance in the
Treg/Th17 ratio is associated with disease progression in SLE, and
JPZS effectively alleviates disease progression in MRL/lpr mice.
Additionally, the effects of JPZS were dose-dependent, with JPZS-H
demonstrating the most significant improvement in disease
condition; therefore, subsequent studies will utilize high doses of
JPZS for further investigation.
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DNMT1-mediated Foxp3-TSDR methylation
and JPZS reduction

To investigate the DNA methylation reduction effect of JPZS on
the TSDR region of Foxp3, we used Methylation-specific PCR
(MSP) sequencing to analyze the average Foxp3 methylation
levels in the CD4™ T cells in each group. There were 10 CpG loci
in the TSDR region of Foxp3 in the CD4" T cells of MRL/Ipr mice in
the model group (Figure 4A). As demonstrated in Figure 4B, the
level of Foxp3 methylation in the peripheral blood CD4" T cells of
the model group mice significantly increased, while after
intervention with JPZS and 5-aza-CdR (DNMT inhibitor), the
Foxp3 methylation level significantly decreased (P <0.01).
Figure 4C also indicates that the methylation levels of the 10 CpG
sites in the TSDR region of the Foxp3 gene in the model group were
significantly increased, while the methylation levels of the 10 CpG
sites were significantly downregulated after JPZS and 5-aza-CdR
intervention (P <0.01). We found that the transcription level of
Foxp3 mRNA was significantly upregulated after 5-aza-CdR
intervention (P <0.01) (Figure 4D). The above experiments
indicate that JPZS has a reducing effect on Foxp3-TSDR
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staining of spleen FOXP3 and IL-17A in each group of mice (scale: 50 um; IL-17A: green; FOXP3: red). ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05.

methylation, whereas the regulation of DNMT can mediate Foxp3-
TSDR demethylation.

Mammals have three types of DNMTs with catalytic activity:
DNMT1, DNMT3A, and DNMT3B. We further investigated
whether DNMT is dependent on the demethylation of Foxp3 in
CD4" T cells. First, we determined the enzymatic activity of
DNMT1, DNMT3A, and DNMT3B. As demonstrated in
Figure 4E, the activity of all three enzymes in the model group
was upregulated, whereas the activity was significantly reduced after
5-aza-CdR intervention (P <0.01). DC_517 is a Dnmtl-specific
inhibitor, and after DC_517 intervention, only DNMTI1 enzyme
activity significantly decreased (P <0.01) (Figure 4F). We further
investigated and found that after DC_517 intervention, the
expression of DNMT1 protein was significantly reduced (P <0.01)
(Figure 4G), and the transcription level of Foxp3 mRNA was
significantly upregulated (P <0.01) (Figure 4H).

After confirming that Foxp3-TSDR methylation primarily relies
on Dnmtl mediation, we further examined whether the effect of JPZS
on Foxp3-TSDR methylation also depends on Dnmtl mediation.
Figures 5A, B show that after JPZS intervention, Dnmtl activity and
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DNMT1 protein expression levels were significantly lower (P <0.01).
Foxp3-TSDR methylation levels decreased significantly (Figure 5C)
following DC_517 intervention (Figure 5C). Simultaneously, the
methylation levels of CpGl, CpG3, CpG7, CpG9, and CpGl0 at
the 10 CpG sites of Foxp3-TSDR were significantly reduced (P <0.05;
P <0.01) (Figure 5D), Foxp3 mRNA level significantly upregulated
(P <0.01) (Figure 5E), which was consistent with the trend observed
after JPZS intervention. These results indicate that JPZS reduces
Foxp3-TSDR methylation, mainly through Dnmtl mediation.

JPZS promotes Treg/Th1l7 balance by
inhibiting DNMT1-mediated Foxp3
methylation

We investigated whether JPZS promoted the Treg/Th17 balance
by inhibiting DNMT1-mediated Foxp3 methylation. In Figures 6A-C,
compared with the model group, the proportion of Th17 cells to
CD4" T cells decreased in the model+DC_517 group, while the
proportion of Treg cells to CD4* CD25" T cells increased (P
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<0.05). The above experimental results are consistent with the effect of
the model+JPZS group on the distribution of Tregs and Th17 cell
subsets in CD4" T cells of MRL/lIpr mice in Figures 3A-C.

Figures 6D, E shows that, in comparison with the model group,
the transcription level of RORyt mRNA was significantly reduced in
the model+DC_517 group peripheral blood CD4" T cells, while
Foxp3 mRNA was significantly increased (P <0.05). These results
are consistent effect of JPZS on the transcription levels of Foxp3 and
RORyt mRNA in the peripheral blood CD4" T cells of MRL/Ipr
mice in Figures 3F, G.

As shown in Figure 6F, the serum concentrations of TGF-B1
were higher in the model+JPZS and model+DC_517 groups of mice
compared to the model group (P <0.01), whereas the levels of IFN-
Y, IL-17, and IL-23 were lower (P <0.01). This indicate that JPZS
and DC_517 have similar effects on the levels of cytokines in the
serum of MRL/Ipr mice, both promoting the production of anti-
inflammatory factors and inhibiting inflammatory responses.

As shown in Figures 6G-1I, compared with the model group, the
levels of IgG and dsDNA in the serum of MRL/Ipr mice in the
model+JPZS and model+DC_517 groups were significantly reduced
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(P <0.01), whereas the levels of C3 were significantly increased
(P <0.01), indicating that both DC_517 and JPZS can improve
disease activity in MRL/lpr mice by reducing IgG and dsDNA levels
and increasing C3 levels.

Discussion

The paradigm of SLE pathogenesis extends beyond a simple
numerical imbalance in Th17/Treg populations to encompass
profound epigenetically enforced immune dysregulation. Our
findings elucidate a key pathological mechanism in the MRL/lpr
model: heightened DNMT1 expression within CD4" T cells is
mechanistically linked to the facilitation of aberrant Foxp3-TSDR
hypermethylation. This epigenetic silencing directly contributes to
diminished Foxp3 mRNA transcription levels and a consequent
decline in the functional Treg population, thereby destabilizing
immune tolerance. Critically, administration of JPZS effectively
ameliorated disease progression in this murine model, correlating
with a restored Treg/Th17 balance. Mechanistically, JPZS appears
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to exert this immunomodulatory effect, at least in part, by
suppressing DNMT1 enzymatic activity and impeding Foxp3
hypermethylation, mirroring the effects observed with the specific
DNMT! inhibitor DC_517. This positions DNMT1-mediated
epigenetic dysregulation of Foxp3 as a significant targetable
pathway in SLE pathogenesis and highlights JPZS’s potential to
intervene at this level.

SLE management often incorporates Traditional Chinese
Medicine (TCM) (34, 35). A large-scale cohort study (n=10,462)
has demonstrated that TCM significantly reduces the risk of end-
stage renal disease (ESRD) by 76% (adjusted HR=0.24, 95% CI 0.07-
0.80) and all-cause mortality by 30% (aHR=0.70, 95% CI 0.58-0.83)
compared to non-TCM users (36). The JPZS formula, developed
based on the “spleen-kidney tonification” principle, represents a
targeted therapeutic strategy for SLE. Clinical evidence
demonstrates that in an eight-week randomized controlled trial
(n=60), JPZS can restore immune homeostasis in SLE patients.
Specifically, this was manifested by the reestablishment of balance
between regulatory Tregs and Th17 helper cells. The CD4+/CD8+
ratio increased from 0.93 + 0.04 to 2.61 = 0.04 (P <0.01), while
Th17-associated cytokine levels decreased (25, 26). Research has
shown that the herbal formula and its active constituents in JPZS
are effective in addressing diseases associated with Treg/Th17
imbalance (24, 37, 38).

The therapeutic efficacy of JPZS observed in this study is likely
attributable to the synergistic actions of its multiple bioactive
constituents, as identified by our HPLC-MS analysis (Figure 1).

Notably, Astragaloside A, a major saponin from Astragalus
membranaceus, has been consistently reported to promote Treg
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differentiation and Foxp3 expression (29). Acteoside and other
constituents from Rehmannia glutinosa possess documented
DNMT inhibitory activity and anti-inflammatory properties,
aligning with our findings of reduced Foxp3-TSDR methylation
and suppressed inflammation (39, 40). Quercetin attenuated renal
inflammation by inhibiting NLRP3 inflammasome activation and
TGF-B/Smad3-mediated fibrosis (41, 42). Rutin significantly
improved a variety of immune indicators, including red blood cell
count, hemoglobin content, macrophage activity, lymphocyte
proliferation and serum concentration of cytokines (43, 44).
Kaempferol enhanced Treg suppressive function by stabilizing
Foxp3 through inhibition of miR-34a expression, as evidenced by
upregulated Foxp3/IL-10/TGF-} and downregulated RORYt/IL-17
in T cells (45, 46). This confluence of actions from diverse
components targeting DNMT1 activity, Foxp3 expression, Treg
function, and Th17 polarization collectively underpins the ability of
JPZS to rectify the Treg/Thl7 imbalance and ameliorate SLE
pathology in the MRL/lpr model. Future studies isolating
individual compounds and assessing their specific contributions
to the observed DNMTTI inhibition and epigenetic modulation
are warranted.

The paradigm of SLE pathogenesis extends beyond Th17/Treg
numerical imbalance to epigenetically enforced immune
dysregulation (32, 47). Our work demonstrates that DNMT1-
mediated Foxp3 silencing imposes a developmental blockade on
Treg precursors, thereby licensing pathological Th17 responses.
JPZS counteracts this hierarchy through multidimensional
immune resetting: (i) epigenetic rehabilitation of Foxp3 loci, (ii)
functional restoration of Treg suppressor capacity, and (iii)
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JPZS promotes Treg/Th17 balance by inhibiting DNMT1-mediated Foxp3 methylation. (A) The frequency of Th17 cells and Treg cells in splenocytes
was denoted by flow cytometry analyses. (B, C) The effects of JPZS and DC_517 on the transcription levels of Foxp3 and RORyt mRNA in CD4* T
cells. (D) Effects of JPZS and DC_517 on serum cytokine levels in MRL/lpr mice. (G—I1) The effects of JPZS and DC_517 on the levels of IgG, dsDNA,

and C3 in the serum of MRL/lpr mice. ****P<0.0001, ***P<0.001, *P<0.05.

metabolic constraint of Th17 polarization. Unlike biologic agents ~ balance between Tregs and Th17 cells by promoting the

that target singular pathways, JPZS represents a systems-level  differentiation of Tregs.

intervention capable of durable immune recalibration. This study Foxp3, the master transcription factor defining regulatory Treg

focuses on the potential efficacy of JPZS drugs in restoring the  lineage identity and function, plays a pivotal role in maintaining
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immune tolerance by suppressing aberrant effector responses,
including those of Th17 cells (48-50). Crucially, the stable
expression of Foxp3 in Tregs is governed by epigenetic
mechanisms, particularly DNA methylation within its locus. The
Treg-specific demethylated region (TSDR) serves as an essential
imprinting control element for sustaining Foxp3 expression and
Treg stability (51). Aberrant hypermethylation of the Foxp3-TSDR,
often driven by dysregulated DNA methyltransferases like DNMT1,
disrupts Treg differentiation and function, contributing to the
pathogenic Th17/Treg imbalance observed in autoimmune
diseases, including SLE (15, 52).

In this study, we identified a key pathological feature in MRL/
Ipr SLE mice: significantly elevated Foxp3-TSDR methylation in
CD4+ T cells, concomitant with a profound downregulation of
Foxp3 mRNA and diminished Treg populations. Importantly,
treatment with JPZS effectively reversed this epigenetic aberration,
reducing Foxp3-TSDR methylation and restoring Foxp3 expression.
Mechanistically, our data demonstrate that JPZS achieves this by
specifically suppressing DNMT1 enzymatic activity and protein
expression, mirroring the effects of the DNMT1 inhibitor DC_517.
This targeted inhibition of DNMTI1-mediated Foxp3
hypermethylation represents a core mechanism through which
JPZS promotes Treg/Th1l7 rebalancing and ameliorates SLE
pathology in this model. These findings significantly advance our
understanding of TCM immunomodulation by revealing a precise
epigenetic pathway (DNMT1-Foxp3-TSDR) underpinning JPZS’s
therapeutic efficacy in SLE.

These findings establish JPZS as the first TCM formula proven to
correct Treg/Th17 imbalance via DNMT1-Foxp3 axis modulation.
Our data confirm the central role of DNMTI-mediated
hypermethylation of the Foxp3-TSDR region in CD4+ T cells in
disrupting Treg stability and contributing to SLE pathogenesis in
MRL/Ipr mice, consistent with prior research implicating DNMT1 in
Treg-specific epigenetic dysregulation (53, 54). Crucially, JPZS
intervention effectively reversed this pathological signature,
mirroring the effects of the specific DNMT1 inhibitor DC_517.
Both JPZS and DC_517 significantly reduced *Foxp3-TSDR*
methylation, restored Foxp3 expression and Treg numbers,
ameliorated the Th17/Treg imbalance, and improved key disease
markers (reduced dsDNA/IgG/IFN-Y/IL-17/IL-23, increased C3/
TGF-B). The mechanistic link was further solidified by JPZS’s
specific downregulation of DNMT1 enzymatic activity and protein
expression, demonstrating that its epigenetic action is predominantly
mediated through DNMT1 inhibition.

These findings establish JPZS as the first TCM formula proven to
correct Treg/Th17 imbalance via DNMT1-Foxp3 axis modulation.
The DNMT1-dependent demethylation of Foxp3-TSDR represents a
precise epigenetic mechanism underlying its immunomodulatory
efficacy, bridging traditional “spleen-kidney tonification” theory
with contemporary epigenetics. Future studies should prioritize: (i)
Validating this mechanism in human SLE CD4" T cells, (ii)
Identifying specific bioactive components within JPZS responsible
for DNMT1 inhibition (e.g., Rehmannia-derived catalpol), and (iii)
Exploring combinatorial therapies with conventional
immunosuppressants to enhance clinical efficacy. Our work not
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only provides a scientific foundation for JPZS as a promising SLE
therapeutic but also illuminates DNMTI as a druggable target for
novel epigenetic-based interventions in autoimmunity.

Conclusion

This study provides evidence that JPZS alleviates disease
manifestations in MRL/Ipr lupus-prone mice, potentially through
mechanisms involving the modulation of Treg and Th17 cell
dynamics. Our data suggest that JPZS may inhibit DNMT1-
mediated hypermethylation of the Foxp3-TSDR region in CD4" T
cells, leading to increased Foxp3 expression and a trend toward
Treg/Th17 rebalancing. These findings offer preliminary insights
into the immunomodulatory actions of JPZS and shed light on a
potential epigenetic regulatory mechanism, involving the DNMT1-
Foxp3 axis, that may contribute to its therapeutic effects in this
experimental model of SLE. Further investigation, particularly in
human systems, is warranted to confirm these mechanisms and
assess their translational relevance.
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