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associated membranous
nephropathy: Insights from
comprehensive bioinformatics
analysis and machine learning
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and Wenge Li1,2*

1Department of Nephrology, China-Japan Friendship Hospital, Beijing, China, 2Department of
Nephrology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
Background: This study explores the genetic basis of membranous nephropathy

(MN) in gastric adenocarcinoma (GC) through bioinformatics and machine

learning analyses.

Methods: Gene expression profiles from MN (GSE108109) and GC (GSE54129)

datasets were obtained from the Gene Expression Omnibus. Common

differentially expressed genes (DEGs) were identified using the limma R

package. Biological functions were analyzed via Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with the Cluster

Profiler package. LASSO regression and Random Forest algorithms were used to

identify hub genes associated with GC-related MN. The area under the curve

(AUC) of ROC analysis validated these genes for their diagnostic potential. Gene

Set Enrichment Analysis (GSEA) and immune cell infiltration analysis were

conducted, with hub genes validated through immunohistochemistry on renal

and gastric cancer tissues.

Results: We identified 40 common DEGs between GC and MN datasets. Using

protein-protein interaction networks, 20 significant hub genes were selected,

primarily involved in inflammatory and immune response regulation. Key hub

genes identified were CCND1, CEBPD, COL10A1 , and BMP2 , which

demonstrated high accuracy in discriminating MN. Notably, CCND1, CEBPD,

and BMP2 were significantly overexpressed in glomerular and gastric

cancer tissues.

Conclusions: Our findings highlight the crucial roles of CCND1, CEBPD, and

BMP2 in the pathogenesis of GC-associated MN, providing insights for future

research and potential therapeutic strategies.
KEYWORDS
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1 Introduction

Gastric cancer (GC) is one of the most prevalent cancers globally,

accounting for approximately 4.9% of new cancer cases and 6.8% of

cancer-related deaths annually, with a notably higher incidence in

males (1). Among the various histological subtypes, gastric

adenocarcinoma is the most common, representing about 90% of all

gastric cancers (2). The multifactorial nature of GC, influenced by

dietary factors, Helicobacter pylori infection, and genetic

predispositions, underscores the complexity of its etiology and

necessitates further exploration of associated systemic effects (3).

Among paraneoplastic glomerulopathies, membranous

nephropathy (MN) is the most frequently reported and clinically

significant subtype, accounting for a substantial proportion of

malignancy-associated renal lesions (4). This makes MN

particularly relevant when considering the systemic complications

of GC. Since Lee’s seminal 1966 study postulated a link between

nephrotic syndrome and malignancy, this association has gained

increasing clinical significance, as nephrotic syndrome may herald

an underlying malignancy and, conversely, treatment of the tumor

can lead to remission of MN (5–7).

The pathophysiological link between cancer and MN is thought

to involve immune complex deposition, tumor antigens that mimic

podocyte proteins, and cross-reactive antibodies that trigger

complement-mediated injury (8–10). Clinical observations that

MN often improves following cancer therapy provide further

support for these immune-mediated mechanisms (7). Although

various glomerulopathies such as minimal change disease and focal

segmental glomerulosclerosis have been reported in malignancy,

MN is distinguished by its higher prevalence, stronger

paraneoplastic association, and unique antigenic mechanisms,

justifying its selection as the focus of the present study (11).

Recent advancements in high-throughput sequencing and

bioinformatics have provided unprecedented opportunities to

systematically investigate molecular mechanisms in complex diseases

(9). Differentially expressed gene (DEG) analysis and machine learning

algorithms such as LASSO and random forest can pinpoint hub genes

with diagnostic and therapeutic potential (12).

Although previous studies have reported associations between

malignancy and MN, the genetic and molecular mechanisms

underlying gastric cancer–associated MN remain poorly

understood. For the first time, we integrated multi-omics data

and machine learning to identify GC-MN-specific hub genes and

validate their cross-regulatory roles in GC cell proliferation and

glomerular injury, complementing the established ‘molecular

mimicry’ mechanism of cancer-associated MN (9).
2 Materials and methods

2.1 Data source

We searched the GEO database (https://www.ncbi.nlm.nih.gov/

geo/) for membranous glomerulonephritis and gastric cancer (GC)

data sets. Microarray data sets GSE108109 (44 Membranous
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Nephropathy and 6 Living donor) and GSE54129 (111 human

gastric cancer tissues and 21 noncancerous gastric tissues) were

downloaded from the GEO database.

Figure 1 summarizes the work flow of data collection

and analysis.
2.2 Analysis of differentially expressed
genes

First, the normalizeBetweenArrays function from the limma R

package (13) was employed to standardize gene expression

measurements in both the membranous nephropathy (MN) dataset

GSE108109 and the gastric cancer (GC) dataset GSE54129. Raw

expression data from GEO datasets were normalized using the

`normalizeBetweenArrays` function in the limma package, followed

by log2 transformation to ensure comparability across samples. Batch

effects between datasets were assessed using PCA, and probe-to-gene

mapping was standardized prior to integration. Differentially expressed

genes (DEGs) were defined using adjusted p < 0.05 and |log2 fold-

change| ≥ 1, a threshold chosen to balance statistical rigor with

biological interpretability and widely applied in transcriptomic

studies. These DEGs were subsequently visualized through volcano

plots and heatmaps using ggplot2 and heatmap in R. Finally, the

VennDiagram package was used to pinpoint and depict overlapping

DEGs shared by MN and GC.
2.3 Functional enrichment analysis of DEGs

To elucidate the biological mechanisms underlying the hub

genes associated with both GC and MN, we conducted functional

enrichment analyses. The Gene Ontology (GO) database offers

comprehensive annotations for gene functions—covering

molecular roles, biological pathways, and cellular components—

while the Kyoto Encyclopedia of Genes and Genomes (KEGG)

Pathway provides a resource for examining gene functions and

broader genomic interactions. We employed the GO plot package

together with the clusterProfiler tool in R to assess GO terms and

KEGG pathways, thereby gaining deeper insight into the roles of

these hub genes (14). Annotation terms with a P value below 0.05

were considered significantly enriched, and the final results were

illustrated using bubble diagrams and heatmaps.
2.4 Protein-protein interaction network
analysis

We constructed a protein-protein interaction (PPI) network to

explore potential interactions among the identified differentially

expressed genes (DEGs), using data from the STRING database

(https://cn.string-db.org) (15). This database offers detailed insights

into various forms of interactions, including direct physical

associations or indirect regulatory mechanisms involving shared

signaling pathways. Only interactions surpassing a combined
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confidence threshold score of 0.4 were retained for subsequent

analysis. Cytoscape software (http://www.cytoscape.org) was

employed to visualize the constructed PPI network clearly

and intuitively.
2.5 Selection and functional analysis of hub
genes

Highly interconnected hub genes were identified utilizing the

cytoHubba plugin within the Cytoscape software. The selection

parameters applied included K-core = 2, degree threshold = 2,
Frontiers in Immunology 03
maximum depth = 100, and node score threshold = 0.2. To further

investigate functional relationships, GeneMANIA (http://

www.genemania.org) was employed to establish a protein-protein

interaction (PPI) network, facilitating the prediction of gene

functions and the identification of genes with similar biological

roles. This platform integrates various bioinformatics approaches,

including physical interactions, co-expression patterns, co-

localization, gene enrichment analysis, genetic interactions, and

site prediction. Subsequently, a co-expression network of the

selected hub genes was constructed using GeneMANIA, offering a

comprehensive framework for uncovering internal gene

associations within the dataset (16).
FIGURE 1

Research design flow chart.
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2.6 Machine learning and identification of
hub genes

To identify key genes associated with gastric cancer (GC)-

related membranous nephropathy (MN), we implemented two

well-established machine learning approaches: least absolute

shrinkage and selection operator (LASSO) regression and random

forest. The glmnet and randomForest R packages were utilized to

develop predictive models (17–19). For LASSO regression, a three-

fold cross-validation strategy was applied to optimize the lambda

parameter. We selected the l.1se (0.05) to avoid overfitting, which

provided a more parsimonious model while retaining predictive

accuracy. Meanwhile, the random forest algorithm was configured

with 1000 decision trees and 50 perturbations to ensure robust

feature selection. Genes with a MeanDecreaseGini value ≥0.05 were

defined as significant feature genes. In the final step, genes identified

by both methods were cross-compared, and those consistently

selected were designated as the core GC-associated MN genes.
2.7 Receiver operating characteristic curve
analysis

To evaluate the diagnostic significance of key genes in

membranous nephropathy (MN) datasets (GSE108109), receiver

operating characteristic (ROC) analysis was conducted using the

ROC function in R. The area under the curve (AUC) was calculated

to validate the predictive performance of these genes. Additionally,

in subsequent analyses, the clusterProfiler package was employed to

perform Gene Set Enrichment Analysis (GSEA) on the finalized

hub genes, providing insights into their functional roles and

associated biological pathways.
2.8 Immune infiltration analysis and
correlation with hub gene

To analyze immune cell infiltration patterns in gastric cancer

(GC) and membranous nephropathy (MN), the CIBERSORT

algorithm was applied to estimate the relative proportions of 22

distinct immune cell types. The vioplot package in R was then used

to generate visual representations of these distributions.

Subsequently, a correlation matrix was constructed to illustrate

the relationships between the immune cell subsets. To further

examine the association between hub gene expression and

immune cell infiltration, Spearman correlation analysis was

conducted, providing insights into potential immune

regulatory mechanisms.
2.9 Evaluation of Hub genes in relation to
disease

The comparative toxicogenomics database (CTD) (http://

ctdbase.org/) was used to identify gene-disease interactions (20),
Frontiers in Immunology 04
the relationship between hub genes and kidney diseases and gastric

tumors were analyzed by the CTD database.
2.10 Construction of hub genes-targeted
drugs and the ceRNA network

The Drug-Gene Interaction Database (DGIdb) was employed to

predict drug targets associated with the identified hub genes. We

utilized the miRanda, TargetScan, and miRDB databases to predict

mRNA-miRNA interaction pairs based on the four identified hub

genes. The results common to all three databases were selected for

further analysis. Subsequently, we searched for the predicted

miRNAs in the Spongescan database and filtered for miRNA-

lncRNA pairs, thereby constructing a ceRNA network comprising

mRNA-miRNA-lncRNA interactions.
2.11 Experimental validation

Through a single-center retrospective analysis, we identified 3

patients with biopsy-confirmed gastric cancer-associated MN in the

Nephrology Department of China-Japan Friendship Hospital from

2014-2024. One patient found gastric cancer with lymph node

metastasis at the same time as the diagnosis of membranous

nephropathy. Another patient found a recurrence of gastric cancer 8

months after diagnosis of MN. The last patient was found with low

differentiated gastric adenocarcinoma 2 years after diagnosis of MN.

Immunohistochemistry was used to assess the differences in gene

expression of gastric cancer-associated MN and primary

membranous nephropathy. The samples from 3 gastric cancer-

associated MN patients included both kidney tissue and gastric

cancer tissue, and IHC staining was performed on both types of

tissues. Additionally, 3 PMN patient samples underwent kidney

pathology staining. We also performed IHC staining on kidney

tissues from 3 healthy controls and gastric tissues from 3 healthy

controls in order to compare gene expression differences between

kidney tissue and gastric tissue. The baseline characteristics of the three

GC-MN patients are as follows: Patient 1 was a 74-year-old male with

gastric adenocarcinoma and lymph node metastasis, diagnosed with

MN simultaneously (MN stage II, GC stage T3N2M0, received surgical

resection and chemotherapy of GC). Patient 2 was a 63-year-old female

who developed gastric adenocarcinoma eight months after being

diagnosed with MN (MN stage III, GC stage T2N1M0, received

surgical resection). Patient 3 was a 31-year-female with poorly

differentiated gastric adenocarcinoma diagnosed two years after MN

(MN stage II, GC stage T3N3bM1, received chemotherapy and

immunotherapy). Control sample selection was based on strict

exclusion criteria: primary MN patients were excluded if they had a

history of malignancy; healthy controls were excluded if they had any

history of kidney disease or malignancy.

Immunohistochemistry staining for CCND1, COL10A1, CEBPD,

and BMP2 was performed for 3 gastric cancer-associated MN patients

and 3 PMN patients of renal biopsy. Positive and negative controls were

used to validate the antibody. The tissue was fixed and embedded in
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paraffin and sectioned at a thickness of 3 mm. After dewaxing through a

hydration process of xylene treatment followed by alcohol baths, the

kidney tissue was repaired using an antigen. Antigen repair was

performed using high-pressure thermal repair with 2% Ethylene

Diamine Tetraacetic Acid (EDTA) buffer for 3 minutes, and

endogenous peroxidase was inactivated using hydrogen peroxide

peroxidase. The following antibodies (1) CCND1 antibody (Cell

Signaling Technology) diluted 1:50, (2) COL10A1 antibody (26984-1-

AP, Proteintech) diluted 1:50, (3) CEBPD antibody (AF9027, affinity)

diluted 1:50, (4) BMP2 antibody (AF5163, affinity) diluted 1:50 were

incubated overnight at 4°C, washed with phosphate buffer saline (PBS)

obtained fromThermo Fisher Scientific, and then incubated at 4°C for 2

hours. C, washed with PBS and stained with horseradish peroxidase and

diaminobenzidine to visualize the reaction. Sections were observed

under a bright-field microscope (Nikon, Tokyo, Japan) at a

magnification of 400 using a Moticam 2506 instrument (Motic,

Fujian, China), and images were taken with a digital camera system

(Nikon) for assessment in a blinded manner. Blinding was performed

by having independent pathologists, who were not involved in the

study, assess the slides without knowledge of the sample identities.

Semi-quantitative assessments were performed using Image Pro-plus

computer image analysis software (Media Cybernetics, Bethesda, MD,

USA) to analyze the average optical density (AOD) and quantify protein

levels. Five glomeruli from each biopsy tissue were randomly captured

and analyzed, using the average AOD as the final result for each patient.
2.12 Statistical analysis

All statistical analyses and visualizations were conducted using R

software (version 4.1.2). The packages ggbeeswarm, ggpubr, and

ggplot2 facilitated boxplot visualization. Student’s t-test was

employed for comparing normally distributed data, whereas Mann-

Whitney U tests were applied to data lacking normal distribution.

Receiver operating characteristic (ROC) curves and corresponding area

under the curve (AUC) values were generated using the pROC

package. Correlation networks were visualized through the igraph

package, with Spearman’s correlation coefficient utilized to evaluate

relationships between continuous variables. Statistical significance was

defined as a p<0.05. In the experimental part, for continuous variables

with more than two groups, if the data meet the assumption of

homogeneity of variances, one-way analysis of variance (ANOVA)

was used to compare the differences between the groups. For significant

differences found in the ANOVA analysis, Tukey’s post hoc test was

applied to further compare specific differences between the groups.

Statistical significance was defined as a p<0.05.
3 Results

3.1 Identification of DEGs

Following normalization, mean gene expression values remained

consistent across all samples. To evaluate variability between groups,

principal component analysis (PCA) was conducted, confirming the
Frontiers in Immunology 05
reliability of the dataset. A thorough analysis of the MN dataset

(GSE108109) identified 868 upregulated and 588 downregulated

differentially expressed genes (DEGs). In the GC dataset (GSE54129),

a total of 894 genes were upregulated, while 899 were downregulated.

To visualize these findings, a volcano plot (Figure 2B) was generated for

the MN dataset, with the top 50 highly expressed and lowly expressed

genes displayed in a heatmap (Figure 2A). Similarly, the GC dataset’s

gene expression patterns were illustrated in Figures 2C, D. Notably, 22

DEGs were consistently upregulated in both MN and GC datasets

( F i g u r e 2 E ) , w h i l e 1 8 s h a r e d DEG s e x h i b i t e d

downregulation (Figure 2F).
3.2 GO and KEGG pathway enrichment of
common DEGs

To elucidate the molecular functions and pathways underlying

the connection between membranous nephropathy (MN) and

gastric cancer (GC), functional enrichment analyses including

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) were conducted. Results of GO analysis,

highlighting the top enriched biological processes (BP), cellular

components (CC), and molecular functions (MF), were depicted in

bubble charts (Figure 3A). Correspondingly, enriched KEGG

pathways were illustrated in Figure 3B. The subset of biological

process (BP) indicated that common DEGs are involved in the fat

cell differentiation, myeloid leukocyte migration, leukocyte

migration, leukocyte chemotaxis, positive regulation of fat cell

differentiation, killing of cells of another organism, disruption of

cell in another organism, disruption of anatomical structure in

another organism, regulation of fat cell differentiation, p38MAPK

cascade. The Cellular Component (CC) subset highlighted

involvement in the endoplasmic reticulum lumen, secretory

granule lumen, cytoplasmic vesicle lumen and vesicle lumen.

Molecular Function (MF) elucidated roles in flavin adenine

dinucleotide binding, kinase activator activity, cytokine activity,

kinase regulator activity. Furthermore, KEGG pathway enrichment

analysis underscored the significant participation of the common

DEGs in Kaposi sarcoma−associated herpesvirus infection, PI3K

−Akt signaling pathway, Acute myeloid leukemia, AGE−RAGE

signaling pathway in diabetic complications, Measles, Alcoholic

liver disease, Hippo signaling pathway, Hepatitis C, Axon guidance,

Focal adhesion, Epstein−Barr virus infection and Human T−cell

leukemia virus 1 infection.
3.3 Selection of hub genes between GC
and MN

A protein-protein interaction (PPI) network was established

using the STRING database and visualized through Cytoscape

software. To identify key gene clusters, the MCODE plugin in

Cytoscape was applied, setting a combined score threshold of >0.4.

The cytoHubba plugin was utilized with the Degree algorithm,

leading to the selection of 20 highly interconnected hub genes. A
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FIGURE 3

Functional annotation of DEGs and selection of hub genes. (A) Bubble chart illustrating the significant enrichment terms of co-expressed DEGs in terms of
GO enrichment analysis. (B) Bubble chart illustrating the significant enrichment terms of co-expressed DEGs in the KEGG analysis. (C) Characterized gene
function network of the 20 hub genes. (D) GO enrichment analysis of Hub genes.
FIGURE 2

Differentially expressed gene identification. (A, B) from GSE108109, (C, D) from GSE54129. The volcano plots (B, D) show that 1456 and 1793 DEGs
were identified from the two datasets, and the heatmaps (A, C) show the top 50 up and downregulated genes, respectively. Upregulated genes are
in light red; downregulated genes are in light blue. The Venn diagrams show 22 upregulated and 18 downregulated DEGs of GSE108109 and
GSE54129 (E, F).
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PPI network comprising these 20 genes, represented by 20 nodes

and 32 edges, was subsequently constructed and displayed using

Cytoscape. Functional annotation of hub genes was conducted

through the GeneMANIA database. As shown in Figure 3C, these

20 genes were associated with cell chemotaxis, vacuolar lumen

response to chemokine, myeloid leukocyte migration, leukocyte

chemotaxis and neutrophil migration. GO enrichment analyses

were performed on the 20 hub genes to explore the biological

functions and pathways involved in MN and GC, GO circle

(Figure 3D) showed BMP2, CCND1, CEBPD, LPL, ZBTB16,

ZFP36 were involved in fat cell differentiation. BMP2, ZFP36,

ZBTB16, LPL were involved in positive regulation of fat cell

differentiation and regulation of fat cell differentiation. S100A12,

PIK3R1, DUSP1, CXCL2, CHGA were involved in myeloid

leukocyte migration and leukocyte migration. ZFP36, DUSP1,

BMP2 were involved in p38MAPK cascade. CHGA, CXCL2,

DUSP1, S100A12 were involved in leukocyte chemotaxis. CCND1,

BMP2, DUSP1, NOX4, S100A12 were involved in regulation of

protein kinase activity.
3.4 Machine learning to identify hub GC-
associated MN genes

We employed two machine learning algorithms to further

identify GC-associated MN genes based on the differential
Frontiers in Immunology 07
analysis of 20 hub genes. The LASSO algorithm, converging on

the optimal lambda value, identified 9 significant membranous

nephropathy genes (Figure 4A). The RandomForest algorithm

confirmed 6 membranous nephropathy signature genes

(Figure 4B). These four genes (CCND1, CEBPD, COL10A1,

BMP2) were considered by the 2 algorithms to be the hub genes

of GC-associated MN (Figure 4C). Through ROC analysis, we

found that these four genes exhibited satisfactory efficacy in

discriminating MN (CCND1: 1.000, COL10A1: 0.955, CEBPD:

1.000, BMP2: 0.996) (Figure 4D).

For LASSO, l values were optimized by 10-fold cross-

validation, and the l within 1 standard error of the minimum

was selected to avoid overfitting. The cross-validation curve is

shown in Supplementary Figures S1A, B. For Random Forest,

feature importance was evaluated by MeanDecreaseGini index,

and stability was assessed across 100 bootstrap resampling runs,

with mean ± SD of importance scores reported (Supplementary

Figures S2A, B).

Survival analysis was conducted using the Kaplan-Meier Plotter

online database (https://kmplot.com/analysis/), incorporating

clinical information from approximately 875 gastric cancer

patients derived from the TCGA dataset. The key hub genes

(CCND1, CEBPD, COL10A1, and BMP2) were selected as target

variables, and patients were stratified into high- and low-expression

groups according to the optimal cut-off values. Overall survival

(OS) was subsequently analyzed, generating four survival curves.
FIGURE 4

Machine learning to identify hub genes. LASSO algorithm identified 9 significant genes (A). The RFB algorithm confirmed 6 genes (B). Venn diagram
of 4 hub genes of GC-associated MN (C). ROC curve showed four genes exhibited satisfactory efficacy in discriminating MN ((CCND1: 1.000,
COL10A1: 0.955, CEBPD: 1.000, BMP2: 0.996) (D).
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Except for BMP2, the survival analyses of the other three genes

yielded p< 0.05 and hazard ratios (HRs) > 1, indicating their

association with poor prognosis. Among them, CCND1 emerged

as a significant prognostic marker for gastric cancer patients (HR =

1.37, 95% CI = 1.1–1.6; p < 0.001) (Supplementary Figures S3A–D).

To further validate the diagnostic efficacy of the identified hub

genes, we performed receiver operating characteristic (ROC) curve

analysis using two independent datasets, GSE104948 and

GSE99339. As shown in Supplementary Figures S4A, B, three hub

genes (CCND1, CEBPD, and BMP2) demonstrated favorable

diagnostic performance in distinguishing MN samples from

controls. In GSE104948, BMP2 and CEBPD exhibited the highest

diagnostic accuracy, with area under the curve (AUC) values

exceeding 0.90, while CCND1 also achieved robust predictive

power (AUC > 0.80). Similarly, in GSE99339, CCND1, CEBPD,

and BMP2 consistently maintained strong diagnostic value (AUC >

0.80), whereas COL10A1 showed only moderate diagnostic

performance (AUC < 0.70). These results confirm the

reproducibility and robustness of the hub genes across

independent cohorts, underscoring their potential as biomarkers

for GC-MN.
3.5 Association between the hub genes
and immune infiltration

Previous studies indicate immune responses and inflammatory

processes significantly contribute to membranous nephropathy

(MN) and gastric cancer (GC) pathogenesis. To elucidate this

immune association, we analyzed the infiltration profiles of 22

immune cell subpopulations using the CIBERSORT algorithm.

The differences in immune cell proportions between GC patients

and healthy controls are illustrated in (Figures 5A, B). Notably, GC

samples demonstrated increased proportions of naïve B cells,

activated memory CD4+ T cells, activated NK cells, and

macrophage subtypes M0, M1, M2, as well as neutrophils, relative

to healthy controls. Conversely, memory B cells, plasma cells,

resting memory CD4+ T cells, regulatory T cells (Tregs), gamma-

delta T cells, activated dendritic cells, and eosinophils were

significantly decreased in GC samples. These differential immune

cell populations are depicted visually in Figure 5C. Spearman

correlation coefficients demonstrating associations between

immune cell abundance and the expression of the four central

genes (CCND1, CEBPD, COL10A1, and BMP2) were visualized

using lollipop plots (Figures 5D–G). Furthermore, differences in

immune cell proportions and their correlation networks between

MN patients and healthy controls were examined (Figures 6A, B).

Notably, MN samples showed significantly reduced plasma cells

and memory B cells, whereas monocyte infiltration was significantly

increased (Figure 6C). The associations between immune cell

infiltration levels and the four central gene expressions in MN

were similarly assessed using Spearman correlation analysis

(Figures 6D–G).
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3.6 GSEA analysis

According to GSEA findings, the CCND1 high expression group

was highly enriched for Cytokine Receptor Interaction, Leishmania

Infection, Natural Killer Cell Mediated Cytotoxicity, Systemic Lupus

Erythematosus and Toll Like Receptor Signaling Pathway

(Figure 7A). The CEBPD high expression group was mostly

concentrated in Cytokine Cytokine Receptor Interaction,

Hematopoietic Cell Lineage, Primary Immunodeficiency,

Ribosome, Selenoamino Acid Metabolism (Figure 7B).

Complement And Coagulation Cascades, Drug Metabolism Other

Enzymes, Ecm Receptor Interaction, Focal Adhesion, Retinol

Metabolism were all associated with increased COL10A1 expression

(Figure 7C). The BMP2 high expression group was mostly

concentrated in Amino Sugar And Nucleotide Sugar Metabolism,

Ecm Receptor Interaction, Glycosylphosphatidylinositol Gpi Anchor

Biosyn, Lysosome, O Glycan Biosynthesis (Figure 7D).
3.7 Association between hub GC-
associated MN genes and disease

We elucidated the association of hub genes with kidney disease

and gastric tumors through analysis of the Comparative

Toxicogenomics Database (CTD). The results indicated a high

correlation of all four hub genes with kidney diseases

(Figures 8A–D). Moreover, CCND1, CEBPD, BMP2, COL10A1

exhibited associations with Acute Kidney Injury, Proteinuria,

Neoplasms, Adenocarcinoma, Stomach Neoplasms, Nephrotic

Syndrome, Chronic Kidney Failure, Gastrointestinal Neoplasms

and Glomerulonephritis, Membranous (Figures 8A–D).
3.8 Prediction of hub genes-targeted drugs

We further investigated potential drugs targeting the hub genes

using the DGIdb database and analyzed their interactions, with

parameters set to default values. The Cytoscape software was

utilized to visualize the 30 targeted drugs for each hub genes

(Figure 9). A total of 224 drugs targeting the hub genes were

identified (Supplementary Table S1). Among these, 184 drugs

targeted CCND1, 24 targeted CEBPD, 35 targeted BMP2 and 1

targeted COL10A1.
3.9 A ceRNA network based on hub genes

Subsequently, we constructed a competing endogenous RNA

(ceRNA) network based on the four hub genes using data from the

miRanda, TargetScan, miRDB, and Spongescan databases. The

resulting network consists of 58 nodes—comprising 3 hub genes,

14 miRNAs, and 41 lncRNAs—and 60 edges (Figure 10). The analysis

revealed that 36 lncRNAs may regulate the expression of CCND1 by
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competitively binding to 11 miRNAs. Additionally, 4 lncRNAs

potentially regulate BMP2 expression through competitive binding

with 3 miRNAs, while 5 lncRNAs were found to regulate COL10A1

expression by targeting a single miRNA. Detailed information on the

ceRNA network is provided in Supplementary Table S2.
3.10 Higher expression of hub genes in
gastric cancer-associated MN and tumor
tissues

Through a single-center retrospective analysis, we identified 3

patients with biopsy-confirmed gastric cancer-associated MN in the

Nephrology Department of China-Japan Friendship Hospital from

2014-2023. One patient found gastric cancer with lymph node

metastasis at the same time as the diagnosis of membranous
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nephropathy. Another patient found a recurrence of gastric

cancer 8 months after diagnosis of MN. The last patient was

found with low differentiated gastric adenocarcinoma 2 years

after diagnosis of MN. Immunohistochemistry was used to assess

the differences in gene expression of gastric cancer-associated MN

and primary membranous nephropathy. We explored the

expression difference of hub genes in gastric cancer-associated

MN, PMN, and normal kidney tissue, and compared it in gastric

cancer and normal gastric tissue by immunohistochemistry. The

results showed higher expression of CCND1, CEBPD, and BMP2 in

gastric cancer-associated MN glomeruli than PMN and normal

kidney tissue (Figures 11A–C, F–H, K–M, P–R). CCND1, CEBPD,

and BMP2 were also expressed higher in gastric cancer than normal

gastric tissue (Figures 11D, E, N, O, S, T).

Immunohistochemistry revealed higher expression of CCND1,

CEBPD, and BMP2 in gastric cancer-associated MN glomeruli
FIGURE 5

Immune cell infiltration analysis between GC and control. (A) The proportion of 22 kinds of immune cells between the two groups. (B) Comparison
of differential infiltration among 22 immune cells. (C) Correlation of 22 immune cell type compositions. (D-G) The correlations between the
expression of four hub genes (CCND1, CEBPD, BMP2 and COL10A1) and immune cell enrichment.
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compared to PMN and normal kidney tissue (Figures 11A–C, F–H,

K–M, P–R). Gastric cancer-associated MN glomeruli expressed

CCND1 significantly higher than both normal kidney tissue

(0.696 ± 0.073 vs. 0.174 ± 0.058, p=0.001) and PMN (0.696 ±

0.073 vs. 0.274 ± 0.058, p=0.001). Gastric cancer-associated MN

glomeruli expressed CEBPD significantly higher than normal

kidney tissue (0.613 ± 0.142 vs. 0.310 ± 0.104, p=0.013) and PMN

(0.613 ± 0.142 vs. 0.279 ± 0.055, p=0.009). Gastric cancer-associated

MN glomeruli expressed BMP2 significantly higher than both

normal kidney tissue (0.673 ± 0.045 vs. 0.173 ± 0.114, p=0.001)
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and PMN (0.673 ± 0.045 vs. 0.325 ± 0.047, p=0.001). COL10A1 was

negative in the glomeruli of gastric cancer-associated MN, PMN,

and normal kidney tissue (Figures 11F–H). CCND1 was expressed

at higher levels in metastatic lymph nodes from stomach cancer

compared to normal gastric tissue (1.396 ± 0.141 vs. 0.174 ± 0.058,

p=0.001). Similarly, CEBPD (1.280 ± 0.164 vs. 0.212 ± 0.093,

p=0.001) and BMP2 (1.339 ± 0.089 vs. 0.158 ± 0.031, p=0.001)

showed higher expression in gastric cancer than in normal gastric

tissue (Figures 11D, E, N, O, S, T). COL10A1 expression did not

show any significant difference between gastric cancer and normal
FIGURE 6

Immune cell infiltration analysis between MN and control. (A) The proportion of 22 kinds of immune cells between the two groups. (B) Comparison
of differential infiltration among 22 immune cells. (C) Correlation of 22 immune cell type compositions. (D-G) The correlations between the
expression of hub genes (CCND1, CEBPD, BMP2 and COL10A1) and immune cell enrichment.
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gastric tissue groups (Figures 11I, J). The AOD (Average Optical

Density) bar charts for each group are shown in Figures 11U, V.

(original magnification×400).
4 Discussion

The coexistence of MN and malignancies, particularly in

middle-aged and elderly individuals, may be coincidental due to

overlapping onset ages. However, tumor antigens or tumor-reactive

antibodies detected in glomerular immune deposits suggest a

pathogenic link (21). Researches have consistently demonstrated a

link between MN and various cancers (22) Napat et al. (23)

conducted a meta-analysis reporting that approximately 10% of

MN cases are linked to cancer. Lung cancer was the most prevalent,

followed by gastric, intestinal, prostate, and breast cancers. Despite

this, the underlying mechanisms remain unclear. Through

biosignature analysis, we identified CCND1, CEBPD, BMP2, and

COL10A1 as key genes in GC-associated MN, with significant

d i a gno s t i c po t en t i a l c onfi rmed by ROC ana l y s i s .

Immunohistochemical validation in GC-associated MN patients
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showed CCND1, CEBPD, and BMP2 overexpression, suggesting

their role in disease mediation.
4.1 Molecular Insights into GC-associated
MN

We identified 40 shared DEGs (22 upregulated, 18

downregulated), primarily enriched in pathways related to

immune response, inflammation, and cellular processes critical

for disease progression. GO and KEGG analyses highlighted key

pathways, including leukocyte migration, cytokine activity, and

PI3K-Akt signaling, emphasizing the role of inflammatory and

immune mechanisms in both MN and GC. The identification of

CCND1, CEBPD, COL10A1, and BMP2 as hub genes via machine

learning underscores their pivotal roles in GC-associated MN.

CCND1, located at 11q13, is frequently amplified in gastric

cancer, particularly in the CIN subtype (24). This amplification

drives cyclin D1 overexpression, promoting G1/S transition

through CDK4/6, thereby accelerating tumor progression (25).

Overexpression correlates with poor prognosis, including reduced
FIGURE 7

(A-D) GSEA analysis of hub genes (CCND1, CEBPD, COL10A1 and BMP2).
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FIGURE 8

Comparative toxicogenomics database (CTD) analysis. The interaction of CCND1 and disease (A). The interaction of CEBPD and disease (B). The
interaction of BMP2 and disease (C). The interaction of COL10A1 and disease (D).
FIGURE 9

Prediction of targeted drugs for hub genes.
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FIGURE 10

The ceRNA network of hub genes.
FIGURE 11

Immunohistochemical expression of CCND1, COL10A1, CEBPD, and BMP2 in renal and gastric tissues (A-T), with quantitative AOD analysis (U-V).
*Statistical significance: *p < 0.05, **p < 0.01, **p < 0.001.
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overall survival and increased recurrence rates, and confers

resistance to chemotherapy and radiotherapy, highlighting the

need for targeted therapies (26). In podocytes, cyclin D1 plays a

key role in maintaining cell cycle quiescence and differentiation. Its

dysregulation contributes to glomerulosclerosis by impairing

proliferation capacity, leading to incomplete GBM coverage and

podocyte injury (27–31).

CEBPD, a C/EBP family member, regulates cell proliferation,

differentiation, and inflammation. It is significantly downregulated

in gastric cancer cells (MKN45, MKN74) compared to normal

gastric mucosa, suggesting a tumor-suppressor role (32). In

glomerular disease, CEBPD regulates SMaA and MCP-1, driving

myofibroblast transdifferentiation and inflammatory responses in

mesangial cells (33). During acute inflammation, CEBPD mitigates

renal injury via IL-17 signaling but paradoxically exacerbates

fibrosis in later stages (34). Additionally, by upregulating HIF-1a,
CEBPD protects against hypoxia-induced acute kidney injury

through enhanced angiogenesis, antioxidative stress, and

metabolic reprogramming (35).

BMP2 , a TGF-b superfamily member, regulates cell

proliferation, apoptosis, and ECM remodeling. In gastric cancer,

BMP2 activates the PI3K/Akt pathway, promoting EMT, invasion,

and metastasis, making it a potential therapeutic target (36). Its

overexpression correlates with lymph node metastasis, high tumor

grade, and poor prognosis (37). Increased serum BMP2 levels

further associate with bone metastasis and tumor burden (38, 39).

In the kidney, BMP2 triggers pSMAD1 signaling, leading to GBM

thickening and filtration barrier disruption. Complement activation

(C3a, C5b-9) induces BMP2 secretion, linking immune activation

with podocyte injury (40). Additionally, BMP2 enhances ROS

production and Id-1 expression, contributing to cell adhesion

dysfunction, ion transport imbalance, and fibrogenesis, key events

in membranous nephropathy (41).

COL10A1, a collagen family member, is a key mediator of tumor

progression and ECM remodeling. Its overexpression in gastric

cancer correlates with poor prognosis, advanced tumor stage, and

altered immune microenvironment, making it both a biomarker

and therapeutic target (42, 43). Elevated plasma and tissue

COL10A1 levels strongly associate with tumor invasion, EMT,

and poor clinical outcomes (44, 45). In the kidney, COL10A1

upregulation marks fibrotic progression in acute kidney injury

(AKI) and correlates with poor renal recovery. KLF4-mediated

miR-101 upregulation suppresses COL10A1, thereby inhibiting

EMT and renal fibrosis in ischemia-reperfusion injury (46).
4.2 Immune microenvironment and
functional pathways

Immune infiltration analysis revealed distinct immune cell

patterns in GC and MN. GC showed elevated macrophages and

neut rophi l s , which promote tumor progress ion v ia

immunosuppressive and pro-inflammatory mechanisms, while

MN exhibited increased monocyte infiltration, a hallmark of

glomerular inflammation. Strong correlations between hub gene
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expression and immune cell subtypes (e.g., CCND1 and BMP2 with

macrophages and neutrophils) further suggest their roles in

immune-mediated tissue damage and repair.

Our immune infiltration analysis demonstrated increased

macrophages and neutrophils in GC, and enhanced monocyte

infiltration in MN, with hub genes CCND1, CEBPD, and BMP2

showing significant correlations with these immune subsets. CCND1

has been shown to regulate T-cell and dendritic cell activity, thereby

linking tumor cell proliferation with immune dysregulation. CEBPD

promotes pro-inflammatory signaling and monocyte/macrophage

recruitment, which may exacerbate glomerular injury. BMP2 is

implicated in NK- and B-cell regulation, potentially facilitating

immune complex deposition and podocyte damage. These findings

suggest that abnormal expression of CCND1, CEBPD, and BMP2

synergistically interacts with immune cell infiltration, thereby driving

the progression of GC-MN through both tumor-promoting and

kidney-injuring mechanisms.

GSEA analysis highlighted functional roles of hub genes in GC-

associated MN: CCND1 was enriched in Toll-like receptor and

cytokine receptor pathways, central to innate immune activation

and chronic inflammation. BMP2 was enriched in lysosomal

pathways, suggesting its involvement in autophagy and antigen

processing, crucial in tumor immunity and glomerular injury.

Functional enrichment highlighted fat cell differentiation and

immune cell migration as key pathways. Dysregulated adipogenesis

can alter cytokine profiles, contributing to systemic inflammation

and immune dysregulation, whereas enhanced immune cell

migration may promote renal infiltration and immune complex

deposition. These findings provide mechanistic clues on how

metabol ic- immune interplay may contr ibute to GC-

MN pathogenesis.
4.3 Hub genes-targeted drugs and the
ceRNA network

In this study, we identified a series of potential therapeutic

drugs targeting four hub genes (CCND1, CEBPD, BMP2, and

COL10A1) using the DGIdb database. Notably, CCND1 was

associated with the largest number of candidate drugs (n = 184),

underscoring its central role as a druggable target in the disease

context. As a key regulator of cell cycle progression, CCND1

dysregulation has been implicated in various malignancies, and

the large number of available drugs suggests it may serve as a pivotal

therapeutic target in both MN and GC. Conversely, CEBPD, BMP2,

and COL10A1 were associated with fewer drugs (n = 24, 35, and 1,

respectively), which may reflect the relatively limited

pharmacological development targeting these genes to date.

To better understand the regulatory mechanisms underlying the

expression of these hub genes, we constructed a ceRNA network

based on interactions among lncRNAs, miRNAs, and mRNAs. The

resulting network revealed a complex layer of post-transcriptional

regulation, particularly for CCND1, which was regulated by 36

lncRNAs through 11 miRNAs. This finding is consistent with the

central role of CCND1 in the disease network and suggests that its
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expression is tightly modulated by multiple non-coding

RNA elements.

The retrospective analysis of GC-associated MN cases suggests a

bidirectional relationship, where malignancy-driven immune

dysregulation may trigger glomerular injury, while chronic kidney

disease may influence cancer progression. Immunohistochemical

validation confirmed significantly higher expression of CCND1,

CEBPD, and BMP2 in GC-associated MN than in primary MN and

normal tissues, reinforcing their potential as diagnostic biomarkers.

Our findings extend previous studies (6, 9) which established

molecular mimicry between tumor antigens and podocyte antigens

as a key driver of cancer-associated MN. In contrast to well-

established MN antigens such as PLA2R, THSD7A, and NELL-1,

which are podocyte-expressed targets, CCND1, CEBPD, and BMP2

are tumor-associated genes that may contribute to MN through

systemic immune modulation. This distinction underscores the

novelty of our findings, suggesting that GC-MN may represent a

paraneoplastic process where tumor-driven immune dysregulation,

rather than direct autoantigenicity, initiates glomerular injury.

Unlike CCND1, CEBPD, and BMP2, COL10A1 showed negative

staining in GC-MN glomeruli despite being identified as a hub gene

with strong diagnostic potential. COL10A1, a collagen family

member, is known to be upregulated in gastric cancer tissues and

promotes extracellular matrix remodeling, invasion, and

angiogenesis. Its absence in renal glomeruli suggests that

COL10A1 may exert its effects primarily within the gastric tumor

microenvironment, indirectly contributing to paraneoplastic renal

injury rather than directly mediating glomerular damage. This

discrepancy may also reflect post-transcriptional regulation,

dataset heterogeneity, or limitations of antibody sensitivity.

Therefore, while COL10A1 remains an informative bioinformatic

marker for GC, its clinical relevance for GC-MN requires cautious

interpretation and further validation.
4.4 Limitations and future directions

While our study provides novel insights into GC-associated MN,

certain limitations must be acknowledged. Several limitations should

be acknowledged. First, the validation cohort for GC-associated MN

was extremely small (n = 3), limiting generalizability. Second,

heterogeneity across GEO datasets may introduce bias despite

normalization and batch correction. Third, our analysis is

associative and cannot prove causality. Fourth, immune infiltration

results could be confounded by unmeasured variables such as tumor

stage, treatment history, or host background. Although the number of

patient samples used for experimental validation in this study is

limited, due to the extremely rare clinical cases of gastric cancer-

associated MN and the difficulty of obtaining these tissue samples,

each sample has high research value. These limitations underscore

the need for future large-scale, multi-center, and mechanistic studies

to validate and extend our findings.
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5 Conclusion

In conclusion, this study elucidates the molecular and

immunological mechanisms linking MN and GC, identifying

CCND1, CEBPD, and BMP2 as key genes of disease pathogenesis.

The integration of bioinformatics and machine learning provides a

comprehensive framework for understanding GC-associated MN,

offering new directions for biomarker discovery and therapeutic

interventions. Further experimental studies and clinical trials are

warranted to validate these findings and explore the therapeutic

potential of these hub genes.
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