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Background: This study explores the genetic basis of membranous nephropathy
(MN) in gastric adenocarcinoma (GC) through bioinformatics and machine
learning analyses.

Methods: Gene expression profiles fromm MN (GSE108109) and GC (GSE54129)
datasets were obtained from the Gene Expression Omnibus. Common
differentially expressed genes (DEGs) were identified using the limma R
package. Biological functions were analyzed via Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with the Cluster
Profiler package. LASSO regression and Random Forest algorithms were used to
identify hub genes associated with GC-related MN. The area under the curve
(AUC) of ROC analysis validated these genes for their diagnostic potential. Gene
Set Enrichment Analysis (GSEA) and immune cell infiltration analysis were
conducted, with hub genes validated through immunohistochemistry on renal
and gastric cancer tissues.

Results: We identified 40 common DEGs between GC and MN datasets. Using
protein-protein interaction networks, 20 significant hub genes were selected,
primarily involved in inflammatory and immune response regulation. Key hub
genes identified were CCND1, CEBPD, COL10A1, and BMPZ2, which
demonstrated high accuracy in discriminating MN. Notably, CCND1, CEBPD,
and BMP2 were significantly overexpressed in glomerular and gastric
cancer tissues.

Conclusions: Our findings highlight the crucial roles of CCND1, CEBPD, and
BMP2 in the pathogenesis of GC-associated MN, providing insights for future
research and potential therapeutic strategies.

gastric cancer, membranous nephropathy, immunohistochemistry, bioinformatics
analysis, machine learning
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1 Introduction

Gastric cancer (GC) is one of the most prevalent cancers globally,
accounting for approximately 4.9% of new cancer cases and 6.8% of
cancer-related deaths annually, with a notably higher incidence in
males (1). Among the various histological subtypes, gastric
adenocarcinoma is the most common, representing about 90% of all
gastric cancers (2). The multifactorial nature of GC, influenced by
dietary factors, Helicobacter pylori infection, and genetic
predispositions, underscores the complexity of its etiology and
necessitates further exploration of associated systemic effects (3).

Among paraneoplastic glomerulopathies, membranous
nephropathy (MN) is the most frequently reported and clinically
significant subtype, accounting for a substantial proportion of
malignancy-associated renal lesions (4). This makes MN
particularly relevant when considering the systemic complications
of GC. Since Lee’s seminal 1966 study postulated a link between
nephrotic syndrome and malignancy, this association has gained
increasing clinical significance, as nephrotic syndrome may herald
an underlying malignancy and, conversely, treatment of the tumor
can lead to remission of MN (5-7).

The pathophysiological link between cancer and MN is thought
to involve immune complex deposition, tumor antigens that mimic
podocyte proteins, and cross-reactive antibodies that trigger
complement-mediated injury (8-10). Clinical observations that
MN often improves following cancer therapy provide further
support for these immune-mediated mechanisms (7). Although
various glomerulopathies such as minimal change disease and focal
segmental glomerulosclerosis have been reported in malignancy,
MN is distinguished by its higher prevalence, stronger
paraneoplastic association, and unique antigenic mechanisms,
justifying its selection as the focus of the present study (11).

Recent advancements in high-throughput sequencing and
bioinformatics have provided unprecedented opportunities to
systematically investigate molecular mechanisms in complex diseases
(9). Differentially expressed gene (DEG) analysis and machine learning
algorithms such as LASSO and random forest can pinpoint hub genes
with diagnostic and therapeutic potential (12).

Although previous studies have reported associations between
malignancy and MN, the genetic and molecular mechanisms
underlying gastric cancer-associated MN remain poorly
understood. For the first time, we integrated multi-omics data
and machine learning to identify GC-MN-specific hub genes and
validate their cross-regulatory roles in GC cell proliferation and
glomerular injury, complementing the established ‘molecular
mimicry’ mechanism of cancer-associated MN (9).

2 Materials and methods
2.1 Data source
We searched the GEO database (https://www.ncbi.nlm.nih.gov/

geo/) for membranous glomerulonephritis and gastric cancer (GC)
data sets. Microarray data sets GSE108109 (44 Membranous
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Nephropathy and 6 Living donor) and GSE54129 (111 human
gastric cancer tissues and 21 noncancerous gastric tissues) were
downloaded from the GEO database.

Figure 1 summarizes the work flow of data collection
and analysis.

2.2 Analysis of differentially expressed
genes

First, the normalizeBetweenArrays function from the limma R
package (13) was employed to standardize gene expression
measurements in both the membranous nephropathy (MN) dataset
GSE108109 and the gastric cancer (GC) dataset GSE54129. Raw
expression data from GEO datasets were normalized using the
‘normalizeBetweenArrays' function in the limma package, followed
by log2 transformation to ensure comparability across samples. Batch
effects between datasets were assessed using PCA, and probe-to-gene
mapping was standardized prior to integration. Differentially expressed
genes (DEGs) were defined using adjusted p < 0.05 and |[log2 fold-
change| > 1, a threshold chosen to balance statistical rigor with
biological interpretability and widely applied in transcriptomic
studies. These DEGs were subsequently visualized through volcano
plots and heatmaps using ggplot2 and heatmap in R. Finally, the
VennDiagram package was used to pinpoint and depict overlapping
DEGs shared by MN and GC.

2.3 Functional enrichment analysis of DEGs

To elucidate the biological mechanisms underlying the hub
genes associated with both GC and MN, we conducted functional
enrichment analyses. The Gene Ontology (GO) database offers
comprehensive annotations for gene functions—covering
molecular roles, biological pathways, and cellular components—
while the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway provides a resource for examining gene functions and
broader genomic interactions. We employed the GO plot package
together with the clusterProfiler tool in R to assess GO terms and
KEGG pathways, thereby gaining deeper insight into the roles of
these hub genes (14). Annotation terms with a P value below 0.05
were considered significantly enriched, and the final results were
illustrated using bubble diagrams and heatmaps.

2.4 Protein-protein interaction network
analysis

We constructed a protein-protein interaction (PPI) network to
explore potential interactions among the identified differentially
expressed genes (DEGs), using data from the STRING database
(https://cn.string-db.org) (15). This database offers detailed insights
into various forms of interactions, including direct physical
associations or indirect regulatory mechanisms involving shared
signaling pathways. Only interactions surpassing a combined

frontiersin.org


https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cn.string-db.org
https://doi.org/10.3389/fimmu.2025.1630836
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xu et al.

10.3389/fimmu.2025.1630836

FIGURE 1
Research design flow chart.

confidence threshold score of 0.4 were retained for subsequent
analysis. Cytoscape software (http://www.cytoscape.org) was
employed to visualize the constructed PPI network clearly
and intuitively.

2.5 Selection and functional analysis of hub
genes

Highly interconnected hub genes were identified utilizing the

cytoHubba plugin within the Cytoscape software. The selection
parameters applied included K-core = 2, degree threshold = 2,
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maximum depth = 100, and node score threshold = 0.2. To further
investigate functional relationships, GeneMANIA (http://
www.genemania.org) was employed to establish a protein-protein
interaction (PPI) network, facilitating the prediction of gene
functions and the identification of genes with similar biological
roles. This platform integrates various bioinformatics approaches,
including physical interactions, co-expression patterns, co-
localization, gene enrichment analysis, genetic interactions, and
site prediction. Subsequently, a co-expression network of the
selected hub genes was constructed using GeneMANIA, offering a
comprehensive framework for uncovering internal gene
associations within the dataset (16).
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2.6 Machine learning and identification of
hub genes

To identify key genes associated with gastric cancer (GC)-
related membranous nephropathy (MN), we implemented two
well-established machine learning approaches: least absolute
shrinkage and selection operator (LASSO) regression and random
forest. The glmnet and randomForest R packages were utilized to
develop predictive models (17-19). For LASSO regression, a three-
fold cross-validation strategy was applied to optimize the lambda
parameter. We selected the A.1se (0.05) to avoid overfitting, which
provided a more parsimonious model while retaining predictive
accuracy. Meanwhile, the random forest algorithm was configured
with 1000 decision trees and 50 perturbations to ensure robust
feature selection. Genes with a MeanDecreaseGini value >0.05 were
defined as significant feature genes. In the final step, genes identified
by both methods were cross-compared, and those consistently
selected were designated as the core GC-associated MN genes.

2.7 Receiver operating characteristic curve
analysis

To evaluate the diagnostic significance of key genes in
membranous nephropathy (MN) datasets (GSE108109), receiver
operating characteristic (ROC) analysis was conducted using the
ROC function in R. The area under the curve (AUC) was calculated
to validate the predictive performance of these genes. Additionally,
in subsequent analyses, the clusterProfiler package was employed to
perform Gene Set Enrichment Analysis (GSEA) on the finalized
hub genes, providing insights into their functional roles and
associated biological pathways.

2.8 Immune infiltration analysis and
correlation with hub gene

To analyze immune cell infiltration patterns in gastric cancer
(GC) and membranous nephropathy (MN), the CIBERSORT
algorithm was applied to estimate the relative proportions of 22
distinct immune cell types. The vioplot package in R was then used
to generate visual representations of these distributions.
Subsequently, a correlation matrix was constructed to illustrate
the relationships between the immune cell subsets. To further
examine the association between hub gene expression and
immune cell infiltration, Spearman correlation analysis was
conducted, providing insights into potential immune
regulatory mechanisms.

2.9 Evaluation of Hub genes in relation to
disease

The comparative toxicogenomics database (CTD) (http://
ctdbase.org/) was used to identify gene-disease interactions (20),
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the relationship between hub genes and kidney diseases and gastric
tumors were analyzed by the CTD database.

2.10 Construction of hub genes-targeted
drugs and the ceRNA network

The Drug-Gene Interaction Database (DGIdb) was employed to
predict drug targets associated with the identified hub genes. We
utilized the miRanda, TargetScan, and miRDB databases to predict
mRNA-miRNA interaction pairs based on the four identified hub
genes. The results common to all three databases were selected for
further analysis. Subsequently, we searched for the predicted
miRNAs in the Spongescan database and filtered for miRNA-
IncRNA pairs, thereby constructing a ceRNA network comprising
mRNA-miRNA-IncRNA interactions.

2.11 Experimental validation

Through a single-center retrospective analysis, we identified 3
patients with biopsy-confirmed gastric cancer-associated MN in the
Nephrology Department of China-Japan Friendship Hospital from
2014-2024. One patient found gastric cancer with lymph node
metastasis at the same time as the diagnosis of membranous
nephropathy. Another patient found a recurrence of gastric cancer 8
months after diagnosis of MN. The last patient was found with low
differentiated gastric adenocarcinoma 2 years after diagnosis of MN.
Immunohistochemistry was used to assess the differences in gene
expression of gastric cancer-associated MN and primary
membranous nephropathy. The samples from 3 gastric cancer-
associated MN patients included both kidney tissue and gastric
cancer tissue, and IHC staining was performed on both types of
tissues. Additionally, 3 PMN patient samples underwent kidney
pathology staining. We also performed IHC staining on kidney
tissues from 3 healthy controls and gastric tissues from 3 healthy
controls in order to compare gene expression differences between
kidney tissue and gastric tissue. The baseline characteristics of the three
GC-MN patients are as follows: Patient 1 was a 74-year-old male with
gastric adenocarcinoma and lymph node metastasis, diagnosed with
MN simultaneously (MN stage II, GC stage T3N2MO, received surgical
resection and chemotherapy of GC). Patient 2 was a 63-year-old female
who developed gastric adenocarcinoma eight months after being
diagnosed with MN (MN stage III, GC stage T2N1MO, received
surgical resection). Patient 3 was a 31-year-female with poorly
differentiated gastric adenocarcinoma diagnosed two years after MN
(MN stage II, GC stage T3N3bM1, received chemotherapy and
immunotherapy). Control sample selection was based on strict
exclusion criteria: primary MN patients were excluded if they had a
history of malignancy; healthy controls were excluded if they had any
history of kidney disease or malignancy.

Immunohistochemistry staining for CCNDI1, COL10A1, CEBPD,
and BMP2 was performed for 3 gastric cancer-associated MN patients
and 3 PMN patients of renal biopsy. Positive and negative controls were
used to validate the antibody. The tissue was fixed and embedded in

frontiersin.org


http://ctdbase.org/
http://ctdbase.org/
https://doi.org/10.3389/fimmu.2025.1630836
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xu et al.

paraffin and sectioned at a thickness of 3 pm. After dewaxing through a
hydration process of xylene treatment followed by alcohol baths, the
kidney tissue was repaired using an antigen. Antigen repair was
performed using high-pressure thermal repair with 2% Ethylene
Diamine Tetraacetic Acid (EDTA) buffer for 3 minutes, and
endogenous peroxidase was inactivated using hydrogen peroxide
peroxidase. The following antibodies (1) CCNDI antibody (Cell
Signaling Technology) diluted 1:50, (2) COL10AI antibody (26984-1-
AP, Proteintech) diluted 1:50, (3) CEBPD antibody (AF9027, affinity)
diluted 1:50, (4) BMP2 antibody (AF5163, affinity) diluted 1:50 were
incubated overnight at 4°C, washed with phosphate buffer saline (PBS)
obtained from Thermo Fisher Scientific, and then incubated at 4°C for 2
hours. C, washed with PBS and stained with horseradish peroxidase and
diaminobenzidine to visualize the reaction. Sections were observed
under a bright-field microscope (Nikon, Tokyo, Japan) at a
magnification of 400 using a Moticam 2506 instrument (Motic,
Fujian, China), and images were taken with a digital camera system
(Nikon) for assessment in a blinded manner. Blinding was performed
by having independent pathologists, who were not involved in the
study, assess the slides without knowledge of the sample identities.
Semi-quantitative assessments were performed using Image Pro-plus
computer image analysis software (Media Cybernetics, Bethesda, MD,
USA) to analyze the average optical density (AOD) and quantify protein
levels. Five glomeruli from each biopsy tissue were randomly captured
and analyzed, using the average AOD as the final result for each patient.

2.12 Statistical analysis

All statistical analyses and visualizations were conducted using R
software (version 4.1.2). The packages ggbeeswarm, ggpubr, and
ggplot2 facilitated boxplot visualization. Student’s t-test was
employed for comparing normally distributed data, whereas Mann-
Whitney U tests were applied to data lacking normal distribution.
Receiver operating characteristic (ROC) curves and corresponding area
under the curve (AUC) values were generated using the pROC
package. Correlation networks were visualized through the igraph
package, with Spearman’s correlation coefficient utilized to evaluate
relationships between continuous variables. Statistical significance was
defined as a p<0.05. In the experimental part, for continuous variables
with more than two groups, if the data meet the assumption of
homogeneity of variances, one-way analysis of variance (ANOVA)
was used to compare the differences between the groups. For significant
differences found in the ANOVA analysis, Tukey’s post hoc test was
applied to further compare specific differences between the groups.
Statistical significance was defined as a p<0.05.

3 Results
3.1 Identification of DEGs

Following normalization, mean gene expression values remained
consistent across all samples. To evaluate variability between groups,
principal component analysis (PCA) was conducted, confirming the
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reliability of the dataset. A thorough analysis of the MN dataset
(GSE108109) identified 868 upregulated and 588 downregulated
differentially expressed genes (DEGs). In the GC dataset (GSE54129),
a total of 894 genes were upregulated, while 899 were downregulated.
To visualize these findings, a volcano plot (Figure 2B) was generated for
the MN dataset, with the top 50 highly expressed and lowly expressed
genes displayed in a heatmap (Figure 2A). Similarly, the GC dataset’s
gene expression patterns were illustrated in Figures 2C, D. Notably, 22
DEGs were consistently upregulated in both MN and GC datasets
(Figure 2E), while 18 shared DEGs exhibited
downregulation (Figure 2F).

3.2 GO and KEGG pathway enrichment of
common DEGs

To elucidate the molecular functions and pathways underlying
the connection between membranous nephropathy (MN) and
gastric cancer (GC), functional enrichment analyses including
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) were conducted. Results of GO analysis,
highlighting the top enriched biological processes (BP), cellular
components (CC), and molecular functions (MF), were depicted in
bubble charts (Figure 3A). Correspondingly, enriched KEGG
pathways were illustrated in Figure 3B. The subset of biological
process (BP) indicated that common DEGs are involved in the fat
cell differentiation, myeloid leukocyte migration, leukocyte
migration, leukocyte chemotaxis, positive regulation of fat cell
differentiation, killing of cells of another organism, disruption of
cell in another organism, disruption of anatomical structure in
another organism, regulation of fat cell differentiation, p38MAPK
cascade. The Cellular Component (CC) subset highlighted
involvement in the endoplasmic reticulum lumen, secretory
granule lumen, cytoplasmic vesicle lumen and vesicle lumen.
Molecular Function (MF) elucidated roles in flavin adenine
dinucleotide binding, kinase activator activity, cytokine activity,
kinase regulator activity. Furthermore, KEGG pathway enrichment
analysis underscored the significant participation of the common
DEGs in Kaposi sarcoma—associated herpesvirus infection, PI3K
—Akt signaling pathway, Acute myeloid leukemia, AGE-RAGE
signaling pathway in diabetic complications, Measles, Alcoholic
liver disease, Hippo signaling pathway, Hepatitis C, Axon guidance,
Focal adhesion, Epstein—Barr virus infection and Human T—cell
leukemia virus 1 infection.

3.3 Selection of hub genes between GC
and MN

A protein-protein interaction (PPI) network was established
using the STRING database and visualized through Cytoscape
software. To identify key gene clusters, the MCODE plugin in
Cytoscape was applied, setting a combined score threshold of >0.4.
The cytoHubba plugin was utilized with the Degree algorithm,
leading to the selection of 20 highly interconnected hub genes. A
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PPI network comprising these 20 genes, represented by 20 nodes
and 32 edges, was subsequently constructed and displayed using
Cytoscape. Functional annotation of hub genes was conducted
through the GeneMANIA database. As shown in Figure 3C, these
20 genes were associated with cell chemotaxis, vacuolar lumen
response to chemokine, myeloid leukocyte migration, leukocyte
chemotaxis and neutrophil migration. GO enrichment analyses
were performed on the 20 hub genes to explore the biological
functions and pathways involved in MN and GC, GO circle
(Figure 3D) showed BMP2, CCNDI, CEBPD, LPL, ZBTBI6,
ZFP36 were involved in fat cell differentiation. BMP2, ZFP36,
ZBTBI16, LPL were involved in positive regulation of fat cell
differentiation and regulation of fat cell differentiation. SI00A12,
PIK3RI, DUSP1, CXCL2, CHGA were involved in myeloid
leukocyte migration and leukocyte migration. ZFP36, DUSPI,
BMP2 were involved in p38MAPK cascade. CHGA, CXCL2,
DUSPI, S100A12 were involved in leukocyte chemotaxis. CCNDI,
BMP2, DUSP1, NOX4, SI00A12 were involved in regulation of
protein kinase activity.

3.4 Machine learning to identify hub GC-
associated MN genes

We employed two machine learning algorithms to further
identify GC-associated MN genes based on the differential

10.3389/fimmu.2025.1630836

analysis of 20 hub genes. The LASSO algorithm, converging on
the optimal lambda value, identified 9 significant membranous
nephropathy genes (Figure 4A). The RandomForest algorithm
confirmed 6 membranous nephropathy signature genes
(Figure 4B). These four genes (CCNDI, CEBPD, COLIOAI,
BMP2) were considered by the 2 algorithms to be the hub genes
of GC-associated MN (Figure 4C). Through ROC analysis, we
found that these four genes exhibited satisfactory efficacy in
discriminating MN (CCNDI: 1.000, COL10A1: 0.955, CEBPD:
1.000, BMP2: 0.996) (Figure 4D).

For LASSO, A values were optimized by 10-fold cross-
validation, and the A within 1 standard error of the minimum
was selected to avoid overfitting. The cross-validation curve is
shown in Supplementary Figures SI1A, B. For Random Forest,
feature importance was evaluated by MeanDecreaseGini index,
and stability was assessed across 100 bootstrap resampling runs,
with mean + SD of importance scores reported (Supplementary
Figures S2A, B).

Survival analysis was conducted using the Kaplan-Meier Plotter
online database (https://kmplot.com/analysis/), incorporating
clinical information from approximately 875 gastric cancer
patients derived from the TCGA dataset. The key hub genes
(CCND1, CEBPD, COL10A1, and BMP2) were selected as target
variables, and patients were stratified into high- and low-expression
groups according to the optimal cut-off values. Overall survival
(OS) was subsequently analyzed, generating four survival curves.
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Except for BMP2, the survival analyses of the other three genes
yielded p< 0.05 and hazard ratios (HRs) > 1, indicating their
association with poor prognosis. Among them, CCNDI emerged
as a significant prognostic marker for gastric cancer patients (HR =
1.37,95% CI = 1.1-1.6; p < 0.001) (Supplementary Figures S3A-D).

To further validate the diagnostic efficacy of the identified hub
genes, we performed receiver operating characteristic (ROC) curve
analysis using two independent datasets, GSE104948 and
GSE99339. As shown in Supplementary Figures S4A, B, three hub
genes (CCNDI, CEBPD, and BMP2) demonstrated favorable
diagnostic performance in distinguishing MN samples from
controls. In GSE104948, BMP2 and CEBPD exhibited the highest
diagnostic accuracy, with area under the curve (AUC) values
exceeding 0.90, while CCNDI also achieved robust predictive
power (AUC > 0.80). Similarly, in GSE99339, CCNDI, CEBPD,
and BMP2 consistently maintained strong diagnostic value (AUC >
0.80), whereas COLI0AI showed only moderate diagnostic
performance (AUC < 0.70). These results confirm the
reproducibility and robustness of the hub genes across
independent cohorts, underscoring their potential as biomarkers
for GC-MN.

3.5 Association between the hub genes
and immune infiltration

Previous studies indicate immune responses and inflammatory
processes significantly contribute to membranous nephropathy
(MN) and gastric cancer (GC) pathogenesis. To elucidate this
immune association, we analyzed the infiltration profiles of 22
immune cell subpopulations using the CIBERSORT algorithm.
The differences in immune cell proportions between GC patients
and healthy controls are illustrated in (Figures 5A, B). Notably, GC
samples demonstrated increased proportions of naive B cells,
activated memory CD4+ T cells, activated NK cells, and
macrophage subtypes M0, M1, M2, as well as neutrophils, relative
to healthy controls. Conversely, memory B cells, plasma cells,
resting memory CD4+ T cells, regulatory T cells (Tregs), gamma-
delta T cells, activated dendritic cells, and eosinophils were
significantly decreased in GC samples. These differential immune
cell populations are depicted visually in Figure 5C. Spearman
correlation coefficients demonstrating associations between
immune cell abundance and the expression of the four central
genes (CCNDI1, CEBPD, COL10AI, and BMP2) were visualized
using lollipop plots (Figures 5D-G). Furthermore, differences in
immune cell proportions and their correlation networks between
MN patients and healthy controls were examined (Figures 6A, B).
Notably, MN samples showed significantly reduced plasma cells
and memory B cells, whereas monocyte infiltration was significantly
increased (Figure 6C). The associations between immune cell
infiltration levels and the four central gene expressions in MN
were similarly assessed using Spearman correlation analysis
(Figures 6D-G).
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3.6 GSEA analysis

According to GSEA findings, the CCNDI high expression group
was highly enriched for Cytokine Receptor Interaction, Leishmania
Infection, Natural Killer Cell Mediated Cytotoxicity, Systemic Lupus
Erythematosus and Toll Like Receptor Signaling Pathway
(Figure 7A). The CEBPD high expression group was mostly
concentrated in Cytokine Cytokine Receptor Interaction,
Hematopoietic Cell Lineage, Primary Immunodeficiency,
Ribosome, Selenoamino Acid Metabolism (Figure 7B).
Complement And Coagulation Cascades, Drug Metabolism Other
Enzymes, Ecm Receptor Interaction, Focal Adhesion, Retinol
Metabolism were all associated with increased COLI0AI expression
(Figure 7C). The BMP2 high expression group was mostly
concentrated in Amino Sugar And Nucleotide Sugar Metabolism,
Ecm Receptor Interaction, Glycosylphosphatidylinositol Gpi Anchor
Biosyn, Lysosome, O Glycan Biosynthesis (Figure 7D).

3.7 Association between hub GC-
associated MN genes and disease

We elucidated the association of hub genes with kidney disease
and gastric tumors through analysis of the Comparative
Toxicogenomics Database (CTD). The results indicated a high
correlation of all four hub genes with kidney diseases
(Figures 8A-D). Moreover, CCNDI, CEBPD, BMP2, COLI10AI
exhibited associations with Acute Kidney Injury, Proteinuria,
Neoplasms, Adenocarcinoma, Stomach Neoplasms, Nephrotic
Syndrome, Chronic Kidney Failure, Gastrointestinal Neoplasms
and Glomerulonephritis, Membranous (Figures 8A-D).

3.8 Prediction of hub genes-targeted drugs

We further investigated potential drugs targeting the hub genes
using the DGIdb database and analyzed their interactions, with
parameters set to default values. The Cytoscape software was
utilized to visualize the 30 targeted drugs for each hub genes
(Figure 9). A total of 224 drugs targeting the hub genes were
identified (Supplementary Table S1). Among these, 184 drugs
targeted CCNDI, 24 targeted CEBPD, 35 targeted BMP2 and 1
targeted COLI10AI.

3.9 A ceRNA network based on hub genes

Subsequently, we constructed a competing endogenous RNA
(ceRNA) network based on the four hub genes using data from the
miRanda, TargetScan, miRDB, and Spongescan databases. The
resulting network consists of 58 nodes—comprising 3 hub genes,
14 miRNAs, and 41 IncRNAs—and 60 edges (Figure 10). The analysis
revealed that 36 IncRNAs may regulate the expression of CCNDI by
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FIGURE 5

Immune cell infiltration analysis between GC and control. (A) The proportion of 22 kinds of immune cells between the two groups. (B) Comparison
of differential infiltration among 22 immune cells. (C) Correlation of 22 immune cell type compositions. (D-G) The correlations between the
expression of four hub genes (CCND1, CEBPD, BMP2 and COL10A1) and immune cell enrichment.

competitively binding to 11 miRNAs. Additionally, 4 IncRNAs
potentially regulate BMP2 expression through competitive binding
with 3 miRNAs, while 5 IncRNAs were found to regulate COLI0AI
expression by targeting a single miRNA. Detailed information on the
ceRNA network is provided in Supplementary Table S2.

3.10 Higher expression of hub genes in
gastric cancer-associated MN and tumor
tissues

Through a single-center retrospective analysis, we identified 3
patients with biopsy-confirmed gastric cancer-associated MN in the
Nephrology Department of China-Japan Friendship Hospital from
2014-2023. One patient found gastric cancer with lymph node
metastasis at the same time as the diagnosis of membranous
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nephropathy. Another patient found a recurrence of gastric
cancer 8 months after diagnosis of MN. The last patient was
found with low differentiated gastric adenocarcinoma 2 years
after diagnosis of MN. Immunohistochemistry was used to assess
the differences in gene expression of gastric cancer-associated MN
and primary membranous nephropathy. We explored the
expression difference of hub genes in gastric cancer-associated
MN, PMN, and normal kidney tissue, and compared it in gastric
cancer and normal gastric tissue by immunohistochemistry. The
results showed higher expression of CCNDI, CEBPD, and BMP2 in
gastric cancer-associated MN glomeruli than PMN and normal
kidney tissue (Figures 11A-C, F-H, K-M, P-R). CCND1, CEBPD,
and BMP2 were also expressed higher in gastric cancer than normal
gastric tissue (Figures 11D, E, N, O, S, T).

Immunohistochemistry revealed higher expression of CCNDI,
CEBPD, and BMP2 in gastric cancer-associated MN glomeruli
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FIGURE 6

Immune cell infiltration analysis between MN and control. (A) The proportion of 22 kinds of immune cells between the two groups. (B) Comparison
of differential infiltration among 22 immune cells. (C) Correlation of 22 immune cell type compositions. (D-G) The correlations between the
expression of hub genes (CCND1, CEBPD, BMP2 and COL10A1) and immune cell enrichment.

compared to PMN and normal kidney tissue (Figures 11A-C, F-H,
K-M, P-R). Gastric cancer-associated MN glomeruli expressed
CCND1 significantly higher than both normal kidney tissue
(0.696 + 0.073 vs. 0.174 + 0.058, p=0.001) and PMN (0.696 +
0.073 vs. 0.274 + 0.058, p=0.001). Gastric cancer-associated MN
glomeruli expressed CEBPD significantly higher than normal
kidney tissue (0.613 + 0.142 vs. 0.310 £ 0.104, p=0.013) and PMN
(0.613 +0.142 vs. 0.279 + 0.055, p=0.009). Gastric cancer-associated
MN glomeruli expressed BMP2 significantly higher than both

normal kidney tissue (0.673 + 0.045 vs. 0.173 + 0.114, p=0.001)

Frontiers in Immunology

10

and PMN (0.673 + 0.045 vs. 0.325 + 0.047, p=0.001). COL10A1 was
negative in the glomeruli of gastric cancer-associated MN, PMN,
and normal kidney tissue (Figures 11F-H). CCNDI was expressed
at higher levels in metastatic lymph nodes from stomach cancer
compared to normal gastric tissue (1.396 + 0.141 vs. 0.174 + 0.058,
p=0.001). Similarly, CEBPD (1.280 + 0.164 vs. 0.212 + 0.093,
p=0.001) and BMP2 (1.339 + 0.089 vs. 0.158 * 0.031, p=0.001)
showed higher expression in gastric cancer than in normal gastric
tissue (Figures 11D, E, N, O, S, T). COLI0OAI expression did not
show any significant difference between gastric cancer and normal
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(A-D) GSEA analysis of hub genes (CCND1, CEBPD, COL10A1 and BMP2).

gastric tissue groups (Figures 111, J). The AOD (Average Optical
Density) bar charts for each group are shown in Figures 11U, V.
(original magnificationx400).

4 Discussion

The coexistence of MN and malignancies, particularly in
middle-aged and elderly individuals, may be coincidental due to
overlapping onset ages. However, tumor antigens or tumor-reactive
antibodies detected in glomerular immune deposits suggest a
pathogenic link (21). Researches have consistently demonstrated a
link between MN and various cancers (22) Napat et al. (23)
conducted a meta-analysis reporting that approximately 10% of
MN cases are linked to cancer. Lung cancer was the most prevalent,
followed by gastric, intestinal, prostate, and breast cancers. Despite
this, the underlying mechanisms remain unclear. Through
biosignature analysis, we identified CCNDI, CEBPD, BMP2, and
COLIOAI as key genes in GC-associated MN, with significant
diagnostic potential confirmed by ROC analysis.
Immunohistochemical validation in GC-associated MN patients
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showed CCNDI, CEBPD, and BMP2 overexpression, suggesting
their role in disease mediation.

4.1 Molecular Insights into GC-associated
MN

We identified 40 shared DEGs (22 upregulated, 18
downregulated), primarily enriched in pathways related to
immune response, inflammation, and cellular processes critical
for disease progression. GO and KEGG analyses highlighted key
pathways, including leukocyte migration, cytokine activity, and
PI3K-Akt signaling, emphasizing the role of inflammatory and
immune mechanisms in both MN and GC. The identification of
CCND1, CEBPD, COLI0AI, and BMP2 as hub genes via machine
learning underscores their pivotal roles in GC-associated MN.

CCNDI, located at 11ql3, is frequently amplified in gastric
cancer, particularly in the CIN subtype (24). This amplification
drives cyclin D1 overexpression, promoting G1/S transition
through CDK4/6, thereby accelerating tumor progression (25).
Overexpression correlates with poor prognosis, including reduced
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Comparative toxicogenomics database (CTD) analysis. The interaction of CCND1 and disease (A). The interaction of CEBPD and disease (B). The
interaction of BMP2 and disease (C). The interaction of COL10A1 and disease (D).
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FIGURE 10
The ceRNA network of hub genes.
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FIGURE 11
Immunohistochemical expression of CCND1, COL10A1, CEBPD, and BMP2 in renal and gastric tissues (A-T), with quantitative AOD analysis (U-V).
*Statistical significance: *p < 0.05, **p < 0.01, **p < 0.001.
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overall survival and increased recurrence rates, and confers
resistance to chemotherapy and radiotherapy, highlighting the
need for targeted therapies (26). In podocytes, cyclin D1 plays a
key role in maintaining cell cycle quiescence and differentiation. Its
dysregulation contributes to glomerulosclerosis by impairing
proliferation capacity, leading to incomplete GBM coverage and
podocyte injury (27-31).

CEBPD, a C/EBP family member, regulates cell proliferation,
differentiation, and inflammation. It is significantly downregulated
in gastric cancer cells (MKN45, MKN74) compared to normal
gastric mucosa, suggesting a tumor-suppressor role (32). In
glomerular disease, CEBPD regulates SMo.A and MCP-1, driving
myofibroblast transdifferentiation and inflammatory responses in
mesangial cells (33). During acute inflammation, CEBPD mitigates
renal injury via IL-17 signaling but paradoxically exacerbates
fibrosis in later stages (34). Additionally, by upregulating HIF-1a,
CEBPD protects against hypoxia-induced acute kidney injury
through enhanced angiogenesis, antioxidative stress, and
metabolic reprogramming (35).

BMP2, a TGF-B superfamily member, regulates cell
proliferation, apoptosis, and ECM remodeling. In gastric cancer,
BMP?2 activates the PI3K/Akt pathway, promoting EMT, invasion,
and metastasis, making it a potential therapeutic target (36). Its
overexpression correlates with lymph node metastasis, high tumor
grade, and poor prognosis (37). Increased serum BMP2 levels
further associate with bone metastasis and tumor burden (38, 39).
In the kidney, BMP2 triggers pPSMADI signaling, leading to GBM
thickening and filtration barrier disruption. Complement activation
(C3a, C5b-9) induces BMP2 secretion, linking immune activation
with podocyte injury (40). Additionally, BMP2 enhances ROS
production and Id-1 expression, contributing to cell adhesion
dysfunction, ion transport imbalance, and fibrogenesis, key events
in membranous nephropathy (41).

COLI10A1, a collagen family member, is a key mediator of tumor
progression and ECM remodeling. Its overexpression in gastric
cancer correlates with poor prognosis, advanced tumor stage, and
altered immune microenvironment, making it both a biomarker
and therapeutic target (42, 43). Elevated plasma and tissue
COLI0AI levels strongly associate with tumor invasion, EMT,
and poor clinical outcomes (44, 45). In the kidney, COL10Al
upregulation marks fibrotic progression in acute kidney injury
(AKI) and correlates with poor renal recovery. KLF4-mediated
miR-101 upregulation suppresses COLIOAI, thereby inhibiting
EMT and renal fibrosis in ischemia-reperfusion injury (46).

4.2 Immune microenvironment and
functional pathways

Immune infiltration analysis revealed distinct immune cell
patterns in GC and MN. GC showed elevated macrophages and
neutrophils, which promote tumor progression via
immunosuppressive and pro-inflammatory mechanisms, while
MN exhibited increased monocyte infiltration, a hallmark of
glomerular inflammation. Strong correlations between hub gene
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expression and immune cell subtypes (e.g., CCNDI and BMP2 with
macrophages and neutrophils) further suggest their roles in
immune-mediated tissue damage and repair.

Our immune infiltration analysis demonstrated increased
macrophages and neutrophils in GC, and enhanced monocyte
infiltration in MN, with hub genes CCNDI, CEBPD, and BMP2
showing significant correlations with these immune subsets. CCNDI
has been shown to regulate T-cell and dendritic cell activity, thereby
linking tumor cell proliferation with immune dysregulation. CEBPD
promotes pro-inflammatory signaling and monocyte/macrophage
recruitment, which may exacerbate glomerular injury. BMP2 is
implicated in NK- and B-cell regulation, potentially facilitating
immune complex deposition and podocyte damage. These findings
suggest that abnormal expression of CCNDI, CEBPD, and BMP2
synergistically interacts with immune cell infiltration, thereby driving
the progression of GC-MN through both tumor-promoting and
kidney-injuring mechanisms.

GSEA analysis highlighted functional roles of hub genes in GC-
associated MN: CCNDI was enriched in Toll-like receptor and
cytokine receptor pathways, central to innate immune activation
and chronic inflammation. BMP2 was enriched in lysosomal
pathways, suggesting its involvement in autophagy and antigen
processing, crucial in tumor immunity and glomerular injury.

Functional enrichment highlighted fat cell differentiation and
immune cell migration as key pathways. Dysregulated adipogenesis
can alter cytokine profiles, contributing to systemic inflammation
and immune dysregulation, whereas enhanced immune cell
migration may promote renal infiltration and immune complex
deposition. These findings provide mechanistic clues on how
metabolic-immune interplay may contribute to GC-
MN pathogenesis.

4.3 Hub genes-targeted drugs and the
ceRNA network

In this study, we identified a series of potential therapeutic
drugs targeting four hub genes (CCNDI, CEBPD, BMP2, and
COLI0AI) using the DGIdb database. Notably, CCNDI was
associated with the largest number of candidate drugs (n = 184),
underscoring its central role as a druggable target in the disease
context. As a key regulator of cell cycle progression, CCNDI
dysregulation has been implicated in various malignancies, and
the large number of available drugs suggests it may serve as a pivotal
therapeutic target in both MN and GC. Conversely, CEBPD, BMP2,
and COL10A1 were associated with fewer drugs (n = 24, 35, and 1,
respectively), which may reflect the relatively limited
pharmacological development targeting these genes to date.

To better understand the regulatory mechanisms underlying the
expression of these hub genes, we constructed a ceRNA network
based on interactions among IncRNAs, miRNAs, and mRNAs. The
resulting network revealed a complex layer of post-transcriptional
regulation, particularly for CCNDI, which was regulated by 36
IncRNAs through 11 miRNAs. This finding is consistent with the
central role of CCNDI in the disease network and suggests that its
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expression is tightly modulated by multiple non-coding
RNA elements.

The retrospective analysis of GC-associated MN cases suggests a
bidirectional relationship, where malignancy-driven immune
dysregulation may trigger glomerular injury, while chronic kidney
disease may influence cancer progression. Immunohistochemical
validation confirmed significantly higher expression of CCNDI,
CEBPD, and BMP2 in GC-associated MN than in primary MN and
normal tissues, reinforcing their potential as diagnostic biomarkers.

Our findings extend previous studies (6, 9) which established
molecular mimicry between tumor antigens and podocyte antigens
as a key driver of cancer-associated MN. In contrast to well-
established MN antigens such as PLA2R, THSD7A, and NELL-1,
which are podocyte-expressed targets, CCNDI, CEBPD, and BMP2
are tumor-associated genes that may contribute to MN through
systemic immune modulation. This distinction underscores the
novelty of our findings, suggesting that GC-MN may represent a
paraneoplastic process where tumor-driven immune dysregulation,
rather than direct autoantigenicity, initiates glomerular injury.

Unlike CCND1, CEBPD, and BMP2, COL10A1 showed negative
staining in GC-MN glomeruli despite being identified as a hub gene
with strong diagnostic potential. COLI10AI, a collagen family
member, is known to be upregulated in gastric cancer tissues and
promotes extracellular matrix remodeling, invasion, and
angiogenesis. Its absence in renal glomeruli suggests that
COLI0AI may exert its effects primarily within the gastric tumor
microenvironment, indirectly contributing to paraneoplastic renal
injury rather than directly mediating glomerular damage. This
discrepancy may also reflect post-transcriptional regulation,
dataset heterogeneity, or limitations of antibody sensitivity.
Therefore, while COLI0OAI remains an informative bioinformatic
marker for GC, its clinical relevance for GC-MN requires cautious
interpretation and further validation.

4.4 Limitations and future directions

While our study provides novel insights into GC-associated MN,
certain limitations must be acknowledged. Several limitations should
be acknowledged. First, the validation cohort for GC-associated MN
was extremely small (n = 3), limiting generalizability. Second,
heterogeneity across GEO datasets may introduce bias despite
normalization and batch correction. Third, our analysis is
associative and cannot prove causality. Fourth, immune infiltration
results could be confounded by unmeasured variables such as tumor
stage, treatment history, or host background. Although the number of
patient samples used for experimental validation in this study is
limited, due to the extremely rare clinical cases of gastric cancer-
associated MN and the difficulty of obtaining these tissue samples,
each sample has high research value. These limitations underscore
the need for future large-scale, multi-center, and mechanistic studies
to validate and extend our findings.
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5 Conclusion

In conclusion, this study elucidates the molecular and
immunological mechanisms linking MN and GC, identifying
CCND1, CEBPD, and BMP?2 as key genes of disease pathogenesis.
The integration of bioinformatics and machine learning provides a
comprehensive framework for understanding GC-associated MN,
offering new directions for biomarker discovery and therapeutic
interventions. Further experimental studies and clinical trials are
warranted to validate these findings and explore the therapeutic
potential of these hub genes.
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