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Purpose: This study aimed to establish a nomogram based on computed

tomography (CT) imaging characteristics to predict epidermal growth factor

receptor (EGFR) mutation status in patients with ground-glass nodules (GGNs),

thereby aiding medication decision-making.

Materials and methods: In total, 935 patients diagnosed with GGNs were

enrolled. Patients undergoing surgery from August 2019 to December 2023

(n=709) comprised the training cohort, whereas those treated between January

2024 and March 2025 (n=226) constituted the validation cohort. Clinical

parameters and radiological features were recorded for all participants. The

training group underwent univariate and multivariate logistic regression

analyses to identify significant predictive variables, subsequently facilitating the

construction of a nomogram prediction model. The model’s discrimination,

calibration, and clinical applicability were validated in both patient cohorts.

Results: Multivariate logistic regression analysis revealed maximum nodule

diameter, consolidation-to-tumor ratio (CTR), mean CT values, presence of air

bronchogram signs, and vascular convergence signs as independent predictors

of EGFR mutations. The resulting nomogram demonstrated robust predictive

capability, achieving an area under the curve (AUC) of 0.87 (95% CI: 0.85–0.90) in

the training group and 0.87 (95% CI: 0.82–0.92) in the validation group.

Bootstrap internal validation yielded an AUC of 0.89, confirming strong model

discrimination. Calibration plots and decision curve analysis further supported

the model had a good calibration degree and clinical practicability across

both groups.
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Conclusion: The nomogram integrating maximum diameter, CTR, mean CT

value, air bronchogram signs, and vascular convergence signs effectively predicts

EGFR mutation status in GGNs, offering a valuable tool for clinical guidance and

patient management strategies.
KEYWORDS

ground glass nodule, radiologic characteristic, lung adenocarcinoma, EGFR, prediction
model, nomogram
Introduction

Lung adenocarcinoma remains among the malignancies with

the highest global morbidity and mortality rates (1), and

adenocarcinoma is recognized as its predominant histological form.

With advances in early screening for lung cancer, an increasing

number of multiple primary lung adenocarcinomas (MPLC)

presenting as GGNs have been identified (2). Surgical intervention

remains the primary treatment method for these patients (3). However,

after the primary lesion is resected, several management options exist

for the remaining lesions (4, 5).

Targeted therapy is one of these treatment strategies (6). Prior

research indicates that Epidermal Growth Factor Receptor (EGFR)

mutations frequently occur in MPLC (7, 8). Cheng et al. (6) reported

favorable clinical responses to EGFR-tyrosine kinase inhibitors (EGFR-

TKIs) in residual pulmonary lesions. However, therapeutic outcomes

vary due to genetic heterogeneity among lesions. Determining the

EGFR mutation status of ground-glass lesions in advance has thus

become essential for guiding medication decisions (6).

Currently, tissue biopsy-based genetic testing is regarded as the gold

standard for detecting EGFR mutations in lung cancer patients (9).

However, several limitations hinder its widespread use, including

economic constraints, limited availability of advanced testing

technology, small biopsy samples from minimally invasive

procedures, poor physical condition of patients, suboptimal lesion

locations, and the relatively low sensitivity of DNA sequencing

instruments (10–12). Consequently, not all patients with primary lung

cancer can successfully undergo genetic mutation testing. Moreover, the

feasibility of performing genetic testing on every lesion in patients with

MPLC presenting as GGNs is considerably low. Therefore, a non-

invasive, efficient, and rapid method for evaluating the EGFR mutation

status of ground-glass lesions is urgently needed.

Several studies have explored correlations between EGFRmutations

in lung adenocarcinoma and specific clinical or imaging features. Zou

etal. (13) identifiedground-glassopacity (GGO)asan independent factor

associatedwithEGFRmutations. Similarly,Honget al. (14) observed that

tumors harboring EGFR mutations exhibited a higher proportion of

GGO features. Rizzo et al. (15), in an investigation involving 286 patients,

observed air bronchograms in approximately 60% of EGFR-positive

cases, significantly greater than the 35% observed in EGFR-negative

tumors. Lee et al. (16) identified a significant association between air
02
bronchogram and exon 21 missense mutations. However, Glynn et al.

(17)observednosignificantdifference in thepresenceofairbronchogram

between EGFR mutation-positive and mutation-negative groups.

Following improvements in their methodology, Dai et al. (18) indicated

that air bronchogram occurred more frequently in EGFR mutation-

positive cases.

Some researchers have explored the relationship between EGFR

mutations and tumor size. Rizzo et al. (15) proposed that smaller tumor

diameter was significantly associated with EGFR mutation positivity.

This finding aligned with the results of Hsu et al. (19) from a study of

149 patients. Conversely, Dai et al. (18) found no correlation between

tumor diameter and EGFR mutation status. Paez et al. (20) indicated

that EGFR mutation positivity was higher among non-smokers,

females, and individuals of Asian descent, which was consistent with

findings from other studies (21, 22). Moreover, certain studies have

proposed a link between serum carcinoembryonic antigen (CEA) levels

and EGFR mutations, suggesting that higher CEA concentrations

correlate with increased mutation prevalence (23). However, Zou

et al. (13) did not observe a significant correlation between CEA

elevation and the presence of EGFR mutations.

Nevertheless, most existing studies primarily investigated the

imaging features of advanced-stage lung adenocarcinoma,

predominantly including solid lesions, which limits their

applicability to GGNs. Although Ping et al. previously

investigated GGNs, their study was limited by small sample size

and insufficiently detailed analyses regarding clinical and imaging

predictors. Thus, the present study utilizes a larger patient cohort to

comprehensively evaluate clinical and radiological features that

independently predict EGFR mutation status, aiming to inform

clinical medication decisions and improve therapeutic outcomes.
Materials and methods

Participants

The institutional ethics committee approved this retrospective

study (Ethics review number: KYLX2025-278) and waived informed

consent requirements. Clinical records and chest CT images of patients

undergoing surgical resection for GGNs at Yunnan Cancer Hospital

from August 2019 to March 2025 were retrospectively reviewed.
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Inclusion criteria comprised: (1) Availability of preoperative CT

scans obtained within two weeks before surgery at the Third Affiliated

Hospital of KunmingMedical University, identifying at least one GGN;

(2) Surgical resection with histopathological confirmation of

adenocarcinoma subtypes, including adenocarcinoma in situ (AIS),

minimally invasive adenocarcinoma (MIA), and invasive

adenocarcinoma (IAC), without evidence of lymph node metastasis

or distant spread, accompanied by EGFR mutation status analysis; (3)

No prior radiotherapy, chemotherapy, or other antitumor therapies for

pulmonary GGNs; (4) Patients aged 18 years or older.

Exclusion criteria included: (1) Incomplete medical records or

imaging data; (2) Pulmonary infections compromising image

interpretation; (3) Severe respiratory motion artifacts affecting CT

assessment; (4) Inconsistency between postoperative pathological

findings and preoperative CT localization of GGNs.

Patients were classified into two cohorts based on surgical dates:

a training group (709 GGNs resected from August 2019 to

December 2023) and a validation group (226 GGNs resected

from January 2024 to March 2025) (Figure 1).
CT acquisition

Patients underwent breathing instruction before imaging.

During CT scanning, each patient lay supine with arms raised
Frontiers in Immunology 03
overhead, holding breath at deep inspiration or quiet breathing.

Spiral CT scans covering from lung apex to base were obtained

using a Siemens 64-row, 128-slice CT scanner with parameters: tube

voltage 120 kV, current 100 mAs, pitch 1.0, slice thickness 1 mm,

and image matrix size 512×512. Images were reconstructed using a

high-resolution lung algorithm (window width 1200–1500 HU,

window level −600 to −700 HU) and standard soft-tissue

algorithm (mediastinal window: width 400–500 HU, level 40–50

HU). All imaging parameters were derived from non-contrast

CT scans.
Image analysis

Two chest radiologists with over 15 years of diagnostic

experience independently assessed all CT scans without prior

knowledge of clinical or EGFR mutation data. Any discrepancies

were resolved by consensus discussion. The following high-

resolution CT (HRCT) imaging characteristics, both continuous

and categorical, were evaluated on a Picture Archiving and

Communication System:(1) Spiculation sign: nodular margin

irregularities characterized by spike-like protrusions extending

into surrounding lung parenchyma;(2) Lobulation sign: nodules

exhibiting irregular margins with scalloped or undulated contours;

(3) Vacuole sign: presence of air-density cavities measuring less
FIGURE 1

Patient screening flowchart.
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than 5 mm within nodules, delineated by smooth boundaries;(4)

Air bronchogram sign: visualization of air-filled bronchial

structures traversing nodules continuously across multiple axial

slices;(5) Vascular convergence sign: vessels near the nodules

appearing convergent, attracted to, or concentrated around

lesions;(6) Pleural traction sign: linear or star-shaped fibrous

connections extending from the nodule to the pleura;(7) CTR:

ratio calculated by dividing the largest solid-component diameter

(lung window) by the largest nodule diameter;(8) Maximum

diameter: greatest lesion diameter measured on axial CT slices

(24); (9) Mean CT value: mean CT value recorded using a region-

of-interest (ROI) cursor placed at the maximum cross-sectional

area, avoiding prominent bronchial structures, blood vessels,

or vacuoles.
EGFR mutation detection

EGFR mutation testing (exons 18–21) was performed on lung

adenocarcinoma tissues obtained from surgery. The testing

methods included next-generation sequencing (NGS) and PCR-

based amplification assays. Patients were categorized according to

test results as either EGFR mutation-positive (+) or EGFR wild-

type (-).
Imaging feature selection

In the training group, clinical and radiological variables between

EGFR(+) and EGFR(-) groups were compared using univariate

analysis. Variables achieving statistical significance (P<0.05)

underwent subsequent multivariate logistic regression to identify

independent predictors of EGFR(+). Variance inflation factors

(VIF) were calculated to assess multicollinearity among selected

variables. Comparisons of clinical and imaging characteristics

between the training and validation groups were performed using

independent-sample t-tests, Mann–Whitney U tests and chi-

square analyses.
Model construction and performance
assessment

Multivariate logistic regression was employed to evaluate

combined predictive effects. Predictors demonstrating statistical

significance in multivariate analyses (P<0.05) were integrated into

a nomogrammodel. The predictive nomogram for EGFR mutations

in GGNs was constructed using R software. Model discrimination

was assessed through area under the receiver operating

characteristic curve (AUC), calibration curves determined

calibration accuracy, and decision curve analysis evaluated clinical

utility in both cohorts. Internal validation involved 1,000

bootstrap resamples.
Frontiers in Immunology 04
Statistical methods

Continuous data with normal distribution were compared using

independent-sample t-tests, while non-normally distributed

continuous data were analyzed by Mann–Whitney U tests.

Categorical variables underwent chi-square testing. Variables

identified by univariate analyses (P<0.05) were entered into

binary logistic regression, employing backward elimination to

derive a final logistic regression model. SPSS (version 26.0) and R

(version 4.4.1) statistical software were utilized. To avoid

multicollinearity, a bidirectional stepwise regression was applied.

Multicollinearity was assessed by calculating the variance inflation

factor (VIF) for each predictor in the logistic regression model. A

VIF threshold of 5 was considered acceptable, as values above this

threshold indicate high multicollinearity. Optimal cutoff values for

continuous predictors were determined by Youden’s index derived

from the receiver operating characteristic (ROC) curve analysis.

Decision curve analysis was used to assess the clinical utility of the

predictive model at various threshold probabilities. For each

threshold, net benefit was calculated by subtracting the

proportion of false positives from the proportion of true positives,

considering the relative harm of false positives and false negatives.

The model’s performance was compared with two baseline

strategies: “treat-all” and “treat-none.” Net benefit at each

threshold was plotted, visualizing the decision curve to assess the

model’s effectiveness in clinical decision-making. Statistical

significance was defined as P<0.05.
Results

Clinical and imaging features

Overall, 935 patients (299 males [31.98%], 636 females

[68.02%]) were included. No statistically significant differences

emerged in clinical and imaging variables between training and

validation cohorts, affirming their suitability for subsequent model

development and validation analyses (Table 1).
Analysis and selection of clinical and
imaging features

Univariate analyses within the training cohort identified several

imaging features, such as maximum diameter (P<0.001), CTR

(P<0.001), and mean CT value (P<0.001), as significantly higher in

the EGFR(+) group (Table 2). Additionally, imaging findings including

lobulation, air bronchogram sign, vascular convergence sign, and pleural

traction sign were more common in EGFR(+) group (P<0.05). Non-

smokers also exhibited a higher frequency of EGFRmutations (Table 2).

Multivariate logistic regression further confirmed maximum

diameter (OR = 1.178, 95% CI:1.113–1.247), CTR (OR = 1.025, 95%

CI: 1.015–1.035), mean CT value (OR = 1.010, 95% CI: 1.008–
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1.012), vascular convergence sign (OR = 1.632, 95% CI: 1.093–

2.438), and air bronchogram sign (OR = 2.446, 95% CI: 1.363–

4.389) as independent imaging predictors of EGFR mutations in

GGNs (all P<0.05, Table 3). Collinearity analysis revealed no
Frontiers in Immunology 05
significant collinearity among these predictors. Receiver operating

characteristic (ROC) curves determined optimal cutoff values as

follows: maximum diameter at 15.25 mm, mean CT attenuation at

−412.50 HU, and CTR at 43.50%, based on Youden’s index.
TABLE 1 Comparison of clinical and CT features between the training group and the validation group.

Variables
Total

(N = 935)
Training group

(N = 709)
Validation group

(N = 226)
P

Age (years) 51.95 ± 10.87 52.32 ± 10.96 50.76 ± 10.51 0.06

Mean CT value (HU) -410.00 (-510.00, -300.00) -420.00 (-500.00, -320.00) -370.00 (-520.00, -250.00) 0.176

Maximum diameter (mm) 16.00 (13.00, 19.00) 16.00 (13.00, 19.00) 17.00 (12.00, 19.50) 0.676

CTR (%) 42.00 (25.00, 65.00) 41.00 (25.00, 65.00) 51.50 (20.75, 64.00) 0.798

Gender, n (%) 0.304

male 299 (31.98) 233 (32.86) 66 (29.20)

female 636 (68.02) 476 (67.14) 160 (70.80)

Smoking history, n (%) 0.533

No 680 (72.73) 512 (72.21) 168 (74.34)

Yes 255 (27.27) 197 (27.79) 58 (25.66)

CEA, n (%)

Negative 820 (87.70) 622 (87.73) 198 (87.61) 0.962

Positive 115 (12.30) 87 (12.27) 28 (12.39)

CA125, n (%)

Negative 870 (93.05) 663 (93.51) 207 (91.59) 0.323

Positive 65 (6.95) 46 (6.49) 19 (8.41)

Vacuole sign, n (%) 0.723

No 797 (85.24) 606 (85.47) 191 (84.51)

Yes 138 (14.76) 103 (14.53) 35 (15.49)

Spiculation, n (%) 0.957

No 531 (56.79) 403 (56.84) 128 (56.64)

Yes 404 (43.21) 306 (43.16) 98 (43.36)

lobulation, n (%) 0.889

No 653 (69.84) 496 (69.96) 157 (69.47)

Yes 282 (30.16) 213 (30.04) 69 (30.53)

Pleural traction sign, n (%) 0.84

No 708 (75.72) 538 (75.88) 170 (75.22)

Yes 227 (24.28) 171 (24.12) 56 (24.78)

Vascular convergence sign, n (%) 0.695

No 573 (61.28) 437 (61.64) 136 (60.18)

Yes 362 (38.72) 272 (38.36) 90 (39.82)

Air bronchogram sign, n (%) 0.47

No 797 (85.24) 601 (84.77) 196 (86.73)

Yes 138 (14.76) 108 (15.23) 30 (13.27)
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Construction and validation of nomogram
models

A predictive nomogram incorporating maximum diameter,

CTR, mean CT value, air bronchogram sign, and vascular

convergence sign was developed (Figure 2). The resulting model

achieved excellent discrimination, with AUCs of 0.87 (95% CI:

0.85–0.90) in the training group and 0.87 (95% CI: 0.82–0.92) in the

validation group (Figure 3). Calibration plots confirmed good

consistency between predicted probabilities and actual outcomes

in both cohorts (Figure 4). Decision curve analysis highlighted the

nomogram’s substantial clinical utility (Figure 5). Internal bootstrap

validation (1,000 repetitions) resulted in an AUC of 0.89 (95%

CI:0.86–0.92), reaffirming robust model discrimination.
Discussion

Lung cancer remains the leading cause of cancer incidence and

mortality globally, with adenocarcinoma as the most common

histological subtype (1, 25). With the widespread use of high-

resolution CT, an increasing number of MPLC presenting as

GGNs are detected (2). Surgical treatment remains the primary

therapeutic option for MPLC (26). For the management of residual

lesions, targeted therapy has shown significant potential (6).

Previous studies indicated that these ground-glass lesions carry a

high frequency of EGFR mutations, and EGFR-TKIs demonstrated

favorable therapeutic outcomes for these lesions (7, 8).

With advancements in molecular cancer biology, the

development of therapies targeting oncogenic alterations and

associated signaling pathways has become a crucial aspect of

cancer treatment (27). EGFR mutations are a key oncogenic

alteration in lung adenocarcinoma, and inhibitors targeting this

mutation have demonstrated promising therapeutic efficacy (28).

However, EGFR mutations also contribute to immunotherapy

resistance. Previous studies have shown that immune checkpoint

inhibitors (ICIs) significantly improve the survival of patients with

lung adenocarcinoma without driver gene mutations (29, 30). In

contrast, monotherapy with ICIs has not significantly improved

efficacy in EGFR-mutant lung adenocarcinoma patients (31). This

lack of efficacy may be attributed to factors such as low PD-L1

expression, low tumor mutational burden (TMB), and the

upregulation of an immunosuppressive tumor microenvironment

(TME), which collectively put EGFR-mutant patients at a

disadvantage when receiving ICI treatment (32). Furthermore,

studies suggest that EGFR mutations play a pivotal role in the

evolution of lung adenocarcinoma, enhancing the tumor’s ability to

adapt to existing therapies and leading to diminished therapeutic

efficacy and the development of resistance (33, 34). The effects of

EGFR mutations have led researchers, in their exploration of cancer

treatment strategies, to not only focus on tumor cells but also

emphasize the importance of the tumor microenvironment (35).

However, our study specifically focuses on refining cell-intrinsic

prediction, particularly in determining which patients are likely to
Frontiers in Immunology 06
benefit from EGFR TKIs. Therefore, accurately predicting the EGFR

mutation status is crucial.

However, traditional biopsy techniques have inherent

limitations when assessing EGFR mutation status in GGNs,

underscoring the need for non-invasive, convenient, and accurate

predictive methods (12). Predictive modeling approaches have

emerged as promising alternatives to address these challenges (36,

37). Accordingly, this study established a nomogram incorporating

multiple radiological parameters to non-invasively predict EGFR

mutations, thus facilitating clinical decision-making.

Tumor diameter is an important CT imaging feature of GGNs.

Lee et al. demonstrated that tumor diameters were significantly

associated with EGFRmutations (38). Similarly, Yang et al. reported

a correlation between GGN diameter and EGFR mutation status

(39). Our results confirmed that maximum lesion diameter

independently predicts EGFR mutation occurrence in GGNs.

When the maximum diameter of ground glass nodules exceeds

15.25 mm, the likelihood of EGFR mutation significantly increases.

This finding is consistent with the study by Yang et al (39). Lee et al.

observed that when the diameter exceeds 2.43 cm (38), the

probability of EGFR mutation is highest, which aligns with the

results of Usuda et al (40). The differences in cutoff values may be

due to variations in sample inclusion criteria. In our study, we

specifically included ground-glass nodules, whereas other studies

included a broader range of nodule types. This finding aligns with

previous reports. Nonetheless, Cheng et al.’s meta-analysis

identified no clear correlation between lesion size and EGFR

mutation status, potentially attributable to confounding variables

affecting tumor dimensions within the reviewed studies (41).

As the proportion of the solid component increases, GGNs

exhibit progressively greater invasiveness and more prominent

malignant characteristics (42). Previous studies have shown that

the presence of a ground-glass component correlates with a higher

rate of EGFR mutations in non-small cell lung cancer (NSCLC) (43,

44). However, limited research has specifically addressed the

relationship between changes in the relative proportions of

ground-glass and solid components and EGFR mutation status in

GGNs. CTR is currently recognized as a critical imaging feature for

evaluating GGNs (45). In our study, we observed that a higher

proportion of solid components increased the likelihood of EGFR

mutations, consistent with previous reports. The optimal cutoff

value of CTR for diagnosing EGFR mutations was identified as

43.50%,which is consistent with previous studies (46).

With increasing tumor invasiveness, tumor cells progressively

infiltrate surrounding normal tissue structures, resulting in an

increased mean CT value of GGNs. Mean CT value plays an

important role in evaluating GGNs (47, 48). However, whether

the mean CT value can predict EGFR mutation status remains

unclear. Our findings first indicate that the mean CT value is an

independent predictor of EGFR mutation status in GGNs.

Specifically, when the mean CT value exceeds -412.50 HU, the

likelihood of EGFR mutation significantly increases, achieving

strong diagnostic performance. Zhan et al. pointed out that (48)

the likelihood of invasive adenocarcinoma increases when the mean
frontiersin.org
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CT value of ground-glass nodules exceeds -449.5 Hu, a view that is

also supported by other researchers (49). This is consistent with the

cutoff value for EGFR mutations in GGNs observed in our study,

suggesting that as the degree of invasion in GGNs increases, the
Frontiers in Immunology 07
likelihood of EGFR mutations also rises, aligning with the

perspectives of previous studies (50).

Qualitative CT imaging characteristics are also valuable for

predicting EGFR mutations. Liu et al. identified the vascular
TABLE 2 Relationship between clinical and imaging and EGFR mutation status of ground glass nodules.

Variables Total (n = 709) EGFR (−) (n = 351) EGFR (+) (n = 358) P

Age(years) 52.32 ± 10.96 53.04 ± 11.32 51.63 ± 10.57 0.086

Mean CT value (HU) -420.00 (-500.00, -320.00) -490.00 (-520.00, -430.00) -340.00 (-410.00, -276.25) <.001

Maximum diameter (mm) 16.00 (13.00, 19.00) 13.20 (12.00, 16.00) 18.00 (16.00, 21.00) <.001

CTR (%) 41.00 (25.00, 65.00) 31.00 (22.00, 46.00) 57.00 (34.00, 67.00) <.001

Gender, n (%) 0.089

male 233 (32.86) 126 (35.90) 107 (29.89)

female 476 (67.14) 225 (64.10) 251 (70.11)

Smoking history, n (%) 0.036

No 512 (72.21) 241 (68.66) 271 (75.70)

Yes 197 (27.79) 110 (31.34) 87 (24.30)

CEA, n (%)

Negative 622 (87.73) 311 (88.60) 311 (86.87) 0.482

Positive 87 (12.27) 40 (11.40) 47 (13.13)

CA125, n (%) 0.702

Negative 663 (93.51) 329 (93.73) 333 (93.02)

Positive 46 (6.49) 22 (6.27) 25 (6.98)

Vacuole sign, n (%) 0.524

No 606 (85.47) 303 (86.32) 303 (84.64)

Yes 103 (14.53) 48 (13.68) 55 (15.36)

Spiculation, n (%) 0.058

No 403 (56.84) 212 (60.40) 191 (53.35)

Yes 306 (43.16) 139 (39.60) 167 (46.65)

lobulation, n (%) 0.041

No 496 (69.96) 258 (73.50) 238 (66.48)

Yes 213 (30.04) 93 (26.50) 120 (33.52)

Pleural traction sign,
n (%)

0.016

No 538 (75.88) 280 (79.77) 258 (72.07)

Yes 171 (24.12) 71 (20.23) 100 (27.93)

Vascular convergence
sign, n (%)

<.001

No 437 (61.64) 238 (67.81) 199 (55.59)

Yes 272 (38.36) 113 (32.19) 159 (44.41)

Air bronchogram sign,
n (%)

<.001

No 601 (84.77) 316 (90.03) 285 (79.61)

Yes 108 (15.23) 35 (9.97) 73 (20.39)
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convergence sign as indicative of EGFR mutations (51). Likewise,

Cao et al. demonstrated that the presence of this sign elevates the

mutation risk by approximately 2.26-fold (52). A subsequent meta-

analysis by Zhang et al. further supported this result (44). Our

findings also confirmed the independent predictive value of the

vascular convergence sign for determining EGFR mutation status.

However, Zou et al. reported contradictory results, possibly due to

their small sample size (13). Rizzo et al. found that the air

bronchogram sign could predict EGFR mutation status (15). A

similar finding was reported by Sabri et al. and subsequently

confirmed by Zhang et al., who included 2,380 patients in their

study. Our research yielded similar results, indicating that the air
Frontiers in Immunology 08
bronchogram sign significantly increases the likelihood of

EGFR mutation.

Previous studies demonstrated that gender, smoking history, and

CEA levels play important roles in predicting EGFRmutation status (44,

53). However, in our study, none of these factors—gender, smoking

history, or CEA levels—showed predictive value. This discrepancy may

arise because prior studies focused primarily on non-small cell lung

cancer, whereas our research specifically targeted lung adenocarcinoma

presenting as GGNs. This subtype occurs predominantly in younger,

non-smoking women, and their CEA levels are typically normal.

Therefore, significant differences in gender, smoking history, and

CEA levels between groups may not have been evident in our cohort.
TABLE 3 Multivariable logistic regression of clinical and CT finings and EGFR mutation status of ground glass nodules.

Variables
Univariate Multivariate

OR (95%CI) P OR (95%CI) P

Gender, n (%)

male 1.00 (Reference)

female 1.31 (0.96 ~ 1.80) 0.089

Smoking history, n (%)

No 1.00 (Reference) 1.00 (Reference)

Yes 0.70 (0.51 ~ 0.98) 0.037 0.759 (0.491 ~ 1.172) 0.213

Vacuole sign, n (%)

No 1.00 (Reference)

Yes 1.15 (0.75 ~ 1.74) 0.524

Spiculation, n (%)

No 1.00 (Reference)

Yes 1.33 (0.99 ~ 1.80) 0.058

lobulation, n (%)

No 1.00 (Reference) 1.00 (Reference)

Yes 1.40 (1.01 ~ 1.93) 0.042 1.388 (0.910 ~ 2.117) 0.127

Pleural traction sign, n (%)

No 1.00 (Reference) 1.00 (Reference)

Yes 1.53 (1.08 ~ 2.16) 0.017 1.351 (0.858 ~ 2.128) 0.194

Vascular convergence sign, n (%)

No 1.00 (Reference) 1.00 (Reference)

Yes 1.68 (1.24 ~ 2.29) <.001 1.632 (1.093 ~ 2.438) 0.017

Air bronchogram sign, n (%)

No 1.00 (Reference) 1.00 (Reference)

Yes 2.31 (1.50 ~ 3.57) <.001 2.446 (1.363 ~ 4.389) 0.003

age(years) 0.99 (0.97 ~ 1.00) 0.087

mean CT value (HU) 1.01 (1.01 ~ 1.02) <.001 1.010 (1.008 ~ 1.012) <.001

maximum diameter (mm) 1.35 (1.28 ~ 1.42) <.001 1.178 (1.113 ~ 1.247) <.001

CTR (%) 1.04 (1.03 ~ 1.05) <.001 1.025 (1.015 ~ 1.035) <.001
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Compared with traditional approaches relying on single

predictors, a nomogram model integrating multiple features

improves prediction accuracy and efficiency (54, 55). Recently,

some researchers have developed radiomics-based models to

predict EGFR mutation status in GGNs (56). Although radiomics

is increasingly used in clinical research, differences in resource

availability and infrastructure may still affect its implementation

across various regions. Alternatively, other studies utilized more

accessible clinical and imaging data to assess EGFR mutation status

in GGNs (36). However, these previous studies often involved small

sample sizes, and their predictive models lacked sufficient

validation, underscoring the need for further investigation. The

present investigation provides a comprehensive assessment of

clinical and radiological predictors associated with EGFR

mutation status using a substantial sample size of GGN cases.

Notably, we identified mean CT value as an independent

predictor for EGFR mutations, an observation not previously
Frontiers in Immunology 09
reported. Additionally, we successfully developed and validated a

predictive nomogram model by combining multiple features. Upon

patient admission, clinicians can assess the five independent

predictive factors (maximum diameter, CTR, mean CT value, air

bronchogram sign, and vascular convergence sign). A total score is

then calculated based on the individual scores of these factors to

estimate the EGFR mutation status of ground-glass nodules. If a

ground-glass nodule is determined to harbor an EGFR mutation,

EGFR-targeted therapy may be considered for the management of

the remaining lesions in patients with multiple GGNs, thus

supporting the precision treatment of lung adenocarcinoma.

Our predictive model demonstrated good performance.

However, with advancements in technology, multimodal

integrative analysis combining imaging models with genomic or

transcriptomic data has become an emerging trend (57, 58). Du

et al. developed a prognostic model by integrating imaging and

transcriptomic data, achieving an AUC of 0.9 (59). Liu et al.
FIGURE 2

A nomogram model predicting EGFR mutation status in GGN patients.
FIGURE 3

(A) ROC curve of the nomogram in training group. (B) ROC curve of the nomogram in validation group.
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constructed a predictive model by combining molecular and clinical

features, which also improved predictive performance (60). Wang

et al. built a prognostic model for hepatocellular carcinoma by

integrating transcriptomic data with CT features, achieving an AUC

of 0.834 (61). In our future research, we plan to perform

transcriptome sequencing to identify key genes associated with

EGFR mutations in ground-glass nodules, and to integrate these

with imaging features to develop a multimodal diagnostic model for

EGFR mutation.

Recent advances in clinical cancer genomics have highlighted the

need to systematically annotate and prioritize somatic variants with

established therapeutic relevance. A recent ClinGen somatic curation

effort has initiated the annotation of EGFR variants, aiming to define

their clinical actionability (62). A recent case report has identified
Frontiers in Immunology 10
EML4-ALK variant 3a/b as a mechanism of acquired resistance to

osimertinib in a patient with EGFR L858R-positive non-small cell lung

cancer (63). These findings underscore that accurate prediction of

mutation status has direct implications for therapeutic decision-

making and resistance monitoring. Our model, by non-invasively

predicting EGFR mutation status in GGN lesions, may help identify

patients likely to benefit from targeted therapy, thereby enhancing its

translational potential. Future integration of curated variant

annotations could further expand its utility in anticipating resistance

pathways and guiding individualized treatment strategies.

Recent studies have highlighted cancer cell plasticity as a critical

contributor to therapeutic resistance (64). Plasticity refers to the ability

of tumor cells to adopt alternative phenotypes in response to selective

pressures, including drug treatment (65). This dynamic adaptability,
FIGURE 4

(A) Calibration curve of the nomogram in training group. (B) Calibration curve of the nomogram in validation group.
FIGURE 5

(A) Decision curve analysis of the nomogram in training group. (B) Decision curve analysis of the nomogram in validation group.
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often driven by intrinsic signaling pathways such as Notch, Wnt,

MAPK, PI3K, and STAT3, allows subpopulations of cancer cells to

evade therapy by transitioning into drug-tolerant or stem-like states

(66). Such phenotypic switching underlies intratumoral heterogeneity

and has been identified as a key mechanism of acquired resistance to

targeted therapies.While ourmodel provides a non-invasivemethod to

predict EGFR mutation status at baseline, it is important to recognize

that mutation status alone may not capture the full spectrum of tumor

adaptability. Integrating temporal imaging data or molecular follow-up

in future modeling efforts may enhance the ability to anticipate

resistance development and better support individualized

therapeutic strategies.

Despite promising outcomes, this study has certain limitations.

First, The retrospective design may inherently introduce selection

biases, and data collection from a single center could limit the

generalizability of results. Although internal validation using

temporally distinct cohorts was conducted, multicenter and

prospective studies are warranted to further validate and generalize

the findings. Second, imaging measurements in this analysis involved

manual assessments, inevitably resulting in potential measurement

variability. Finally, Our study focused exclusively on lung

adenocarcinomas presenting as ground-glass nodules, a highly

selected subgroup with relatively indolent behavior and distinct

molecular features. As a result, the generalizability of our model to

broader or more heterogeneous NSCLC populations remains uncertain

and warrants future investigation.
Conclusion

In conclusion, the constructed nomogram integrating

maximum diameter, CTR, mean CT value, air bronchogram sign,

and vascular convergence sign effectively predicts EGFR mutation

status in GGNs. The proposed model exhibits robust predictive

capability and holds potential for guiding personalized clinical

decisions and patient management in clinical practice.
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