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Purpose: This study aimed to establish a nomogram based on computed
tomography (CT) imaging characteristics to predict epidermal growth factor
receptor (EGFR) mutation status in patients with ground-glass nodules (GGNs),
thereby aiding medication decision-making.

Materials and methods: In total, 935 patients diagnosed with GGNs were
enrolled. Patients undergoing surgery from August 2019 to December 2023
(n=709) comprised the training cohort, whereas those treated between January
2024 and March 2025 (n=226) constituted the validation cohort. Clinical
parameters and radiological features were recorded for all participants. The
training group underwent univariate and multivariate logistic regression
analyses to identify significant predictive variables, subsequently facilitating the
construction of a nomogram prediction model. The model’s discrimination,
calibration, and clinical applicability were validated in both patient cohorts.
Results: Multivariate logistic regression analysis revealed maximum nodule
diameter, consolidation-to-tumor ratio (CTR), mean CT values, presence of air
bronchogram signs, and vascular convergence signs as independent predictors
of EGFR mutations. The resulting nomogram demonstrated robust predictive
capability, achieving an area under the curve (AUC) of 0.87 (95% Cl: 0.85-0.90) in
the training group and 0.87 (95% CI: 0.82-0.92) in the validation group.
Bootstrap internal validation yielded an AUC of 0.89, confirming strong model
discrimination. Calibration plots and decision curve analysis further supported
the model had a good calibration degree and clinical practicability across
both groups.
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Conclusion: The nomogram integrating maximum diameter, CTR, mean CT
value, air bronchogram signs, and vascular convergence signs effectively predicts
EGFR mutation status in GGNs, offering a valuable tool for clinical guidance and
patient management strategies.

ground glass nodule, radiologic characteristic, lung adenocarcinoma, EGFR, prediction

model, nomogram

Introduction

Lung adenocarcinoma remains among the malignancies with
the highest global morbidity and mortality rates (1), and
adenocarcinoma is recognized as its predominant histological form.

With advances in early screening for lung cancer, an increasing
number of multiple primary lung adenocarcinomas (MPLC)
presenting as GGNs have been identified (2). Surgical intervention
remains the primary treatment method for these patients (3). However,
after the primary lesion is resected, several management options exist
for the remaining lesions (4, 5).

Targeted therapy is one of these treatment strategies (6). Prior
research indicates that Epidermal Growth Factor Receptor (EGFR)
mutations frequently occur in MPLC (7, 8). Cheng et al. (6) reported
favorable clinical responses to EGFR-tyrosine kinase inhibitors (EGFR-
TKIs) in residual pulmonary lesions. However, therapeutic outcomes
vary due to genetic heterogeneity among lesions. Determining the
EGFR mutation status of ground-glass lesions in advance has thus
become essential for guiding medication decisions (6).

Currently, tissue biopsy-based genetic testing is regarded as the gold
standard for detecting EGFR mutations in lung cancer patients (9).
However, several limitations hinder its widespread use, including
economic constraints, limited availability of advanced testing
technology, small biopsy samples from minimally invasive
procedures, poor physical condition of patients, suboptimal lesion
locations, and the relatively low sensitivity of DNA sequencing
instruments (10-12). Consequently, not all patients with primary lung
cancer can successfully undergo genetic mutation testing. Moreover, the
feasibility of performing genetic testing on every lesion in patients with
MPLC presenting as GGNs is considerably low. Therefore, a non-
invasive, efficient, and rapid method for evaluating the EGFR mutation
status of ground-glass lesions is urgently needed.

Several studies have explored correlations between EGFR mutations
in lung adenocarcinoma and specific clinical or imaging features. Zou
etal. (13) identified ground-glass opacity (GGO) as an independent factor
associated with EGFR mutations. Similarly, Hong et al. (14) observed that
tumors harboring EGFR mutations exhibited a higher proportion of
GGO features. Rizzo et al. (15), in an investigation involving 286 patients,
observed air bronchograms in approximately 60% of EGFR-positive
cases, significantly greater than the 35% observed in EGFR-negative
tumors. Lee et al. (16) identified a significant association between air
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bronchogram and exon 21 missense mutations. However, Glynn et al.
(17) observed no significant difference in the presence of air bronchogram
between EGFR mutation-positive and mutation-negative groups.
Following improvements in their methodology, Dai et al. (18) indicated
that air bronchogram occurred more frequently in EGFR mutation-
positive cases.

Some researchers have explored the relationship between EGFR
mutations and tumor size. Rizzo et al. (15) proposed that smaller tumor
diameter was significantly associated with EGFR mutation positivity.
This finding aligned with the results of Hsu et al. (19) from a study of
149 patients. Conversely, Dai et al. (18) found no correlation between
tumor diameter and EGFR mutation status. Paez et al. (20) indicated
that EGFR mutation positivity was higher among non-smokers,
females, and individuals of Asian descent, which was consistent with
findings from other studies (21, 22). Moreover, certain studies have
proposed a link between serum carcinoembryonic antigen (CEA) levels
and EGFR mutations, suggesting that higher CEA concentrations
correlate with increased mutation prevalence (23). However, Zou
et al. (13) did not observe a significant correlation between CEA
elevation and the presence of EGFR mutations.

Nevertheless, most existing studies primarily investigated the
imaging features of advanced-stage lung adenocarcinoma,
predominantly including solid lesions, which limits their
applicability to GGNs. Although Ping et al. previously
investigated GGNs, their study was limited by small sample size
and insufficiently detailed analyses regarding clinical and imaging
predictors. Thus, the present study utilizes a larger patient cohort to
comprehensively evaluate clinical and radiological features that
independently predict EGFR mutation status, aiming to inform
clinical medication decisions and improve therapeutic outcomes.

Materials and methods
Participants

The institutional ethics committee approved this retrospective
study (Ethics review number: KYLX2025-278) and waived informed
consent requirements. Clinical records and chest CT images of patients
undergoing surgical resection for GGNs at Yunnan Cancer Hospital
from August 2019 to March 2025 were retrospectively reviewed.
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Inclusion criteria comprised: (1) Availability of preoperative CT
scans obtained within two weeks before surgery at the Third Affiliated
Hospital of Kunming Medical University, identifying at least one GGN;
(2) Surgical resection with histopathological confirmation of
adenocarcinoma subtypes, including adenocarcinoma in situ (AIS),
minimally invasive adenocarcinoma (MIA), and invasive
adenocarcinoma (IAC), without evidence of lymph node metastasis
or distant spread, accompanied by EGFR mutation status analysis; (3)
No prior radiotherapy, chemotherapy, or other antitumor therapies for
pulmonary GGNs; (4) Patients aged 18 years or older.

Exclusion criteria included: (1) Incomplete medical records or
imaging data; (2) Pulmonary infections compromising image
interpretation; (3) Severe respiratory motion artifacts affecting CT
assessment; (4) Inconsistency between postoperative pathological
findings and preoperative CT localization of GGNs.

Patients were classified into two cohorts based on surgical dates:
a training group (709 GGNs resected from August 2019 to
December 2023) and a validation group (226 GGNs resected
from January 2024 to March 2025) (Figure 1).

CT acquisition

Patients underwent breathing instruction before imaging.
During CT scanning, each patient lay supine with arms raised

August 2019 to
December 2023 in
Yunnan Cancer
Hospital 1063 lung
nodules resected

265 excluded for:

1. Solid nodules (n=106)
2. No CT DICOM data
(n=82)

3. CT scan slice thickness
(n=77)

Y
798 resected GGNs|

89 patients excluded
for: benign nodules

\ 4

Patients enrolled in the
training group(n=709)

\ 4
EGFR(-):351
EGFR(+):358

FIGURE 1
Patient screening flowchart.
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overhead, holding breath at deep inspiration or quiet breathing.
Spiral CT scans covering from lung apex to base were obtained
using a Siemens 64-row, 128-slice CT scanner with parameters: tube
voltage 120 kV, current 100 mAs, pitch 1.0, slice thickness 1 mm,
and image matrix size 512x512. Images were reconstructed using a
high-resolution lung algorithm (window width 1200-1500 HU,
window level —600 to —700 HU) and standard soft-tissue
algorithm (mediastinal window: width 400-500 HU, level 40-50
HU). All imaging parameters were derived from non-contrast
CT scans.

Image analysis

Two chest radiologists with over 15 years of diagnostic
experience independently assessed all CT scans without prior
knowledge of clinical or EGFR mutation data. Any discrepancies
were resolved by consensus discussion. The following high-
resolution CT (HRCT) imaging characteristics, both continuous
and categorical, were evaluated on a Picture Archiving and
Communication System:(1) Spiculation sign: nodular margin
irregularities characterized by spike-like protrusions extending
into surrounding lung parenchyma;(2) Lobulation sign: nodules
exhibiting irregular margins with scalloped or undulated contours;
(3) Vacuole sign: presence of air-density cavities measuring less

January 2024 to
March 2025 in
Yunnan Cancer
Hospital 465 lung
nodules resected

177 excluded for:

1. Solid nodules (n=69)

2. No CT DICOM data
(n=61)

3. CT scan slice thickness
(n=47)

\4
288 resected GGNs|

62 patients excluded
for: benign nodules

\/

Patients enrolled in the
validation group(n=226)

\ 4
EGFR(-):94
EGFR(+):132
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than 5 mm within nodules, delineated by smooth boundaries;(4)
Air bronchogram sign: visualization of air-filled bronchial
structures traversing nodules continuously across multiple axial
slices;(5) Vascular convergence sign: vessels near the nodules
appearing convergent, attracted to, or concentrated around
lesions;(6) Pleural traction sign: linear or star-shaped fibrous
connections extending from the nodule to the pleura;(7) CTR:
ratio calculated by dividing the largest solid-component diameter
(lung window) by the largest nodule diameter;(8) Maximum
diameter: greatest lesion diameter measured on axial CT slices
(24); (9) Mean CT value: mean CT value recorded using a region-
of-interest (ROI) cursor placed at the maximum cross-sectional
area, avoiding prominent bronchial structures, blood vessels,
or vacuoles.

EGFR mutation detection

EGFR mutation testing (exons 18-21) was performed on lung
adenocarcinoma tissues obtained from surgery. The testing
methods included next-generation sequencing (NGS) and PCR-
based amplification assays. Patients were categorized according to
test results as either EGFR mutation-positive (+) or EGFR wild-

type (-).

Imaging feature selection

In the training group, clinical and radiological variables between
EGFR(+) and EGFR(-) groups were compared using univariate
analysis. Variables achieving statistical significance (P<0.05)
underwent subsequent multivariate logistic regression to identify
independent predictors of EGFR(+). Variance inflation factors
(VIF) were calculated to assess multicollinearity among selected
variables. Comparisons of clinical and imaging characteristics
between the training and validation groups were performed using
independent-sample t-tests, Mann-Whitney U tests and chi-
square analyses.

Model construction and performance
assessment

Multivariate logistic regression was employed to evaluate
combined predictive effects. Predictors demonstrating statistical
significance in multivariate analyses (P<0.05) were integrated into
anomogram model. The predictive nomogram for EGFR mutations
in GGNs was constructed using R software. Model discrimination
was assessed through area under the receiver operating
characteristic curve (AUC), calibration curves determined
calibration accuracy, and decision curve analysis evaluated clinical
utility in both cohorts. Internal validation involved 1,000
bootstrap resamples.
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Statistical methods

Continuous data with normal distribution were compared using
independent-sample t-tests, while non-normally distributed
continuous data were analyzed by Mann-Whitney U tests.
Categorical variables underwent chi-square testing. Variables
identified by univariate analyses (P<0.05) were entered into
binary logistic regression, employing backward elimination to
derive a final logistic regression model. SPSS (version 26.0) and R
(version 4.4.1) statistical software were utilized. To avoid
multicollinearity, a bidirectional stepwise regression was applied.
Multicollinearity was assessed by calculating the variance inflation
factor (VIF) for each predictor in the logistic regression model. A
VIF threshold of 5 was considered acceptable, as values above this
threshold indicate high multicollinearity. Optimal cutoff values for
continuous predictors were determined by Youden’s index derived
from the receiver operating characteristic (ROC) curve analysis.
Decision curve analysis was used to assess the clinical utility of the
predictive model at various threshold probabilities. For each
threshold, net benefit was calculated by subtracting the
proportion of false positives from the proportion of true positives,
considering the relative harm of false positives and false negatives.
The model’s performance was compared with two baseline
strategies: “treat-all” and “treat-none.” Net benefit at each
threshold was plotted, visualizing the decision curve to assess the
model’s effectiveness in clinical decision-making. Statistical
significance was defined as P<0.05.

Results
Clinical and imaging features

Overall, 935 patients (299 males [31.98%], 636 females
[68.02%]) were included. No statistically significant differences
emerged in clinical and imaging variables between training and
validation cohorts, affirming their suitability for subsequent model
development and validation analyses (Table 1).

Analysis and selection of clinical and
imaging features

Univariate analyses within the training cohort identified several
imaging features, such as maximum diameter (P<0.001), CTR
(P<0.001), and mean CT value (P<0.001), as significantly higher in
the EGFR(+) group (Table 2). Additionally, imaging findings including
lobulation, air bronchogram sign, vascular convergence sign, and pleural
traction sign were more common in EGFR(+) group (P<0.05). Non-
smokers also exhibited a higher frequency of EGFR mutations (Table 2).

Multivariate logistic regression further confirmed maximum
diameter (OR =1.178, 95% CI:1.113-1.247), CTR (OR = 1.025, 95%
CI: 1.015-1.035), mean CT value (OR = 1.010, 95% CI: 1.008-
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TABLE 1 Comparison of clinical and CT features between the training group and the validation group.

Variables Training group Validation group

(N = 709) (N = 226)
Age (years) 51.95 + 10.87 52.32 + 10.96 50.76 + 10.51 0.06
Mean CT value (HU) -410.00 (-510.00, -300.00) -420.00 (-500.00, -320.00) -370.00 (-520.00, -250.00) 0.176
Maximum diameter (mm) 16.00 (13.00, 19.00) 16.00 (13.00, 19.00) 17.00 (12.00, 19.50) 0.676
CTR (%) 42,00 (25.00, 65.00) 41.00 (25.00, 65.00) 51.50 (20.75, 64.00) 0.798
Gender, n (%) ‘ ‘ 0.304
male 299 (31.98) 233 (32.86) 66 (29.20)
female 636 (68.02) 476 (67.14) 160 (70.80)
Smoking history, n (%) ‘ ‘ 0.533
No 680 (72.73) 512 (72.21) 168 (74.34)
Yes 255 (27.27) 197 (27.79) 58 (25.66)

CEA, n (%) ‘ ‘

Negative 820 (87.70) 622 (87.73) 198 (87.61) 0.962
Positive 115 (12.30) 87 (12.27) 28 (12.39)

CA125, n (%)

Negative 870 (93.05) 663 (93.51) 207 (91.59) 0.323
Positive 65 (6.95) 46 (6.49) 19 (8.41)
Vacuole sign, n (%) ‘ ‘ 0.723
No 797 (85.24) 606 (85.47) 191 (84.51)
Yes 138 (14.76) 103 (14.53) 35 (15.49)
Spiculation, n (%) ‘ ‘ 0.957
No 531 (56.79) 403 (56.84) 128 (56.64)
Yes 404 (43.21) 306 (43.16) 98 (43.36)
lobulation, n (%) ‘ ‘ 0.889
No 653 (69.84) 496 (69.96) 157 (69.47)
Yes 282 (30.16) 213 (30.04) 69 (30.53)
Pleural traction sign, n (%) ‘ ‘ 0.84
No 708 (75.72) 538 (75.88) 170 (75.22)
Yes 227 (24.28) 171 (24.12) 56 (24.78)
Vascular convergence sign, n (%) ‘ ‘ 0.695
No 573 (61.28) 437 (61.64) 136 (60.18)
Yes 362 (38.72) 272 (38.36) 90 (39.82)
Air bronchogram sign, n (%) ‘ ‘ 0.47
No 797 (85.24) 601 (84.77) 196 (86.73)
Yes 138 (14.76) 108 (15.23) 30 (13.27)

1.012), vascular convergence sign (OR = 1.632, 95% CIL: 1.093-  significant collinearity among these predictors. Receiver operating

2.438), and air bronchogram sign (OR = 2.446, 95% CI: 1.363—  characteristic (ROC) curves determined optimal cutoft values as
4.389) as independent imaging predictors of EGFR mutations in  follows: maximum diameter at 15.25 mm, mean CT attenuation at
GGNs (all P<0.05, Table 3). Collinearity analysis revealed no  —412.50 HU, and CTR at 43.50%, based on Youden’s index.
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Construction and validation of nomogram
models

A predictive nomogram incorporating maximum diameter,
CTR, mean CT value, air bronchogram sign, and vascular
convergence sign was developed (Figure 2). The resulting model
achieved excellent discrimination, with AUCs of 0.87 (95% CI:
0.85-0.90) in the training group and 0.87 (95% CI: 0.82-0.92) in the
validation group (Figure 3). Calibration plots confirmed good
consistency between predicted probabilities and actual outcomes
in both cohorts (Figure 4). Decision curve analysis highlighted the
nomogram’s substantial clinical utility (Figure 5). Internal bootstrap
validation (1,000 repetitions) resulted in an AUC of 0.89 (95%
CI:0.86-0.92), reaffirming robust model discrimination.

Discussion

Lung cancer remains the leading cause of cancer incidence and
mortality globally, with adenocarcinoma as the most common
histological subtype (1, 25). With the widespread use of high-
resolution CT, an increasing number of MPLC presenting as
GGNs are detected (2). Surgical treatment remains the primary
therapeutic option for MPLC (26). For the management of residual
lesions, targeted therapy has shown significant potential (6).
Previous studies indicated that these ground-glass lesions carry a
high frequency of EGFR mutations, and EGFR-TKIs demonstrated
favorable therapeutic outcomes for these lesions (7, 8).

With advancements in molecular cancer biology, the
development of therapies targeting oncogenic alterations and
associated signaling pathways has become a crucial aspect of
cancer treatment (27). EGFR mutations are a key oncogenic
alteration in lung adenocarcinoma, and inhibitors targeting this
mutation have demonstrated promising therapeutic efficacy (28).
However, EGFR mutations also contribute to immunotherapy
resistance. Previous studies have shown that immune checkpoint
inhibitors (ICIs) significantly improve the survival of patients with
lung adenocarcinoma without driver gene mutations (29, 30). In
contrast, monotherapy with ICIs has not significantly improved
efficacy in EGFR-mutant lung adenocarcinoma patients (31). This
lack of efficacy may be attributed to factors such as low PD-L1
expression, low tumor mutational burden (TMB), and the
upregulation of an immunosuppressive tumor microenvironment
(TME), which collectively put EGFR-mutant patients at a
disadvantage when receiving ICI treatment (32). Furthermore,
studies suggest that EGFR mutations play a pivotal role in the
evolution of lung adenocarcinoma, enhancing the tumor’s ability to
adapt to existing therapies and leading to diminished therapeutic
efficacy and the development of resistance (33, 34). The effects of
EGFR mutations have led researchers, in their exploration of cancer
treatment strategies, to not only focus on tumor cells but also
emphasize the importance of the tumor microenvironment (35).
However, our study specifically focuses on refining cell-intrinsic
prediction, particularly in determining which patients are likely to
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benefit from EGFR TKIs. Therefore, accurately predicting the EGFR
mutation status is crucial.

However, traditional biopsy techniques have inherent
limitations when assessing EGFR mutation status in GGNs,
underscoring the need for non-invasive, convenient, and accurate
predictive methods (12). Predictive modeling approaches have
emerged as promising alternatives to address these challenges (36,
37). Accordingly, this study established a nomogram incorporating
multiple radiological parameters to non-invasively predict EGFR
mutations, thus facilitating clinical decision-making.

Tumor diameter is an important CT imaging feature of GGNG.
Lee et al. demonstrated that tumor diameters were significantly
associated with EGFR mutations (38). Similarly, Yang et al. reported
a correlation between GGN diameter and EGFR mutation status
(39). Our results confirmed that maximum lesion diameter
independently predicts EGFR mutation occurrence in GGNs.
When the maximum diameter of ground glass nodules exceeds
15.25 mm, the likelihood of EGFR mutation significantly increases.
This finding is consistent with the study by Yang et al (39). Lee et al.
observed that when the diameter exceeds 2.43 cm (38), the
probability of EGFR mutation is highest, which aligns with the
results of Usuda et al (40). The differences in cutoff values may be
due to variations in sample inclusion criteria. In our study, we
specifically included ground-glass nodules, whereas other studies
included a broader range of nodule types. This finding aligns with
previous reports. Nonetheless, Cheng et al.’s meta-analysis
identified no clear correlation between lesion size and EGFR
mutation status, potentially attributable to confounding variables
affecting tumor dimensions within the reviewed studies (41).

As the proportion of the solid component increases, GGNs
exhibit progressively greater invasiveness and more prominent
malignant characteristics (42). Previous studies have shown that
the presence of a ground-glass component correlates with a higher
rate of EGFR mutations in non-small cell lung cancer (NSCLC) (43,
44). However, limited research has specifically addressed the
relationship between changes in the relative proportions of
ground-glass and solid components and EGFR mutation status in
GGNs. CTR is currently recognized as a critical imaging feature for
evaluating GGNs (45). In our study, we observed that a higher
proportion of solid components increased the likelihood of EGFR
mutations, consistent with previous reports. The optimal cutoff
value of CTR for diagnosing EGFR mutations was identified as
43.50%,which is consistent with previous studies (46).

With increasing tumor invasiveness, tumor cells progressively
infiltrate surrounding normal tissue structures, resulting in an
increased mean CT value of GGNs. Mean CT value plays an
important role in evaluating GGNs (47, 48). However, whether
the mean CT value can predict EGFR mutation status remains
unclear. Our findings first indicate that the mean CT value is an
independent predictor of EGFR mutation status in GGNs.
Specifically, when the mean CT value exceeds -412.50 HU, the
likelihood of EGFR mutation significantly increases, achieving
strong diagnostic performance. Zhan et al. pointed out that (48)
the likelihood of invasive adenocarcinoma increases when the mean
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TABLE 2 Relationship between clinical and imaging and EGFR mutation status of ground glass nodules.

Variables Total (n = 709) EGFR (=) (n = 351) EGFR (+) (n = 358)

Age(years) 52.32 + 10.96 53.04 + 11.32 51.63 + 10.57 0.086
Mean CT value (HU) -420.00 (-500.00, -320.00) -490.00 (-520.00, -430.00) -340.00 (-410.00, -276.25) <.001
Maximum diameter (mm) 16.00 (13.00, 19.00) 13.20 (12.00, 16.00) 18.00 (16.00, 21.00) <.001
CTR (%) 41.00 (25.00, 65.00) 31.00 (22.00, 46.00) 57.00 (34.00, 67.00) <001
Gender, n (%) 0.089
male 233 (32.86) 126 (35.90) 107 (29.89)

female 476 (67.14) 225 (64.10) 251 (70.11)

Smoking history, n (%) 0.036
No 512 (72.21) 241 (68.66) 271 (75.70)

Yes 197 (27.79) 110 (31.34) 87 (24.30)

CEA, n (%)

Negative 622 (87.73) 311 (88.60) 311 (86.87) 0.482
Positive 87 (12.27) 40 (11.40) 47 (13.13)

CA125, n (%) 0.702
Negative 663 (93.51) 329 (93.73) 333 (93.02)

Positive 46 (6.49) 22 (6.27) 25 (6.98)

Vacuole sign, n (%) 0.524
No 606 (85.47) 303 (86.32) 303 (84.64)

Yes 103 (14.53) 48 (13.68) 55 (15.36)

Spiculation, n (%) 0.058
No 403 (56.84) 212 (60.40) 191 (53.35)

Yes 306 (43.16) 139 (39.60) 167 (46.65)

lobulation, n (%) 0.041
No 496 (69.96) 258 (73.50) 238 (66.48)

Yes 213 (30.04) 93 (26.50) 120 (33.52)

Pleural traction sign, 0.016
n (%)

No 538 (75.88) 280 (79.77) 258 (72.07)

Yes 171 (24.12) 71 (20.23) 100 (27.93)

ZZ;Cur:a(:yo c):onvergence <001
No 437 (61.64) 238 (67.81) 199 (55.59)

Yes 272 (38.36) 113 (32.19) 159 (44.41)

Air bronchogram sign, <001
n (%)

No 601 (84.77) 316 (90.03) 285 (79.61)

Yes 108 (15.23) 35 (9.97) 73 (20.39)

CT value of ground-glass nodules exceeds -449.5 Hu, a view thatis  likelihood of EGFR mutations also rises, aligning with the
also supported by other researchers (49). This is consistent with the ~ perspectives of previous studies (50).

cutoff value for EGFR mutations in GGNs observed in our study, Qualitative CT imaging characteristics are also valuable for
suggesting that as the degree of invasion in GGNs increases, the  predicting EGFR mutations. Liu et al. identified the vascular
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TABLE 3 Multivariable logistic regression of clinical and CT finings and EGFR mutation status of ground glass nodules.

Variables

Univariate

OR (95%Cl)

10.3389/fimmu.2025.1630119

Multivariate

OR (95%Cl)

Gender, n (%)

male 1.00 (Reference)

female 1.31 (0.96 ~ 1.80) 0.089

Smoking history, n (%)

No 1.00 (Reference) 1.00 (Reference)

Yes 0.70 (0.51 ~ 0.98) 0.037 0.759 (0.491 ~ 1.172) 0.213
Vacuole sign, n (%)

No 1.00 (Reference)

Yes 1.15 (0.75 ~ 1.74) 0.524

Spiculation, n (%)

No 1.00 (Reference)

Yes 1.33 (0.99 ~ 1.80) 0.058

lobulation, n (%)

No 1.00 (Reference) 1.00 (Reference)

Yes 1.40 (1.01 ~ 1.93) 0.042 1.388 (0.910 ~ 2.117) 0.127
Pleural traction sign, n (%)

No 1.00 (Reference) 1.00 (Reference)

Yes 1.53 (1.08 ~ 2.16) 0.017 1.351 (0.858 ~ 2.128) 0.194
Vascular convergence sign, n (%)

No 1.00 (Reference) 1.00 (Reference)

Yes 1.68 (1.24 ~ 2.29) <001 1.632 (1.093 ~ 2.438) 0.017
Air bronchogram sign, n (%)

No 1.00 (Reference) 1.00 (Reference)

Yes 2.31 (1.50 ~ 3.57) <.001 2.446 (1.363 ~ 4.389) 0.003
age(years) 0.99 (0.97 ~ 1.00) 0.087

mean CT value (HU) 1.01 (1.01 ~ 1.02) <001 1.010 (1.008 ~ 1.012) <001
maximum diameter (mm) 1.35 (1.28 ~ 1.42) <.001 1.178 (1.113 ~ 1.247) <.001
CTR (%) 1.04 (1.03 ~ 1.05) <.001 1.025 (1.015 ~ 1.035) <.001

convergence sign as indicative of EGFR mutations (51). Likewise,
Cao et al. demonstrated that the presence of this sign elevates the
mutation risk by approximately 2.26-fold (52). A subsequent meta-
analysis by Zhang et al. further supported this result (44). Our
findings also confirmed the independent predictive value of the
vascular convergence sign for determining EGFR mutation status.
However, Zou et al. reported contradictory results, possibly due to
their small sample size (13). Rizzo et al. found that the air
bronchogram sign could predict EGFR mutation status (15). A
similar finding was reported by Sabri et al. and subsequently
confirmed by Zhang et al., who included 2,380 patients in their
study. Our research yielded similar results, indicating that the air
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bronchogram sign significantly increases the likelihood of
EGFR mutation.

Previous studies demonstrated that gender, smoking history, and
CEA levels play important roles in predicting EGFR mutation status (44,
53). However, in our study, none of these factors—gender, smoking
history, or CEA levels—showed predictive value. This discrepancy may
arise because prior studies focused primarily on non-small cell lung
cancer, whereas our research specifically targeted lung adenocarcinoma
presenting as GGNs. This subtype occurs predominantly in younger,
non-smoking women, and their CEA levels are typically normal.
Therefore, significant differences in gender, smoking history, and
CEA levels between groups may not have been evident in our cohort.
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FIGURE 3
(A) ROC curve of the nomogram in training group. (B) ROC curve of the

Compared with traditional approaches relying on single
predictors, a nomogram model integrating multiple features
improves prediction accuracy and efficiency (54, 55). Recently,
some researchers have developed radiomics-based models to
predict EGFR mutation status in GGNs (56). Although radiomics
is increasingly used in clinical research, differences in resource
availability and infrastructure may still affect its implementation
across various regions. Alternatively, other studies utilized more
accessible clinical and imaging data to assess EGFR mutation status
in GGNs (36). However, these previous studies often involved small
sample sizes, and their predictive models lacked sufficient
validation, underscoring the need for further investigation. The
present investigation provides a comprehensive assessment of
clinical and radiological predictors associated with EGFR
mutation status using a substantial sample size of GGN cases.
Notably, we identified mean CT value as an independent
predictor for EGFR mutations, an observation not previously
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nomogram in validation group.

reported. Additionally, we successfully developed and validated a
predictive nomogram model by combining multiple features. Upon
patient admission, clinicians can assess the five independent
predictive factors (maximum diameter, CTR, mean CT value, air
bronchogram sign, and vascular convergence sign). A total score is
then calculated based on the individual scores of these factors to
estimate the EGFR mutation status of ground-glass nodules. If a
ground-glass nodule is determined to harbor an EGFR mutation,
EGFR-targeted therapy may be considered for the management of
the remaining lesions in patients with multiple GGNs, thus
supporting the precision treatment of lung adenocarcinoma.

Our predictive model demonstrated good performance.
However, with advancements in technology, multimodal
integrative analysis combining imaging models with genomic or
transcriptomic data has become an emerging trend (57, 58). Du
et al. developed a prognostic model by integrating imaging and
transcriptomic data, achieving an AUC of 0.9 (59). Liu et al.
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constructed a predictive model by combining molecular and clinical
features, which also improved predictive performance (60). Wang
et al. built a prognostic model for hepatocellular carcinoma by
integrating transcriptomic data with CT features, achieving an AUC
of 0.834 (61). In our future research, we plan to perform
transcriptome sequencing to identify key genes associated with
EGFR mutations in ground-glass nodules, and to integrate these
with imaging features to develop a multimodal diagnostic model for
EGFR mutation.

Recent advances in clinical cancer genomics have highlighted the
need to systematically annotate and prioritize somatic variants with
established therapeutic relevance. A recent ClinGen somatic curation
effort has initiated the annotation of EGFR variants, aiming to define
their clinical actionability (62). A recent case report has identified

Frontiers in Immunology

EMIL4-ALK variant 3a/b as a mechanism of acquired resistance to
osimertinib in a patient with EGFR L858R-positive non-small cell lung
cancer (63). These findings underscore that accurate prediction of
mutation status has direct implications for therapeutic decision-
making and resistance monitoring. Our model, by non-invasively
predicting EGFR mutation status in GGN lesions, may help identify
patients likely to benefit from targeted therapy, thereby enhancing its
translational potential. Future integration of curated variant
annotations could further expand its utility in anticipating resistance
pathways and guiding individualized treatment strategies.

Recent studies have highlighted cancer cell plasticity as a critical
contributor to therapeutic resistance (64). Plasticity refers to the ability
of tumor cells to adopt alternative phenotypes in response to selective
pressures, including drug treatment (65). This dynamic adaptability,
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often driven by intrinsic signaling pathways such as Notch, Wnt,
MAPK, PI3K, and STATS3, allows subpopulations of cancer cells to
evade therapy by transitioning into drug-tolerant or stem-like states
(66). Such phenotypic switching underlies intratumoral heterogeneity
and has been identified as a key mechanism of acquired resistance to
targeted therapies. While our model provides a non-invasive method to
predict EGFR mutation status at baseline, it is important to recognize
that mutation status alone may not capture the full spectrum of tumor
adaptability. Integrating temporal imaging data or molecular follow-up
in future modeling efforts may enhance the ability to anticipate
resistance development and better support individualized
therapeutic strategies.

Despite promising outcomes, this study has certain limitations.
First, The retrospective design may inherently introduce selection
biases, and data collection from a single center could limit the
generalizability of results. Although internal validation using
temporally distinct cohorts was conducted, multicenter and
prospective studies are warranted to further validate and generalize
the findings. Second, imaging measurements in this analysis involved
manual assessments, inevitably resulting in potential measurement
variability. Finally, Our study focused exclusively on lung
adenocarcinomas presenting as ground-glass nodules, a highly
selected subgroup with relatively indolent behavior and distinct
molecular features. As a result, the generalizability of our model to
broader or more heterogeneous NSCLC populations remains uncertain
and warrants future investigation.

Conclusion

In conclusion, the constructed nomogram integrating
maximum diameter, CTR, mean CT value, air bronchogram sign,
and vascular convergence sign effectively predicts EGFR mutation
status in GGNs. The proposed model exhibits robust predictive
capability and holds potential for guiding personalized clinical
decisions and patient management in clinical practice.
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