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Introduction: Renal cell carcinoma (RCC) presents significant clinical and
molecular heterogeneity, which makes prognosis and treatments very
complicated. Despite advances in surgical and systemic therapies, a substantial
number of RCC patients progress to advanced stages, highlighting the need for
novel stratification approaches that account for the tumor’s biological complexity.
Methods: An integrative multi-omic analysis, combining transcriptomic and clinical
data, was performed to identify the metabolic subtypes of RCC. Unsupervised
clustering was used to stratify patients based on their metabolic profiles, and
subtype-specific molecular signatures were examined through differential
expression and pathway enrichment analyses. Prognostic outcomes, immune
features, and drug sensitivities were then analyzed. The value of the classification
was validated by the biological experiments.

Results: Three distinct metabolic subtypes (C1, C2, and C3) were identified, each
associated with distinct survival outcomes. The C1 subtype, marked by enhanced
oxidative phosphorylation and fatty acid metabolism, correlated with improved
survival. The C2 subtype, characterized by prostaglandin biosynthesis, was linked to
poor prognosis and immune evasion. The C3 subtype was similar to C2 but was
characterized by extensive prostanoid biosynthesis, indicating a moderate
prognosis in the three subtypes. Immunotherapy and targeted drug sensitivity
analyses revealed subtype-specific vulnerabilities, suggesting potential therapeutic
strategies tailored to each metabolic profile. Subsequent in vitro assays confirmed
the significance of targets to the RCC biological process.

Conclusions: Metabolic subtyping through multi-omics integration offers a
clinically relevant framework for RCC prognosis and personalized treatment.
This approach highlights the role of metabolic reprogramming in tumor
immunity and therapeutic response, providing a foundation for future clinical
applications in precision oncology.
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Introduction

Renal cell carcinoma (RCC) is one of the most common
urological malignancies worldwide, ranking second only to
bladder cancer in incidence (1). According to the authoritative
statistics, more than 430,000 new cases of RCC and over 150,000
related deaths were reported in 2022 (2). Over the past few years,
the incidence of RCC appeared to increase by approximately 1.5%
per year (3), although the surgical treatments (radical resection or
partial nephrectomy) represent the primary interventions and
confirm positive outcomes. Despite the rapid technical
improvement (robotic-assisted surgery and ablation treatment)
addressing several of the limitations of traditional approaches,
approximately 30% of RCC patients are still diagnosed at
advanced stages (4); therefore, the necessity for multidisciplinary
treatment (MDT) strategies has been increasingly emphasized.

Despite the growing diagnosis and multiple stages/grades, the
incidence and mortality of RCC vary considerably. Data from
GLOBOCAN 2020 indicate that men are twice as likely as women
to develop and die from RCC (5). Meanwhile, RCC has strong
regional and racial disparities, and it is thought to be driven by a
combination of genomic alterations and lifestyle-associated risk
factors (6, 7), contributing to the pronounced heterogeneity
observed among RCC patients. Furthermore, based on the variety
of molecular mechanisms, diverse classical research has discovered
significant targets, signaling pathways, and corresponding
pharmaceuticals, which aim at immunotherapy and targeted
therapy in the advanced RCC patients (8, 9). Nevertheless, a
significant proportion of patients remain refractory or are only
partially responsive to current treatments. Combination therapies
have therefore become necessary to overcome resistance,
underscoring the urgent need to further dissect the complex
molecular and metabolic landscapes of RCC.

The substantial heterogeneity of RCC encompasses diverse
genetic, epigenetic, and metabolic alterations across histological
subtypes. Recently, various kinds of sequencing methods have
markedly advanced, and many novel techniques not only broaden
the range of the internal pathways but also ensure that the potential
mechanisms are closer to the actual conditions of RCC (10, 11). There
have been more than 20 biomarkers found in RCC, which are specific
to the mutant site in the microenvironment of RCC. The most
frequent gene mutation is Von Hippel-Lindau (VHL), which
directly dysregulates hypoxia-inducible factor (HIF) signaling and
contributes to aberrant hypoxic responses within the tumor
microenvironment (12). In addition, PBRM1 was the second most
frequent mutation found in RCC, resulting in the break of the cellular
chromatin-remodeling complex SWI/SNF, destroying DNA
replication and cell proliferation (13). Moreover, KDM5C, BAPI,
and SETD2 were identified to have certainly mutated in RCC (14, 15);
also, some other targets are emerging along with the progress of
sequencing. Molecular classification based on the above mutations
may trigger the new generation of targeted therapies (16). Except for
the molecules, PI3K, mTOR, VEGF, and other signaling pathways
were recognized, and corresponding therapy, like tyrosine kinase
inhibitor (TKI), has been used clinically (17). The outcomes of RCC
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patients are indeed better, but emerging data suggest an increasing
incidence of therapy resistance, particularly among patients with
metastatic RCC (mRCC). In response, first-line treatment strategies
have evolved toward combination regimens involving two or more
targeted agents or immunotherapies, as reflected in current clinical
guidelines (18-20). These developments highlight the limitations of
conventional molecular classifications and the necessity for novel
stratification frameworks for RCC.

As a classical and powerful theory, the Warburg effect provides
a more comprehensive perspective for cancer research, and aberrant
cancer metabolism is regarded as the hallmark (21). RCC is
characterized by profound metabolic disturbances throughout its
initiation and progression (22), and “metabolic disorder” tends to
be the essential feature of RCC. VHL-HIF targets and pathways are
considered the fundamental programs of RCC. Abnormal glycolysis
would be initiated, and energy metabolism dysfunction would
appear in the tumor microenvironment. Instead, cancer cell
proliferation and metastasis are uncontrolled while adjusting to
the variable metabolic conditions (23). With the emergence of “the
era of omics”, multiple critical metabolism patterns were unveiled
in RCC. The pentose phosphate pathway is a crucial process in vivo,
and the reprogramming is found to be correlated with the
aggression in RCC (24). Otherwise, lipid metabolism, represented
by the de novo fatty acid (FA)-related pathway, has been confirmed
to be required for RCC, targeting associated biomarkers, like fatty
acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), and
carnitine palmitoyltransferase 1A (CPT1A), which have been
proposed to be potential clinical strategies (25). Furthermore,
glutamine-derived and oncometabolite production pathways were
discovered to be apparently unstable in RCC, the tricarboxylic acid
cycle (TCA) was impeded, and the growth of cancer cells was
accelerated (26). Hence, the metabolic characteristics of RCC call
for a preferred classification to identify some specific targets.

In this study, we comprehensively explored the global metabolic
patterns of RCC through multiple clustering and enrichment
analyses. We attempted to demonstrate the relationship between
clinical characteristics and metabolism and find the key pathways
driving RCC progression. We validated metabolic patterns via
relevant experiments. This new metabolism-associated
classification may provide a new insight into the mechanisms and
underlying therapies of RCC.

Methods
Data acquisition and processing

Transcriptomic and clinical data were integrated from three
independent cohorts of clear cell renal cell carcinoma (ccRCC):
TCGA-KIRC, EMTAB3267, and GSE22541. All the clinical
annotations were carried out according to the platforms.

All datasets were filtered to include only primary tumor samples
with complete survival data, tumor grades, and TNM staging. Raw
data of RNA-seq were converted to transcripts per million (TPM)
and transformed to log2(TPM+1). Microarray data were
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normalized using quantile normalization, and batch effects were
removed using ComBat (Supplementary Figure S1A).

Unsupervised clustering of metabolic
subtypes

To identify distinct metabolic subtypes, unsupervised consensus
clustering was performed on the TCGA-KIRC cohort using the
ConsensusClusterPlus package (R v4.2.3) (27). Subsequently,
principal component analysis (PCA) was applied to reduce the
dimensionality of the original expression matrix, and the samples
were projected into a two-dimensional space to intuitively display
the separation of each metabolic subtype (Data sheet 1). K-means
clustering with a Euclidean distance metric was employed, and the
robustness of clustering was assessed across 1,000 iterations, each
involving random subsampling of 80% of the samples. The optimal
number of clusters was determined by integrating results from
cumulative distribution function (CDF) plots, delta area analyses,
and silhouette width metrics, thereby ensuring stable and well-
defined subtype classification.

Template-based molecular subtyping using
nearest template prediction

To better stratify patients into biologically and clinically
relevant subtypes, the nearest template prediction (NTP)
approach in the “MOVICS” package was implemented (28) based
on predefined molecular templates. Subtype-specific templates were
constructed based on the average gene expression profiles of typical
samples. Gene symbols were harmonized according to HUGO Gene
Nomenclature Committee (HGNC) standards, and only the
common genes in all datasets were retained for subsequent analyses.

Gene set enrichment analysis for GO and
KEGG pathways

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted using the
clusterProfiler R package (version 4.6.2). Enrichment analysis was
applied separately for biological processes (BPs), cellular
components (CCs), and molecular functions (MFs) in GO terms
and for metabolic and signaling pathways in KEGG. Pathways with
an adjusted p-value <0.05 were considered significantly enriched.

Microenvironment Cell Populations-
counter

To estimate the absolute abundance of distinct stromal and
immune cell populations from bulk transcriptomic profiles, we
employed Microenvironment Cell Populations-counter (MCP-
counter) by the “MCPcounter” R package (version 1.2.0,
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Bioconductor version 3.20) (29). This approach quantified specific
cell populations based on cell type-specific transcriptomic markers.
The immune cell populations assessed included the following: CD8
+ T cells, total T cells, natural killer (NK) cells, cytotoxic
lymphocytes, myeloid dendritic cells, monocytes, and neutrophils.
Additionally, we estimated the abundance of stromal components,
namely, endothelial cells and fibroblasts, for each sample.
Furthermore, we performed six complementary algorithms—
MCP-counter, CIBERSORTX, EPIC, quanTIseq, TIMER2.0, and
xCell—based on the IOBR package (30) to decipher the immune
infiltration pattern among high and low PTGES2 tumors.

Single-sample gene set enrichment
analysis

To further delineate heterogeneity in immune infiltration
between samples, single-sample gene set enrichment analysis
(ssGSEA) was performed using the “GSVA” R package
(Bioconductor version 3.20) (31). An enrichment score for each
gene set was computed, enabling a quantitative assessment of
immune-related gene set activity at single-sample resolution by
ranking the genes and comparing the distributions.

GSVA-based characterization of immune
cell and functional pathway activities

Gene set variation analysis (GSVA) was applied to RNA-seq
expression profiles to estimate pathway activities and immune cell
infiltration in an unsupervised, non-parametric manner. GSVA and
enrichment scores were performed using the “GSVA” R package.
Hierarchical clustering of GSVA scores enabled the visualization
and identification of subtype-specific patterns in the tumor immune
microenvironment (TIME), which are displayed graphically in the
heatmaps. To evaluate the features of Tertiary lymphoid structure
(TLS), Germinal centers B cell (GC B), Follicular helper T cell (Tth),
Follicular dendritic cells (FDC), Plasma, and B cells, GSVA was
performed based on related gene sets, which were obtained from a
previous study (32). In addition, immune-related signaling between
high and low PTGES2 tumors enrolled from the Hallmark database
was compared based on GSVA algorithms.

Assessment of immunotherapy response in
the CheckMate immunotherapy cohort

mRCC patients from the CheckMate immunotherapy cohort
(16) who received immunotherapies were analyzed. Clinical
response was categorized as follows: clinical benefit (CB), defined
as complete response (CR), partial response (PR), or stable disease
(SD) lasting 26 months; and no clinical benefit (NCB), defined as
progressive disease (PD) or SD lasting <6 months. Objective
response rates (ORRs), including CR, PR, SD, PD, and confirmed
mixed partial response (CMPR), were calculated for every subtype.
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Drug sensitivity profiling of RCC

To investigate the differential drug sensitivity of RCC, the
OncoPredict algorithms implemented in MOVICS were utilized
alongside drug response data from the Genomics of Drug
Sensitivity in Cancer (GDSC) database (Release 8.5, October 2023).
The sensitivity of a range of therapeutic drugs was analyzed, and the
half-maximal inhibitory concentration (ICsy) values for each drug
were estimated within the context of three distinct subtypes.

Immunohistochemistry

Paraffin-embedded RCC tissues were deparaffinized in xylene and
rehydrated through graded ethanol. Antigen retrieval was performed
by boiling the sections in Tris-EDTA buffer (pH 9.0) for 15 minutes in
an electric cooker, and then the sections were naturally cooled.
Endogenous peroxidase activity was quenched using 3% hydrogen
peroxide for 10 minutes at room temperature. Next, tissue sections
were blocked with 3% bovine serum albumin (BSA) for 30 minutes
and then incubated with primary antibodies (anti-PTGES2; dilution
1:200, Proteintech, Wuhan, Hubei, P.R.C, Cat No. 10881-1-AP)
overnight at 4°C. The next day, sections were washed three times
and incubated with Horseradish Peroxidase (HRP)-conjugated
secondary antibodies (Absin Bioscience, China, No. abs996, general
concentration) for 30 minutes at room temperature. Detection was
performed using Diaminobenzidine (DAB) substrate, and
counterstaining was performed using hematoxylin. Images were
acquired using a Leica microscope and imaging system.

Cell culture

Human RCC cell lines 786-O and 769-P were obtained from the
American Type Culture Collection (ATCC, Mansas, Virginia,
USA). To confirm the identity of the cell lines, short tandem
repeat (STR) analysis was used to identify the two cell lines. STR
testing was conducted by Shanghai Zhong Qiao Xin Zhou
Biotechnology Co., Ltd. (Supplementary Materials 2, 3). Cells
were cultured in RPMI-1640 medium (Gibco, Thermo Fisher
Scientific, Shanghai, China, A4192301) supplemented with 10%
fetal bovine serum (FBS; Gibco, A5256701) and 1% penicillin-
streptomycin (100 U/mL and 100 pg/mL, respectively). All cells
were maintained in a humidified incubator at 37 °C with a 5% CO,
atmosphere and were routinely tested to be free of mycoplasma
contamination. Cell passage occurred when cells grew to a density
of 70%-80%. Notably, cells within 20 passages were fit for all
experiments to ensure phenotypic stability.

Construction of stable cell lines of PTGES2
knockdown and overexpression

To generate stable knockdown RCC cell lines, two short hairpin
RNA (shRNA) sequences targeting human PTGES2 were designed,
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and the sequences were as follows: shPTGES2-1: 5'-
GAAGCCGAATCTCGCTGATTT-3’, shPTGES2-2: 5'-
CGGCAATAAGTACTGGCTCAT-3'. A scrambled non-targeting
RNA (5-CAACAAGATGAAGAGCACCAA-3’') was used as a
negative control (shCtrl). All oligonucleotides were cloned into
the pLKO.1-puro vector to generate two knockdown plasmids, and
PTGES2 [Coding sequence (CDS) region was obtained from https://
www.ncbi.nlm.nih.gov/nuccore/NM_025072.7] was cloned into a
pCDH vector to generate an overexpression plasmid (33).

Lentiviral particles were produced by co-transfecting HEK293T
cells with the plasmids and packaging plasmids (psPAX2 and
pMD2.G) using Lipofectamine 3000 (Thermo Fisher Scientific).
Viral supernatants were collected at 48 and 72 hours
post-transfection.

For transduction, cells were seeded in six-well plates (2 x 10°
cells/well) and infected with lentivirus at a suitable multiplicity of
infection (MOI; 30-50) value in the presence of 8 ug/mL polybrene
(Sigma-Aldrich, Beijing, China). After 24 hours, the medium was
replaced with fresh complete medium containing 2 ug/mL
puromycin for 7 days to select stably transduced cells.

Quantitative polymerase chain reaction

Total mRNA of cells was extracted using TRIzol Reagent
(Invitrogen, Shanghai, China), and then mRNA was reverse-
transcribed into cDNA using PrimeScript RT Master Mix (Takara
Bio, Beijing, China) and quantified by qRT-PCR on a QuantStudio
7 Flex System. The following primers were used:

PTGES2: Forward: 5'-GTGACCGAGTTCGGCAATAAG-3/,
PTGES2: Reverse: 5'-CGGACAATGTAGTCAAAGGACG-3/,
GAPDH: Forward: 5'-GGAGCGAGATCCCTCCAAAAT-3/,
GAPDH: Reverse: 5'-GGCTGTTGTCATACTTCTCATGG-3'.

The run method is shown below:

Hold stage: 50°C for 2min, 95°C for 10 min.
PCR stage: 95°C for 15 s, 60°C for 1min and 40 cycles.
Melt curve stage: 95°C for 15 s, 60°C for 1min, 95°C for 15 s.

The relative mRNA expression is calculated using the
following method:

ACt = Ct (PTGES2) — Ct (GAPDH),
AACt = ACt (Sample) — ACt (Control),
Fold gene expression = 2A—(AACt).

Western blotting

Cells were lysed in Radio Immunoprecipitation Assay Lysis
buffer (RIPA) supplemented with protease and phosphatase
inhibitors (Beyotime, Shanghai, China) on ice for 30 minutes.
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Lysates were then centrifuged at 13,000 g for 15 minutes at 4°C, and
protein concentrations were quantified using the BCA assay kit
(Thermo Fisher Scientific). Equal amounts of protein (20-30 ug)
were separated using the Sodium dodecyl sulfate - polyacrylamide
gel electrophoresis (SDS-PAGE) gel (10%) and were transferred to
Polyvinylidene Fluoride (PVDF) membranes (Millipore, Shanghai,
China; 0.45 um). Membranes were blocked in 5% non-fat milk for 1
hour at room temperature and incubated overnight at 4°C with
primary antibodies (anti-PTGES2, dilution 1:1,000, Proteintech,
Cat No. 10881-1-AP; loading control, beta actin, dilution 1:5,000,
Proteintech, Cat No. 20536-1-AP).

The next day, membranes were washed three times and then
incubated with HRP-conjugated secondary antibodies (HRP-
conjugated Goat Anti-Rabbit IgG(H+L), dilution 1:5000,
Proteintech, Cat No. SA00001-2) for 1 hour at room temperature.
Signals were detected using enhanced chemiluminescence (ECL)
reagents and visualized using an imaging system (Tanon
chemiluminescence image analysis system).

Cell proliferation assay

Cell viability was assessed using the Cell Counting Kit-8 reagent
(Dojindo, Kumamoto, Japan) according to the manufacturer’s
instructions. 786-O and 769-P cells were seeded into 96-well
plates at a density of 3 x 10 cells/well. After the cell adhesion
was completed, 10 UL of CCK-8 reagent was added to each well and
incubated for 2 hours at 37°C. Absorbance at OD 450 nm was
measured. It was noteworthy that the cells should be measured at a
fixed time every day and five times in total.

Transwell assay

The Transwell assay was used to test the cell migration
capabilities; 2 x 10* cells suspended in serum-free medium were
seeded into the upper Transwell chamber (8-pm pore size; Corning,
Shanghai, China) in 24-well plates. The lower chamber contained
800 UL of complete medium with 10% FBS. After incubating for 24
hours at 37°C, cells on the upper membrane surface were gently
removed using a cotton swab. The migrated cells on the bottom
surface were fixed with 4% paraformaldehyde and then stained with
0.1% crystal violet for 30 minutes. Cell counting was carried out
using an inverted microscope (Olympus, Beijing, China) in three
random fields per well.

Colony formation assay

To assess cell proliferative capacity, 786-O and 769-P cells were
seeded into six-well plates at a low density of 1,000 cells/well. After
culturing for 10-14 days, colonies were fixed with 4%
paraformaldehyde for 30 minutes and stained with 0.1% crystal
violet for 30 minutes. Visible colonies were counted.
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Statistical analysis

The Kaplan-Meier survival curves of defined metabolic
subtypes were generated using the survival and survminer R
packages. Differences in overall survival (OS) among subtypes
were evaluated using the log-rank test. Multivariate Cox
proportional hazards models were adjusted for age, gender, grade,
TNM stage, and metastasis. The HRs and 95% CIs were calculated,
and the proportional hazards assumption was strictly tested using
Schoenfeld residuals. Correlations between clinical and molecular
features were tested using % or Fisher’s exact test (grade, stage, and
metastasis) for categorical variables, and the Kruskal-Wallis or
analysis of variance (ANOVA) (age and tumor size) was utilized
for continuous variables.

The R software (v4.2.3) and GraphPad Prism (v9.0) were used
for all statistical analyses. p-Values <0.05 were considered
statistically significant.

Results

Three distinct global metabolic patterns
presented different clinical features in
ccRCC

By integrating intersecting metadata of RCC samples from
TCGA-KIRC, EMTAB3267, and GSE22541, three metabolic
subtypes (Cl, C2, and C3) were divided by unsupervised
clustering (Supplementary Figure S1B). KEGG enrichment
analysis indicated several significant metabolic pathways, as
shown in Figure 1A. Genes in cluster C1 were mainly enriched in
fatty acid degradation and metabolism of various amino acids
(arginine, glycine, serine, etc.). Cluster C2 comprised galactose
metabolism, cardiolipin metabolism, prostaglandin biosynthesis,
and other metabolite biosynthesis processes. Cluster C3 included
prostanoid biosynthesis and cyclooxygenase, arachidonic acid
metabolism. These findings implicated metabolic rewiring as a
key differentiator of ccRCC clinical behavior.

The Kaplan-Meier analysis showed marked survival differences
among the three subtypes. Generally, cluster C1 had the better
survival probability, C3 was in the middle, and C2 presented the
worst prognosis (overall p=0.005, C1 vs. C2 p=0.004, C2 vs. C3
p=0.022, and C1 vs. C3 p=0.070; Figure 1B). The detailed clinical
characteristics of patients were assessed under established clusters
C1-C3. The results showed that pathologic_T, pathologic_N, and
pathologic_ M were strongly associated with every subtype, and
these three almost entirely emerged in cluster C2, but presented a
low proportion in clusters C1 and C3. Meanwhile, Progression Free
Interval (PFI) and OS showed a similar tendency (Figure 1C).
Therefore, the novel three clusters based on metabolism were
distinctly classified for RCC and had strongly prognostic effects
on patients. Overall, these results confirmed the reproducibility,
prognostic utility, and biological validity of the metabolic
subtype model.
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across three subtypes. KEGG, Kyoto Encyclopedia of Genes and Genomes.

Validation of independent datasets
revealed diverse outcomes of RCC patients

For the external datasets, NTPs were carried out to validate the
classification approach and the value of prognosis. Regarding
EMTAB3267, NTP analysis confirmed the reliability of
metabolism C1 to C3 clusters. Overall, subtypes had high
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prediction confidence (Figure 2A). Furthermore, cluster C2
contained the worst survival probability, cluster C1 had the best,
and cluster C3 was in between (Figure 2B). For GSE22541, almost
the same consequences were demonstrated as before (Figures 2C,
D). To sum up, these three clusters possess precise prediction; even
though there was no statistical significance between clusters C2 and
C3, the entire tendency was consistent and accurate.
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FIGURE 2

Validation of independent datasets revealed diverse outcomes of RCC patients. (A) NTP heatmap of the EMTAB3267 database for the reliability of
three subtypes. (B) Kaplan—Meier curves for survival probability of three subtypes in EMTAB3267. (C) NTP heatmap of the database for the reliability
of three subtypes. (D) Kaplan—Meier curves for survival probability of three subtypes in GSE22541. RCC, renal cell carcinoma; NTP, nearest template

prediction.

GO and KEGG pathway enrichment
analyses disclosed related functions and
pathways

For the C1 subtype, GO analysis revealed that BP included
carboxylic acid transport, organic acid transport, and organic anion
transport; CC included apical part of cell, apical plasma membrane,
and brush border; MF included secondary active transmembrane
transporter activity, solute:sodium symporter activity, and
symporter activity (Figure 3A). KEGG pathway analysis found
that the Peroxisome proliferators-activated receptor (PPAR)
signaling pathway and mineral absorption were enriched
significantly (Figure 3B). For the GO analysis of C2, acute
inflammatory response, lipoprotein particle, and protein-lipid
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complex were observed (Figure 3C). KEGG revealed significantly
enriched platelet activation, cholesterol metabolism, and
arachidonic acid metabolism (Figure 3D). C3 mainly contained
external encapsulating structure organization, immunoglobulin
complex, antigen binding, etc., on GO analysis (Figure 3E); viral
protein interaction with cytokine and cytokine receptor, and
cytokine-cytokine receptor interaction were the most crucial
pathways enriched by KEGG (Figure 3F).

Additionally, the evaluation of some classical signaling
pathways suggested that cluster C2 represented a distinct
difference compared to the other two subtypes. In particular,
HIPPO, NRF2, PI3K, TGF-f, and RTK RAS were the typical
pathways (Figure 3G). Among them, cluster C2 had low
enrichment scores, which possibly means that genes in cluster C2
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GO and KEGG pathway enrichment analyses disclosed related functions and pathways. (A) GO analysis of cluster C1. (B) KEGG pathway analysis of
luster C1. (C) GO analysis of cluster C2. (D) KEGG pathway analysis of cluster C2. (E) GO analysis of cluster C3. (F) KEGG pathway analysis of cluster
C3. (G) Enrichment of typical signaling pathways across three subtypes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. ns,

not significant; *p < 0.05; **p < 0.01; ***p < 0.001.

lacked response to pathway-related treatments, so the worst
prognosis occurred.

Clusters C2 and C3 involved an enabled
immune microenvironment and implicated
immunotherapy response

All three clusters indicated the outcomes of corresponding
patients, and prostaglandin biosynthesis of cluster C2 and
prostanoid biosynthesis of cluster C3 were of particular attention.
The prostanoids are several lipid metabolites generated from 20-
carbon fatty acids, and they play a key role in the inflammatory
response in vivo (34). Recent studies have shown that prostaglandins
and other members could regulate the activities of T cells, B cells, and

Frontiers in Immunology

cytokines in the tumor immune microenvironment, which causes
immune exhaustion, and the tumor cell apoptosis was inhibited (35).
RCC patients frequently encounter resistance to immunotherapy;
therefore, we emphasized the relationship between clusters and the
immune microenvironment of RCC.

GSVA delineated clear immunophenotypic segregation among
the three defined subtypes. Notably, C2 was characterized by a
marked enrichment of immunosuppressive cellular populations,
including interleukins, cytokines, B-cell functions, T-cell functions,
NK cell functions, antigen processing, and macrophage functions;
C3 displayed a relatively balanced TIME (Figure 4A). MCP-counter
validated quantitative enrichment of suppressive cell populations in
C2, which contained a higher portion of endothelial cells,
neutrophils, NK cells, T cells, CD8 T cells, and so on (Figure 4A).
In contrast, Cl1 was characterized by nearly absent immune
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counter, Microenvironment Cell Populations-counter.

infiltrates. Concerning samples in clusters, ssGSEA was conducted
to explore the relative abundance of T cells. Consistent with GSVA
findings, ssGSEA-derived enrichment scores reinforced the TIME
dichotomy among the three subtypes: C2 and C3 involved more
quantities in Th17, Tcm, Tem, Th1, Th2, and Treg cells (Figure 4A).
A few immune-suppression cells, like Th1, Th2, and Treg cells, were
highly enriched in clusters C2 and C3, while immune-activation
cells, such as neutrophils and Th17 cells, were poorly enriched
(Figure 4B), suggesting the poor outcomes of C2 and C3, which
were consistent with the immune status.

Immune checkpoints are tightly linked to the clinical efficacy of
RCC patients, and RCC is regarded as a kind of “hot”
immunological tumor, so we explored the association between
three subtypes and the expression of eight immune checkpoints.
The results showed that cluster C2 exhibited a higher expression of
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CD274 than clusters C1 and C3; however, PDCD1LG2, TNFRSF9,
and TNFRSF4 were at extremely low levels compared to the others
(Figure 4C). We analyzed the downregulation of co-stimulatory
molecules such as TNFRSF and TNFRSF4 in the C2 subtype, which
may weaken T-cell activation and immune effects in the tumor
microenvironment, thereby partially explaining why the immune
efficacy remains poor despite high PD-L1 expression.

We also retrospectively reviewed all patients’ outcomes after
accepting immunotherapy in the CheckMate immunotherapy
cohort. RCC patients in cluster Cl achieved significantly
prolonged survival compared to patients in C2 and C3 (p=0.033);
the trend favored Cl, suggesting durable immune engagement
(Figure 4D). In particular, 47% patients in cluster C2 showed
NCB, far more than those in Cl1 (30%) and C3 (35%). The
frequency of CB in C2 was 24%, which was lower than that in C1
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(29%) and C3 (31%). Meanwhile, the ORRs were similar to the
previous benefits. Of patients in cluster C2, 48% were PD, but only
32% in C1 and 38% in C3 (Figure 4E). Hence, this classification is
meaningful to patients’ effects of immunotherapy.

To strengthen the relation between subtypes and TLS, we
calculated and explored TLS score, GC B, Tth, FDC, Plasma, and
B cell_score features among RCC patients, and the results showed
that C3 presented higher expression of these TLS-related features,
including CR2, FCER2, PAX5, CD19, MZBI, JCHAIN, DERL3,
CCL19, CCL21, CXCL13, and BLC6. Furthermore, the C3 cluster
also presented high enrichment scores of TLS score, GC B, Tth,
FDC, Plasma, and B cell_score features, indicating a high TLS
formation tendency (Supplementary Figure S2).

Drug sensitivity exhibited significant
heterogeneity across three subtypes

Dozens of ICs, estimates were derived for each of the drugs
from independent replicates. The distribution of ICs, values was
visualized using violin-box hybrid plots to assess both the central
tendency and variability across cell subtypes for each drug. Notable
variability in drug sensitivity was observed across the three
subtypes, with specific subtypes demonstrating distinct patterns of
drug resistance or susceptibility.

Many kinds of drugs showed antitumor properties; herein,
certain representative drugs were chosen. For the most frequently
targeted medicine, TKI was observed to have a significant sensitivity
gradient among the three subtypes. For the receptor TKI sunitinib,
cluster C2 exhibited the highest estimated ICs, value, indicating
resistance. One-way ANOVA confirmed that the observed
differences in sunitinib sensitivity were statistically significant (p
=1.2e-12) (Figure 5A). Saracatinib was an effective Src inhibitor,
NSC-87877 was a Shp inhibitor, and both were non-receptor TKIs.
Cluster C2 appeared to have the highest ICs, value as well
(saracatinib p=0.029, NSC-87877 p=0.00082) (Figures 5B, C).

Other kinds of kinase inhibitors were committed to lethal effects
on cancer cells. For the serine/threonine kinase inhibitors, such as
VX-680, which were a part of evolutionary conserved families
(Aurora-A, Aurora-B, and Aurora-C), controlling events of cell
cycles, cluster C2 possessed a higher ICs, value than others (p=4e
—14) (Figure 5D). Furthermore, multi-kinase inhibitors like
sorafenib (p=5.9e—07) and AP24534 (p=1.7e-05) were also
resistant to cluster C2 (Figures 5E, F).

Except for kinase targets, inhibitors specific to diverse pathways
were considered beneficial in the extinction of cancer cells.
Therefore, some drugs were estimated in three subtypes.
Rapamycin and phenformin blocked the mTOR signaling
pathway, inducing cancer cell autophagy and apoptosis,
respectively. In cluster C2, both showed high ICs, values
(rapamycin p=0.00092, phenformin p =1.1e-06) (Figures 5G, H).
As a Nuclear Factor-xB (NF-kB) inhibitor, parthenolide was
resistant in cluster C2 (p=0.00019) (Figure 5I), as well as the
FH535, referred to as a Wnt/B-catenin pathway inhibitor (p=4.7e
-09) (Figure 5J).
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Otherwise, chemotherapeutics for cancers that target DNA
replication are always available. Etoposide and doxorubicin were
the common interventions inhibiting topoisomerase-1II, thereby
terminating DNA replication in cancer cells. As expected, drug
resistance was the same in all the above drugs (etoposide p =3.2e
-05, doxorubicin p=0.00028) (Figures 5K, L).

The overall drug response patterns corroborate our hypothesis
that the molecular and phenotypic profiles of Cl, C2, and C3
contribute to distinct therapeutic vulnerabilities. In particular, the
cluster C2 phenotype appeared to be associated with enhanced drug
resistance, which was in line with the poor prognosis of cluster C2
as mentioned before.

Prostaglandin expression defines distinct
prognostic and immunotherapy responses

For further validation of cohorts, patients were stratified into
high and low prostanoid/prostaglandin expression groups based on
the median expression of the metabolism gene signature (PGE2). In
the TCGA-KIRC cohort, patients with high prostanoid/
prostaglandin expression exhibited significantly worse survival
(prostanoid p=0.013, HR=1.46, 95% CI: 1.09-1.97; prostaglandin
p=0.012, HR=1.47, 95% CI: 1.09-1.97). Similarly, in the FUSCC
cohort, patients with high prostanoid/prostaglandin expression had
worse survival (prostanoid p=0.061, HR=1.55, 95% CI: 0.96-2.5;
prostaglandin p=0.05, HR=1.58, 95% CI: 0.98-2.55)
(Figures 6A-D).

Patients in the high prostanoid group with PD were more than
those in the low prostanoid group (26% vs. 23%), the same as in the
high/low prostaglandin group (28% vs. 21%). In terms of
progression, the high prostanoid and low prostanoid groups
showed no difference (87% vs. 87%), but patients in the high
prostaglandin group were more likely to progress than others
(91% vs. 83%) (Figures 6E, F). These results suggested that high
prostanoid/prostaglandin RCC harbors a more suppressive and
therapy-resistant microenvironment, with lower immunogenicity
and metabolic reprogramming.

Prostaglandin biosynthesis pathway
regulates RCC progression and prognosis

To evaluate the clinical relevance of prostaglandin biosynthesis in
the context of therapeutic response, immunohistochemistry (IHC)
analysis was performed on RCC tissue microarrays (TMAs) obtained
from patients with differential responses to targeted therapy. A total of
12 tumor specimens were analyzed and stratified into four groups
according to clinical response criteria: CR (n=3), PR (n=3),SD (n =
3), and PD (n = 3). For analytical purposes, CR and PR were classified
as the non-progressive disease (non-PD) group, while SD and PD
were considered PD based on radiological and clinical
progression metrics.

Here, we found prostaglandin E synthase 2 (PTGES2), one key
enzyme catalyzing the synthesis of prostaglandin E2, which was
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Drug sensitivity exhibited significant heterogeneity across three subtypes. (A—L) Violin plots display the estimated ICso of multiple kinds of targeted
drugs in three subtypes. Data are mean + SD; statistical analysis was performed using one-way ANOVA.

associated with the progression of some tumors, such as colorectal
cancer (CRC), hepatocellular carcinoma (HCC), and RCC (36-38).
THC staining revealed a distinct expression pattern of PTGES2
across the four groups. In the PD subgroup (PD and SD), PTGES2
exhibited markedly higher expression, characterized by strong
staining intensity in RCC cells (Figure 7A). In contrast, the non-
PD subgroup (CR and PR) demonstrated weak-to-moderate
PTGES2 staining, with a substantial reduction in both staining
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intensity and percentage of positive cells. These findings suggested
that PTGES2 expression correlated positively with therapy
resistance and tumor progression status in RCC, which was in
accordance with cluster C2. In addition, PTGES2 was inversely
associated with TLS programs: TLS (r = —0.17, p =6e-5), GC B (r =
-0.31, p = 3.6e-13), and Plasma (r = —0.26, p = 3.4e-9); FDC
showed no association (r = —0.054, p=0.22); Tth showed a weak
positive correlation (r=0.15, p =6e—4) (Supplementary Figure S3A).
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Consistently, high PTGES2 tumors had lower TLS features (all p <
0.05), with no change in FDC (p=0.59) and only a marginal increase
in Tth (p=0.075) (Supplementary Figure S3B), indicating that high
PTGES2 is linked to reduced TLS enrichment. Across six
deconvolution methods, high PTGES2 tumors consistently
exhibited increased Tregs and M2-like macrophages with relative
depletion of CD8+ T cells and NK cells (Supplementary Figure
S4A). Interferon-o/y responses, cytokine-cytokine receptor
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interaction, and immune system signaling were enriched in high
PTGES2 (Supplementary Figure S4B), consistent with an inflamed
yet functionally suppressive microenvironment. We observed
modest negative associations with PD-L1 and CTLA-4, a weak
positive association with TIGIT, and no material association with
PD-1 or LAG-3 (Supplementary Figures S4C, D).

To further investigate the role of PTGES2 in RCC cell
proliferation and metastasis, we performed a series of in vitro
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FIGURE 7

Prostaglandin biosynthesis pathway regulates RCC progression and prognosis. (A) PTGES2 expression was analyzed by immunohistochemistry in
tumor tissues of patients with different outcomes. Scale bars, 100 um. (B) Validation of knockdown and overexpression of PTGES2 in RCC cell lines
by gqPCR. (C) Validation of knockdown and overexpression of PTGES2 in 786-0 cell line by WB. (D) Validation of knockdown and overexpression of
PTGES2 in 769-P cell line by WB. (E) CCK-8 assays showed the influence of PTGES2 on cell proliferation. (F) Colony formation assays showed the
influence of PTGES2 on cell proliferation. (G) Statistics of colonies showed the difference after PTGES2 was abnormally expressed. (H) Transwell
assays showed the influence of PTGES2 on cell migration. Scale bars, 100 um. (I) Statistics of transmembrane cells showed the difference after
PTGES2 was abnormally expressed. Data are mean + SD; statistical analysis was performed using one-way ANOVA. ns, not significant; *p < 0.05;

**p < 0.01; ***p < 0.001. RCC, renal cell carcinoma; WB, Western blotting.
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assays following the stable knockdown and overexpression of
PTGES?2 in the 786-O and 769-P cell lines. The efficiencies of the
knockdown and overexpression of PTGES2 were verified at both
the mRNA and protein levels by quantitative polymerase chain
reaction (QPCR) and Western blotting (WB) analysis, respectively.
The results showed that PTGES2 was successfully knocked down
and overexpressed in both 786-O and 769-P cells (Figures 7B-D).

The CCK-8 assay was used to explore cell proliferation.
Knockdown of PTGES2 resulted in a significant reduction in cell
reproductive capacity in both 786-O and 769-P cell lines; in
contrast, PTGES2 overexpression contributed to the obvious
proliferation of RCC cells, and all differences were statistically
significant (p < 0.05) (Figure 7E). The colony formation capability
of PTGES2 knockdown cells was significantly decreased compared
to that of shCtrl cells (Figure 7F), the colony counts in the
shPTGES2 groups were decreased under the microscope, and the
difference was statistically significant (p < 0.05). The results were
reversed while PTGES2 was overexpressed in RCC cell lines
(Figures 7F, G). These data indicate that PTGES2 can promote
the proliferation of RCC cells.

To evaluate the metastasis of PTGES2 in RCC cells, a Transwell
assay was conducted to determine the cell migration ability. The
results suggested that shPTGES2 cells exhibited significantly
reduced migration compared to the control cells (Figure 7H). The
number of migrated cells was decreased visibly in shPTGES2-
treated cells after cell counting, and the difference was statistically
significant (p < 0.05) (Figure 7I). Certainly, PTGES2 overexpression
was observed to motivate the migration of RCC cells, and the
difference between the vector and overexpression groups was
statistically significant as well (p < 0.05) (Figures 7H, I). These
results revealed that PTGES2 drove RCC cell migration and may be
positive for the metastasis of RCC.

In general, these in vitro experiments strengthened the
association between PTGES2 expression and clinical response.
Our observations implicated the translational value of PTGES2,
which could serve as a potential biomarker and a therapeutic target
for RCC.

Discussion

There has been sufficient evidence to prove that RCC is a highly
heterogeneous and metabolic disease, and the Warburg effect
produces abundant energy to support the metabolism and
unlimited growth of cancer cells (39). Next-generation sequencing
indicates that the VHL mutation exists in almost 90% of RCC cases,
following the accumulation of HIF, which enables cells to adapt the
glycolysis in the microenvironment. As the tumor becomes more
advanced, this phenomenon appears more obviously (40). In the
past few decades, many key oncogenes have been discovered to
change metabolic homeostasis to facilitate cancer cell growth (41,
42). Multi-omics technology has ushered in a new era, precise
treatment comes to a great innovation, and reliable subtype
identification seems crucial. Currently, research on analyzing the
relationship between tumor molecular subtypes, immune
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microenvironment, and treatment sensitivity by integrating multi-
omics data is highly topical (43, 44). At present, proteomics based
on epigenetic regulation seems to elucidate some basic principles of
RCC, DNA, RNA, or histone modifications involved in the altered
metabolism in RCC to some degree (45). Genomics and
transcriptomics can also recognize some molecular biomarkers
and relative subtypes (46). Although these classifications can be
meaningful, a specialized system directly aiming at RCC
metabolism is deficient. Herein, by integrating and analyzing
metabolic genes in three datasets—TCGA, EMTAB3267, and
GSE22541—we divided RCC into clusters C1, C2, and C3. We
conducted a cross-comparison between the metabolic subtypes and
the RCC molecular subtypes proposed by TCGA (including
ClearCell A/B), as well as other transcriptomic features. The
analysis results indicated that there was only partial overlap
between the proposed metabolic subtypes and the TCGA
classification. Additionally, the metabolic subtypes of some
patients were completely inconsistent with the known molecular
subtypes, suggesting that our metabolic classification provides
complementary information to the traditional transcriptome-
driven classifications (47).

Cluster C1 was primarily involved in fatty acid degradation and
various amino acid metabolism, and patients had a better prognosis
than those in C2 and C3. Actually, the metabolic abnormal pattern
exhibited by cluster C1 has been observed in the analysis of various
cancer types, suggesting that it may be a relatively common
phenomenon in the process of tumor metabolic reprogramming
(48). FAs are the necessary substrates for tumor survival; they can
maintain the cell membrane’s stability and motivate signal
transduction; in particular, RCC is abundant in lipid profile, and
internal fatty acid metabolism appears to be highly active (49). RCC
cells drive de novo FA synthesis to ensure continuous supply (50).
During the entire biochemistry, various kinds of molecules,
including acetyl-CoA, palmitate, stearoyl-CoA desaturase (SCD),
and some other unsaturated fatty acids, have been proven to be the
underlying targets of RCC (50-53). For instance, ATP citrate lyase
(ACLY), one of the key enzymes in fatty acid metabolism, was
considered to promote the proliferation and migration of RCC cells
(54). Another enzyme, FASN, was found to be upregulated in RCC
and stimulated tumor progression (55). Furthermore, HIFs control
the RCC tumorigenesis in the same way (56). For the amino acid
metabolism in RCC, the serine/glycine biosynthesis was one of the
essential metabolic pathways, and serine hydroxymethyltransferase
(SHMT) represented the central enzyme, associated with
pathological grading and poor prognosis of RCC patients (57). In
addition, as a non-essential amino acid, glutamine supplies
materials for the TCA cycle and amidotransferase pathways in
RCC, and some inhibitors that are specific to glutamine metabolism
were put into effect, which led to modest growth suppression in
RCC cells (58-60). Overall, cluster C1 displayed more about the
general characteristics of metabolism-associated tumors, and FA
metabolism and amino acid metabolism were complicated, but
corresponding mechanisms were comparatively intensive; even a
few therapeutic targets had been applied in clinical (61) studies,
which may be a reason for the better prognosis.
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For clusters C2 and C3, prostaglandin (PG) biosynthesis and
prostanoid biosynthesis were enriched, respectively, and a worse
prognosis than that in Cl occurred. PGs are nearly the same as
prostanoids in nature. PGs have emerged as critical regulators in
inflammation, cardiovascular disease, and tumors (62-64).
Bioactive PGs contain PGI2, PGE2, PGF2o, PGD2, and
thromboxane A2 (TxA2), which are synthesized from arachidonic
acid by cyclooxygenase (COX) (65). We systematically compared
the expression profiles of prostaglandin metabolism-related genes
in the C2 and C3 clusters. The “prostaglandin biosynthesis” in C2 is
mainly characterized by the activation of the PGE2 branch,
reflecting that this subtype may primarily mediate immune
suppression and tumor microenvironment remodeling through
PGE2. In contrast, the “widespread” biosynthesis in C3 refers to
the global activation of multiple prostaglandin branches, including
but not limited to PGE, PGD, and PGF. Therefore, although the
overall prostaglandin metabolism level in C3 is elevated, the
coexistence of multiple branches weakens the adverse effects
driven by a single branch (such as PGE2), thus resulting in an
intermediate prognosis between C2 and other subtypes.

Previous studies have shown that prostanoid biosynthesis emerges
as a cascade, massive proinflammatory cytokines were exploited, and
they initiated downstream interferon, interleukin, lymphokine,
chemokine, and tumor necrosis factor; sometimes, inflammation and
immune response were overactivated, producing prostanoid-angiogenic
response (66-68). In RCC, products of prostanoid biosynthesis are
widely infiltrated into the tumor microenvironment, leading to tumor-
associated angiogenesis, cell growth, and metastasis (69, 70). The
overexpression of vascular endothelial growth factor (VEGF) and
relevant VEGF receptor (VEGFR) has been proven to be pivotal in
RCC angiogenesis (71), and antiangiogenic therapies have been
employed. Sunitinib, one of the TKIs, is the first-line targeted
medicine for advanced RCC, which inhibits the targets of VEGFR
and angiogenesis, but sunitinib resistance is seriously increasing (72, 73).
Multiple studies have confirmed that the abnormal activation of
components in the VEGF pathway generates a compensatory
mechanism, consequently contributing to the resistance (74-76). Luo
et al. found that the obvious activation of the COX-2-PGE2 pathway in
RCC cells promoted sunitinib resistance (77). As a result, extremely
sophisticated factors of prostanoid biosynthesis act as a double-edged
sword in RCC angiogenesis, suggesting a favorable but inscrutable target
for treatments.

Moreover, prostanoid biosynthesis is tightly related to the
immune microenvironment. Ahmadi et al. came up with a novel
perspective on tumor immunology. They found that PGE2 prevented
the maturation of dendritic cells (DCs), and the activation of naive
CDS8+ T cells was terminated; meanwhile, the CD8+ CD28— T cells
were induced, and tumor cells could not be killed. The overexpression
of COX-2 had a similar effect on DCs and prompted tumor cells to
generate lymphatic metastasis (78). Many researchers have suggested
that prostanoids exert profound functions of immune regulation. A
noted experiment established melanoma models that are sensitive
and resistant to immunotherapies. RNA-seq and metabolomics
analysis revealed that the PGE2 involved in the prostaglandin
synthesis pathway contributed to T-cell responses in the tumor
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microenvironment. In vivo immunologic research highlighted that
the overexpression of PGE2 and reduced IFN-y simultaneously led to
immune escape in RCC (79). Except for the CD8+ T cells, PGE2 and
its receptor EP2/EP4 additionally impaired the oxidative
phosphorylation (OXPHOS) and ¢-MYC targets of MI1-like
macrophages, as well as ribosome biogenesis. Ultimately, the effect
of immune exhaustion was noted (80). NK cells were considered the
first line of defense against cancer and viral infections. They may be
more critical than T cells in anti-metastatic immunity in cancers (81).
PGE2 was secreted increasingly in disseminated tumor cells while
metastasis happened; PGE2-EP2/EP4 modified the gene expression
and caused dysfunction in NK cells, suppressing the key anti-
metastatic cytokines (82). Inhibitors targeting PGE2 rescued NK
cell function, the immune escape was overcome, and the NK cell-
mediated killing of cancer cells was enhanced (83). Collectively,
attributed to the mysteriously immune microenvironment,
although the immunotherapies were implemented in advanced
RCC patients, diversified prostanoids made unpredictable
differences to the immunologic targets. Therefore, the overall
prognosis was still not promising in cluster C2. PTGES2-driven
PGE2 suppressed dendritic cell maturation and limited B/Tth
recruitment and TLS formation (84). Consistently, high PTGES2
tumors showed the lowest TLS enrichment. This PGE2-driven, TLS-
deficient state may blunt antitumor immunity and Immune
checkpoint blockade (ICB) benefit; targeting the COX-2/PTGES2-
EP4 axis could help restore TLS programs.

To validate the precision of our model, a few RCC tissues were
screened, which were from RCC patients treated with
immunotherapies in the FUSCC cohort, and follow-up datasets
were complete. Tumors in the “PD” group showed higher
expression of PTGES2 than in the “non-PD” group. The synthesis
of PGE2 was an extremely complicated process; one targeted
metabolite profiling uncovered that PTGES2 was the key enzyme
(85), and PTGES2 was confirmed to influence the survival of cancer
cells (36, 37). For the CRC cells, while elevated PTGES2 led to PGE2
boosting, reactive oxygen species (ROS) were largely produced, and
genomic instability was triggered, ultimately driving cancer
progression (86). On this basis, we conducted in vitro assays to
explore the biological function of RCC cells. The results highlighted
the significance of PTGES2 in RCC; meanwhile, the mechanisms of
prostanoid biosynthesis in RCC deserve intensive studies.

In summary, this original classification based on tumor
metabolism provided new insights into RCC; all three clusters
covered the majority of metabolic features of the tumor
microenvironment. It was worth noting that cluster C1
represented more about the early stage of RCC, in which FA
metabolism and amino acid metabolism were active, and the
prognosis was better. Clusters C2 and C3 pointed to prostanoid
biosynthesis, which was associated with immune exhaustion and
indicated a poor prognosis. We integrated the public databases and
our cohort, not only elucidating the clinical significance of three
clusters but also emphasizing the importance of metabolism-related
therapies in advanced RCC patients. However, we also recognize
that there are still some potential or unknown confounding factors
that have not been adequately controlled in this study, which may
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affect the interpretation of some of the research results. In
particular, variables such as patient age, gender, underlying
disease status, lifestyle, and treatments could all potentially act as
confounding factors in the relationship between the exposure
factors and outcomes in this study. Furthermore, there may be
selection bias in the sample selection process of this study. For
example, the included cases were mainly from public databases or
specific centers. For the analysis of certain specific subgroups, the
sample size was further reduced, which may have exacerbated the
impact of this bias. At the same time, the total sample size of this
study was relatively limited, resulting in insufficient overall
statistical power, especially in the subgroup analysis or
multivariate analysis. Therefore, we suggest that future studies
with a larger sample size should be conducted in multiple centers
and with higher-quality data to further confirm the findings of
this study.

Conclusion

In conclusion, this study classified RCC from the metabolic
perspective and proposed three subtypes with different kinds of
metabolism. Every cluster exhibited a specific metabolic status and
appeared to have highly predictive value. Meanwhile, our
classification may offer insights for improving the effects of
immunotherapies in advanced RCC patients.
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