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Introduction: Renal cell carcinoma (RCC) presents significant clinical and

molecular heterogeneity, which makes prognosis and treatments very

complicated. Despite advances in surgical and systemic therapies, a substantial

number of RCC patients progress to advanced stages, highlighting the need for

novel stratification approaches that account for the tumor’s biological complexity.

Methods: An integrative multi-omic analysis, combining transcriptomic and clinical

data, was performed to identify the metabolic subtypes of RCC. Unsupervised

clustering was used to stratify patients based on their metabolic profiles, and

subtype-specific molecular signatures were examined through differential

expression and pathway enrichment analyses. Prognostic outcomes, immune

features, and drug sensitivities were then analyzed. The value of the classification

was validated by the biological experiments.

Results: Three distinct metabolic subtypes (C1, C2, and C3) were identified, each

associated with distinct survival outcomes. The C1 subtype, marked by enhanced

oxidative phosphorylation and fatty acid metabolism, correlated with improved

survival. The C2 subtype, characterized by prostaglandin biosynthesis, was linked to

poor prognosis and immune evasion. The C3 subtype was similar to C2 but was

characterized by extensive prostanoid biosynthesis, indicating a moderate

prognosis in the three subtypes. Immunotherapy and targeted drug sensitivity

analyses revealed subtype-specific vulnerabilities, suggesting potential therapeutic

strategies tailored to each metabolic profile. Subsequent in vitro assays confirmed

the significance of targets to the RCC biological process.

Conclusions: Metabolic subtyping through multi-omics integration offers a

clinically relevant framework for RCC prognosis and personalized treatment.

This approach highlights the role of metabolic reprogramming in tumor

immunity and therapeutic response, providing a foundation for future clinical

applications in precision oncology.
KEYWORDS
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Introduction

Renal cell carcinoma (RCC) is one of the most common

urological malignancies worldwide, ranking second only to

bladder cancer in incidence (1). According to the authoritative

statistics, more than 430,000 new cases of RCC and over 150,000

related deaths were reported in 2022 (2). Over the past few years,

the incidence of RCC appeared to increase by approximately 1.5%

per year (3), although the surgical treatments (radical resection or

partial nephrectomy) represent the primary interventions and

confirm positive outcomes. Despite the rapid technical

improvement (robotic-assisted surgery and ablation treatment)

addressing several of the limitations of traditional approaches,

approximately 30% of RCC patients are still diagnosed at

advanced stages (4); therefore, the necessity for multidisciplinary

treatment (MDT) strategies has been increasingly emphasized.

Despite the growing diagnosis and multiple stages/grades, the

incidence and mortality of RCC vary considerably. Data from

GLOBOCAN 2020 indicate that men are twice as likely as women

to develop and die from RCC (5). Meanwhile, RCC has strong

regional and racial disparities, and it is thought to be driven by a

combination of genomic alterations and lifestyle-associated risk

factors (6, 7), contributing to the pronounced heterogeneity

observed among RCC patients. Furthermore, based on the variety

of molecular mechanisms, diverse classical research has discovered

significant targets, signaling pathways, and corresponding

pharmaceuticals, which aim at immunotherapy and targeted

therapy in the advanced RCC patients (8, 9). Nevertheless, a

significant proportion of patients remain refractory or are only

partially responsive to current treatments. Combination therapies

have therefore become necessary to overcome resistance,

underscoring the urgent need to further dissect the complex

molecular and metabolic landscapes of RCC.

The substantial heterogeneity of RCC encompasses diverse

genetic, epigenetic, and metabolic alterations across histological

subtypes. Recently, various kinds of sequencing methods have

markedly advanced, and many novel techniques not only broaden

the range of the internal pathways but also ensure that the potential

mechanisms are closer to the actual conditions of RCC (10, 11). There

have been more than 20 biomarkers found in RCC, which are specific

to the mutant site in the microenvironment of RCC. The most

frequent gene mutation is Von Hippel–Lindau (VHL), which

directly dysregulates hypoxia-inducible factor (HIF) signaling and

contributes to aberrant hypoxic responses within the tumor

microenvironment (12). In addition, PBRM1 was the second most

frequent mutation found in RCC, resulting in the break of the cellular

chromatin-remodeling complex SWI/SNF, destroying DNA

replication and cell proliferation (13). Moreover, KDM5C, BAP1,

and SETD2 were identified to have certainly mutated in RCC (14, 15);

also, some other targets are emerging along with the progress of

sequencing. Molecular classification based on the above mutations

may trigger the new generation of targeted therapies (16). Except for

the molecules, PI3K, mTOR, VEGF, and other signaling pathways

were recognized, and corresponding therapy, like tyrosine kinase

inhibitor (TKI), has been used clinically (17). The outcomes of RCC
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patients are indeed better, but emerging data suggest an increasing

incidence of therapy resistance, particularly among patients with

metastatic RCC (mRCC). In response, first-line treatment strategies

have evolved toward combination regimens involving two or more

targeted agents or immunotherapies, as reflected in current clinical

guidelines (18–20). These developments highlight the limitations of

conventional molecular classifications and the necessity for novel

stratification frameworks for RCC.

As a classical and powerful theory, the Warburg effect provides

a more comprehensive perspective for cancer research, and aberrant

cancer metabolism is regarded as the hallmark (21). RCC is

characterized by profound metabolic disturbances throughout its

initiation and progression (22), and “metabolic disorder” tends to

be the essential feature of RCC. VHL–HIF targets and pathways are

considered the fundamental programs of RCC. Abnormal glycolysis

would be initiated, and energy metabolism dysfunction would

appear in the tumor microenvironment. Instead, cancer cell

proliferation and metastasis are uncontrolled while adjusting to

the variable metabolic conditions (23). With the emergence of “the

era of omics”, multiple critical metabolism patterns were unveiled

in RCC. The pentose phosphate pathway is a crucial process in vivo,

and the reprogramming is found to be correlated with the

aggression in RCC (24). Otherwise, lipid metabolism, represented

by the de novo fatty acid (FA)-related pathway, has been confirmed

to be required for RCC, targeting associated biomarkers, like fatty

acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), and

carnitine palmitoyltransferase 1A (CPT1A), which have been

proposed to be potential clinical strategies (25). Furthermore,

glutamine-derived and oncometabolite production pathways were

discovered to be apparently unstable in RCC, the tricarboxylic acid

cycle (TCA) was impeded, and the growth of cancer cells was

accelerated (26). Hence, the metabolic characteristics of RCC call

for a preferred classification to identify some specific targets.

In this study, we comprehensively explored the global metabolic

patterns of RCC through multiple clustering and enrichment

analyses. We attempted to demonstrate the relationship between

clinical characteristics and metabolism and find the key pathways

driving RCC progression. We validated metabolic patterns via

relevant experiments. This new metabolism-associated

classification may provide a new insight into the mechanisms and

underlying therapies of RCC.
Methods

Data acquisition and processing

Transcriptomic and clinical data were integrated from three

independent cohorts of clear cell renal cell carcinoma (ccRCC):

TCGA-KIRC, EMTAB3267, and GSE22541. All the clinical

annotations were carried out according to the platforms.

All datasets were filtered to include only primary tumor samples

with complete survival data, tumor grades, and TNM staging. Raw

data of RNA-seq were converted to transcripts per million (TPM)

and transformed to log2(TPM+1). Microarray data were
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normalized using quantile normalization, and batch effects were

removed using ComBat (Supplementary Figure S1A).
Unsupervised clustering of metabolic
subtypes

To identify distinct metabolic subtypes, unsupervised consensus

clustering was performed on the TCGA-KIRC cohort using the

ConsensusClusterPlus package (R v4.2.3) (27). Subsequently,

principal component analysis (PCA) was applied to reduce the

dimensionality of the original expression matrix, and the samples

were projected into a two-dimensional space to intuitively display

the separation of each metabolic subtype (Data sheet 1). K-means

clustering with a Euclidean distance metric was employed, and the

robustness of clustering was assessed across 1,000 iterations, each

involving random subsampling of 80% of the samples. The optimal

number of clusters was determined by integrating results from

cumulative distribution function (CDF) plots, delta area analyses,

and silhouette width metrics, thereby ensuring stable and well-

defined subtype classification.
Template-based molecular subtyping using
nearest template prediction

To better stratify patients into biologically and clinically

relevant subtypes, the nearest template prediction (NTP)

approach in the “MOVICS” package was implemented (28) based

on predefined molecular templates. Subtype-specific templates were

constructed based on the average gene expression profiles of typical

samples. Gene symbols were harmonized according to HUGOGene

Nomenclature Committee (HGNC) standards, and only the

common genes in all datasets were retained for subsequent analyses.
Gene set enrichment analysis for GO and
KEGG pathways

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were conducted using the

clusterProfiler R package (version 4.6.2). Enrichment analysis was

applied separately for biological processes (BPs), cellular

components (CCs), and molecular functions (MFs) in GO terms

and for metabolic and signaling pathways in KEGG. Pathways with

an adjusted p-value <0.05 were considered significantly enriched.
Microenvironment Cell Populations-
counter

To estimate the absolute abundance of distinct stromal and

immune cell populations from bulk transcriptomic profiles, we

employed Microenvironment Cell Populations-counter (MCP-

counter) by the “MCPcounter” R package (version 1.2.0,
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Bioconductor version 3.20) (29). This approach quantified specific

cell populations based on cell type-specific transcriptomic markers.

The immune cell populations assessed included the following: CD8

+ T cells, total T cells, natural killer (NK) cells, cytotoxic

lymphocytes, myeloid dendritic cells, monocytes, and neutrophils.

Additionally, we estimated the abundance of stromal components,

namely, endothelial cells and fibroblasts, for each sample.

Furthermore, we performed six complementary algorithms—

MCP-counter, CIBERSORTx, EPIC, quanTIseq, TIMER2.0, and

xCell—based on the IOBR package (30) to decipher the immune

infiltration pattern among high and low PTGES2 tumors.
Single-sample gene set enrichment
analysis

To further delineate heterogeneity in immune infiltration

between samples, single-sample gene set enrichment analysis

(ssGSEA) was performed using the “GSVA” R package

(Bioconductor version 3.20) (31). An enrichment score for each

gene set was computed, enabling a quantitative assessment of

immune-related gene set activity at single-sample resolution by

ranking the genes and comparing the distributions.
GSVA-based characterization of immune
cell and functional pathway activities

Gene set variation analysis (GSVA) was applied to RNA-seq

expression profiles to estimate pathway activities and immune cell

infiltration in an unsupervised, non-parametric manner. GSVA and

enrichment scores were performed using the “GSVA” R package.

Hierarchical clustering of GSVA scores enabled the visualization

and identification of subtype-specific patterns in the tumor immune

microenvironment (TIME), which are displayed graphically in the

heatmaps. To evaluate the features of Tertiary lymphoid structure

(TLS), Germinal centers B cell (GC B), Follicular helper T cell (Tfh),

Follicular dendritic cells (FDC), Plasma, and B cells, GSVA was

performed based on related gene sets, which were obtained from a

previous study (32). In addition, immune-related signaling between

high and low PTGES2 tumors enrolled from the Hallmark database

was compared based on GSVA algorithms.
Assessment of immunotherapy response in
the CheckMate immunotherapy cohort

mRCC patients from the CheckMate immunotherapy cohort

(16) who received immunotherapies were analyzed. Clinical

response was categorized as follows: clinical benefit (CB), defined

as complete response (CR), partial response (PR), or stable disease

(SD) lasting ≥6 months; and no clinical benefit (NCB), defined as

progressive disease (PD) or SD lasting <6 months. Objective

response rates (ORRs), including CR, PR, SD, PD, and confirmed

mixed partial response (CMPR), were calculated for every subtype.
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Drug sensitivity profiling of RCC

To investigate the differential drug sensitivity of RCC, the

OncoPredict algorithms implemented in MOVICS were utilized

alongside drug response data from the Genomics of Drug

Sensitivity in Cancer (GDSC) database (Release 8.5, October 2023).

The sensitivity of a range of therapeutic drugs was analyzed, and the

half-maximal inhibitory concentration (IC50) values for each drug

were estimated within the context of three distinct subtypes.
Immunohistochemistry

Paraffin-embedded RCC tissues were deparaffinized in xylene and

rehydrated through graded ethanol. Antigen retrieval was performed

by boiling the sections in Tris-EDTA buffer (pH 9.0) for 15 minutes in

an electric cooker, and then the sections were naturally cooled.

Endogenous peroxidase activity was quenched using 3% hydrogen

peroxide for 10 minutes at room temperature. Next, tissue sections

were blocked with 3% bovine serum albumin (BSA) for 30 minutes

and then incubated with primary antibodies (anti-PTGES2; dilution

1:200, Proteintech, Wuhan, Hubei, P.R.C, Cat No. 10881-1-AP)

overnight at 4°C. The next day, sections were washed three times

and incubated with Horseradish Peroxidase (HRP)-conjugated

secondary antibodies (Absin Bioscience, China, No. abs996, general

concentration) for 30 minutes at room temperature. Detection was

performed using Diaminobenzidine (DAB) substrate, and

counterstaining was performed using hematoxylin. Images were

acquired using a Leica microscope and imaging system.
Cell culture

Human RCC cell lines 786-O and 769-P were obtained from the

American Type Culture Collection (ATCC, Mansas, Virginia,

USA). To confirm the identity of the cell lines, short tandem

repeat (STR) analysis was used to identify the two cell lines. STR

testing was conducted by Shanghai Zhong Qiao Xin Zhou

Biotechnology Co., Ltd. (Supplementary Materials 2, 3). Cells

were cultured in RPMI-1640 medium (Gibco, Thermo Fisher

Scientific, Shanghai, China, A4192301) supplemented with 10%

fetal bovine serum (FBS; Gibco, A5256701) and 1% penicillin–

streptomycin (100 U/mL and 100 mg/mL, respectively). All cells

were maintained in a humidified incubator at 37 °C with a 5% CO2

atmosphere and were routinely tested to be free of mycoplasma

contamination. Cell passage occurred when cells grew to a density

of 70%–80%. Notably, cells within 20 passages were fit for all

experiments to ensure phenotypic stability.
Construction of stable cell lines of PTGES2
knockdown and overexpression

To generate stable knockdown RCC cell lines, two short hairpin

RNA (shRNA) sequences targeting human PTGES2 were designed,
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and the sequences were as fol lows: shPTGES2-1: 5 ′-
GAAGCCGAATCTCGCTGATTT-3 ′ , shPTGES2-2 : 5 ′-
CGGCAATAAGTACTGGCTCAT-3′. A scrambled non-targeting

RNA (5′-CAACAAGATGAAGAGCACCAA-3′) was used as a

negative control (shCtrl). All oligonucleotides were cloned into

the pLKO.1-puro vector to generate two knockdown plasmids, and

PTGES2 [Coding sequence (CDS) region was obtained from https://

www.ncbi.nlm.nih.gov/nuccore/NM_025072.7] was cloned into a

pCDH vector to generate an overexpression plasmid (33).

Lentiviral particles were produced by co-transfecting HEK293T

cells with the plasmids and packaging plasmids (psPAX2 and

pMD2.G) using Lipofectamine 3000 (Thermo Fisher Scientific).

Viral supernatants were collected at 48 and 72 hours

post-transfection.

For transduction, cells were seeded in six-well plates (2 × 105

cells/well) and infected with lentivirus at a suitable multiplicity of

infection (MOI; 30–50) value in the presence of 8 mg/mL polybrene

(Sigma-Aldrich, Beijing, China). After 24 hours, the medium was

replaced with fresh complete medium containing 2 mg/mL

puromycin for 7 days to select stably transduced cells.
Quantitative polymerase chain reaction

Total mRNA of cells was extracted using TRIzol Reagent

(Invitrogen, Shanghai, China), and then mRNA was reverse-

transcribed into cDNA using PrimeScript RT Master Mix (Takara

Bio, Beijing, China) and quantified by qRT-PCR on a QuantStudio

7 Flex System. The following primers were used:
PTGES2: Forward: 5′-GTGACCGAGTTCGGCAATAAG-3′,
PTGES2: Reverse: 5′-CGGACAATGTAGTCAAAGGACG-3′,
GAPDH: Forward: 5′-GGAGCGAGATCCCTCCAAAAT-3′,
GAPDH: Reverse: 5′-GGCTGTTGTCATACTTCTCATGG-3′.
The run method is shown below:
Hold stage: 50°C for 2min, 95°C for 10 min.

PCR stage: 95°C for 15 s, 60°C for 1min and 40 cycles.

Melt curve stage: 95°C for 15 s, 60°C for 1min, 95°C for 15 s.
The relative mRNA expression is calculated using the

following method:
DCt = Ct (PTGES2) − Ct (GAPDH),

DDCt = DCt (Sample) − DCt (Control),
Fold gene expression = 2^−(DDCt).
Western blotting

Cells were lysed in Radio Immunoprecipitation Assay Lysis

buffer (RIPA) supplemented with protease and phosphatase

inhibitors (Beyotime, Shanghai, China) on ice for 30 minutes.
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Lysates were then centrifuged at 13,000 g for 15 minutes at 4°C, and

protein concentrations were quantified using the BCA assay kit

(Thermo Fisher Scientific). Equal amounts of protein (20–30 mg)
were separated using the Sodium dodecyl sulfate - polyacrylamide

gel electrophoresis (SDS-PAGE) gel (10%) and were transferred to

Polyvinylidene Fluoride (PVDF) membranes (Millipore, Shanghai,

China; 0.45 mm). Membranes were blocked in 5% non-fat milk for 1

hour at room temperature and incubated overnight at 4°C with

primary antibodies (anti-PTGES2, dilution 1:1,000, Proteintech,

Cat No. 10881-1-AP; loading control, beta actin, dilution 1:5,000,

Proteintech, Cat No. 20536-1-AP).

The next day, membranes were washed three times and then

incubated with HRP-conjugated secondary antibodies (HRP-

conjugated Goat Anti-Rabbit IgG(H+L), dilution 1:5000,

Proteintech, Cat No. SA00001-2) for 1 hour at room temperature.

Signals were detected using enhanced chemiluminescence (ECL)

reagents and visualized using an imaging system (Tanon

chemiluminescence image analysis system).
Cell proliferation assay

Cell viability was assessed using the Cell Counting Kit-8 reagent

(Dojindo, Kumamoto, Japan) according to the manufacturer’s

instructions. 786-O and 769-P cells were seeded into 96-well

plates at a density of 3 × 103 cells/well. After the cell adhesion

was completed, 10 mL of CCK-8 reagent was added to each well and

incubated for 2 hours at 37°C. Absorbance at OD 450 nm was

measured. It was noteworthy that the cells should be measured at a

fixed time every day and five times in total.
Transwell assay

The Transwell assay was used to test the cell migration

capabilities; 2 × 104 cells suspended in serum-free medium were

seeded into the upper Transwell chamber (8-mm pore size; Corning,

Shanghai, China) in 24-well plates. The lower chamber contained

800 mL of complete medium with 10% FBS. After incubating for 24

hours at 37°C, cells on the upper membrane surface were gently

removed using a cotton swab. The migrated cells on the bottom

surface were fixed with 4% paraformaldehyde and then stained with

0.1% crystal violet for 30 minutes. Cell counting was carried out

using an inverted microscope (Olympus, Beijing, China) in three

random fields per well.
Colony formation assay

To assess cell proliferative capacity, 786-O and 769-P cells were

seeded into six-well plates at a low density of 1,000 cells/well. After

culturing for 10–14 days, colonies were fixed with 4%

paraformaldehyde for 30 minutes and stained with 0.1% crystal

violet for 30 minutes. Visible colonies were counted.
Frontiers in Immunology 05
Statistical analysis

The Kaplan–Meier survival curves of defined metabolic

subtypes were generated using the survival and survminer R

packages. Differences in overall survival (OS) among subtypes

were evaluated using the log-rank test. Multivariate Cox

proportional hazards models were adjusted for age, gender, grade,

TNM stage, and metastasis. The HRs and 95% CIs were calculated,

and the proportional hazards assumption was strictly tested using

Schoenfeld residuals. Correlations between clinical and molecular

features were tested using c2 or Fisher’s exact test (grade, stage, and
metastasis) for categorical variables, and the Kruskal–Wallis or

analysis of variance (ANOVA) (age and tumor size) was utilized

for continuous variables.

The R software (v4.2.3) and GraphPad Prism (v9.0) were used

for all statistical analyses. p-Values <0.05 were considered

statistically significant.
Results

Three distinct global metabolic patterns
presented different clinical features in
ccRCC

By integrating intersecting metadata of RCC samples from

TCGA-KIRC, EMTAB3267, and GSE22541, three metabolic

subtypes (C1, C2, and C3) were divided by unsupervised

clustering (Supplementary Figure S1B). KEGG enrichment

analysis indicated several significant metabolic pathways, as

shown in Figure 1A. Genes in cluster C1 were mainly enriched in

fatty acid degradation and metabolism of various amino acids

(arginine, glycine, serine, etc.). Cluster C2 comprised galactose

metabolism, cardiolipin metabolism, prostaglandin biosynthesis,

and other metabolite biosynthesis processes. Cluster C3 included

prostanoid biosynthesis and cyclooxygenase, arachidonic acid

metabolism. These findings implicated metabolic rewiring as a

key differentiator of ccRCC clinical behavior.

The Kaplan–Meier analysis showed marked survival differences

among the three subtypes. Generally, cluster C1 had the better

survival probability, C3 was in the middle, and C2 presented the

worst prognosis (overall p=0.005, C1 vs. C2 p=0.004, C2 vs. C3

p=0.022, and C1 vs. C3 p=0.070; Figure 1B). The detailed clinical

characteristics of patients were assessed under established clusters

C1–C3. The results showed that pathologic_T, pathologic_N, and

pathologic_M were strongly associated with every subtype, and

these three almost entirely emerged in cluster C2, but presented a

low proportion in clusters C1 and C3. Meanwhile, Progression Free

Interval (PFI) and OS showed a similar tendency (Figure 1C).

Therefore, the novel three clusters based on metabolism were

distinctly classified for RCC and had strongly prognostic effects

on patients. Overall, these results confirmed the reproducibility,

prognostic utility, and biological validity of the metabolic

subtype model.
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Validation of independent datasets
revealed diverse outcomes of RCC patients

For the external datasets, NTPs were carried out to validate the

classification approach and the value of prognosis. Regarding

EMTAB3267, NTP analysis confirmed the reliability of

metabolism C1 to C3 clusters. Overall, subtypes had high
Frontiers in Immunology 06
prediction confidence (Figure 2A). Furthermore, cluster C2

contained the worst survival probability, cluster C1 had the best,

and cluster C3 was in between (Figure 2B). For GSE22541, almost

the same consequences were demonstrated as before (Figures 2C,

D). To sum up, these three clusters possess precise prediction; even

though there was no statistical significance between clusters C2 and

C3, the entire tendency was consistent and accurate.
FIGURE 1

Three distinct global metabolic patterns presented different clinical features in ccRCC. (A) Unsupervised clustering of intersecting genes from TCGA-
KIRC, EMTAB3267, and GSE22541 identified three metabolic subtypes. KEGG enrichment analysis indicated several significant metabolic pathways of
three subtypes. (B) Kaplan–Meier curves of survival probability across three subtypes. (C) Heatmap of detailed clinical characteristics of patients
across three subtypes. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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GO and KEGG pathway enrichment
analyses disclosed related functions and
pathways

For the C1 subtype, GO analysis revealed that BP included

carboxylic acid transport, organic acid transport, and organic anion

transport; CC included apical part of cell, apical plasma membrane,

and brush border; MF included secondary active transmembrane

transporter activity, solute:sodium symporter activity, and

symporter activity (Figure 3A). KEGG pathway analysis found

that the Peroxisome proliferators-activated receptor (PPAR)

signaling pathway and mineral absorption were enriched

significantly (Figure 3B). For the GO analysis of C2, acute

inflammatory response, lipoprotein particle, and protein–lipid
Frontiers in Immunology 07
complex were observed (Figure 3C). KEGG revealed significantly

enriched platelet activation, cholesterol metabolism, and

arachidonic acid metabolism (Figure 3D). C3 mainly contained

external encapsulating structure organization, immunoglobulin

complex, antigen binding, etc., on GO analysis (Figure 3E); viral

protein interaction with cytokine and cytokine receptor, and

cytokine–cytokine receptor interaction were the most crucial

pathways enriched by KEGG (Figure 3F).

Additionally, the evaluation of some classical signaling

pathways suggested that cluster C2 represented a distinct

difference compared to the other two subtypes. In particular,

HIPPO, NRF2, PI3K, TGF-b, and RTK RAS were the typical

pathways (Figure 3G). Among them, cluster C2 had low

enrichment scores, which possibly means that genes in cluster C2
FIGURE 2

Validation of independent datasets revealed diverse outcomes of RCC patients. (A) NTP heatmap of the EMTAB3267 database for the reliability of
three subtypes. (B) Kaplan–Meier curves for survival probability of three subtypes in EMTAB3267. (C) NTP heatmap of the database for the reliability
of three subtypes. (D) Kaplan–Meier curves for survival probability of three subtypes in GSE22541. RCC, renal cell carcinoma; NTP, nearest template
prediction.
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lacked response to pathway-related treatments, so the worst

prognosis occurred.
Clusters C2 and C3 involved an enabled
immune microenvironment and implicated
immunotherapy response

All three clusters indicated the outcomes of corresponding

patients, and prostaglandin biosynthesis of cluster C2 and

prostanoid biosynthesis of cluster C3 were of particular attention.

The prostanoids are several lipid metabolites generated from 20-

carbon fatty acids, and they play a key role in the inflammatory

response in vivo (34). Recent studies have shown that prostaglandins

and other members could regulate the activities of T cells, B cells, and
Frontiers in Immunology 08
cytokines in the tumor immune microenvironment, which causes

immune exhaustion, and the tumor cell apoptosis was inhibited (35).

RCC patients frequently encounter resistance to immunotherapy;

therefore, we emphasized the relationship between clusters and the

immune microenvironment of RCC.

GSVA delineated clear immunophenotypic segregation among

the three defined subtypes. Notably, C2 was characterized by a

marked enrichment of immunosuppressive cellular populations,

including interleukins, cytokines, B-cell functions, T-cell functions,

NK cell functions, antigen processing, and macrophage functions;

C3 displayed a relatively balanced TIME (Figure 4A). MCP-counter

validated quantitative enrichment of suppressive cell populations in

C2, which contained a higher portion of endothelial cells,

neutrophils, NK cells, T cells, CD8 T cells, and so on (Figure 4A).

In contrast, C1 was characterized by nearly absent immune
FIGURE 3

GO and KEGG pathway enrichment analyses disclosed related functions and pathways. (A) GO analysis of cluster C1. (B) KEGG pathway analysis of
cluster C1. (C) GO analysis of cluster C2. (D) KEGG pathway analysis of cluster C2. (E) GO analysis of cluster C3. (F) KEGG pathway analysis of cluster
C3. (G) Enrichment of typical signaling pathways across three subtypes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. ns,
not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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infiltrates. Concerning samples in clusters, ssGSEA was conducted

to explore the relative abundance of T cells. Consistent with GSVA

findings, ssGSEA-derived enrichment scores reinforced the TIME

dichotomy among the three subtypes: C2 and C3 involved more

quantities in Th17, Tcm, Tem, Th1, Th2, and Treg cells (Figure 4A).

A few immune-suppression cells, like Th1, Th2, and Treg cells, were

highly enriched in clusters C2 and C3, while immune-activation

cells, such as neutrophils and Th17 cells, were poorly enriched

(Figure 4B), suggesting the poor outcomes of C2 and C3, which

were consistent with the immune status.

Immune checkpoints are tightly linked to the clinical efficacy of

RCC patients, and RCC is regarded as a kind of “hot”

immunological tumor, so we explored the association between

three subtypes and the expression of eight immune checkpoints.

The results showed that cluster C2 exhibited a higher expression of
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CD274 than clusters C1 and C3; however, PDCD1LG2, TNFRSF9,

and TNFRSF4 were at extremely low levels compared to the others

(Figure 4C). We analyzed the downregulation of co-stimulatory

molecules such as TNFRSF and TNFRSF4 in the C2 subtype, which

may weaken T-cell activation and immune effects in the tumor

microenvironment, thereby partially explaining why the immune

efficacy remains poor despite high PD-L1 expression.

We also retrospectively reviewed all patients’ outcomes after

accepting immunotherapy in the CheckMate immunotherapy

cohort. RCC patients in cluster C1 achieved significantly

prolonged survival compared to patients in C2 and C3 (p=0.033);

the trend favored C1, suggesting durable immune engagement

(Figure 4D). In particular, 47% patients in cluster C2 showed

NCB, far more than those in C1 (30%) and C3 (35%). The

frequency of CB in C2 was 24%, which was lower than that in C1
FIGURE 4

Clusters C2 and C3 involved an enabled immune microenvironment and implicated immunotherapy response. (A) Heatmaps of GSVA, ssGSEA, and
MCP-counter analyses for three subtypes. (B) Enrichment of immune cells in three subtypes. (C) Enrichment of immune checkpoints in three
subtypes. (D) Kaplan–Meier curves for survival probability of three subtypes. (E) Evaluation of the response to immunotherapy of three subtypes
based on the CheckMate immunotherapy cohort. GSVA, gene set variation analysis; ssGSEA, single-sample gene set enrichment analysis; MCP-
counter, Microenvironment Cell Populations-counter.
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(29%) and C3 (31%). Meanwhile, the ORRs were similar to the

previous benefits. Of patients in cluster C2, 48% were PD, but only

32% in C1 and 38% in C3 (Figure 4E). Hence, this classification is

meaningful to patients’ effects of immunotherapy.

To strengthen the relation between subtypes and TLS, we

calculated and explored TLS score, GC B, Tfh, FDC, Plasma, and

B cell_score features among RCC patients, and the results showed

that C3 presented higher expression of these TLS-related features,

including CR2, FCER2, PAX5, CD19, MZB1, JCHAIN, DERL3,

CCL19, CCL21, CXCL13, and BLC6. Furthermore, the C3 cluster

also presented high enrichment scores of TLS score, GC B, Tfh,

FDC, Plasma, and B cell_score features, indicating a high TLS

formation tendency (Supplementary Figure S2).
Drug sensitivity exhibited significant
heterogeneity across three subtypes

Dozens of IC50 estimates were derived for each of the drugs

from independent replicates. The distribution of IC50 values was

visualized using violin–box hybrid plots to assess both the central

tendency and variability across cell subtypes for each drug. Notable

variability in drug sensitivity was observed across the three

subtypes, with specific subtypes demonstrating distinct patterns of

drug resistance or susceptibility.

Many kinds of drugs showed antitumor properties; herein,

certain representative drugs were chosen. For the most frequently

targeted medicine, TKI was observed to have a significant sensitivity

gradient among the three subtypes. For the receptor TKI sunitinib,

cluster C2 exhibited the highest estimated IC50 value, indicating

resistance. One-way ANOVA confirmed that the observed

differences in sunitinib sensitivity were statistically significant (p

=1.2e−12) (Figure 5A). Saracatinib was an effective Src inhibitor,

NSC-87877 was a Shp inhibitor, and both were non-receptor TKIs.

Cluster C2 appeared to have the highest IC50 value as well

(saracatinib p=0.029, NSC-87877 p=0.00082) (Figures 5B, C).

Other kinds of kinase inhibitors were committed to lethal effects

on cancer cells. For the serine/threonine kinase inhibitors, such as

VX-680, which were a part of evolutionary conserved families

(Aurora-A, Aurora-B, and Aurora-C), controlling events of cell

cycles, cluster C2 possessed a higher IC50 value than others (p=4e

−14) (Figure 5D). Furthermore, multi-kinase inhibitors like

sorafenib (p=5.9e−07) and AP24534 (p=1.7e−05) were also

resistant to cluster C2 (Figures 5E, F).

Except for kinase targets, inhibitors specific to diverse pathways

were considered beneficial in the extinction of cancer cells.

Therefore, some drugs were estimated in three subtypes.

Rapamycin and phenformin blocked the mTOR signaling

pathway, inducing cancer cell autophagy and apoptosis,

respectively. In cluster C2, both showed high IC50 values

(rapamycin p=0.00092, phenformin p =1.1e−06) (Figures 5G, H).

As a Nuclear Factor-kB (NF-kB) inhibitor, parthenolide was

resistant in cluster C2 (p=0.00019) (Figure 5I), as well as the

FH535, referred to as a Wnt/b-catenin pathway inhibitor (p=4.7e

−09) (Figure 5J).
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Otherwise, chemotherapeutics for cancers that target DNA

replication are always available. Etoposide and doxorubicin were

the common interventions inhibiting topoisomerase-II, thereby

terminating DNA replication in cancer cells. As expected, drug

resistance was the same in all the above drugs (etoposide p =3.2e

−05, doxorubicin p=0.00028) (Figures 5K, L).

The overall drug response patterns corroborate our hypothesis

that the molecular and phenotypic profiles of C1, C2, and C3

contribute to distinct therapeutic vulnerabilities. In particular, the

cluster C2 phenotype appeared to be associated with enhanced drug

resistance, which was in line with the poor prognosis of cluster C2

as mentioned before.
Prostaglandin expression defines distinct
prognostic and immunotherapy responses

For further validation of cohorts, patients were stratified into

high and low prostanoid/prostaglandin expression groups based on

the median expression of the metabolism gene signature (PGE2). In

the TCGA-KIRC cohort, patients with high prostanoid/

prostaglandin expression exhibited significantly worse survival

(prostanoid p=0.013, HR=1.46, 95% CI: 1.09–1.97; prostaglandin

p=0.012, HR=1.47, 95% CI: 1.09–1.97). Similarly, in the FUSCC

cohort, patients with high prostanoid/prostaglandin expression had

worse survival (prostanoid p=0.061, HR=1.55, 95% CI: 0.96–2.5;

prostag landin p=0.05 , HR=1.58, 95% CI: 0 .98–2.55)

(Figures 6A–D).

Patients in the high prostanoid group with PD were more than

those in the low prostanoid group (26% vs. 23%), the same as in the

high/low prostaglandin group (28% vs. 21%). In terms of

progression, the high prostanoid and low prostanoid groups

showed no difference (87% vs. 87%), but patients in the high

prostaglandin group were more likely to progress than others

(91% vs. 83%) (Figures 6E, F). These results suggested that high

prostanoid/prostaglandin RCC harbors a more suppressive and

therapy-resistant microenvironment, with lower immunogenicity

and metabolic reprogramming.
Prostaglandin biosynthesis pathway
regulates RCC progression and prognosis

To evaluate the clinical relevance of prostaglandin biosynthesis in

the context of therapeutic response, immunohistochemistry (IHC)

analysis was performed on RCC tissue microarrays (TMAs) obtained

from patients with differential responses to targeted therapy. A total of

12 tumor specimens were analyzed and stratified into four groups

according to clinical response criteria: CR (n = 3), PR (n = 3), SD (n =

3), and PD (n = 3). For analytical purposes, CR and PR were classified

as the non-progressive disease (non-PD) group, while SD and PD

were considered PD based on radiological and clinical

progression metrics.

Here, we found prostaglandin E synthase 2 (PTGES2), one key

enzyme catalyzing the synthesis of prostaglandin E2, which was
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1630053
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1630053
associated with the progression of some tumors, such as colorectal

cancer (CRC), hepatocellular carcinoma (HCC), and RCC (36–38).

IHC staining revealed a distinct expression pattern of PTGES2

across the four groups. In the PD subgroup (PD and SD), PTGES2

exhibited markedly higher expression, characterized by strong

staining intensity in RCC cells (Figure 7A). In contrast, the non-

PD subgroup (CR and PR) demonstrated weak-to-moderate

PTGES2 staining, with a substantial reduction in both staining
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intensity and percentage of positive cells. These findings suggested

that PTGES2 expression correlated positively with therapy

resistance and tumor progression status in RCC, which was in

accordance with cluster C2. In addition, PTGES2 was inversely

associated with TLS programs: TLS (r = −0.17, p =6e−5), GC B (r =

−0.31, p = 3.6e−13), and Plasma (r = −0.26, p = 3.4e−9); FDC

showed no association (r = −0.054, p=0.22); Tfh showed a weak

positive correlation (r=0.15, p =6e−4) (Supplementary Figure S3A).
FIGURE 5

Drug sensitivity exhibited significant heterogeneity across three subtypes. (A–L) Violin plots display the estimated IC50 of multiple kinds of targeted
drugs in three subtypes. Data are mean ± SD; statistical analysis was performed using one-way ANOVA.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1630053
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1630053
Consistently, high PTGES2 tumors had lower TLS features (all p ≤

0.05), with no change in FDC (p=0.59) and only a marginal increase

in Tfh (p=0.075) (Supplementary Figure S3B), indicating that high

PTGES2 is linked to reduced TLS enrichment. Across six

deconvolution methods, high PTGES2 tumors consistently

exhibited increased Tregs and M2-like macrophages with relative

depletion of CD8+ T cells and NK cells (Supplementary Figure

S4A). Interferon-a/g responses, cytokine–cytokine receptor
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interaction, and immune system signaling were enriched in high

PTGES2 (Supplementary Figure S4B), consistent with an inflamed

yet functionally suppressive microenvironment. We observed

modest negative associations with PD-L1 and CTLA-4, a weak

positive association with TIGIT, and no material association with

PD-1 or LAG-3 (Supplementary Figures S4C, D).

To further investigate the role of PTGES2 in RCC cell

proliferation and metastasis, we performed a series of in vitro
FIGURE 6

Prostaglandin expression defines distinct prognostic and immunotherapy responses. (A) Kaplan–Meier curves for survival probability of prostanoid
biosynthesis in the TCGA-KIRC cohort. (B) Kaplan–Meier curves for survival probability of prostaglandin biosynthesis in the TCGA-KIRC cohort.
(C) Kaplan–Meier curves for survival probability of prostanoid biosynthesis in the FUSCC cohort. (D) Kaplan–Meier curves for survival probability of
prostaglandin biosynthesis in the FUSCC cohort. (E) Evaluation of the response to immunotherapy of prostanoid/prostaglandin biosynthesis based on
the CheckMate immunotherapy cohort. (F) Evaluation of the progression of prostanoid/prostaglandin biosynthesis based on the CheckMate
immunotherapy cohort.
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FIGURE 7

Prostaglandin biosynthesis pathway regulates RCC progression and prognosis. (A) PTGES2 expression was analyzed by immunohistochemistry in
tumor tissues of patients with different outcomes. Scale bars, 100 mm. (B) Validation of knockdown and overexpression of PTGES2 in RCC cell lines
by qPCR. (C) Validation of knockdown and overexpression of PTGES2 in 786-O cell line by WB. (D) Validation of knockdown and overexpression of
PTGES2 in 769-P cell line by WB. (E) CCK-8 assays showed the influence of PTGES2 on cell proliferation. (F) Colony formation assays showed the
influence of PTGES2 on cell proliferation. (G) Statistics of colonies showed the difference after PTGES2 was abnormally expressed. (H) Transwell
assays showed the influence of PTGES2 on cell migration. Scale bars, 100 mm. (I) Statistics of transmembrane cells showed the difference after
PTGES2 was abnormally expressed. Data are mean ± SD; statistical analysis was performed using one-way ANOVA. ns, not significant; *p < 0.05;
**p < 0.01; ***p < 0.001. RCC, renal cell carcinoma; WB, Western blotting.
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assays following the stable knockdown and overexpression of

PTGES2 in the 786-O and 769-P cell lines. The efficiencies of the

knockdown and overexpression of PTGES2 were verified at both

the mRNA and protein levels by quantitative polymerase chain

reaction (qPCR) and Western blotting (WB) analysis, respectively.

The results showed that PTGES2 was successfully knocked down

and overexpressed in both 786-O and 769-P cells (Figures 7B–D).

The CCK-8 assay was used to explore cell proliferation.

Knockdown of PTGES2 resulted in a significant reduction in cell

reproductive capacity in both 786-O and 769-P cell lines; in

contrast, PTGES2 overexpression contributed to the obvious

proliferation of RCC cells, and all differences were statistically

significant (p < 0.05) (Figure 7E). The colony formation capability

of PTGES2 knockdown cells was significantly decreased compared

to that of shCtrl cells (Figure 7F), the colony counts in the

shPTGES2 groups were decreased under the microscope, and the

difference was statistically significant (p < 0.05). The results were

reversed while PTGES2 was overexpressed in RCC cell lines

(Figures 7F, G). These data indicate that PTGES2 can promote

the proliferation of RCC cells.

To evaluate the metastasis of PTGES2 in RCC cells, a Transwell

assay was conducted to determine the cell migration ability. The

results suggested that shPTGES2 cells exhibited significantly

reduced migration compared to the control cells (Figure 7H). The

number of migrated cells was decreased visibly in shPTGES2-

treated cells after cell counting, and the difference was statistically

significant (p < 0.05) (Figure 7I). Certainly, PTGES2 overexpression

was observed to motivate the migration of RCC cells, and the

difference between the vector and overexpression groups was

statistically significant as well (p < 0.05) (Figures 7H, I). These

results revealed that PTGES2 drove RCC cell migration and may be

positive for the metastasis of RCC.

In general, these in vitro experiments strengthened the

association between PTGES2 expression and clinical response.

Our observations implicated the translational value of PTGES2,

which could serve as a potential biomarker and a therapeutic target

for RCC.
Discussion

There has been sufficient evidence to prove that RCC is a highly

heterogeneous and metabolic disease, and the Warburg effect

produces abundant energy to support the metabolism and

unlimited growth of cancer cells (39). Next-generation sequencing

indicates that the VHL mutation exists in almost 90% of RCC cases,

following the accumulation of HIF, which enables cells to adapt the

glycolysis in the microenvironment. As the tumor becomes more

advanced, this phenomenon appears more obviously (40). In the

past few decades, many key oncogenes have been discovered to

change metabolic homeostasis to facilitate cancer cell growth (41,

42). Multi-omics technology has ushered in a new era, precise

treatment comes to a great innovation, and reliable subtype

identification seems crucial. Currently, research on analyzing the

relationship between tumor molecular subtypes, immune
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microenvironment, and treatment sensitivity by integrating multi-

omics data is highly topical (43, 44). At present, proteomics based

on epigenetic regulation seems to elucidate some basic principles of

RCC, DNA, RNA, or histone modifications involved in the altered

metabolism in RCC to some degree (45). Genomics and

transcriptomics can also recognize some molecular biomarkers

and relative subtypes (46). Although these classifications can be

meaningful, a specialized system directly aiming at RCC

metabolism is deficient. Herein, by integrating and analyzing

metabolic genes in three datasets—TCGA, EMTAB3267, and

GSE22541—we divided RCC into clusters C1, C2, and C3. We

conducted a cross-comparison between the metabolic subtypes and

the RCC molecular subtypes proposed by TCGA (including

ClearCell A/B), as well as other transcriptomic features. The

analysis results indicated that there was only partial overlap

between the proposed metabolic subtypes and the TCGA

classification. Additionally, the metabolic subtypes of some

patients were completely inconsistent with the known molecular

subtypes, suggesting that our metabolic classification provides

complementary information to the traditional transcriptome-

driven classifications (47).

Cluster C1 was primarily involved in fatty acid degradation and

various amino acid metabolism, and patients had a better prognosis

than those in C2 and C3. Actually, the metabolic abnormal pattern

exhibited by cluster C1 has been observed in the analysis of various

cancer types, suggesting that it may be a relatively common

phenomenon in the process of tumor metabolic reprogramming

(48). FAs are the necessary substrates for tumor survival; they can

maintain the cell membrane’s stability and motivate signal

transduction; in particular, RCC is abundant in lipid profile, and

internal fatty acid metabolism appears to be highly active (49). RCC

cells drive de novo FA synthesis to ensure continuous supply (50).

During the entire biochemistry, various kinds of molecules,

including acetyl-CoA, palmitate, stearoyl-CoA desaturase (SCD),

and some other unsaturated fatty acids, have been proven to be the

underlying targets of RCC (50–53). For instance, ATP citrate lyase

(ACLY), one of the key enzymes in fatty acid metabolism, was

considered to promote the proliferation and migration of RCC cells

(54). Another enzyme, FASN, was found to be upregulated in RCC

and stimulated tumor progression (55). Furthermore, HIFs control

the RCC tumorigenesis in the same way (56). For the amino acid

metabolism in RCC, the serine/glycine biosynthesis was one of the

essential metabolic pathways, and serine hydroxymethyltransferase

(SHMT) represented the central enzyme, associated with

pathological grading and poor prognosis of RCC patients (57). In

addition, as a non-essential amino acid, glutamine supplies

materials for the TCA cycle and amidotransferase pathways in

RCC, and some inhibitors that are specific to glutamine metabolism

were put into effect, which led to modest growth suppression in

RCC cells (58–60). Overall, cluster C1 displayed more about the

general characteristics of metabolism-associated tumors, and FA

metabolism and amino acid metabolism were complicated, but

corresponding mechanisms were comparatively intensive; even a

few therapeutic targets had been applied in clinical (61) studies,

which may be a reason for the better prognosis.
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For clusters C2 and C3, prostaglandin (PG) biosynthesis and

prostanoid biosynthesis were enriched, respectively, and a worse

prognosis than that in C1 occurred. PGs are nearly the same as

prostanoids in nature. PGs have emerged as critical regulators in

inflammation, cardiovascular disease, and tumors (62–64).

Bioactive PGs contain PGI2, PGE2, PGF2a, PGD2, and

thromboxane A2 (TxA2), which are synthesized from arachidonic

acid by cyclooxygenase (COX) (65). We systematically compared

the expression profiles of prostaglandin metabolism-related genes

in the C2 and C3 clusters. The “prostaglandin biosynthesis” in C2 is

mainly characterized by the activation of the PGE2 branch,

reflecting that this subtype may primarily mediate immune

suppression and tumor microenvironment remodeling through

PGE2. In contrast, the “widespread” biosynthesis in C3 refers to

the global activation of multiple prostaglandin branches, including

but not limited to PGE, PGD, and PGF. Therefore, although the

overall prostaglandin metabolism level in C3 is elevated, the

coexistence of multiple branches weakens the adverse effects

driven by a single branch (such as PGE2), thus resulting in an

intermediate prognosis between C2 and other subtypes.

Previous studies have shown that prostanoid biosynthesis emerges

as a cascade, massive proinflammatory cytokines were exploited, and

they initiated downstream interferon, interleukin, lymphokine,

chemokine, and tumor necrosis factor; sometimes, inflammation and

immune response were overactivated, producing prostanoid-angiogenic

response (66–68). In RCC, products of prostanoid biosynthesis are

widely infiltrated into the tumor microenvironment, leading to tumor-

associated angiogenesis, cell growth, and metastasis (69, 70). The

overexpression of vascular endothelial growth factor (VEGF) and

relevant VEGF receptor (VEGFR) has been proven to be pivotal in

RCC angiogenesis (71), and antiangiogenic therapies have been

employed. Sunitinib, one of the TKIs, is the first-line targeted

medicine for advanced RCC, which inhibits the targets of VEGFR

and angiogenesis, but sunitinib resistance is seriously increasing (72, 73).

Multiple studies have confirmed that the abnormal activation of

components in the VEGF pathway generates a compensatory

mechanism, consequently contributing to the resistance (74–76). Luo

et al. found that the obvious activation of the COX-2-PGE2 pathway in

RCC cells promoted sunitinib resistance (77). As a result, extremely

sophisticated factors of prostanoid biosynthesis act as a double-edged

sword in RCC angiogenesis, suggesting a favorable but inscrutable target

for treatments.

Moreover, prostanoid biosynthesis is tightly related to the

immune microenvironment. Ahmadi et al. came up with a novel

perspective on tumor immunology. They found that PGE2 prevented

the maturation of dendritic cells (DCs), and the activation of naive

CD8+ T cells was terminated; meanwhile, the CD8+ CD28− T cells

were induced, and tumor cells could not be killed. The overexpression

of COX-2 had a similar effect on DCs and prompted tumor cells to

generate lymphatic metastasis (78). Many researchers have suggested

that prostanoids exert profound functions of immune regulation. A

noted experiment established melanoma models that are sensitive

and resistant to immunotherapies. RNA-seq and metabolomics

analysis revealed that the PGE2 involved in the prostaglandin

synthesis pathway contributed to T-cell responses in the tumor
Frontiers in Immunology 15
microenvironment. In vivo immunologic research highlighted that

the overexpression of PGE2 and reduced IFN-g simultaneously led to

immune escape in RCC (79). Except for the CD8+ T cells, PGE2 and

its receptor EP2/EP4 additionally impaired the oxidative

phosphorylation (OXPHOS) and c-MYC targets of M1-like

macrophages, as well as ribosome biogenesis. Ultimately, the effect

of immune exhaustion was noted (80). NK cells were considered the

first line of defense against cancer and viral infections. They may be

more critical than T cells in anti-metastatic immunity in cancers (81).

PGE2 was secreted increasingly in disseminated tumor cells while

metastasis happened; PGE2-EP2/EP4 modified the gene expression

and caused dysfunction in NK cells, suppressing the key anti-

metastatic cytokines (82). Inhibitors targeting PGE2 rescued NK

cell function, the immune escape was overcome, and the NK cell-

mediated killing of cancer cells was enhanced (83). Collectively,

attributed to the mysteriously immune microenvironment,

although the immunotherapies were implemented in advanced

RCC patients, diversified prostanoids made unpredictable

differences to the immunologic targets. Therefore, the overall

prognosis was still not promising in cluster C2. PTGES2-driven

PGE2 suppressed dendritic cell maturation and limited B/Tfh

recruitment and TLS formation (84). Consistently, high PTGES2

tumors showed the lowest TLS enrichment. This PGE2-driven, TLS-

deficient state may blunt antitumor immunity and Immune

checkpoint blockade (ICB) benefit; targeting the COX-2/PTGES2–

EP4 axis could help restore TLS programs.

To validate the precision of our model, a few RCC tissues were

screened, which were from RCC patients treated with

immunotherapies in the FUSCC cohort, and follow-up datasets

were complete. Tumors in the “PD” group showed higher

expression of PTGES2 than in the “non-PD” group. The synthesis

of PGE2 was an extremely complicated process; one targeted

metabolite profiling uncovered that PTGES2 was the key enzyme

(85), and PTGES2 was confirmed to influence the survival of cancer

cells (36, 37). For the CRC cells, while elevated PTGES2 led to PGE2

boosting, reactive oxygen species (ROS) were largely produced, and

genomic instability was triggered, ultimately driving cancer

progression (86). On this basis, we conducted in vitro assays to

explore the biological function of RCC cells. The results highlighted

the significance of PTGES2 in RCC; meanwhile, the mechanisms of

prostanoid biosynthesis in RCC deserve intensive studies.

In summary, this original classification based on tumor

metabolism provided new insights into RCC; all three clusters

covered the majority of metabolic features of the tumor

microenvironment. It was worth noting that cluster C1

represented more about the early stage of RCC, in which FA

metabolism and amino acid metabolism were active, and the

prognosis was better. Clusters C2 and C3 pointed to prostanoid

biosynthesis, which was associated with immune exhaustion and

indicated a poor prognosis. We integrated the public databases and

our cohort, not only elucidating the clinical significance of three

clusters but also emphasizing the importance of metabolism-related

therapies in advanced RCC patients. However, we also recognize

that there are still some potential or unknown confounding factors

that have not been adequately controlled in this study, which may
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affect the interpretation of some of the research results. In

particular, variables such as patient age, gender, underlying

disease status, lifestyle, and treatments could all potentially act as

confounding factors in the relationship between the exposure

factors and outcomes in this study. Furthermore, there may be

selection bias in the sample selection process of this study. For

example, the included cases were mainly from public databases or

specific centers. For the analysis of certain specific subgroups, the

sample size was further reduced, which may have exacerbated the

impact of this bias. At the same time, the total sample size of this

study was relatively limited, resulting in insufficient overall

statistical power, especially in the subgroup analysis or

multivariate analysis. Therefore, we suggest that future studies

with a larger sample size should be conducted in multiple centers

and with higher-quality data to further confirm the findings of

this study.
Conclusion

In conclusion, this study classified RCC from the metabolic

perspective and proposed three subtypes with different kinds of

metabolism. Every cluster exhibited a specific metabolic status and

appeared to have highly predictive value. Meanwhile, our

classification may offer insights for improving the effects of

immunotherapies in advanced RCC patients.
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