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Melanoma, an aggressive malignancy originating from melanocytes, is

characterized by rapid metastasis and dismal prognosis in advanced stages,

with a 5-year survival rate of only 16% for stage IV disease. Despite

breakthroughs in immune checkpoint inhibitors (ICIs) targeting CTLA-4 and

PD-1/PD-L1, therapeutic challenges persist, including heterogeneous response

rates, acquired resistance, and immune-related toxicities, underscoring the need

for strategies to augment immunogenicity and overcome immune evasion.

Programmed cell death (PCD) pathways—ferroptosis, pyroptosis, and

necroptosis—have emerged as critical regulators of antitumor immunity.

Ferroptosis, driven by iron-dependent lipid peroxidation (LPO), enhances

immunogenicity through damage-associated molecular pattern (DAMP) release

and depletion of immunosuppressive cells. Pyroptosis, mediated by gasdermin

(GSDM) pore formation, promotes CD8+ T cell infiltration via pro-inflammatory

cytokine secretion, while necroptosis, governed by Receptor-Interacting Protein

Kinase 1 (RIPK1)/RIPK3-MLKL signaling, facilitates antigen cross-presentation and

adaptive immune memory. In melanoma, dysregulation of these pathways

contributes to tumor progression and immunosuppression, yet their targeted

activation reshapes the tumor microenvironment (TME) to synergize with ICIs.

Current challenges, including metabolic plasticity and off-target effects, highlight

the necessity for precision approaches. This review delineates the mechanistic

interplay of ferroptosis, pyroptosis, and necroptosis in melanoma

immunotherapy, emphasizing advances in pharmacological induction,

nanotechnology-driven delivery systems, and rational combination with ICIs.

By integrating preclinical insights and clinical perspectives, we propose that co-

targeting these immunogenic cell death (ICD) pathways offers a transformative

strategy to enhance therapeutic efficacy, circumvent resistance, and achieve

durable remission in melanoma.
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1 Introduction
Melanoma, a malignancy originating from the transformation of

pigment-producing melanocytes, stands as the most aggressive and

lethal form of skin cancer (1, 2). It is characterized by a high propensity

for rapid metastatic spread to distant organs and, consequently, a

historically high mortality rate. While early-stage, localized melanoma

is often curable through surgical resection, the prognosis for patients

with advanced or metastatic disease remains a formidable therapeutic

challenge (3, 4). For individuals with stage IV disease, the 5-year

survival rate is starkly low, estimated at approximately 16%. For

decades, the therapeutic armamentarium for advanced melanoma

was profoundly limited. Systemic treatments were largely confined to

conventional cytotoxic chemotherapy regimens and high-dose

interleukin-2 (IL-2) therapy (5, 6). These approaches, however, were

plagued by significant toxicities while offering only marginal survival

benefits to a very small subset of patients, leaving a critical unmet need

for effective and durable treatment strategies.

The last fifteen years have witnessed a revolutionary

transformation in the management of advanced melanoma,

shifting the treatment paradigm away from non-specific cytotoxic

agents toward molecularly targeted and immune-based strategies.

This revolution began with the advent of targeted therapy, which

leverages small molecule inhibitors to block the specific driver

mutations fueling cancer growth. Concurrent with these advances,

a deeper understanding of tumor immunology heralded the era of

immune checkpoint inhibitors (ICIs), a development that has

fundamentally reshaped the prognosis for many patients. ICIs,

such as anti-Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) agents

(e.g., ipilimumab) and, more prominently, anti-Programmed Cell

Death Protein 1 (PD-1) agents (e.g., nivolumab, pembrolizumab)

and their ligands (anti-PD-L1), function by releasing the brakes on

the host’s immune system, thereby reactivating cytotoxic T cells to

recognize and eliminate tumor cells (7, 8) (Figure 1). Melanoma’s

inherent immunogenicity, characterized by a high tumor

mutational burden (TMB) often driven by ultraviolet (UV)

radiation-induced DNA damage, makes it particularly susceptible

to this class of therapy. The clinical success of ICIs has been

unprecedented, with combination therapies such as ipilimumab

plus nivolumab achieving durable, long-term survival in a

significant portion of patients with advanced disease (9, 10).

Adoptive cell therapy, which involves the infusion of genetically

modified or expanded tumor-specific T cells, has shown promise,

particularly in cases of refractory disease (11, 12). Oncolytic virus

therapy uses genetically modified viruses to selectively infect and

kill tumor cells while stimulating an immune response against the

tumor (13–15). Cancer vaccines, designed to stimulate the immune

system against melanoma-specific antigens, are another area of

active investigation (16, 17).

Despite this remarkable progress, significant challenges persist.

A substantial proportion of patients either exhibit primary

resistance to ICIs or develop acquired resistance over time,

leading to eventual disease progression. Moreover, the clinical

utility of ICIs is often constrained by immune-related adverse
Frontiers in Immunology 02
events (irAEs), which can affect any organ system and range from

mild to life-threatening (18, 19). Addressing these hurdles requires

a shift towards greater therapeutic personalization, which hinges on

the identification and validation of robust predictive biomarkers.

Existing biomarkers, such as PD-L1 expression and TMB, have

proven to have limited predictive power and are not consistently

reliable for guiding individual patient decisions. Consequently,

intensive research efforts are focused on discovering novel

biomarkers. Emerging candidates in 2025 include non-invasive,

blood-based markers like circulating tumor DNA (ctDNA), which

can provide real-time insights into tumor dynamics and response.

Furthermore, deep interrogation of the tumor microenvironment

has revealed that the presence of organized immune aggregates

known as tertiary lymphoid structures (TLS) is strongly associated

with favorable responses to immunotherapy, positioning TLS as a

highly promising tissue-based biomarker. Other innovative

approaches include analyzing circulating immune cell metabolic

signatures and leveraging artificial intelligence to integrate multi-

omics data for more accurate response prediction. Understanding

these mechanisms of immune evasion and identifying reliable

biomarkers are paramount to overcoming resistance, optimizing

patient selection, and developing the next generation of therapies

and combinations.

Ferroptosis, pyroptosis, and necroptosis have emerged as key

regulators of tumor progression and antitumor immunity.

Ferroptosis, driven by iron-dependent lipid peroxidation (LPO),

enhances immunogenicity by exposing calreticulin and ATP, which

promote antigen presentation and the activation of immune cells.

Pyroptosis, mediated by gasdermin (GSDM) pore formation, triggers

the release of pro-inflammatory cytokines, facilitating CD8+ T cell

infiltration and amplifying Th1 immune responses (20–22).

Necroptosis, initiated by Receptor-Interacting Protein Kinase 1

(RIPK1)/RIPK3-MLKL signaling, leads to the release of High

Mobility Group Box 1 (HMGB1) and supports cross-presentation

of tumor antigens, thus linking cell death to immune surveillance. In

melanoma, these pathways are frequently dysregulated, with

ferroptosis and pyroptosis playing a role in tumor suppression,

while necroptosis may contribute to chronic inflammation and

immune evasion. The ability of these lytic forms of programmed

cell death (PCD) to modulate immune responses highlights their

therapeutic potential in cancer immunotherapy (23, 24). By inducing

immunogenic cell death (ICD), ferroptosis, pyroptosis, and

necroptosis can reshape the tumor microenvironment (TME) to

enhance the efficacy of immune checkpoint inhibitors (ICIs). For

example, ferroptosis can deplete immunosuppressive regulatory

T cells (Tregs) and myeloid-derived suppressor cells (MDSCs),

while pyroptosis recruits neutrophils and activates macrophages,

transforming immunologically “cold” tumors into inflamed niches

(24–27). Necroptosis further promotes antigen spreading and the

formation of durable T cell memory. Despite preclinical advances,

challenges remain in translating these findings to the clinic due to

issues such as off-target toxicity, tumor metabolic plasticity, and the

need for predictive biomarkers (28, 29). However, future strategies

that combine Regulated Cell Death (RCD) inducers with immune

checkpoint blockade (ICB) and use innovative technologies, such as
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1629620
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shan and Liu 10.3389/fimmu.2025.1629620
tumor-penetrating nanocarriers, hold great promise for overcoming

resistance and improving therapeutic outcomes in melanoma.

Overall, this review explores how the strategic targeting of

ferroptosis, pyroptosis, and necroptosis can redefine melanoma

immunotherapy, translating mechanistic insights into actionable
Frontiers in Immunology 03
clinical strategies aimed at achieving durable remissions. By bridging

cutting-edge research on ICD with innovative therapeutic approaches,

we anticipate a future where combinatory therapies targeting these

death pathways will enhance the efficacy of immunotherapies, offering

new hope for melanoma patients (30, 31).
FIGURE 1

Multidimensional therapeutic innovation in melanoma: integrating molecular targeting, immune modulation, and biological precision. Contemporary
melanoma management has evolved beyond conventional therapies to incorporate five strategic dimensions. (A) Molecular-targeted interventions
counter oncogenic MAPK pathway activation through BRAF/NRAS mutation suppression; (B) Dual immune checkpoint blockade disrupts CTLA-4/
B7-mediated T-cell anergy and PD-1/PD-L1-driven immune evasion, synergistically restoring antitumor surveillance; (C) Adoptive TIL therapy
leverages ex vivo expanded tumor-reactive lymphocytes for precision tumor eradication; (D) Oncolytic virotherapy employs ICP34.5-deleted HSV-1
(T-VEC) for selective intralesional oncolysis; (E) Next-generation vaccine platforms coordinate cellular and nucleic acid vectors to establish durable
tumor-specific immunity through effector T-cell activation and memory formation. This therapeutic matrix demonstrates enhanced tumor selectivity
and reduced systemic toxicity compared to traditional cytotoxic approaches. Created by Biorender.com.
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2 Overview of ferroptosis, necroptosis,
and pyroptosis

2.1 Overview of ferroptosis

Ferroptosis is an iron-dependent form of RCD driven by

excessive LPO, leading to plasma membrane rupture (32–35). Key

molecular mechanisms involve iron accumulation, mediated by

transferrin receptor (TFRC)-dependent iron uptake and

autophagy-driven degradation of iron storage proteins (36–38),

which elevate intracellular labile iron pools. This iron catalyzes

the production of reactive oxygen species (ROS) through Fenton

reactions and activates enzymes like arachidonate lipoxygenases

(ALOXs) (39–41). These enzymes oxidize polyunsaturated fatty

acids (PUFAs) into phospholipid hydroperoxides (PL-PUFA-

OOH) via Acyl-CoA Synthetase Long Chain Family Member 4

(ACSL4) and Lysophosphatidylcholine Acyltransferase 3

(LPCAT3), culminating in membrane damage (42–50). The

glutathione GSH peroxidase 4 (Gpx4) antioxidant axis is central

to ferroptosis suppression: system Xc- imports cysteine for GSH

synthesis, while GPX4 neutralizes lipid peroxides (51–59).

Dysregulation of this system—through oncogenic pathways or

p53-mediated inhibition of SLC7A11—renders cells susceptible to

ferroptosis (60–66). Autophagy further amplifies ferroptosis by

degrading GPX4, lipid droplets, and iron storage proteins,

highlighting its role as a metabolic vulnerability in cancer (67–71).

Emerging evidence highlights ferroptosis as a pivotal regulator of

antitumor immunity, offering novel strategies to overcome therapeutic

resistance. In pancreatic ductal adenocarcinoma (PDAC), circTRIP12

(cTRIP12) drives ferroptosis resistance by binding O-GlcNAc

transferase (OGT), elevating O-GlcNAcylation to stabilize ferritin

heavy chain (FTH) and PD-L1, thereby suppressing ICD and

promoting immune evasion (72). Similarly, Kelch-like ECH-

associated protein 1 (KEAP1)-mutant tumors exhibit ferroptosis

resistance via NRF2-mediated upregulation of NQO1, which

attenuates LPO and dampens immunotherapy responses; targeting

NQO1 restores ferroptosis sensitivity and triggers antitumor immunity

(73). Advances in nanotechnology further amplify ferroptosis-

immunotherapy synergy. For small cell lung cancer (SCLC), a

cationic liposome co-delivering paclitaxel and PFKFB4-targeting

siRNA induces ferroptosis, reprograms the immunosuppressive

microenvironment, and enhances PD-L1 blockade efficacy (74–76).

In glioblastoma (GBM), magnetic exosomes co-loaded with arsenic

trioxide and IR780 disrupt redox balance, augmenting photodynamic

therapy to activate ferroptosis, polarize macrophages, and reinvigorate

T cell responses (77–81). Hepatocellular carcinoma (HCC) studies

demonstrate that lactate depletion via engineered nanoparticles

sensitizes tumors to erastin-induced ferroptosis, while Fe²+/Fe³+-

mediated chemodynamic therapy synergizes with aPD-L1 to

suppress metastasis (82–85). Collectively, these findings underscore

the dual role of ferroptosis in directly killing tumor cells and indirectly

remodeling immune landscapes, with targeted delivery systems and

metabolic interventions bridging mechanistic insights to clinical

translation. Molecular orchestrations governing of ferroptosis was

shown in Figure 2A.
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2.2 Overview of necroptosis

Necroptosis represents a caspase-independent, lytic form of

regulated cell death (RCD). It is primarily initiated by the activation

of death receptors or pathogen-sensing receptors, serving as a

critical cellular response pathway (86, 87). A well-characterized

trigger of necroptosis is the binding of tumor necrosis factor-a
(TNF-a) to its cognate receptor. Upon this interaction, receptor-

interacting serine/threonine-protein kinase 1 (RIPK1) undergoes

recruitment of RIPK3, leading to the formation of a multiprotein

complex termed the necrosome (88–93). The necrosome then

mediates the phosphorylation of mixed-lineage kinase domain-

like protein (MLKL); once phosphorylated, MLKL undergoes

oligomerization and translocates to the plasma membrane. At the

membrane, oligomerized MLKL forms transmembrane pores,

which disrupt membrane integrity and drive the release of

damage-associated molecular patterns (DAMPs)—a hallmark of

lytic cell death (94–100). This process is often triggered when

apoptosis is inhibited, serving as a backup defense against

pathogens. Necroptosis plays dual roles in cancer: it acts as a

tumor suppressor in colorectal and hepatocellular carcinomas

(101–107), where RIPK3/MLKL downregulation correlates with

poor prognosis, but may promote inflammation-driven

malignancy in specific contexts (108–113). Epigenetic silencing of

RIPK3 in tumors can be reversed by hypomethylating agents,

restoring chemosensitivity (114, 115). Key regulators include

Cylindromatosis (CYLD) (116–119), which deubiquitinates

RIPK1 to facilitate necrosome assembly, and Z-DNA Binding

Protein 1 (ZBP1), which senses viral RNA/DNA to activate

RIPK3-MLKL signaling independently of death receptors

(120, 121).

Necroptosis has emerged as a potent ICD pathway to amplify

antitumor immunity. In PDAC, MLKL-driven necroptosis recruit

macrophages, upregulates CD47 to evade phagocytosis, and triggers

CXCL8-mediated epithelial-mesenchymal transition (EMT) and

liver metastasis. Combining MLKL inhibitor GW806742X with

CD47 blockade suppresses metastatic dissemination, highlighting

necroptosis as a dual-edged sword in PDAC progression (122–128).

To leverage its immunogenicity, nanotechnology platforms have

been designed to induce tumor-specific necroptosis. For instance, a

sulfate radical (SO4·−)-based in situ vaccine triggers MLKL-

dependent necroptosis in acidic TMEs, releasing DAMPs to

activate STING signaling and synergize with ICIs against distant

tumors (129–135). Similarly, Mn²+-enriched shikonin-loaded

nanoparticles induce necroptosis in head and neck squamous cell

carcinoma (HNSCC), disrupting mismatch repair to activate cGAS-

STING-dependent IFN responses and enhance PD-1 blockade

efficacy by promoting DC maturation and cytotoxic T cell

infiltration (136–140). Beyond canonical RIPK1/RIPK3 pathways,

the natural compound OSW-1 induces a RIP1/RIP3-independent

necroptosis in colorectal cancer via p53-PUMA-CamKIId-MLKL

signaling. This mechanism not only kills tumor cells but also

sensitizes tumors to anti-PD-1 therapy by enhancing

immunogenic antigen release (141). In postoperative non-small

cell lung cancer (NSCLC), a photothermal hydrogel induces
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1629620
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shan and Liu 10.3389/fimmu.2025.1629620
necroptosis in residual cancer cells, elevating DAMPs to polarize

M1 macrophages and activate CD8+ T cell immunity, thereby

preventing recurrence and infection (142). These advances

underscore necroptosis as a versatile tool to reprogram

immunosuppressive microenvironments and potentiate ICB

through targeted induction strategies. Molecular orchestrations

governing of necroptosis was shown in Figure 2B.
2.3 Overview of pyroptosis

Pyroptosis is an inflammatory RCD pathway characterized by

GSDM family pore formation, which releases proinflammatory

cytokines and induces cell lysis (63, 143, 144). Caspase-1, activated

by canonical inflammasomes, cleaves Gasdermin D (GSDMD) to

generate N-terminal fragments that oligomerize and perforate

membranes (145–147). Noncanonical pathways involve caspase-4/

5/11 or caspase-11 directly cleaving GSDMD upon cytosolic LPS

detection (148–150). Apoptotic caspases can also trigger pyroptosis

by cleaving GSDME, converting immunologically silent apoptosis
Frontiers in Immunology 05
into inflammatory death (151–153). In cancer, pyroptosis exhibits

dual roles: GSDMD overexpression in NSCLC correlates with tumor

aggressiveness (154–156), while NLRP3 activation in HCC

suppresses metastasis (157–159). Therapeutic strategies leverage

pyroptosis for antitumor immunity, inducing immunogenic death

(72, 160). Additionally, GSDMB cleavage by granzyme in natural

killer (NK) cells enhances tumor clearance, underscoring its potential

in immunotherapy (161).

Pyroptosis has emerged as a potent strategy to remodel

immunosuppressive TMEs and enhance ICB efficacy. In triple-

negative breast cancer (TNBC), the ER stress sensor IRE1a
suppresses taxane-induced immunogenicity by degrading double-

stranded RNA (dsRNA) via regulated IRE1-dependent decay

(RIDD), thereby inhibiting NLRP3 inflammasome-dependent

pyroptosis. Pharmacological inhibition of IRE1a unleashes ZBP1-

mediated recognition of dsRNA, activating NLRP3-GSDMD

pyroptosis and converting PD-L1-negative tumors into

immunogenic niches responsive to ICB (162). Similarly, in HCC,

selective HDAC1/2/3 inhibition synergizes with ICB to enhance

chromatin accessibility of IFNg-responsive genes, promoting
FIGURE 2

Molecular orchestrations governing three distinct programmed cell death modalities. (A) Pyroptotic signaling pathways are initiated through pattern
recognition receptors including NLR family sensors (NLRP1/3/4), AIM2 detectors, and Pyrin proteins upon detecting pathogenic or danger signals.
These sensors nucleate ASC-mediated inflammasome assembly, facilitating caspase-1 activation. Non-canonical pathway activation occurs through
cytoplasmic LPS recognition by inflammatory caspases (CASP4/5/11). Both pathways converge on gasdermin-D proteolysis, generating pore-forming
N-terminal fragments that execute lytic cell death. Concomitant potassium ion efflux during membrane permeabilization promotes HMGB1
liberation and extracellular potassium elevation. (B) Ferroptotic cell demise arises from dual metabolic dysregulation: iron homeostasis disruption
and peroxidative membrane damage. Intracellular iron overload is mediated through enhanced TFRC-mediated uptake, impaired ferroportin export,
and ferritin degradation via autophagy-lysosomal pathways. Lipid peroxidation cascades are driven by ACSL4-LPCAT3 enzymatic coupling facilitating
ALOX-mediated polyunsaturated fatty acid oxidation, with RAB7A-regulated lipid droplet autophagy supplying peroxidation substrates. Cellular
defenses against oxidative collapse include GPX4-glutathione redox cycling, AIFM2-CoQ10 antioxidant pairs, GTP cyclohydrolase-dependent radical
scavenging systems, and ESCRT-III-mediated membrane repair mechanisms. (C) Necroptotic execution follows TNF receptor engagement and
sequential signaling complex assembly. Initial membrane-proximal Complex I formation involves cIAP-mediated RIPK1 K63-ubiquitination,
promoting NF-kB survival signaling. CYLD-dependent deubiquitination triggers cytosolic Complex II formation, where caspase-8 inhibition redirects
signaling to RIPK1-RIPK3-MLKL necrosome assembly. Sequential kinase activation culminates in MLKL phosphorylation-induced oligomerization,
forming plasma membrane-disrupting pores that mediate lytic cell death. Created by Biorender.com.
frontiersin.org
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STAT1-driven pyroptosis via GSDME cleavage and amplifying

cytotoxic T cell infiltration (157). Nanotechnology further

expands pyroptosis applications: a tumor-specific nanoparticle

undergoes charge reversal and nanofiber formation within

lysosomes, disrupting lysosomal integrity to trigger GSDMD-

mediated pyroptosis, which reverses immunosuppression and

potentiates PD-L1 blockade in aggressive breast and pancreatic

tumors (163). In gastric cancer (GC), transcriptional activation of

GSDMD by HIC1 induces pyroptosis, releasing inflammatory

cytokines to recruit CD8+ T cells, while combinatorial HIC1

overexpression with PD-L1 antibodies synergistically suppresses

tumor growth (164). Natural compounds also harness pyroptosis:

the Huangqin Houpo-derived combination induces GSDME-

dependent pyroptosis, sensitizing colorectal cancer to anti-PD-1

therapy (165). Additionally, microwave-responsive AlEu-MOFs

amplify NLR Family Pyrin Domain Containing 3 (NLRP3)

inflammasome activation through HSP90 upregulation and ROS

generation, achieving targeted pyroptosis to inhibit primary and

metastatic breast tumors (166). These findings collectively

underscore pyroptosis as a multifaceted immunomodulator,

bridging innate immune activation with adaptive antitumor

responses across diverse malignancies. Molecular orchestrations

governing of pyroptosis was shown in Figure 2C.
2.4 Cross-talk among ferroptosis,
necroptosis, and pyroptosis

The interplay between RCD pathways—necroptosis, pyroptosis,

ferroptosis, and cuproptosis—synergistically amplifies ICD and

reshapes tumor-immune dynamics (167–169). For instance, ZBP1

activation by viral RNA simultaneously triggers necroptosis via

RIPK3-MLKL signaling (170) and pyroptosis through NLRP3

inflammasome activation (171), with MLKL pores releasing

potassium to further enhance NLRP3-driven IL-1b secretion (172,

173). Similarly, copper ionophores like elesclomol disrupt

mitochondrial copper homeostasis to induce cuproptosis while

depleting GSH and downregulating Solute Carrier Family 7

Member 11 (SLC7A11), sensitizing cells to ferroptosis (174).

Metabolic crosstalk further links these pathways: ACSL4-driven

LPO in ferroptosis alters membrane composition to suppress

pyroptosis, whereas necroptosis-induced DAMPs prime DCs to

recognize pyroptosis-derived antigens. Therapeutically, co-

targeting RIPK1 and GPX4 (ferroptosis) synergizes with PD-1

blockade to overcome immunotherapy resistance, while

pyroptosis-inducing nanoparticles recruit neutrophils to enhance

ferroptosis inducers within the TME. These interactions underscore

the complexity of RCD networks and their potential to redefine

cancer treatment through multimodal immunomodulation.
2.5 Emerging RCD pathways in melanoma

Malignant melanoma remains a formidable clinical challenge

due to its high metastatic potential and profound resistance to
Frontiers in Immunology 06
conventional therapies, which primarily induce apoptosis. This

resistance has catalyzed a paradigm shift in cancer research,

moving the focus towards non-apoptotic forms of regulated cell

death (RCD). Among these, ferroptosis, necroptosis, and pyroptosis

have emerged as critical mechanisms that not only execute tumor

cell killing but also actively modulate the tumor microenvironment

(TME). Understanding the intricate molecular cross-talk among

these pathways is proving essential for developing next-generation

therapeutic strategies to overcome melanoma’s notorious plasticity.

Melanoma cells are susceptible to several non-apoptotic death

modalities, each governed by a distinct molecular machinery.

Ferroptosis is an iron-dependent form of RCD characterized by

the overwhelming accumulation of lipid reactive oxygen species

(ROS). Its execution is centrally regulated by the inhibition of

glutathione peroxidase 4 (GPX4), a key enzyme that neutralizes

lipid peroxides. Inducing ferroptosis has shown significant promise

in overcoming resistance to targeted therapies and immunotherapy

in melanoma models. Necroptosis, a form of programmed necrosis,

is orchestrated by a signaling complex involving receptor-

interacting protein kinase 1 (RIPK1), RIPK3, and the terminal

executioner protein, mixed lineage kinase domain-like

pseudokinase (MLKL). Upon activation, MLKL oligomerizes and

translocates to the plasma membrane, forming pores that lead to

cell lysis and the release of damage-associated molecular patterns

(DAMPs). While some melanoma subtypes exhibit low sensitivity

to necroptosis due to the downregulation of key components its

induction can provoke a potent anti-tumor immune response,

synergizing effectively with checkpoint blockade therapies.

Pyroptosis is a highly inflammatory RCD pathwaymediated by the

gasdermin (GSDM) family of pore-forming proteins. It is typically

triggered by inflammasome activation, which leads to the cleavage of

GSDMs by inflammatory caspases (e.g., caspase-1). The resulting pores

cause cell swelling and lysis, accompanied by themassive release of pro-

inflammatory cytokines such as IL-1b and IL-18, thereby robustly

reshaping the TME. These RCD pathways do not operate in isolation

but are extensively interconnected, forming a complex and adaptable

cell death network. Key proteins function as nodes that integrate signals

and dictate the ultimate cellular fate. RIPK1, the canonical initiator of

necroptosis, also plays a crucial role in activating the NLRP3

inflammasome, directly linking necroptotic signaling to caspase-1

activation and pyroptosis. Furthermore, cellular stress signals like

ROS serve as a common currency connecting these pathways. The

intense lipid ROS production during ferroptosis can amplify

necroptotic or pyroptotic signaling while mitochondrial dysfunction

is a shared feature across all three RCDs. Caspases also act as critical

regulators; for instance, caspase-8 can cleave and inactivate RIPK1 and

RIPK3, thereby inhibiting necroptosis and potentially shunting the cell

towards an alternative fate.

The profound cross-talk among ferroptosis, necroptosis, and

pyroptosis presents novel therapeutic opportunities. The focus is

shifting from inducing a single RCD pathway to orchestrating a

multi-pronged attack that leverages their synergistic interactions. A

particularly promising strategy involves the simultaneous induction

of multiple immunogenic cell death pathways to maximize the anti-

tumor immune response. Recent preclinical studies from 2023 and
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2024 have showcased innovative approaches, such as nano-MOFs

(metal-organic frameworks) designed to co-induce ferroptosis and

pyroptosis in melanoma. This dual induction amplifies ROS

production, enhances DAMP release, and potently stimulates an

immune response, significantly improving the efficacy of

immunotherapy. As of 2025, developing therapies that precisely

manipulate these interconnected RCD nodes represents a cutting-

edge approach to dismantle the formidable defenses of

malignant melanoma.
3 Targeting ferroptosis, pyroptosis and
necroptosis for cancer
immunotherapy in melanoma

3.1 Targeting ferroptosis for cancer
immunotherapy in melanoma

Ferroptosis, driven by iron-dependent LPO, has emerged as a

pivotal therapeutic target in melanoma, with its regulation intricately

linked to both tumor cell vulnerability and immunemodulation. This

section synthesizes key molecular mechanisms and innovative

strategies—from pharmacological agents to nanotechnology

platforms—that harness ferroptosis to disrupt immunosuppression

and enhance antitumor immunity. The synergy of ferroptosis

inducers with ICB further highlights their potential to overcome

therapeutic resistance. Figure 3 and Table 1 summarized these

pathways and interventions, setting the stage for detailed

exploration of ferroptosis-driven immunotherapy in melanoma.
3.1.1 Molecular and immune mechanisms of
ferroptosis regulation

Ferroptosis has garnered increasing interest as a potential

therapeutic target in melanoma due to its complex regulation by

both molecular and immune mechanisms. Notably, Gpx4 plays a

pivotal role in protecting activated Treg cells from ferroptotic cell

death, enabling these cells to maintain immune tolerance and

suppress antitumor immunity. The genetic ablation of Gpx4 in

Treg cells leads to the disruption of their immunosuppressive

functions, enhancement of Th17 responses, and promotion of

CD8+ T-cell-mediated tumor suppression. These findings

underscore Gpx4 as a promising target for therapeutic

intervention in melanoma (175).

Similarly, the kinase Calcium/Calmodulin-Dependent Protein

Kinase Kinase 2 (CAMKK2), which functions through the AMPK-

NRF2 axis, has been shown to negatively regulate ferroptosis in

melanoma cells. Inhibition of CAMKK2 not only facilitates

ferroptosis but also potentiates the efficacy of anti-PD-1 therapy,

overcoming resistance to ICB (176). In addition to kinases,

centrosome-associated protein CSPP1 emerges as a multifaceted

regulator of ferroptosis and TME dynamics. Dysregulated CSPP1

expression is associated with EMT, stromal interactions, and

immune checkpoint responsiveness, positioning CSPP1 as both a

diagnostic biomarker and a potential therapeutic target (177).
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Pharmacological strategies further illuminate the mechanistic

pathways underlying ferroptosis regulation. The mitochondrial-

targeted DHODH inhibitor B2 induces ferroptosis by generating

ROS and promoting LPO, while simultaneously downregulating

PD-L1 to alleviate immune suppression (178). Natural compounds

such as artemisinin (ART) demonstrate dual functionality by

directly targeting IDO1 to induce ferroptosis and enhancing

CD8+ T-cell activity through modulation of tryptophan

metabolism and PD-1 suppression (179). Lithium, a well-known

pharmacological agent, sensitizes melanoma cells to ferroptosis by

downregulating FTH, thereby increasing labile iron pools and

synergizing with RSL3 to inhibit tumor growth and promote

CD8+ T-cell infiltration (180). Additionally, circular RNA

circPIAS1 acts as a barrier to ferroptosis-driven immunotherapy

by encoding a peptide that suppresses STAT1 phosphorylation and

reactivates the SLC7A11/GPX4 axis. Antisense oligonucleotide-

mediated knockdown of circPIAS1 restores ferroptosis sensitivity

and enhances the efficacy of PD-1 blockade, suggesting its potential

as a therapeutic target (181).

3.1.2 Therapeutic strategies for ferroptosis
induction

Innovative therapeutic strategies have been developed to exploit

ferroptosis induction in melanoma, offering new avenues for

enhancing tumor immunotherapy. One promising approach

involves the use of the TCFI nanozyme, which exhibits Fenton-

like, catalase-like, and GSH oxidase-like activities. This nanozyme

triggers LPO, alleviates hypoxia, and downregulates the GSH/GPX4

axis, synergizing with photodynamic therapy to enhance ROS

generation and ICD. The TCFI nanozyme significantly increases

CD8+ T-cell infiltration and interferon-g (IFNg) secretion, leading
to potent suppression of both primary and metastatic tumors (182).

Another advanced strategy involves the FeMOF-RP nanosystem,

which integrates photodynamic therapy with R848 delivery to catalyze

intratumoral H2O2 decomposition. This process amplifies ferroptosis

and promotes the polarization of immunosuppressive M2

macrophages toward an immunostimulatory M1 phenotype, thereby

improving therapeutic outcomes (183). To address metabolic

limitations within the TME, the EFP@MNs microneedle patch

employs a lipolysis strategy to degrade lipid droplets and release free

fatty acids (FFAs), fueling LPO. When combined with photothermal

remodeling of the TME, this approach enhances DC maturation and

synergizes with anti-PD-L1 therapy to achieve robust tumor

ablation (184).

Non-chemical approaches have also demonstrated efficacy in

triggering ferroptosis. Histotripsy, an ultrasound-based technique,

induces ferroptosis-associated HMGB1 release and CD8+ T-cell

infiltration. When combined with CTLA-4 blockade, histotripsy

enhances antitumor effects (185). Metal complexes such as Re-TP

exemplify the convergence of ferroptosis and immunotherapy. Re-

TP, upon light activation, generates ROS, disrupts redox balance,

and triggers PD-L1-related immune responses, leading to the

eradication of both primary and metastatic tumors in murine

models (186). Furthermore, the photoactivatable iridium complex

Ir-3 releases Fe2+ to drive Fenton reactions and eliminate
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melanoma stem cells , thus preventing metastasis and

recurrence (187).

3.1.3 Combination with ICB
The integration of ferroptosis inducers with ICB has emerged as a

promising strategy to enhance the efficacy of cancer immunotherapy.

For instance, inhibition of CAMKK2 enhances ferroptosis and

synergizes with anti-PD-1 therapy, effectively reversing immune

evasion and overcoming therapeutic resistance (176). The TCFI

nanozyme, when combined with aPD-1 antibodies, induces
Frontiers in Immunology 08
complete regression of primary tumors and suppresses distant

metastases, highlighting the potential of nanotechnology-ICB

combinations in melanoma therapy (182). Similarly, the EFP@MNs

microneedle patch, when combined with anti-PD-L1 therapy, leverages

lipolysis-driven ferroptosis and photothermal remodeling of the TME

to enhance therapeutic outcomes (184).

Metal-based agents such as Re-TP further amplify the efficacy of

ICB by inducing metabolic reprogramming, promoting ferroptosis

and ICD while simultaneously suppressing PD-L1 expression (186).

Collectively, these studies underscore the potential of ferroptosis-
FIGURE 3

Ferroptosis-mediated immunotherapeutic landscape in melanoma. This figure illustrates the molecular interplay between ferroptosis induction and
antitumor immunity. Key regulators including Gpx4, CAMKK2, and CSPP1 control lipid peroxidation, redox balance, and immune suppression within
the tumor microenvironment. Pharmacological agents (B2, ART, lithium) and nanotechnology platforms (TCFI, FeMOF-RP, EFP@MNs) trigger iron-
dependent cell death through ROS amplification, metabolic reprogramming, and immune checkpoint modulation. Synergistic integration with
immune checkpoint inhibitors (anti-PD-1/PD-L1) enhances CD8+ T-cell activation, macrophage polarization, and systemic antitumor responses,
overcoming therapeutic resistance. Created by Biorender.com.
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ICB combination therapies to achieve durable antitumor immunity

and address the challenges of tumor heterogeneity and

resistance mechanisms.
3.2 Targeting necroptosis for cancer
immunotherapy in melanoma

Necroptosis, a lytic and ICD pathway, has emerged as a key

driver of antitumor immunity in melanoma by releasing DAMPs

and activating DC-mediated T cell responses. This section

highlights molecular regulators and therapeutic strategies—from

repurposed drugs to mRNA-based MLKL delivery and hybrid

nanovesicles—that induce necroptosis to overcome immune

evasion. Synergy with ICB further enhances T cell infiltration and

suppresses metastasis. Figure 4 and Table 2 summarized these

mechanisms and interventions, setting the stage for exploring

necroptosis-centered immunotherapies in melanoma.
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3.2.1 Molecular mechanisms of necroptosis-
driven immune activation

Necroptosis has gained significant attention as a mechanism to

stimulate antitumor immunity in melanoma. This process is

characterized by the activation of several key immune pathways,

making it a promising strategy for overcoming immune evasion in

melanoma. One of the critical factors influencing necroptosis in

melanoma is the pan-caspase inhibitor Z-Val-Ala-Asp(OMe)-FMK

(zVAD-fmk). This compound enhances the immunogenicity of

tumor cell death by shifting the cell death pathway from

apoptosis to necroptosis, leading to increased release of DAMPs,

such as HMGB1. These DAMPs, in turn, activate macrophages and

DCs via MyD88-, nucleotide-, and T cell-dependent mechanisms.

In murine melanoma models, the combination of zVAD-fmk with

multimodal therapies has been shown to significantly reduce tumor

growth, decrease regulatory T cell infiltration, and promote the

recruitment of CD8+ T cells along with enhanced IFNg expression.
These effects indicate that necroptosis can remodel the
TABLE 1 Molecular targets and therapeutic strategies for ferroptosis-driven immunotherapy in melanoma.

Target Mechanism Biological function Therapeutic strategy References

Gpx4
Gpx4 deletion in Treg cells induces
lipid peroxidation and ferroptosis.

Suppresses Treg-mediated immunosuppression;
enhances CD8+ T-cell anti-tumor immunity.

Genetic/pharmacological inhibition
of Gpx4 in Treg cells.

(175)

CAMKK2
CAMKK2-AMPK-NRF2 axis

suppresses ferroptosis.
Limits ferroptosis-driven immunogenic cell death

and immune evasion.
CAMKK2 inhibitors combined with

anti-PD-1.
(176)

CSPP1
CSPP1 regulates EMT, stromal

remodeling, and immune responses.

Modulates tumor microenvironment (TME) to
resist ferroptosis and immune checkpoint

blockade.

Targeting CSPP1 to improve TME
immunogenicity.

(177)

DHODH
Mitochondrial DHODH inhibitor B2
induces ROS and lipid peroxidation.

Triggers ferroptosis and downregulates PD-L1 to
relieve immunosuppression.

B2 (DHODH inhibitor) as a
mitochondrial-targeted ferroptosis

inducer.
(178)

IDO1
Artemisinin (ART) inhibits IDO1 and

Hmox1 transcription.
Induces ferroptosis and activates CD8+ T cells via

tryptophan metabolism.
ART as an IDO1-targeting

ferroptosis inducer.
(179)

Fth1
Lithium downregulates Fth1,
increasing labile iron pools.

Enhances RSL3-induced ferroptosis and CD8+ T-
cell infiltration.

Lithium + RSL3 combination
therapy.

(180)

circPIAS1
circPIAS1-108aa inhibits STAT1
phosphorylation to suppress

ferroptosis.

Limits IFNg-induced immunogenic ferroptosis
and ICB efficacy.

ASO-mediated circPIAS1
knockdown + anti-PD-1.

(181)

TCFI
nanozyme

Triple enzymatic activity (Fenton,
catalase, GSH oxidase) drives

ferroptosis.

Induces immunogenic cell death and enhances
CD8+ T-cell infiltration.

TCFI nanozyme + aPD-1. (182)

FeMOF-RP
nanozyme

Catalyzes H2O2 decomposition,
releases oxygen, and delivers R848.

Combines ferroptosis with photodynamic therapy;
polarizes M2→M1 macrophages.

FeMOF-RP nanozyme for dual
ferroptosis and immune activation.

(183)

EFP@MNs
microneedle

Degrades lipid droplets to boost lipid
peroxidation and ferroptosis.

Reshapes TME via M1 macrophage polarization
and DC maturation.

EFP@MNs + anti-PD-L1. (184)

Histotripsy
ultrasound

Triggers HMGB1 release and
ferroptosis-associated immune

activation.

Enhances CD8+ T-cell infiltration via innate
immune stimulation.

Ultrasound + CTLA-4 blockade. (185)

Re-TP
rhenium
complex

Generates ROS and disrupts redox
balance via NADH oxidation.

Induces PD-L1 suppression and ferroptosis-driven
anti-tumor immunity.

Re-TP + immunotherapy. (186)

Ir-3
photoactivated

prodrug

Releases Fe²+ to drive Fenton reaction
and ICD.

Eliminates melanoma stem cells and prevents
metastasis/recurrence.

Light-activated Ir-3 +
immunotherapy.

(187)
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immunosuppressive TME, paving the way for more effective cancer

immunotherapy (188).

Another critical regulator of necroptosis-driven immune

activation is the RNA-editing enzyme Adenosine Deaminase

Acting on RNA 1 (ADAR1), which suppresses the accumulation

of endogenous Z-RNA. ADAR1 deficiency, by allowing the

accumulation of Z-RNA, triggers necroptosis through the Z-RNA

sensor Z-DNA Binding Protein 1 (ZBP1), effectively bypassing

resistance mechanisms to ICB. Pharmacological activation of

ZBP1 using the small molecule CBL0137 has been shown to

restore ICB responsiveness in melanoma. This is achieved by

inducing the expression of IFN-stimulated genes (ISGs) and

promoting necroptotic cell death, highlighting ADAR1 as a

potential therapeutic target to overcome immune evasion in

melanoma (137).
3.2.2 Therapeutic strategies to induce
necroptosis

Targeted induction of necroptosis has shown significant

promise in overcoming therapy resistance in melanoma. One

such approach involves the use of the antiarrhythmic drug
Frontiers in Immunology 10
propafenone, which sensitizes melanoma cells to necroptosis by

activating the JNK/JUN signaling pathway, upregulating

mitochondrial heme oxygenase 1 (HMOX1), and inducing iron

overload and ROS accumulation. Propafenone has been shown to

synergize with necroptosis inducers, such as RSL3, resulting in

near-complete tumor regression in xenograft models. Additionally,

propafenone enhances ICB efficacy by promoting tumor cell

necroptosis and increasing T cell infiltration. Clinically,

melanoma patients exhibiting elevated necroptosis-related

signatures, such as JUN and HMOX1 expression, show improved

responses to ICB therapy and prolonged progression-free

survival (189).

mRNA-based therapies, such as intratumoral delivery of

MLKL-encoding mRNA, represent another promising strategy for

inducing necroptosis. This approach bypasses upstream signaling

defects in necroptosis and directly triggers robust antitumor

immunity. MLKL-mRNA therapy induces tumor neoantigen-

specific T cell responses, which are dependent on type I IFN

signaling and Batf3+ DCs. When combined with ICB, MLKL-

mRNA therapy effectively suppresses both primary and metastatic

tumors, highlighting its potential as a valuable adjunct to existing

immunotherapeutic strategies (190).
FIGURE 4

Necroptosis-mediated immunotherapeutic modulation in melanoma. This figure delineates necroptosis-driven antitumor immunity through DAMPs
release and dendritic cell activation. Key interventions include pharmacological agents (propafenone) inducing JNK/JUN-mediated iron overload,
mRNA-based MLKL delivery bypassing upstream signaling defects, and IHEL nanovesicles combining phototherapy with heme-induced necroptosis.
Synergy with immune checkpoint blockade (anti-PD-1/PD-L1) amplifies T-cell infiltration, remodels the immunosuppressive tumor microenvironment,
and suppresses metastasis through RIPK1-dependent immunogenic cell death and macrophage polarization. Created by Biorender.com.
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Hybrid exosome/liposome nanovesicles are another innovative

strategy that integrates multiple therapeutic modalities, combining

phototherapy with heme-induced necroptosis to overcome

apoptosis resistance. IHEL nanovesicles not only induce

necroptosis but also remodel the TME by alleviating hypoxia,

inhibiting glycolysis, and polarizing macrophages towards an

immunostimulatory M1 phenotype. These effects contribute to

enhanced antitumor immunity, making IHEL a versatile platform

for necroptosis-centered therapies (191).

3.2.3 Synergy with ICB
The combination of necroptosis induction with ICB represents

a promising therapeutic approach for melanoma. T cell-derived

TNFa has been shown to activate RIPK1-dependent necroptosis in

target cells, a critical mechanism for accelerating allograft rejection

and amplifying the antitumor effects of anti-PD1 therapy. In

melanoma models, RIPK1-dependent necroptosis works

synergistically with ICB by promoting ICD and enhancing T cell

activation, thus amplifying the efficacy of ICIs (192).

MLKL-mRNA therapy further exemplifies this synergy, as its

combination with ICB leads to enhanced CD8+ T cell-mediated

tumor clearance and the establishment of durable immune

memory. This approach leverages both direct tumor cell killing

and the priming of antitumor immunity to improve therapeutic

outcomes (190). Similarly, propafenone-induced necroptosis has

been shown to reshape the TME to favor ICB responsiveness. By

linking necroptotic cell death with adaptive immune activation,

propafenone enhances the antitumor effects of ICB therapy (189).

These findings collectively underscore the dual role of necroptosis

in both directly eliminating tumor cells and indirectly enhancing

antitumor immunity. By modulating the TME and promoting

immune activation, necroptosis is poised to be a cornerstone of

next-generation combination therapies that aim to overcome

resistance and improve the durability of cancer treatments.
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3.3 Targeting pyroptosis for cancer
immunotherapy in melanoma

Pyroptosis, an inflammatory and ICD pathway driven by

GSDM family pore formation, has emerged as a pivotal strategy

to reignite antitumor immunity in melanoma by releasing DAMPs

and activating adaptive immune responses. This section outlines

key molecular regulators and therapeutic innovations—from

pharmacological agents to CRISPR-based platforms and

biomimetic nanoparticles—that leverage pyroptosis to counter

immune evasion. Synergy with ICB and targeted therapies further

amplifies CD8+ T cel l infi l t rat ion and remodels the

immunosuppressive TME. Prognostic models like the pyroptosis

score (PScore) provide insights into patient stratification and ICB

responsiveness. Figure 5 and Table 3 summarize these pathways

and interventions, setting the stage for detailed exploration of

pyroptosis-driven immunotherapies in melanoma.

3.3.1 Molecular mechanisms and regulatory
pathways

Pyroptosis, a lytic and inflammatory form of PCD, is intricately

regulated by molecular pathways that significantly intersect with

tumor immunity in melanoma. One of the key regulators identified

is the proto-oncogene C-reaK-tyrosine kinAse like (CRKL), which

plays a critical role in melanoma progression. Overexpression of

CRKL has been shown to correlate with poor prognosis and reduced

responsiveness to anti-PD1 therapy, positioning it as both a

prognostic biomarker and a potential therapeutic target.

Suppression of CRKL activates pyroptosis-related pathways,

highlighting its pivotal role in melanoma immune evasion (193).

Similarly, the transcription factor (Sex Determining Region Y)-

box 10 (SOX10) modulates melanoma cell susceptibility to T cell-

mediated killing. SOX10 deficiency sensitizes melanoma cells to

pyroptosis induced by TNFa and IFNg, triggering caspase-
TABLE 2 Molecular targets and therapeutic strategies for necroptosis-driven immunotherapy in melanoma.

Target Mechanism Biological function Therapeutic strategy References

Caspases
(pan-

inhibition)

zVAD-fmk inhibits apoptosis, shifting
cell death to necroptosis with HMGB1

release.

Enhances immunogenic cell death and
activates DCs/CD8+ T cells via MyD88-

dependent pathways.

zVAD-fmk combined with multimodal
therapy (radiotherapy/chemotherapy/

hyperthermia).
(188)

ADAR1-
ZBP1 axis

ADAR1 deletion leads to Z-RNA
accumulation, activating ZBP1-mediated

necroptosis.

Overcomes ICB resistance by restoring
immunogenic necroptosis.

CBL0137 (ZBP1 activator) to bypass
ADAR1-mediated immunosuppression.

(137)

Propafenone
Activates JNK/JUN-HMOX1 axis,

inducing mitochondrial iron overload
and ROS.

Sensitizes melanoma to necroptosis and
synergizes with immunotherapy.

Propafenone + necroptosis inducers (e.g.,
RSL3).

(189)

MLKL
mRNA

Local delivery of MLKL-mRNA bypasses
upstream necroptosis signaling defects.

Triggers tumor-specific T-cell responses via
type I IFN and Batf3+ DCs.

MLKL-mRNA + immune checkpoint
blockade (e.g., anti-PD-1/CTLA-4).

(190)

IHEL
nanoparticles

Combines phototherapy (IR780) with
heme-induced necroptosis and metabolic

modulation.

Converts “immune-cold” to “immune-hot”
TME via M1 macrophage polarization.

IHEL system for dual necroptosis
induction and tumor microenvironment

remodeling.
(191)

RIPK1
T-cell-derived TNF activates RIPK1-
dependent necroptosis in target cells.

Enhances anti-PD1 efficacy by promoting
immunogenic cell death.

TNF-RIPK1 axis modulation + anti-PD1. (192)
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dependent mechanisms that enhance ICD. This process reshapes

the melanoma tumor-immune interaction, promoting the

activation of antitumor immunity (194).

Pharmacological agents such as clofarabine (Clo) have been

identified as key enhancers of the link between apoptosis and

pyroptosis. Clo activates the non-canonical STING-NF-kB
pathway, inducing pyroptosis and upregulating HLA molecules

and chemokines such as CCL5 and CXCL10. These changes

amplify the recruitment and activation of CD8+ T cells, thereby

enhancing antitumor immunity (195). Conversely, the formation of

lipid rafts through ACSL4 activity has been shown to suppress

platinum-induced pyroptosis. Notably, cholesterol depletion can

restore ICD, enhancing the efficacy of chemotherapy (196).

Collectively, these findings underscore the complex interplay

between pyroptosis regulators and immune evasion mechanisms,

highlighting potential therapeutic opportunities.
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3.3.2 Therapeutic strategies for pyroptosis
induction

A variety of innovative therapeutic platforms have been

developed to exploit pyroptosis in melanoma treatment. One such

approach involves the use of the caspase-3 activator raptinal, which

induces pyroptosis in BRAF-mutant melanoma through GSDME

cleavage. This mechanism overcomes resistance to BRAF/MEK

inhibitors (BRAFi/MEKi) and delays tumor growth, suggesting its

potential as a therapeutic strategy in resistant melanoma (197).

Nanotechnology-based strategies, such as R848-loaded AlZn

hydroxide (R@AZOH), combine pyroptosis induction with innate

immune activation. R@AZOH triggers zinc-dependent

mitochondrial dysfunction, promoting the release of DAMPs

and supporting DC maturation. This promotes sustained

adaptive immunity, further strengthening the antitumor

response (198).
FIGURE 5

Pyroptosis-centric immunotherapeutic integration in melanoma. This figure depicts pyroptosis-mediated antitumor immunity through gasdermin
pore-driven DAMPs release and adaptive immune activation. Key strategies include pharmacological activators (clofarabine, raptinal) modulating
STING-NF-kB/GSDME pathways, nanotechnology platforms (R@AZOH, Nano-CD) coupling CRISPR-based GSDME induction with innate immunity
priming, and biomimetic nanoparticles enhancing chemotherapeutic pyroptosis. Synergy with BRAF/MEK inhibitors and immune checkpoint
blockade amplifies CD8+ T-cell infiltration via HMGB1-mediated immunogenicity while remodeling immunosuppressive niches. Prognostic
pyroptosis scoring (PScore) stratifies patients by immune microenvironment features and therapeutic responsiveness, guiding precision
immunotherapy design. Created by Biorender.com.
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CRISPR-based strategies also offer a promising approach to

enhancing pyroptosis in melanoma. The Nano-CD platform

exploits endogenous GSDME expression via tumor-supplied

CRISPR/dCas9 systems. When combined with cisplatin-induced

caspase-3 activation, Nano-CD induces robust pyroptosis, reverses

the immunosuppressive TME, and synergizes with ICB (199).
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Additionally, biomimetic nanoparticles, such as ZIF-8 coated

with cancer cell membranes, enhance oxaliplatin delivery and

GSDME-mediated pyroptosis by inducing GSDME upregulation

through DNA methyltransferase inhibition (200). Advanced

nanomedicines like CSCCPT/SNAP, which generate reactive

nitrogen species (RNS), also amplify pyroptosis. Furthermore,
TABLE 3 Molecular targets and therapeutic strategies for pyroptosis-driven immunotherapy in melanoma.

Target Mechanism Biological function Therapeutic strategy References

CRKL
CRKL inhibition activates pyroptosis-related

pathways.
Predicts anti-PD1 response; correlates with
immune activation and poor prognosis.

CRKL-targeted therapies to
enhance pyroptosis.

(193)

SOX10
SOX10 deletion sensitizes melanoma to

cytokine-induced pyroptosis.
Enhances CD8+ T-cell-mediated killing via

caspase-dependent pyroptosis.
Targeting SOX10 to potentiate T-

cell immunity.
(194)

Clofarabine
(Clo)

Activates non-canonical STING-NF-kB
pathway, upregulating HLA/BAX and

chemokines.

Induces pyroptosis and immunogenic cell
death (ICD) in melanoma and lung cancer.

Repurposing Clo for STING-NF-
kB-driven pyroptosis.

(195)

ACSL4-
mediated lipid

rafts

Lipid raft formation suppresses pyroptosis by
sequestering immunogenic pathways.

Reduces sensitivity to platinum-based ICD.
Disrupting lipid rafts (e.g.,

cholesterol depletion) to restore
pyroptosis.

(196)

Raptinal
Caspase-3/GSDME-dependent pyroptosis in

BRAF-mutant melanoma.
Overcomes therapy resistance by inducing

inflammatory cell death.
Raptinal as a pyroptosis inducer for

BRAF/MEKi-resistant tumors.
(197)

R@AZOH
nanozyme

Zinc-induced mitochondrial dysfunction
triggers pyroptosis and DAMPs release.

Synergizes phototherapy with TLR7/8
activation to remodel TME.

R@AZOH for dual pyroptosis
induction and DC maturation.

(198)

Nano-CD
platform

CRISPR/dCas9-driven GSDME expression +
cisplatin-induced caspase-3 activation.

Reverses immunosuppressive TME via
pyroptosis-ICD synergy.

Nano-CD + immune checkpoint
blockade (ICB).

(199)

ZIF-8
nanoparticles

DCT-enhanced GSDME expression enables
OXA-induced pyroptosis.

Creates pro-inflammatory TME via
pyroptosis and R837-mediated immune

activation.

Biomimetic nanoparticles for
chemotherapy-pyroptosis

combination.
(200)

CSCCPT/
SNAP

nanodrug

ROS/NO synergism triggers pyroptosis and
sustains antitumor immunity.

Amplifies pyroptosis via reactive nitrogen
species (RNS).

Supramolecular nanomedicine for
self-reinforcing pyroptosis.

(201)

Ir(III)-C3N5
nanocomposite

Piezocatalytic ROS generation induces
lysosomal rupture and pyroptosis.

Reverses hypoxic TME and enhances
antigen presentation.

Oxygen-self-sufficient nanoplatform
for sonodynamic immunotherapy.

(202)

4S5NG-PE24
conjugate

Integrin a6-targeted delivery of PE24 induces
pyroptosis.

Promotes antitumor immunity via
pyroptosis-dependent T-cell activation.

Peptide-drug conjugates for
precision pyroptosis induction.

(203)

BRAFi +
MEKi

Immunogenic pyroptosis via GSDME
cleavage and HMGB1 release.

Enhances T-cell infiltration and overcomes
targeted therapy resistance.

BRAFi + MEKi combined with
pyroptosis-inducing chemotherapy.

(204)

PDPK1
PDPK1 inhibition synergizes with MEKi to

induce pyroptosis.
Increases intratumoral CD8+ T cells in

NRAS-mutant melanoma.
PDPK1 inhibitors + MEKi for
immunostimulatory pyroptosis.

(205)

CDNP
nanogel

Dabrafenib + celecoxib co-delivery induces
pyroptosis and TME remodeling.

Synergizes BRAF/COX2 inhibition with
pyroptosis-driven immune activation.

CDNP + anti-PD1 for enhanced
melanoma control.

(206)

MS-275 + V-
9302

Epigenetic-metabolic co-targeting triggers
ROS-dependent pyroptosis.

Converts “cold” to “hot” TME in uveal
melanoma.

ROS-sensitive nanoparticles + anti-
PD1.

(207)

H101
adenovirus

Caspase-1/GSDMD-mediated endothelial
pyroptosis.

Reduces M2 macrophages and enhances
CD8+ T-cell infiltration.

H101 + anti-PD-L1 for synergistic
tumor suppression.

(208)

pH-sensitive
nanoplatform

ER stress-pyroptosis-ferroptosis crosstalk via
metabolic modulation.

Polarizes TAMs to M1 phenotype and
induces cytotoxic T-cell responses.

Multimodal nanotherapy + ICB for
durable antitumor immunity.

(209)

PRGs (GZMA
+/GSDMB+)

Reduced pyroptosis capacity in CD8+ T/NK
cells correlates with melanoma progression.

Prognostic risk model links PRGs to
immune evasion.

PRG-based nomogram for
predicting survival and therapy

response.
(210)

Pyroptosis
Score (PScore)

High PScore correlates with immune-rich
TME and better ICB response.

Predictive biomarker for metastatic
melanoma survival and immunotherapy

efficacy.

PScore-guided stratification to
optimize ICB outcomes.

(211)
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iridium (III)-C3N5 nanocomposites induce lysosomal rupture and

pyroptosis via sonodynamic therapy, effectively overcoming

hypoxia and enhancing the therapeutic response (201, 202).

Targeted delivery systems, such as the integrin a6-specific cell-
penetrating peptide 4S5NG, enable precise induction of pyroptosis

in melanoma cells while sparing normal tissues, thereby increasing

the safety and efficacy of treatment (203). These diverse strategies

highlight the versatility and potential of pyroptosis-centered

approaches in melanoma immunotherapy.

3.3.3 Combination therapies with
immunotherapy/targeted agents

The combination of pyroptosis inducers with targeted therapies

or ICB has shown transformative potential in melanoma treatment.

BRAFi/MEKi induce pyroptosis via GSDME cleavage and HMGB1

release, activating CD8+ T cell-dependent antitumor immunity.

However, resistance to BRAFi/MEKi therapy is often associated

with diminished pyroptosis markers, suggesting that enhancing

pyroptosis could overcome therapeutic escape and improve

treatment outcomes (204).

Similarly, PDPK1 inhibition has been shown to synergize with

MEK inhibitors in NRAS-mutant melanoma, enhancing pyroptosis

and promoting CD8+ T cell infiltration in immunocompetent

models (205). Nanotherapeutic platforms, such as the BRAFi/

COX2i-loaded nanogel Cyclic di-nucleotide phosphodiesterase

(CDNP), induce pyroptosis and remodel the TME, leading to

superior tumor control when combined with anti-PD1

therapy (206).

ROS-sensitive nanoparticles, co-delivering HDAC and

glutamine metabolism inhibitors, have also been shown to

convert “immunologically cold” tumors into “hot” tumors by

triggering pyroptosis and enhancing PD-1 blockade efficacy (207).

Additionally, viral therapies such as the oncolytic adenovirus H101

induce endothelial pyroptosis via caspase-1/GSDMD activation,

synergizing with anti-PD-L1 therapy to suppress tumor growth

(208). Pioneering pH-sensitive nanoplatforms demonstrate

multimodal induction of pyroptosis and ferroptosis, polarizing

tumor-associated macrophages (TAMs) and enhancing ICB

responses (209). These studies illustrate the potential of

combining pyroptosis with immune modulation to overcome

therapeutic resistance and improve treatment outcomes

in melanoma.

3.3.4 Prognostic models and TME insights
Single-cell transcriptomic analyses have provided valuable

insights into the dysregulated expression of pyroptosis-related

genes (PRGs) in melanoma, particularly within CD8+ T and NK

cells. The reduced presence of GZMA+ CD8+ T cells and GSDMB+

NK cells in tumors is associated with a diminished pyroptotic

capacity, indicating that immune cell pyroptosis plays a role in

melanoma progression (210).

The PScore, a computational model integrating PRG

expression, has emerged as a potential tool for predicting patient

survival and response to ICB therapy in metastatic melanoma.

Tumors with a high PScore are characterized by an immune-
Frontiers in Immunology 14
enriched TME and show better responses to ICB therapy, while

low PScore tumors are associated with fibrotic or immune-

exhausted microenvironments. Notably, monocytes exhibit the

highest PScore, contrasting with malignant cells and fibroblasts,

which are resistant to pyroptosis (211). These prognostic models

provide a framework for stratifying patients and tailoring

pyroptosis-centered immunotherapies, offering a more

personalized approach to melanoma treatment.
3.4 Targeting cross-mechanism
interactions for immunomodulation in
melanoma

The interplay of RCD pathways and metabolic reprogramming

offers a multidimensional strategy to enhance antitumor immunity

in melanoma. This section explores how synergistic activation of

ICD, single-cell-guided insights into tumor heterogeneity, and

metabolic interventions reshape the immunosuppressive

microenvironment. By integrating these cross-mechanism

approaches, novel therapeutic strategies aim to overcome

resistance and amplify immunotherapy efficacy. Table 4

summarized these interactions, setting the stage for detailed

discussion in the following sections to highlight the synergies and

challenges of co-targeting multiple PCD pathways.

3.4.1 The diverse landscape of regulated cell
death in melanoma

Melanoma is characterized by its profound resistance to

conventional cell death mechanisms, a hallmark of its aggressive

nature. While apoptosis, or Type I programmed cell death (PCD), is

the most studied pathway, melanoma cells frequently upregulate

anti-apoptotic machinery, rendering them insensitive to therapies

designed to trigger it. This inherent resistance has driven

researchers to explore and exploit non-apoptotic forms of

regulated cell death (RCD) as alternative therapeutic avenues.

These pathways not only offer direct tumor-killing capabilities but

can also be highly immunogenic, fundamentally altering the

dialogue between the dying cancer cell and the host immune

system (212).

Several non-apoptotic RCD pathways have emerged as critical

players in melanoma biology and therapy.
3.4.1.1 Necroptosis

A caspase-independent form of programmed necrosis

orchestrated by the RIPK1/RIPK3/MLKL signaling axis. Unlike

the immunologically silent process of apoptosis, necroptosis

results in cell lysis and the release of damage-associated molecular

patterns (DAMPs), which can powerfully stimulate an anti-tumor

immune response. Inducing necroptosis has been shown to

synergize with immunotherapy to enhance anti-melanoma

immunity. For instance, direct intratumoral delivery of MLKL

mRNA can inhibit melanoma growth and boost the efficacy of

immune checkpoint inhibitors (ICIs).
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3.4.1.2 Ferroptosis

An iron-dependent form of cell death characterized by the

overwhelming accumulation of lipid peroxides. This pathway is

intricately linked to cellular metabolism, particularly lipid and iron

homeostasis, making it a unique target in metabolically rewired

cancer cells. Ferroptosis has demonstrated significant potential in

overcoming therapy resistance in melanoma, including resistance to

BRAF inhibitors and immunotherapy. Combining ferroptosis

inducers with ICIs like anti-PD-1/PD-L1 antibodies has shown

synergistic anti-tumor effects.

3.4.1.3 Pyroptosis

A highly inflammatory form of programmed cell death

mediated by the gasdermin protein family, leading to cell

swelling, lysis, and the release of pro-inflammatory cytokines.

This robust inflammatory response can elicit a strong adaptive

immune response, promoting the infiltration of immune cells into

the tumor and correlating with a favorable prognosis in

melanoma patients.

3.4.1.4 PANoptosis

A more recently described inflammatory cell death pathway

that integrates key features of pyroptosis, apoptosis, and

necroptosis. This pathway can be activated by the sensor protein

ZBP1 and has been shown to repress melanoma growth and

improve responsiveness to immune checkpoint blockade.

The ability to trigger these diverse death modalities provides a

strategic advantage, allowing for tailored approaches that bypass

melanoma’s specific anti-apoptotic defenses (196).

3.4.2 Immunogenic cell death: transforming
tumors into endogenous vaccines

The ultimate goal of many modern cancer therapies is not just

to kill tumor cells but to do so in a way that stimulates a lasting,

systemic anti-tumor immune response. This is the central concept

of Immunogenic Cell Death (ICD). ICD is a form of RCD where
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dying cancer cells release a specific set of DAMPs that act as potent

adjuvants, effectively turning the tumor into an in-situ

vaccine (213).

The canonical process of ICD involves several key steps: (1)

Exposure of “Eat-Me” Signals: Dying cells expose calreticulin (CRT)

on their surface, signaling phagocytic cells like dendritic cells (DCs)

to engulf them. (2)Release of “Find-Me” Signals: The release of ATP

attracts antigen-presenting cells (APCs) to the tumor site. (3)

Activation of Immune Sensors: The release of High Mobility

Group Box 1 (HMGB1) protein binds to Toll-like receptor 4

(TLR4) on DCs, promoting their maturation and antigen

presentation capabilities.

This cascade of events transforms an immunosuppressive

tumor microenvironment (TME) into an immunostimulatory

one. Mature DCs migrate to draining lymph nodes, where they

present tumor antigens to naive T cells, priming a robust, tumor-

specific cytotoxic T lymphocyte (CTL) response. These CTLs then

infiltrate the tumor, recognize and eliminate remaining cancer cells,

and can form a long-term immunological memory.

Therapeutic strategies including certain chemotherapies,

radiotherapy, and photodynamic therapy are known ICD

inducers. The true power of ICD, however, lies in its synergy with

immunotherapy. By generating a fresh wave of tumor-specific T

cells, ICD can sensitize “cold” tumors (lacking immune infiltrate) to

ICIs like anti-PD-1 and anti-CTLA-4 antibodies, which work by

“releasing the brakes” on already-present T cells. This combination

can overcome primary and acquired resistance to immunotherapy,

a major clinical challenge in melanoma treatment (214).
3.4.3 Metabolic reprogramming: the engine of
malignancy and an immunosuppressive force

Disordered metabolism is a core hallmark of cancer, and

melanoma is a prime example of a tumor that extensively rewires

its metabolic pathways to support rapid proliferation, survival, and

metastasis. This metabolic reprogramming, often driven by

oncogenic mutations such as in the BRAF gene, is not just a cell-
TABLE 4 Molecular targets and therapeutic strategies for cross-mechanism immunomodulation in melanoma.

Target Mechanism Biological function
Therapeutic
strategy

References

TPL@TFBF
nanozyme

Synergistic ferroptosis/pyroptosis via Fenton reaction-
driven ROS accumulation.

Releases DAMPs to activate DCs and
cytotoxic T cells, suppressing tumor

growth and metastasis.

TPL@TFBF + immune
checkpoint blockade.

(212)

ACSL4-
mediated lipid

rafts

Lipid raft formation suppresses ferroptosis/pyroptosis by
sequestering immunogenic pathways.

Reduces sensitivity to platinum-based
ICD.

Cholesterol depletion to
disrupt lipid rafts.

(196)

C0 SOD3+
melanoma

subpopulation

Oxidative pathway-enriched metastatic subpopulation
linked to multiple PCD forms (apoptosis, autophagy,

ferroptosis, pyroptosis).

Correlates with immune evasion and
poor prognosis.

Prognostic model
integrating PCD-related

genes.
(213)

Decitabine
Hypomethylating agent reverses immunosuppression by

restoring IFN/ISG expression.

Restores CD8+ T-cell function and
reduces myeloid-derived suppressor cells

(MDSCs).

Low-dose decitabine to
reprogram

immunosuppressive TME.
(214)

Lipid starvation
scaffold

Inhibits fatty acid uptake via FATP/TGF-b blockade,
polarizing neutrophils to N1 phenotype.

Triggers pyroptosis, recruits M1
macrophages, and amplifies antitumor

immunity.

ECM-mimetic scaffold
delivering FATP/TGF-b

inhibitors.
(215)
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intrinsic process; it profoundly shapes the TME and orchestrates

immune evasion.

Melanoma cells exhibit high rates of aerobic glycolysis (the

Warburg effect), diverting glucose away from oxidative

phosphorylation (OXPHOS) to produce lactate and biosynthetic

precursors. This metabolic shift creates a TME that is acidic and

nutrient-deprived (e.g., low in glucose and tryptophan), which

directly impairs the function of effector immune cells like T cells

and NK cells, while favoring the function of immunosuppressive

cells like regulatory T cells (Tregs) and myeloid-derived suppressor

cells (MDSCs). Beyond glycolysis, melanoma cells also exhibit

altered lipid, amino acid, and glutathione metabolism, all of

which contribute to both tumor growth and the suppression of

antitumor immunity.

This deep connection between metabolism and immunity

presents a therapeutic vulnerability. Targeting key metabolic

enzymes or pathways is emerging as a promising strategy to not

only directly inhibit tumor growth but also to normalize the TME,

thereby restoring the efficacy of immune cells and enhancing the

effects of immunotherapy (215).
4 Discussion and future direction

The therapeutic landscape for advanced melanoma has been

fundamentally reshaped over the past decade by the advent of

immunotherapy, particularly immune checkpoint inhibitors (ICIs).

Despite these transformative successes, a significant portion of

patients exhibit primary or acquired resistance, creating an urgent

need for novel strategies that can overcome these limitations (62, 63,

72). A promising new frontier in oncology involves the deliberate

induction of specific forms of regulated cell death (RCD) to not only

eliminate tumor cells directly but also to potently stimulate a robust

and durable anti-tumor immune response.

This report focuses on the emerging paradigm of simultaneously

targeting three distinct, non-apoptotic RCD pathways—ferroptosis,

pyroptosis, and necroptosis—as a comprehensive strategy to enhance

cancer immunotherapy in melanoma. These pathways, once studied in

isolation, are now understood to be interconnected components of a

broader “cell death network” that can be manipulated to convert an

immunologically “cold” tumor microenvironment (TME) into a “hot”

one, thereby sensitizing melanoma to immune-mediated destruction

(216, 217). We will delve into the mechanistic underpinnings of each

pathway, explore the rationale for their combined targeting, analyze the

technological advancements facilitating this research, and critically

evaluate the significant challenges and future directions on the path

to clinical translation (53, 218–221).

Recent studies have demonstrated the potential of combining

different forms of PCD, such as ferroptosis, pyroptosis, and

necroptosis, to enhance ICD and overcome resistance to

conventional therapies . By target ing these pathways

simultaneously, researchers have designed multifunctional

nanoparticles, small-molecule combinations, and metabolic

interventions that not only induce tumor cell death but also
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reshape the immunosuppressive TME. For example, combining

ferroptosis inducers with agents that activate pyroptosis has been

shown to release DAMPs and cytokines, which in turn recruit DCs

and CTLs, thereby enhancing systemic antitumor immunity (222,

223). Similarly, metabolic interventions that target lipid or iron

homeostasis can deplete essential tumor resources while

reprogramming immune cells toward pro-inflammatory

phenotypes, presenting a promising avenue to augment

therapeutic efficacy.

Additionally, cutting-edge technologies such as single-cell omics

and spatial transcriptomics have offered an in-depth understanding

of melanoma’s heterogeneity and its immune landscape (32, 46, 224–

226). These approaches have revealed rare subpopulations of

therapy-resistant melanoma cells and highlighted the dynamic

shifts in immune cell states during treatment. This high-resolution

analysis has facilitated the design of precision therapies aimed at

vulnerabilities in both malignant and stromal compartments.

Moreover, the repurposing of FDA-approved drugs, such as

decitabine and propafenone, to modulate epigenetic and metabolic

pathways underscores the potential to translate mechanistic insights

into clinically actionable therapies (189, 227, 228).

Despite these promising developments, there are several

barriers that need to be addressed before preclinical findings can

be successfully translated into clinical practice. One of the key

challenges is the incomplete understanding of how the different

PCD pathways interact with each other. For instance, LPO, a

hallmark of ferroptosis, may inadvertently suppress pyroptosis by

altering membrane fluidity or sequestering essential mediators like

GSDMs. Additionally, the role of necroptosis in modulating T cell

exhaustion or myeloid cell polarization remains unclear,

complicating the rational design of combination therapies.

Furthermore, most preclinical studies rely on murine models or

cell lines that do not fully capture the genetic diversity or

immunosuppressive microenvironments of human melanoma,

limiting the predictability and relevance of these findings. The

lack of standardized models for therapy-resistant niches, such as

brain metastases, further complicates the translation of preclinical

data into clinical success.

Another significant hurdle lies in the translation of nanotherapy

from preclinical studies to clinical use. While nanotechnology

platforms, including MOFs and lipid-coated nanoparticles, have

shown promising results in preclinical studies (229–232), their

clinical application faces challenges such as variability in batch

production, poor tumor penetration in desmoplastic tissues, and

potential toxicity from metal ion leakage. Additionally, the absence

of scalable manufacturing processes for these complex nanocarriers

raises concerns regarding cost-effectiveness and regulatory

approval. Moreover, current biomarkers, such as PD-L1

expression and TMB, have demonstrated limited predictive value

for immunogenic therapies, highlighting the need for the

development of more precise biomarkers to guide treatment

selection. For example, patients with high PScore may benefit

from ICD-inducing agents, but no validated assays currently exist

to guide such stratification. The influence of factors such as gut

microbiota, systemic metabolism, and host genetics on therapy
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outcomes remains underexplored, contributing to inconsistent

results in clinical trials.
5 Technological and preclinical
frontiers

Addressing these complex questions requires sophisticated tools.

Cutting-edge technologies such as single-cell omics and spatial

transcriptomics have offered an in-depth understanding of

melanoma’s heterogeneity and its immune landscape. These

approaches have revealed rare subpopulations of therapy-resistant

melanoma cells and highlighted the dynamic shifts in immune cell

states during treatment. This high-resolution analysis, powered by

computational methods like BayesSpace for clustering spatial data, has

facilitated the design of precision therapies aimed at vulnerabilities in

both malignant and stromal compartments. However, a key challenge

remains in integrating multi-modal data to enhance resolution, as

spatial transcriptomics alone can sometimes lack single-cell precision.

Artificial intelligence (AI) and machine learning (ML) are also

poised to play a transformative role. AI/ML algorithms can be

applied to analyze vast datasets to predict the efficacy of novel drug

combinations, identify new therapeutic targets, and optimize

treatment regimens. For example, neural networks can be trained

to predict cell viability and dose-response curves for complex

combination therapies, guiding preclinical development. This

computational power will be essential for navigating the immense

complexity of targeting multiple RCD pathways simultaneously in

heterogeneous patient populations.
6 Future directions and the path to
clinical translation

The journey from compelling preclinical concepts to effective

clinical therapies is fraught with challenges that must be

systematically addressed.
6.1 Developing predictive biomarkers and
optimizing clinical trials

A significant barrier to clinical translation is the lack of

biomarker panels to monitor patient response to therapies

targeting multiple RCD pathways. Current clinical protocols for

melanoma incorporate biomarkers for targeted therapy (e.g., BRAF

mutation status) and immunotherapy (e.g., PD-L1 expression) but

none are established for this novel approach. Developing assays to

measure the activation state of ferroptosis, pyroptosis, and

necroptosis within tumors is a critical first step for personalizing

treatment and assessing therapeutic efficacy.

Furthermore, clinical trial designs must be adapted to evaluate

these complex combination strategies. Traditional linear trial

designs may be inadequate. Instead, adaptive trial designs, such as

Sequential, Multiple Assignment, Randomized Trial (SMART)
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designs, will be necessary to flexibly test different combinations,

doses, and schedules based on emerging data, thereby optimizing

the path to regulatory approval.
6.2 Overcoming manufacturing and
delivery hurdles

For strategies involving multifunctional nanoparticles,

significant translational barriers exist, including challenges in

manufacturing at scale, ensuring batch-to-batch consistency,

predicting and managing toxicity, and overcoming biological

barriers to ensure effective tumor delivery. The gap between

promising results in preclinical animal models and outcomes in

human patients remains a major hurdle for nanomedicine

in general.
6.3 Expanding the mechanistic framework
to include the microbiome

The gut microbiome has emerged as a critical modulator of

response to immunotherapy in melanoma patients. However, its

role in modulating the response to therapies that induce ferroptosis,

pyroptosis, and necroptosis is entirely unknown. Future research

must investigate whether the microbiome influences the activation

of these RCD pathways or the subsequent immune response,

potentially opening avenues for microbiome-based co-therapies to

enhance treatment efficacy (233, 234).
7 Conclusion

The strategy of targeting ferroptosis, pyroptosis, and necroptosis

in concert represents a paradigm shift in cancer immunotherapy for

melanoma. It moves beyond single-target approaches to embrace the

complexity of tumor biology, aiming to induce a multi-faceted,

immunologically potent form of cell death that can overcome

intrinsic and acquired resistance. While the preclinical rationale is

strong and supported by emerging evidence, the path forward

requires a concerted, interdisciplinary effort. Key priorities must

include elucidating the intricate molecular cross-talk between these

pathways, developing robust biomarkers for patient selection and

response monitoring, and designing innovative clinical trials capable

of navigating the complexities of combination therapies. By

addressing these fundamental challenges, the immense therapeutic

potential of this triad approach may be unlocked, offering new hope

for patients with advanced melanoma.
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IL-2 interleukin-2
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ICIs immune checkpoint inhibitors
BRAF B-Raf proto-oncogene, serine/threonine kinase
MEK Mitogen-Activated Protein Kinase
CTLA-4 Cytotoxic T-Lymphocyte Antigen 4
TMB tumor mutational burden
irAEs immune-related adverse events
PCD Programmed cell death
DAMPs damage-associated molecular patterns
DCs dendritic cells
CTLs cytotoxic T lymphocytes
RIPK1 Receptor-Interacting Protein Kinase 1
HMGB1 High Mobility Group Box 1
ICD immunogenic cell death
TME tumor microenvironment
Tregs regulatory T cells
MDSCs myeloid-derived suppressor cells
RCD Regulated Cell Death
TFRC transferrin receptor
ROS reactive oxygen species
ALOXs arachidonate lipoxygenases
PUFAs polyunsaturated fatty acids
PL-PUFA-OOH phospholipid hydroperoxides
ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4
LPCAT3 Lysophosphatidylcholine Acyltransferase 3
GSH glutathione
PDAC pancreatic ductal adenocarcinoma
cTRIP12 circTRIP12
OGT O-GlcNAc transferase
FTH ferritin heavy chain
KEAP1 Kelch-like ECH-associated protein 1
SCLC small cell lung cancer
GBM glioblastoma
HCC Hepatocellular carcinoma
MLKL mixed-lineage kinase domain-like
CYLD Cylindromatosis
ZBP1 Z-DNA Binding Protein 1
EMT epithelial-mesenchymal transition
HNSCC head and neck squamous cell carcinoma
NSCLC non-small cell lung cancer
GSDM gasdermin
ogy 24
GSDMD Gasdermin D
NK natural killer
ICB immune checkpoint blockade
TNBC triple-negative breast cancer
dsRNA double-stranded RNA
RIDD regulated IRE1-dependent decay
GC gastric cancer
NLRP3 NLR Family Pyrin Domain Containing 3
SLC7A11 Solute Carrier Family 7 Member 11
Gpx4 GSH peroxidase 4
ART artemisinin
FFAs free fatty acids
CAMKK2 Calcium/Calmodulin-Dependent Protein Kinase Kinase 2
zVAD-fmk Z-Val-Ala-Asp(OMe)-FMK
IFNg interferon-g
ADAR1 Adenosine Deaminase Acting on RNA 1
ZBP1 Z-DNA Binding Protein 1
ISGs interferon-stimulated genes
HMOX1 heme oxygenase 1
PScore pyroptosis score
CRKL C-reaK-tyrosine kinAse like
SOX10 (Sex Determining Region Y)-box 10
Clo clofarabine
R@AZOH R848-loaded AlZn hydroxide
RNS reactive nitrogen species
BRAFi BRAF inhibitors
MEKi MEK inhibitors
CDNP Cyclic di-nucleotide phosphodiesterase
TAMs tumor-associated macrophages
PRGs pyroptosis-related genes
MOF metal-organic framework
LPO lipid peroxidation
scRNA-seq single-cell RNA sequencing
GEMM genetically engineered mouse model
IFN interferon
ISGs IFN-stimulated genes
ECM extracellular matrix
FATP fatty acid transport protein
TANs tumor-associated neutrophils
TILs tumor-infiltrating lymphocytes
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