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Background: The crosstalk between macrophages and trophoblasts plays a
crucial role in the development and progression of recurrent spontaneous
abortion (RSA). Although M1 macrophages (M1-Mg) are known to accumulate
in RSA decidual tissues, their direct functional impact on trophoblasts remains
poorly characterized.

Methods: We established an M1-Mg-trophoblast coculture system to investigate
this interaction. CXCL9 expression was quantified in clinical samples and cell lines
using qPCR, ELISA, and immunofluorescence. The migration and invasion
capacities of trophoblasts were evaluated through wound healing and
Transwell assays. A series of rescue experiments were conducted to uncover
the underlying mechanism. Finally, an in vivo animal model was carried out to
validate the corresponding functions of the CXCL9-related axis.

Results: Our results revealed that M1-Mg inhibited the migration and invasion of
trophoblasts by releasing CXCL9. The expression of CXCL9 in decidual tissues
was significantly increased in RSA samples compared to healthy controls.
Mechanistically, CXCL9 activated the CXCR3-dependent JAK/STAT1 signaling
pathway. Activated STAT1 induced transcriptional upregulation of ZEB1 via IRF1,
which in turn promoted the release of CCL2 to enhance macrophage
recruitment. In vivo, inhibition of CXCL9 reduced embryo resorption in LPS-
induced abortion mice, attenuated macrophage infiltration, and restored
trophoblast migration and invasion.

Conclusion: Our work identifies a novel mechanism by which M1-Me regulate
trophoblast migration and invasion through the CXCL9/STAT1/IRF1/ZEB1 axis,
which in turn leads to the release of CCL2 that promotes macrophage infiltration
in RSA, highlighting a new form of crosstalk between macrophages
and trophoblasts.

recurrent spontaneous abortion, M1-Mg, trophoblasts, CXCL9, migration and
invasion, EMT
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1 Introduction

Recurrent spontaneous abortion (RSA) is clinically defined as the
loss of two or more pregnancies before 20 weeks of gestation, affecting
2-5% of reproductive-aged women worldwide (1). The etiology of RSA
is multifactorial and heterogeneous, encompassing chromosomal
abnormalities, immune dysregulation, endocrine disorders, as well as
environmental and lifestyle influences (2-4). Accumulating evidence
also associates immune-mediated gynecological conditions such as
endometriosis with an elevated risk of pregnancy loss, implying that
shared inflammatory and immunologic mechanisms may underlie
disrupted embryo implantation and placental development (5, 6).
Nevertheless, the precise pathogenic mechanisms remain
incompletely elucidated, warranting further investigation.

During early pregnancy, extravillous trophoblasts (EVTs) play
pivotal roles at the maternal-fetal interface by invading the
endometrial stroma and remodeling the spiral uterine arteries (7).
Epithelial-mesenchymal transition (EMT), characterized by
increased cell motility and invasive potential, plays a critical role
in regulating trophoblast migration and invasion (8, 9).
Simultaneously, the establishment of precise immune tolerance at
the maternal-fetal interface is crucial for successful pregnancy
maintenance (10). This delicate immunological balance is
maintained through sophisticated cellular crosstalk among
trophoblasts, immune cells, and decidual stromal cells.
Disruptions in this equilibrium may lead to various pregnancy
complications, including RSA and preeclampsia (11, 12).

Among the diverse immune cell populations in decidual tissue,
macrophages are particularly noteworthy, accounting for 20-30% of
first-trimester leukocytes and playing multifaceted roles in
pregnancy maintenance (13). Notably, accumulating evidence
from our group and others has demonstrated abnormal
accumulation of pro-inflammatory M1 macrophages (M1-Mg) in
RSA decidua, implicating their pathological contribution to
pregnancy loss (14-16). Macrophages are known to shape the
local microenvironment through paracrine signaling, thereby
influencing trophoblast behavior (17, 18). Our previous work has
specifically shown that M1-Mg-derived extracellular vesicles can
impair trophoblast migration and invasion, potentially driving RSA
pathogenesis (19). While extracellular vesicles represent one
important communication mechanism, cytokines and chemokines
serve as equally crucial mediators of intercellular crosstalk.
However, the specific roles of these soluble factors in M1-Me-
trophoblast communication during RSA remain poorly understood.

Our study reveals a novel regulatory axis wherein M1-M¢@-derived
CXCL9 impairs trophoblast migration and invasion through
activation of the JAK/STATTI signaling pathway. Mechanistically, we
demonstrate that ZEB1 mediates STAT1-dependent EMT modulation
in trophoblasts by interacting with IRF1, which in turn promotes the

Abbreviations: ChIP, Chromatin immunoprecipitation; CXCL9, C-X-C Motif
Chemokine Ligand 9; CXCR3, C-X-C Motif Chemokine Receptor 3; ELISA,
Enzyme-Linked Immunosorbent Assay; EMT, epithelial mesenchymal
transformation; EVTs, extravillous trophoblasts; M1-M@, M1 macrophages;

THC, immunohistochemistry; RSA, recurrent spontaneous abortion.
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generation of CCL2 to facilitate macrophage recruitment. This
reciprocal crosstalk between trophoblasts and macrophages
establishes a positive feedback loop that exacerbates the pathological
microenvironment at the maternal-fetal interface, ultimately
contributing to RSA progression.

2 Materials and methods
2.1 Patients and tissue samples

A brief summary of studied molecules is provided in
Supplementary Table S1. Between September 2021 and February
2022, villous and decidual tissue samples of induced abortion
(control group, n=10) and RSA (RSA group, n=10) were obtained
from Renmin Hospital of Wuhan University. RSA was identified as
the sequential loss of two or more pregnancies before 20 weeks of
pregnancy. Exclusion criteria were as follows, (1) endocrine or
metabolic diseases (such as thyroid dysfunction, PCOS, diabetes
mellitus, or diabetes mellitus), (2) karyotype abnormalities, (3)
uterine abnormalities, or (4) infections (e.g., HIV, TORCH, or
syphilis). Baseline data of the included patients are listed in
Supplementary Table S2. The study was approved by the
Institutional Review and Ethics Boards of Renmin Hospital of
Wuhan University (Ethical Approval Number: WDRY2021-K044).

All tissue collection procedures were performed in a sterile
environment, then the tissues were placed in a pre-cooled container
filled with sterile PBS containing 1% penicillin-streptomycin during
transport. The freshly obtained placental tissues were rinsed three
times with sterile PBS and divided for parallel processing: one
portion was embedded for histological and immunofluorescence
analyses, and the other portion was snap-frozen at —80°C for
subsequent qPCR and Western blot assays.

2.2 Animals and experimental protocol

Eight-week-old female C57BL/6 and male Balb/c mice were
maintained in a specific pathogen-free (SPF) environment under
standard environmental conditions. After adaptive feeding, the
female mice were mated with the male mice at a ratio of 2:1. The
day when a vaginal plug became visible was defined as embryonic
day 0.5 (E0.5). Lipopolysaccharide (LPS; 0.25 mg/kg, Sigma) was
intraperitoneally injected on the afternoon of E7.5 to induce
abortion, and the control group was injected with saline solution.
In the anti-CXCL9 group, anti-Mouse CXCL9/MIG Antibody (1
mg/kg; MCE, Shanghai) were injected into female C57BL/6 mice by
intravenously administered at 8:00 am on E7.5, E10.5 and E13.5. All
female mice were euthanized by isoflurane anesthesia on E13.5. The
embryo resorption rate of each mouse was calculated to assess
pregnancy outcome and was defined as the number of resorbed
embryos/(number of resorbed embryos + number of fetuses
surviving) x 100%. All protocols and experiments were approved
by the Animal Care and Use Committee of the Wuhan University
(Ethical Approval Number: 20190710).
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2.3 Cell culture and treatments

The trophoblast cell line HTR-8/SVneo (HTR-8) and the human
monocyte cell line THP-1 were grown in RPMI-1640 medium
(Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco)
at 37°C in 5% CO,. THP-1 cells were differentiated into MO
macrophages by treatment with 100 ng/mL phorbol 12-myristate
13-acetate (PMA; Sigma-Aldrich, USA) for 24 h. To induce M1-Mg,
MO macrophages were stimulated with 100 ng/mL
lipopolysaccharide (LPS; Sigma) plus 20 ng/mL IFN-y (PeproTech,
USA) (20). In the co-culture model, macrophages were incubated in
the upper chambers, and HTR-8 was placed into the lower chamber
of each insert, then analyzed after 48 h of co-culture.

The siRNA sequences targeting STAT1, IRF1, and ZEB1 are
listed in Additional file 1: Supplementary Table S3 and synthesized by
Vigene (Shandong, China). HTR-8 cells were transfected with
indicated siRNA or control using Lipofectamine 2000 reagent
(Invitrogen, CA, USA) according to the manufacturer’s instructions.

For the treatment of CXCL9, 50 ng/ml CXCL9 (PeproTech) or
1.0 pg/ml anti-human CXCL9 neutralizing antibody (anti-CXCL9,
PeproTech) was added to HTR-8 cells. For CCL2 treatment, MO-
Mg were treated with 50 ng/mL CCL2 (PeproTech).

2.4 Enzyme-linked immunosorbent assay

The culture supernatants were collected, and the concentrations of
CXCL9 and CCL2 in the supernatants were quantified using
commercially available sandwich ELISA kits (R&D Systems; USA)
according to the manufacturer’s protocols. All samples were assayed in
triplicate, and the absorbance was measured at 450 nm with
wavelength correction at 540 nm using a microplate reader (BioTek
Instruments, Winooski, VT, USA). Standard curves were generated for
each assay using recombinant human cytokines provided with the kits.

2.5 Quantitative polymerase chain reaction

Total RNA was isolated from cells using TRIzol reagent (Accurate
Biology, China) according to the manufacturer’s instructions. cDNA
was synthesized using the PrimeScript RT reagent kit (Accurate). PCR
was performed with 7500 Real-Time PCR system (Applied
Biosystems, Foster City, CA, USA). The 274 Ct method was used
to relatively quantify the levels of gene expression. Primers used to
measure mRNA expression levels are shown in Supplementary Table
S4. Each sample was analyzed in triplicate.

2.6 Western blot analysis

The RIPA lysis buffer (Beyotime, China) was used to extract
proteins from cells and tissues. Protein samples were separated by 10%
SDS-PAGE gel and transferred onto a PVDF membrane. The
membranes were incubated overnight at 4°C with the primary
antibodies against Actin (Proteintech, Cat# 20536-1-AP, 1:5000),
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CXCL9 (Cat# 22355-1-AP, 1:1000), CXCR3 (Cat# 26756-1-AP,
1:1000), E-cadherin (Cat# 20874-1-AP, 1:5000), N-cadherin (Cat#
22018-1-AP, 1:3000), Vimentin (Cat# 10366-1-AP, 1:5000), STAT1
(Cat# 10144-2-AP, 1:3000), p-STAT1 (Cat# 28977-1-AP, 1:1000),
IRF1 (Cat# 11335-1-AP, 1:500), ZEB1 (Cat# 21544-1-AP, 1:1000),
JAK1 (Abmart, Cat# TA5012, 1:1000), p-JAK1 (Cat# TP56310,
1:1000), JAK2 (Cat# T55287, 1:1000), p-JAK2 (Cat# T56570, 1:1000.
After washing, membranes were incubated with the secondary
antibody (Proteintech) for 1h at room temperature. Protein bands
were visualized using an ECL system (Bio-Rad, Hercules, CA, USA).

2.7 Immunohistochemistry

IHC was performed on paraffin-embedded tissue sections
according to established protocols (21). Briefly, sections were
incubated with primary antibodies against CXCL9, E-cadherin,
Vimentin, CD86, p-STAT1, IRF1 and ZEB1 overnight at 4°C,
followed by appropriate secondary antibodies. After DAB
development and hematoxylin counterstaining, images were
captured using a light microscope (Olympus, Japan), and
immunohistochemistry was scored based on the intensity of
staining and the proportion of positive cells.

2.8 Immunofluorescence

After permeabilization, tissue sections and cultured cells were
incubated overnight at 4°C with the following primary antibodies
rabbit anti-CXCL9, anti-CXCR3, anti-CD68, anti-CD86, anti-E-
cadherin anti-N-cadherin and anti-CCL2 (Proteintech). After PBS
washes, samples were counterstained with 4’,6-diamidino-2-
phenylindole (DAPI) nucleic acid stain (Invitrogen) for 5 min at
room temperature and mounted with antifade medium. Fluorescent
images were captured using fluorescence microscopy (Olympus, Japan).

2.9 Wound healing assay

For wound healing experiments, HTR-8 cells (5x10°) were seeded
in 6-well plates and incubated overnight to 80-90% confluence. The
cells were scratched with a 1 mL pipette tip and then washed with PBS.
The wound area was determined using an inverted microscope at 0 h
and 24 h post-scratching to evaluate cell migration.

2.10 Transwell invasion assay

Trophoblast cell invasion was assessed using Matrigel-coated
Transwell chambers (8 um pore size; Corning) in 24-well plates.
Briefly, 5x10* HTR-8 cells were seeded on the upper chamber
coated with Matrigel (1:8 dilution; Sigma, St Louis, MO), and
polarized M1-M@ were placed in the lower chamber. After 24 h
of incubation, cells that penetrated the membrane were fixed with
formaldehyde and quantified by crystal violet staining.
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2.11 Luciferase reporter assay

The treated HTR-8 cells were co-transfected with ZEB1
luciferase reporter and Renilla luciferase plasmid using
Lipofectamine 2000 transfection reagent (Invitrogen, USA). After
48 h of the transfection, the luciferase activity was measured using
the Dual Luciferase Reporter Gene Assay Kit (Yeasen, China)
according to the manufacturer’s protocols. Luciferase activity was
normalized to the corresponding Renilla luciferase activity for each
sample to account for transfection efficiency.

2.12 Chromatin immunoprecipitation assay

Four pairs of primers targeting the ZEB1 promoter were
synthesized by Sangon Biotech (Shanghai, China), and the
sequences of the primers were applied in Supplementary Table
S5. ChIP assay was conducted with the ChIP Kit (ABclonal

10.3389/fimmu.2025.1629370

Technology, China) according to the manufacture’s instruction.
In brief, cells (1x107) were fixed with 1% formaldehyde to crosslink
for 10 min at room temperature, and then treated with 125 mM
glycine to quench the crosslinking. Chromatin extracts containing
DNA fragments were immunoprecipitated using IRF1 antibody or
normal rabbit IgG overnight. After washing and reverse
crosslinking, the DNA fragments were purified and amplified by
qPCR. Data were normalized to input DNA and presented as fold
enrichment relative to IgG control.

2.13 Statistical analysis

Statistical analyses were performed using SPSS 22.0 software
(IBM SPSS, Chicago, USA). Quantitative data are presented as
mean + SD from three independent experiments. Differences
between groups were assessed using Student’s t test (for two
groups) or one-way ANOVA with Tukey’s multiple comparison
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test (for multiple groups). Correlation analysis was performed by
Spearman’s correlation coefficient. P < 0.05 was considered
statistically significant.

3 Results

3.1 M1-Meo-derived CXCL9 impairs
trophoblasts invasion and migration

To investigate the effects of M1-M¢ on trophoblast function, we
established a co-culture system of M1-M¢@ with HTR-8 trophoblast
cells (Supplementary Figure S1A). After 48 h of co-culture, M1-M@
induced EMT marker changes in trophoblasts, characterized by
upregulation of E-cadherin and downregulation of N-cadherin
(Supplementary Figures S2A, B). These alterations correlated with
significantly impaired migratory and invasive capacities compared
to controls (Supplementary Figures S2C, D). Given the established
role of macrophage-derived soluble factors in modulating

10.3389/fimmu.2025.1629370

trophoblast function (22), we screened EMT-related cytokines/
chemokines and identified CXCL9 as the most significantly
upregulated factor in co-cultured supernatants versus control
groups (Figure 1A). ELISA analysis confirmed increased CXCL9
secretion in co-culture supernatants (Figure 1B). The basal level of
CXCL9 was much higher in M1-M¢ than in HTR-8 cells, and co-
culture selectively promoted CXCL9 expression in M1-M¢ but not
trophoblasts (Figure 1C). Based on these findings, we hypothesized
that M1-M¢ might affect trophoblast function via CXCL9.

To validate the functional role of CXCL9 in trophoblasts, we
treated HTR-8 cells with recombinant CXCL9. Our results showed
that CXCL9 treatment upregulated E-cadherin while
downregulating N-cadherin and Vimentin expression in HTR-8
cells compared to untreated controls. Conversely, the
administration of a CXCL9 neutralizing antibody in the co-
culture system reversed these effects. (Figures 1D, E). These
findings were further corroborated by immunofluorescence
staining of N-cadherin (Figure 1F). Functional assays
demonstrated that CXCL9 significantly inhibited trophoblast
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migration and invasion relative to control conditions, whereas
CXCL9 neutralization restored these capacities (Figures 1G, H).
These data indicate that M1-M¢@ regulate trophoblast abilities
through CXCL9-mediated EMT modulation.

3.2 Aberrant expression of CXCL9 in RSA
placental tissues

We next examined CXCL9 expression patterns in placental
villous and decidual tissues from normal pregnancies and RSA
patients, and the results revealed significantly elevated CXCL9
mRNA and protein levels in RSA decidual tissues compared to
controls (Figures 2A-D). In addition, CXCL9 protein expression
correlated with miscarriage history (Supplementary Figure S3).
Double immunofluorescence analysis demonstrated co-
localization of CD86 (an M1 macrophage marker) and CXCL9 in
decidual tissues, with significantly intensified CXCL9 expression in
RSA samples (Figure 2E). A strong positive correlation between
CD86" and CXCL9" cells was observed (r = 0.676, P = 0.001;
Figure 2F), indicating that the aberrant expression of CXCL9 in
MI1-M@ might contribute to RSA pathogenesis. IHC analysis of
villous tissues demonstrated increased CXCL9 positive cells
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infiltration in RSA patients, accompanied by elevated E-cadherin
and decreased Vimentin expression (Figures 2G, H). To further
explore the relationship between CXCL9 and the EMT process,
correlation analysis revealed a statistically significant negative
correlation between CXCL9 and E-cadherin expression (r =
-0.587, P
correlation between the expression levels of CXCL9 and Vimentin
(r = 0.563, P = 0.001; Figure 2J). These findings indicate that
dysregulated CXCL9 expression in placental villous and decidual
tissues may be associated with the pathogenesis of RSA.

0.007; Figure 2I), while a significant positive

3.3 CXCL9-CXCR3 axis mediates
trophoblast invasion and migration

Chemokine receptor CXCR3, the cognate receptor for CXCL9,
is a well-characterized mediator of immune and inflammatory
responses (23, 24). Our results showed CXCR3 activation in
HTR-8 cells after M1-M@ co-culture (Figure 3A), as
demonstrated by western blot and immunofluorescence staining
(Figures 3B, C). To elucidate the underlying mechanism, we
employed the specific CXCR3 antagonist AMG 487. The results
indicated that AMG 487 pretreatment reversed CXCL9-induced
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upregulation of E-cadherin and downregulation of N-cadherin and
Vimentin (Figures 3D-F). Functional assays provided compelling
evidence that CXCL9’s inhibitory effects on trophoblast migration
and invasion were primarily dependent on CXCR3 signaling, as
AMG 487 pretreatment reversed these phenotypic changes
(Figures 3G, H). Therefore, M1-M@-derived CXCL9 regulates
trophoblast motility primarily through specific activation of the
CXCR3 receptor.

3.4 JAK/STAT1 pathway is downstream of
CXCL9

The JAK/STAT pathway is a well-established downstream
effector of chemokine signaling (25, 26). To determine whether
CXCL9-CXCR3 axis activation triggers this pathway in
trophoblasts, we performed systematic experiments. Western blot
analysis revealed significant phosphorylation of JAK1/2 and STAT1
(p-JAK1/2, p-STAT1) upon CXCL9 stimulation (Figure 4A). In
contrast, STAT3 phosphorylation remained unaffected
(Supplementary Figure S4). Importantly, CXCR3 inhibition with
AMG 487 completely abrogated CXCL9-induced JAK/STAT1
activation (Figure 4A). These results suggest that the JAK/STATI
pathway may act as a downstream effector of the CXCL9-CXCR3
axis. To further validate this mechanism, we employed the STAT1-
specific inhibitor fludarabine. We found that Fludarabine effectively
blocked CXCL9-mediated JAK/STATI activation (Figure 4A),
confirming STAT1 as a key downstream effector. Functional
assays demonstrated that JAK/STATI pathway inhibition
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reversed CXCL9’s suppressive effects on trophoblast migration
and invasion (Figures 4B-E). Hence, a preliminary conclusion
would be that CXCL9 activates the CXCR3-JAK/STAT1 pathway
to suppresse trophoblast invasion and migration.

3.5 CXCL9 activates JAK/STAT1 to regulate
ZEB1

Epithelial-mesenchymal transition (EMT), a process regulated
by specific transcription factors, plays a pivotal role in suppressing
epithelial marker proteins (27). Given our observation that M1-M¢
influences trophoblast EMT, we examined the expression of key
EMT-related transcription factors (Twistl, FoxQ1, ZEB1, Snail, and
HMGA?2) in HTR-8 cells co-cultured with M1-M¢ using qPCR.
Among these factors, ZEB1 showed the most significant
downregulation (Figure 5A), with time-dependent protein
reduction confirmed by western blot (Figure 5B). Considering the
concurrent activation of STAT1 and downregulation of ZEBI in
M1-Me-induced EMT, we hypothesized a potential link between
STATI1 activation and ZEB1 suppression. Indeed, STATI1
knockdown effectively reversed the CXCL9-mediated reduction in
ZEB1 expression (Figure 5C). Furthermore, STATI silencing
restored the EMT process in trophoblasts (decreased E-cadherin
and increased N-cadherin and vimentin expression), while ZEB1
knockdown produced opposite effects (Figure 5D). Conversely,
STAT1 overexpression significantly reduced ZEBI1 levels
compared to controls (Figure 5E). At the same time, STATI
overexpression enhanced E-cadherin and reduced N-cadherin and
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CXCL9 activates JAK/STAT1 to regulate ZEB1. (A) Relative expression levels of representative EMT related genes were measured in HTR-8 with

or without 48 h of M1-Mg co-culture as determined by qPCR. (B) Western blot analysis of ZEB1 in HTR-8 cells co-cultured with M1-M¢ for

the indicated times. (C) Western blot analysis of ZEB1 in HTR-8 cells transfected with Si-STAT1 and incubated with CXCL9 for 48 h afterwards.
(D) Western blot analysis of E-cadherin, N-cadherin and Vimentin expression in HTR-8 cells transfected with Si-STAT1 or Si-ZEB1. (E) Western
blot analysis of ZEB1 in HTR-8 cells transfected with STAT1 overexpression vectors plus CXCL9 treatment. (F) Western blot analysis of E-cadherin,
N-cadherin and Vimentin expression in HTR-8 cells transfected with STAT1 or ZEB1. n = 3, *P < 0.05, **P < 0.01, ***P < 0.001.

Vimentin expressions, while STAT1-influenced EMT changes were
rescued by ZEB1 co-overexpression (Figure 5F). These results
indicate that CXCL9 activates the JAK/STATI pathway to
suppress ZEB1, thereby impairing EMT in trophoblasts.

3.6 IRF1 mediates CXCL9/STAT1-
dependent ZEB1 suppression

To elucidate the mechanism of STAT1-mediated ZEB1
regulation in trophoblasts, we investigated potential downstream
mediators of STATI. Previous studies have reported that STATI
transcriptionally regulates multiple targets, including IRF1, IRF9,
and TAP1 (28, 29). CXCL9 treatment upregulated IRFI at both the
mRNA (Figure 6A) and protein levels (Figure 6B), implicating its
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role in ZEB1 suppression. To evaluate the functional relevance of
IRF1 in trophoblast migration and invasion, we found that
depletion of IRFI resulted in a dramatic downregulation of E-
cadherin and upregulation of N-cadherin and Vimentin
(Figure 6C). Moreover, IRF1 depletion reversed the inhibitory
effects of CXCL9 on HTR-8 cell migration and invasion
(Figures 6D, E). To further dissect the mechanism by which IRF1
regulates ZEB1, we performed a luciferase reporter assay and
observed that IRF1 knockdown increased ZEB1 promoter activity
and rescued its suppression by CXCL9 (Figure 6F), suggesting that
IRF1 directly represses ZEB1 transcription. Additionally, chromatin
immunoprecipitation (ChIP) assays identified the P4 region of the
ZEB1 promoter as a binding site for IRF1 (Figure 6G). These data
collectively suggest that STATI regulates ZEB1 predominantly
through IRF1-mediated transcriptional repression.
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3.7 ZEB1-dependent CCL2 regulation
promotes macrophage recruitment

The reciprocal regulation between trophoblasts and
macrophages at the maternal-fetal interface is well documented,
with trophoblast-derived cytokines playing pivotal roles in
macrophage recruitment and polarization (30, 31). CCL2, a critical
chemokine for macrophage recruitment at the maternal-fetal
interface, has been implicated in this process (32). To investigate
the role of CCL2 in RSA, we first examined its expression pattern in
clinical specimens. Immunofluorescence analysis demonstrated
significantly elevated CCL2 levels in CK7" trophoblasts from RSA
patients compared to healthy controls (Figure 7A). Consistent with
these clinical findings, in vitro experiments showed that HTR-8 cells
co-cultured with M1-M¢@ exhibited increased CCL2 expression at
both the mRNA (Figure 7B) and protein (Figure 7C) levels. We next
explored whether ZEB1 modulates CCL2 production. ELISA assays
revealed that ZEB1 overexpression upregulated CCL2 protein
expression (Figure 7D). Additionally, immunofluorescence and
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qPCR analyses showed that CCL2 treatment promoted
macrophage polarization toward the M1 phenotype (Figures 7E,
F). Functional transwell assays demonstrated that HTR-8 cells
educated by M1-M¢ enhanced THP-1 macrophage migration, an
effect that was significantly attenuated by CCL2-neutralizing
antibody treatment (Figure 7G). Taken together, our data reveal a
novel positive feedback loop in which CXCL9 from M1 macrophages
promotes trophoblast EMT via the STAT1/ZEBI1 axis, while ZEB1-
upregulated CCL2 from trophoblasts not only recruits macrophages
but also enhances their M1 polarization.

3.8 Anti-CXCL9 treatment alleviates
embryo resorption in mice

To further confirm the role of CXCL9 in vivo, we performed
animal experiments using normal pregnant mice and LPS-induced
abortion models with or without anti-CXCL9 neutralizing antibody
treatment (Figure 8A). As shown in Figure 8B, anti-CXCL9
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treatment significantly attenuated the embryo resorption rate in
LPS-induced abortion models, suggesting its therapeutic potential.
Immunofluorescence analysis revealed that the LPS-induced
abortion group exhibited abnormally high E-cadherin and low
Vimentin expression in placental tissues compared to normal
pregnancy. Importantly, anti-CXCL9 treatment effectively
reversed the expression of E-cadherin and Vimentin in the
placentas of LPS-induced abortion mice (Figures 8C, D). We
further investigated the immune microenvironment of the
placenta. As indicated in Figure 8E, CD86" cells in the placentas
of the abortion group were significantly more abundant than in the
normal group, whereas anti-CXCL9 treatment notably reversed this
effect. Consistent with our in vitro findings, immunohistochemical
staining confirmed that anti-CXCL9 treatment abolished STATI
phosphorylation, downregulated IRF1 expression, and restored
ZEBI levels (Figures 8F-H). These data demonstrate that CXCL9
blockade could ameliorate embryonic resorption, restore
trophoblast function, and attenuate macrophage recruitment in
the LPS-induced abortion models.

4 Discussion

Accumulating evidence highlights the critical role of trophoblast-
macrophage communication at the maternal-fetal interface in RSA
(33, 34), providing a theoretical basis for elucidating the interactions
between trophoblasts and immune cells in RSA. In this study, we
demonstrated, for the first time that M1-Me stimulates the release of
CXCL9, which activates the STATI/IRF1 pathway, inhibits
trophoblast EMT, invasion and migration, and suppresses ZEB1
expression. The resulting CCL2 upregulation further recruits

10.3389/fimmu.2025.1629370

macrophages and promotes the M1 polarization, thereby forming a
positive feedback loop that disrupts placental development (Figure 9).

Mounting evidence from clinical and experimental studies has
established that macrophages are essential decidual immune cells
during pregnancy, and decidual macrophages are prone to Ml
phenotype in patients with RSA compared to healthy controls
(35). Therefore, we focused on the effects of M1-M@ on
trophoblast function and the underlying mechanisms. Although
macrophages are known to modulate trophoblast function through
paracrine signaling (36), we identified CXCL9 as the most responsive
chemokine in MI1-Me-trophoblast crosstalk. In vitro functional
assays confirmed its pivotal role in regulating HTR-8 trophoblast
cell migration and invasion. CXCL9, also known as monokine
induced by gamma interferon (MIG), is mainly secreted by
monocytes, fibroblasts and endothelial cells (37). It predominantly
mediates immune cell infiltration and regulates tumor growth and
metastasis (38). Emerging evidence suggests its involvement in the
biological behavior of human chorionic trophoblast cells (39). More
importantly, recent research has observed aberrant upregulation of
CXCL9 in placenta tissues from spontaneous abortion patients
compared to healthy pregnancies (40). Generally, CXCL9 binds to
the G protein-coupled receptors or CXCR3, triggering downstream
signaling. The CXCL9-CXCR3 axis typically activates endothelial
cells and regulates the migration and invasion of tumor cells (41).
Here, we found that the CXCL9-CXCR3 axis activates the JAK/
STATI1 pathway, inhibiting trophoblast EMT, invasion, and
migration in vitro.

The EMT process is orchestrated by core transcription factors, and
ZEB1 has been identified as a key regulator of cellular invasion and
migration in diverse biological processes (42, 43). Our investigation
revealed that among EMT-related transcription factors, ZEB1 exhibited
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Schematic illustration of CXCL9/STAT1/ZEB1/CCL2 axis in M1 macrophage-trophoblast crosstalk. M1 macrophages provokes the release of CXCL9
and suppresses the migration and invasion of trophoblasts by regulating the JAK/STAT1/IRF1/ZEB1 axis, which in turn results in the production of
CCL2 that promotes the recruitment of macrophages, implying a novel macrophage-trophoblast crosstalk at the maternal-fetal interface.
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the most pronounced alteration in M1-Me-treated HTR-8 cells. The
functional significance of this observation was confirmed through loss-
of-function experiments, where ZEB1 knockdown effectively reversed
MI1-Me@-induced inhibition of trophoblast EMT, invasion, and
migration. These findings not only corroborate previous reports that
established ZEBI as a critical determinant of trophoblast invasiveness
(44), but also highlight the novel role of ZEB1 in immune-trophoblast
interactions. Building upon existing evidence of macrophage-mediated
cytotoxicity in spontaneous abortion (45), our research elucidates
mechanistic insights by identifying a novel positive feedback loop:
M1-Me-derived signals (notably CXCL9) suppress ZEB1 expression,
resulting in CCL2 upregulation in trophoblasts, which recruits
additional M1-M@ to the maternal-fetal interface. This observation
aligns with clinical observations showing elevated CCL2 levels in RSA
patients compared to normal pregnancies (46). Furthermore, elevated
CCL2 may further promote macrophage recruitment and Ml
polarization, leading to secretion of additional pro-inflammatory
factors that impair trophoblast proliferation and invasion (47, 48).

IRF1, a transcription factor downstream of JAK-STATI1
signaling, is activated by STAT1 (49). Recent studies indicate that
IRF1 is involved in cell proliferation, apoptosis, and is associated with
EMT, invasion and migration in tumor cells (50, 51). In this study, we
identified IRF1 as a novel suppressor of trophoblasts EMT, invasion,
and migration through direct inhibition of ZEB1 transcription.
Cumulatively, our findings highlight the STAT1/IRF1/ZEB1 axis as
a critical regulator of trophoblast behavior. In vivo, anti-CXCL9
treatment alleviated embryo resorption rates,promoted trophoblast
EMT, migration and invasion, and diminished macrophage
recruitment. These results underscore the therapeutic potential of
targeting CXCL9 in RSA management. Several limitations should be
noted. Although the LPS-induced abortion model demonstrated the
effects of CXCL9 inhibition on embryo absorption, the systemic
inflammatory effects of LPS may introduce confounding variables.
Therefore, further research should employ primary cells and
alternative models to validate our findings. Additionally, targeting
CXCL9 may cause systemic immunosuppression and compensatory
chemokine activation; therefore, our future work will develop
uterine-targeted nanoparticle delivery systems for CXCR3
antagonists to overcome these limitations.

In conclusion, our work elucidates a novel mechanism of
macrophage-trophoblast crosstalk at the maternal-fetal interface,
demonstrating its essential role in regulating trophoblast EMT,
migration and invasion. Importantly, we identify CXCL9 as the
pivotal molecular mediator orchestrating this pathological
interaction, thereby offering a promising therapeutic target for
RSA. These findings not only advance our understanding of
pregnancy complications but also pave the way for developing
novel immunomodulatory strategies in RSA treatment.
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