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Long-term inflammatory reaction may promote gastric cancer initiation and
development through multiple mechanisms. Recent studies have demonstrated
that inflammatory mediators play a crucial role in the transition from gastritis to
gastric cancer. Pro-inflammatory cytokines, chemokines, and other signaling
molecules interact and synergistically regulate gastric epithelial cell proliferation,
apoptosis, migration, and invasiveness, thereby promoting tumorigenesis.
Specifically, interleukins activate immune cells, induce the secretion of
inflammatory mediators, and maintain local immune responses; however, in
the context of cancer, they exhibit a dual role by both enhancing anti-tumor
immunity and driving tumor progression. Tumor necrosis factor amplifies
immune responses by stimulating the production of pro-inflammatory
cytokines, yet excessive or chronic Tumor necrosis factor activity is a hallmark
of autoimmune diseases. Interferons initiate antiviral responses, modulate
immune cell functions, and influence the inflammatory cascade. Chemokines
primarily mediate the recruitment of immune cells to sites of infection,
inflammation, or injury, but also play key roles in immune evasion and tumor
immune regulation. This review summarizes the cooperative roles of these
inflammatory mediators in the progression from gastritis to gastric cancer and
discusses their potential as therapeutic targets. A better understanding of these
mechanisms may facilitate the development of novel strategies for the
prevention and treatment of gastric cancer.
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1 Introduction
1.1 Inflammation and tumorigenesis

In 1863, Rudolf Virchow first proposed the connection between
inflammation and cancer, suggesting that certain stimuli, along with
the tissue damage and inflammation they induce, can drive cell
proliferation (1, 2). The inflammatory cells and cytokines present in
the TME play a crucial role in promoting tumor growth, metastasis,
and modulating immune responses (3). This concept has evolved
over time, and decades of research have provided further validation
of this link. Chronic inflammation is considered a marker of cancer
(4). Mutations contribute to tumorigenesis; however, in the
majority of cases (>90%), cancer development is closely linked to
chronic inflammation in some form (5).

The relationship between inflammation and tumorigenesis is both
complex and deeply interconnected, with chronic inflammation widely
regarded as a key factor driving tumor initiation and progression
across various cancers. Inflammatory processes, whether infectious—
such as H. pylori-induced gastritis (6) or hepatitis B virus-related
chronic hepatitis (7)—or non-infectious (8), including autoimmune
diseases and chronic tissue damage caused by environmental factors,
contribute to tumorigenesis through multifaceted mechanisms (9-12).
Chronic inflammation is often characterized by repeated cycles of
tissue injury and repair, leading to accelerated cell proliferation, genetic
mutation accumulation, disrupted signaling pathways, and diminished
immune surveillance, collectively creating a conducive environment
for tumor development (9, 13).

In the context of chronic inflammation, inflammatory cells such
as macrophages, neutrophils, and lymphocytes release significant
amounts of pro-inflammatory cytokines (e.g., IL-6, TNF-a,, IL-1f),
chemokines, and reactive oxygen species (ROS) or reactive nitrogen
species (RNS). These mediators not only induce direct DNA
damage (14) but also lead to epigenetic alterations (15, 16) that
silence tumor suppressor genes or activate oncogenes. Additionally,
pro-inflammatory signals activate critical intracellular pathways
such as NF-xB and STAT3, which drive abnormal cell
proliferation, inhibit apoptosis, and enhance the invasive and
metastatic capabilities of cells (17, 18). Accumulated ROS and
RNS further impair DNA repair mechanisms, heightening
genomic instability and fostering conditions that facilitate the
emergence of cancer cells (19, 20).

Beyond cellular effects, inflammation profoundly influences
tumorigenesis by shaping the TME (21). Chronic inflammation
drives ECM remodeling paving the way for tumor cell invasion and
metastasis (22). Furthermore, pro-angiogenic factors like VEGF
(23) secreted within the inflammatory milieu significantly promote
angiogenesis, supplying tumors with essential nutrients and oxygen
while enabling cancer cells to enter the circulatory system (22, 24).
Chronic inflammation also weakens immune surveillance. For
instance, TAMs (25) and MDSCs (26), which accumulate in
inflammatory conditions, secrete immunosuppressive cytokine
that dampen the activity of effector T cells, thereby aiding tumor
cells in evading immune responses.
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The effects of inflammation on tumorigenesis vary across tissue
types and inflammation forms. Chronic inflammation is notably
linked to specific cancers, such as colorectal cancer associated with
chronic ulcerative colitis (27) and hepatocellular carcinoma linked
to chronic hepatitis (28). Compared to acute inflammation, which
may transiently activate immune defenses, chronic inflammation
exerts more subtle yet persistent effects, including genomic
instability, localized immune suppression, and profound
alterations to the TME, thereby amplifying tumorigenic
potential.In fact, not all chronic inflammatory diseases increase
the risk of cancer. Some of these diseases, such as psoriasis, can even
reduce the risk of cancer (29).

In conclusion, inflammation serves as a “double-edged sword”
in tumorigenesis. While acute inflammation may bolster immune
surveillance and eliminate abnormal cells, chronic inflammation
promotes genetic mutations, activates oncogenic pathways,
suppresses immune defenses, and reconfigures the TME, thereby
facilitating cancer initiation and progression. Elucidating the
mechanisms linking chronic inflammation to tumorigenesis will
deepen our understanding of cancer biology and support the
development of innovative anti-inflammatory and anticancer
therapies, paving the way for more effective and personalized
treatment strategies.

1.2 Inflammation and tumorigenesis

Inflammatory factors are a class of cytokines, chemical
substances, or small molecules secreted by immune cells,
epithelial cells, and other tissue cells during the inflammatory
response (30). These factors play a critical role in regulating the
immune system, promoting tissue repair, and maintaining
homeostasis. However, the excessive or prolonged activation of
inflammatory factors may lead to chronic inflammation, which can
trigger a variety of diseases, including autoimmune diseases (31),
cardiovascular diseases (32), and cancer (33).

Based on their function and chemical properties, inflammatory
factors can be classified into several categories: Pro-inflammatory
factors (34) enhance the inflammatory response by activating pro-
inflammatory signaling pathways, resulting in tissue damage and
abnormal cell proliferation. Second, anti-inflammatory factors (34)
play a key role in maintaining the balance of the inflammatory
response by inhibiting the production of pro-inflammatory factors
and reducing tissue damage. In addition, chemokines (34) primarily
function to recruit immune cells to the site of inflammation, thereby
expanding the scope of the inflammatory response. The functions of
inflammatory factors and their communication network are shown
in Table 1 and Figure 1.

Inflammatory factors play a central role in the link between
inflammation and cancer through various mechanisms. In GC,
inflammatory factors contribute to tumorigenesis by activating
signaling pathways, reshaping the TME, and suppressing immune
surveillance, thus driving the entire process from early tumor
formation to late-stage metastasis (98). A comprehensive
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TABLE 1 Inflammatory factors and their functions.

Source

Classify

Cytokines Receptor Target cell Key features

Macrophages, B cell,

Pyrogenic (34, 35), pro-inflammatory (36),

IL-1 D121 B cells, NK cell, T cell
dendritic cell ¢ a cells, NK cel ¢ proliferative and differentiated (37)
Activated T cells and B cell, NK Adaptive immunity (38), cell proliferation
IL-2 Th1 cell D2
e €b25 cell (39), activated T cell, NK cell function (40)
Adaptive immunity (41), B cell and
cytotoxic T cell proliferation (42), enhances
1L-4 Th cell CD124 B cell, T cell, macrophage MHC class II expression (43), and
stimulates IgG and IgE production (44)
L6 Th cell, macrophage, CD126, 130 B cell, plasma cell pro-inflammatory (45), B cell differentiation
fibroblast (46)
i T cell. B cell Anti-inflammatory (47), Inhibits cytokine
IL-10 i ’ CDw210 B cell, macrophage production and monocyte function (48)
macrophage
(49)
Pro-inflammatory (50), Activation of NK
T cell, hage, 11, ph: ic cell activation (51),
IL-12 ©¢ macrophage CD212 NK cell, macrophage, tumor cell o p agocytic cell activation ( ) .
monocyte endotoxin shock (52), tumor cytotoxicity
(53), cachexia (54)
M trophils i
IL-17 Th17 cell IL-17R Monocyte, neutrophil onocytes and neutrophils are recruited to
the site of infection (55)
Macrophage, CD218a Recruit monocytes and T lymphocytes (56).
IL-18 dendritic cell, and (IL-18Ra) Monocyte and T cell In combination with IL-12, it induces IFN-y
epithelial cell production and inhibits angiogenesis (57).
Pro-inflammatory (58), Phagocytic cell
TNEF- M h CD120a, b M h;
o acrophage @ acrophage activation (59), endotoxin shock (60)
TNF Pro-inflammatory (61), Chemotactic,
TNF-B T cell CD120a, b Macrophage, tumor cell phagocytosis, tumor suppression, induction
of other cytokines (62)
macrophage,
D118 (IFNARI,
IFN-o neutrophil, and ¢ ( extensive Pro-inflammatory (63), Antiviral (64)
. IFNAR?2)
some somatic cell
CD118 (IFNAR1, X Pro-inflammatory (65), Antiviral (66),
IFN- fi it
IEN B broblast IFNAR2) extensive antiproliferative (67)
Pro-inflammatory (68), Antiviral (69),
CDwl119 . macrophage activation (70), enhanced
IFN- T cell and NK cell t
y ceflan ce (IFNG R1) extensive neutrophil and monocyte function (71) and
expression of MHC-I and -II on cells (72)
I h is (73), It
Endothelial cell, Basophil, monocyte, T cell, nduces ¢ enToFax1s (73), regulates
CCL2 CCR2, CCR4 . macrophage activity (74), and regulates
monocyte, fibroblast dendritic cell . .
cytokine production (75)
neutrophil, CCR1, CCR4, Eosinophil, monocyte, T cell, vt )
CCL3 . Granulomas, asthma, T1D, and key
fibroblast, and CCR5 dendritic cell . K .
o inflammatory mediators in other
dendritic cell ; .
autoimmune diseases (77)
Chenokines
Promotes apoptosis (78), antiviral (79),
cClLs T cell, monocyte, CCR1, CCR3, Basophil, eosinophil, monocyte, tumor development (80), and plays a role in
NK cell, CCR4, CCR5 T cell, dendritic cell insulin secretion of pancreatic islet cells by
activating GPR75 (81)
. Recruitment and activation of neutrophils
Neutrophil, to sites of inflammation (82), tissue damage
CXCLS(IL-8) endothelial cell, CXCR1, CXCR2 Neutrophil, basophil i i o 8
fibroblast (83), fibrosis (84), angiogenesis (85), and

tumorigenesis (86)
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TABLE 1 Continued

10.3389/fimmu.2025.1628543

Classify Cytokines Source Receptor Target cell Key features
Monocyte, Chemotactic activity (87), induces apoptosis
CXCL10 endothelial cell, CXCR3 Monocyte, T cell, NK cell (88), regulates cell growth and proliferation,
fibroblast and tumor formation (89)
It plays a key role in the pathological
process of some diseases such as
CXCL12 Stromal cell CXCR4, CXCR7 All cell types inflammation, tumor formation and
metastasis, pathogen infection, wound
repair, etc. (90) (91)
<CL1 T cell, NK cell XCRL T cell Chemotactic activity (92), which contributes
to the development of T cells (93)
CX3CL1 Endothelial cell, CX3CRI Monocyte, T cell, NK cell Chemf)tactic acti‘vity (94), immune Aresponse
neuronal cell (95), inflammation (96), cell adhesion (97)

understanding of the function and regulatory mechanisms of
inflammatory factors will not only help elucidate the pathogenesis
of GC but also provide novel insights into the development of
targeted anti-inflammatory cancer therapies, laying a theoretical
foundation for personalized treatment strategies.

1.3 Gastritis and GC

Gastritis broadly refers to inflammatory or reactive injury of the
gastric mucosa with diverse etiologies (e.g., H. pylori, autoimmune
atrophic gastritis, bile-reflux/chemical injury, eosinophilic or
lymphocytic gastritis). Clinically, it is important to distinguish
reactive/chemical injury from leukocyte-predominant
inflammatory gastritis and to record acute versus chronic patterns
and anatomic distribution (antrum-predominant, corpus-
predominant, or pangastritis), which in turn influence
mechanisms and risks of progression from chronic inflammation
to cancer (99, 100). GC is a significant global health issue, often
resulting from a multifactorial process involving genetic,
environmental, and microbial factors (101, 102).

When gastritis becomes chronic, it can lead to progressive damage
of the stomach lining, starting with atrophy (thinning of the gastric
mucosa), followed by metaplasia (the transformation of normal cells
into abnormal ones) and dysplasia (abnormal cell growth) (99). These
changes are considered precursors to GC. Persistent inflammation can
also lead to the accumulation of genetic mutations, disruption of
normal cell signaling pathways, and the activation of pro-
inflammatory factors, all of which contribute to the development of
cancer. If left untreated, this chronic inflammatory process can
eventually promote the transformation of normal gastric cells into
malignant cancer cells, resulting in GC.

2 ILs in inflammation and cancer

ILs play a central role in inflammation by regulating the
immune response and the inflammatory response (103, 104). By
promoting the activation of immune cells, secreting pro-
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inflammatory factors, and maintaining local immune responses,
they are involved in acute and chronic inflammatory processes.
However, persistent or excess expression of ILs can lead to chronic
inflammation and increase the risk of diseases like infectious
diseases (105), cardiovascular diseases (106) and cancer (107).

In cancer, the role of ILs is even more complex. ILs can both
enhance tumor immunity by modulating immune cell function in
the TME (108) and drive tumor progression by promoting immune
escape and tumor cell growth (109). Thus, the role of ILs in cancer is
a dual one, both protective and potentially aggravating. The specific
mechanism of IL in GC and gastritis is detailed in Table 2.

31Ls
3.11L-1

IL-1 is a pivotal cytokine produced by various cell types,
including monocytes, macrophages, and fibroblasts, primarily in
two isoforms: IL-1ct and IL-1f (174). We will focus primarily on IL-
1B, IL-10, and IL-1P, although the IL-1 family also includes the
disease-associated cytokines IL-18, IL-33, and IL-36 (175). It serves
as a central mediator in the immune and inflammatory responses,
regulating immune activity (176), enhancing inflammation (177),
and influencing cellular proliferation and tissue repair through the
activation of multiple signaling pathways (178, 179). The
involvement of IL-1 in gastritis (180), GC (115), and the TME
(181) is extensive and multifaceted, playing a significant role in the
pathogenesis and progression of these conditions.

3.1.1 Role of IL-1 in gastritis and GC

IL-1 is a critical mediator in the onset and progression of
gastritis, especially in chronic forms, where elevated IL-1 levels
amplify inflammation (182). Through activation of NF-xB, IL-1
induces the release of pro-inflammatory cytokines such as TNF-o
and IL-6, exacerbating the inflammatory response (106, 183).
During H. pylori infection, IL-1 promotes immune cell infiltration
and gastric epithelium injury, which may exacerbate lesions and
contribute to disease progression (184).
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TABLE 2 The mechanism of IL in gastritis and GC.

10.3389/fimmu.2025.1628543

Cytokines

Brief biological mechanism in gastritis

IL-1B Suppresses Gastrin via Primary Cilia and Induces Antral Hyperplasia,
leading to gastritis (110)
IL-1P play a role in chronic inflammation of the gastric mucosa in H. pylori

Brief biological mechanism in GC

pylori infection, IL-1P is highly expressed that result in gastric acid
inhibition, GC -related gene methylations and disfunctions,
angiogenesis (113)

IL-1 . . . . . X IL-1 Up-regulates MicroRNA 135b to Promote Inflammation-
infection with functional dyspepsia patients (111) R K K . R
ETSI i ith IL-1 through the NF-«B signali th p it Associated Gastric Carcinogenesis in Mice (114)
synergizes wil -1 throu e NF-kB signaling pathway for gastritis
YRerg (112) 8 &P yiors IL-1B-associated NNT acetylation orchestrates iron-sulfur cluster
maintenance and cancer immunotherapy resistance (115)
L2 Astaxanthin slows down gastritis of H. pylori infection by enhancing IL-2 Tumor-infiltrating mast cells stimulate ICOS regulatory T cells
secretion (116) through an IL-33 and IL-2 axis to promote GC progression (117)
Protoberberine alkaloids have d trated th tic effect:
berberine activated IL-4-STAT6 signaling pathway in vivo and in vitro when H. o ? r erm'e & (,)l_ S have demons 'ra e. crapeutic efiects on
. i - . chronic atrophic gastritis and GC by activating IL-4/STAT6 pathway
L4 pylori infection and presented anti-inflammatory activities (118) (120)
IL-4 add; tric infl tion by stimulati tric D cells to rel
addresses gastric Inflammation y‘s rnnating gastric 1 ceTs fo refease IL-4 inhibited proliferation of HTB-135 GC cells by down-regulating
somatostatin (119) X
G0-G1 cell cycle nuclear-regulating factors (121)
S f chroni tritis patients infected with H. pylori mediate IL-
erum exosomes‘ © C‘ romic gastit ls, pa 1e‘n S_m o e‘ W . ‘P yiort meciate H. pylori Activates IL-6-STAT3 Signaling in Human GC Cells:
1o expression via IL-6 trans-signalling in gastric epithelial cells (122) K
i o Potential Roles for ROS (128)
Lactobacillus plantarum ZJ316 significantly reduces IFN-y and IL-6 levels, . . . . .
) . . IL-6 mediates epithelial-stromal interactions and promotes gastric
increases IL-10 levels, repairs mucosal damage, and has preventive and . )
. .. . tumorigenesis (129)
therapeutic effects on H. pylori -induced gastritis (123) . .
- . . RBMSI promotes GC metastasis through autocrine IL-6/JAK2/
Weierning tablet reduces the mRNA level of IL-6 and thus improves gastritis L
(124) STATS3 signaling (130)
IL-6 Berberine inhibits GC devel t and ion b ti
YJHD alleviated NLRP3 inflammasome formation and pyroptosis of epithelial Croerine maols evelopment an progres-s fon by regulating
K K K . X i . the JAK2/STAT3 pathway and downregulating IL-6 (131)
cells in Chronic atrophic gastritis, potentially through the inactivation of IL-6/ . . .
STAT3 pathways (125) VPS35 promotes GC progression through integrin/FAK/SRC
wa
. o . o P 4 . . signalling-mediated IL-6/STAT3 pathway activation in a YAP-
H pylori gastritis is associated with increased gastric mucosal production of TNF
alpha and TL-6 (126) dependent manner (132)
. X X P i X X X MFGES8 promotes GC progression by activating the IL-6/JAK/
H. pylori infection results in a local increase in ILs-6 receptor associated with o
. . . STATS3 signaling (133)
high-grade mucosal inflammation (127)
IL-8 upregulates the inflammatory response to H. pylori infection and plays an H. pylori with trx1 high expression promotes gastric diseases via
important role in cell proliferation and gastric mucosal injury (134) upregulating the IL23A/NF-xB/IL8 pathway (139)
IL-8 may play an important role in neutrophil transport from mucosal blood vessels CAFs-derived IL-8 plays important roles in chemoresistance,
to gastric epithelium and may be involved in regulating H. pylori gastritis (135) immunosuppression, and lymph node metastasis of GC (140)
IL-8 astaxanthin inhibits H. pylori-induced ROS-mediated IL-8 expression by activating FAK/IL-8 axis promotes the proliferation and migration of GC cells
PPAR-y and catalase in gastric epithelial cells (136) (141)
H. pylori-derived OMVs may aid the development of various gastric diseases by Cancer-Associated Fibroblast-Derived IL-8 Upregulates PD-L1
inducing IL-8 production and NF-xB activation (137) Expression in GC Through the NF-xB Pathway (142)
o-LA may prevent the development of H. pylori-associated gastric diseases by Tumor-derived IL-8 facilitates lymph node metastasis of GC via PD-
decreasing ROS-mediated IL-8 expression in gastric epithelial cells (138) 1 up-regulation in CD8 T cells (143)
Yangyin Huowei mixture alleviates chronic atrophic gastritis by inhibiting the Gastric tumorigenesis induced by combining H. pylori infection and
IL-10/JAK1/STAT3 pathway (144) chronic alcohol through IL-10 inhibition (147)
IL-10 H. pylori controls NLRP3 expression by regulating hsa-miR-223-3p and IL-10 in Gut microbiome-derived butyrate inhibits the immunosuppressive
cultured and primary human immune cells (145) factors PD-L1 and IL-10 in TAMs in GC (148)
Regulatory dendritic cells produce IF-10 to protect against autoimmune gastritis IL-10 secreted by cancer—associated macrophages regulates
in mice (146) proliferation and invasion in GC cells via c—Met/STAT3 signaling (149)
PARI inhibits IRF5 and IL-12 secreted by macrophages, and the host inhibits IL-12 treatment reduces tumor growth and modulates the
IL-12 mucosal Thl and Th17 responses to H. pylori infection through this mechanism | expression of CASKA and MIR-203 in athymic mice bearing tumors
(150) induced by the HGC-27 GC cell line (151)
IL-17RA signaling activates a protective pathway to prevent
H. pylori activate NF-xB signaling through CagA, thereby inducing IL-17A excessive inflammation and reduces the risk of stomach cancer (156)
expression in FOXP3 T cells, leading to gastritis (152) Tumor-associated neutrophils induce EMT by IL-17a to promote
IL-17 produces T cells capable of inducing severe autoimmune gastritis (153) migration and invasion in GC cells (157)
IL-17 IL-17 expression showed a significant increase with the severity of chronic IL-17B signaling in IL-17RB directly promotes cancer cell survival,
gastritis (154) proliferation, and migration, and induces resistance to conventional
IL-17 induces IL-8 secretion by activating the ERK 1/2 MAP kinase pathway, chemotherapeutic agents (158)
and the released IL-8 attracts neutrophils to promote gastritis (155) LCN2 Mediated by IL-17 Affects the Proliferation, Migration,
Invasion and Cell Cycle of GC Cells by Targeting SLPI (159)
IL-18, and ibly CD14 tor signalli thway, be involved i
ancp 08,51 Y receptor signating pathway, may be m'vo ve mA Eupafolin hinders cross-talk between GC cells and cancer-associated
macrophage activation and subsequent IL-8 and IL-1 beta release, involved in . L .
. .. . fibroblasts by abrogating the IL18/IL18RAP signaling axis (163)
IL-18 gastritis response to H. pylori infection (160) .
L-18 have an important role in promoting gastric Thl responses in L Inflammasome Adaptor ASC Suppresses Apoptosis of GC Cells by
-18 may have an importa e in promoting gastri I in H.
Y P L. P R 88 P an IL18-Mediated Inflammation-Independent Mechanism (164)
pylori infection (161)
(Continued)
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TABLE 2 Continued

Cytokines

Brief biological mechanism in gastritis

10.3389/fimmu.2025.1628543

Brief biological mechanism in GC

The cytokine IL-18 induces production of IFN-y by activated T lymphocytes and
promotes a Thl profile, causing chronic active gastritis (162)

IL-23 was released in the presence of H. pylori from the inflamed gastric
mucosa, which was positively correlated with neutrophil and monocyte

infiltration (166)

IL-23 plays a role in the activation of the immune response and induction of

IL-23
severity of gastritis (167)

Upregulation of IL-23 occurs early in the host response to H. pylori and may
contribute to the severity of induced gastric lesions (168)
A role for RUNX3 in inflammation-induced expression of IL23A in gastric

epithelial cells (169)

IL-1 promotes tumor growth and metastasis through a variety
of mechanisms and plays an important role in GC. Such as NF-xB
pathway, thereby promoting cell proliferation, survival, and
metastasis (185). IL-1 also alters the TME by upregulating
immune suppressive cells like T cells (186) and M2 macrophages
(187), which reduces the immune response against tumors and
promotes tumor growth.

3.1.2 The role of IL-1 in the TME

In both gastritis and GC, IL-1 plays a key role in the tolerance of
the immune system. In gastritis, IL-1 promotes immune responses,
but if dysregulated, can impair immune tolerance, leading to
chronic inflammation and tissue damage. In GC, IL-1 promotes
immune escape by establishing an immunosuppressive
microenvironment which enables tumor cells to escape immune
surveillance, making immunotherapeutic approaches difficult.

IL-1 enhances the immune response in gastritis by promoting
antigen presentation through the activation of dendritic cells (188)
and macrophages (189). However, excessive IL-1 can damage the
gastric mucosa (114). In GC, tumors manipulate IL-1 to interfere
with the presentation of antigens, weaken the immune response,
and facilitate immune escape (190).

In GC in particular, IL-1 is a promising target for
immunotherapy. Inhibitors of IL-1 have shown the potential to
reduce the immune escape of the tumor and to increase the activity
of T cells (191). However, to develop effective treatments for
gastritis and GG, it is critical to balance its pro-inflammatory and
immunosuppressive effects.

3.1.3 The future of IL-1

Going forward, targeted therapies targeting IL-1 are poised to
become a key strategy in treating GC. Novel IL-1 inhibitors or
combination therapies with other immunotherapies could be
developed to more effectively regulate the TME and restore the
anti-tumor function of the immune system by gaining a deeper
understanding of the mechanisms by which IL-1 modulates the
TME. Optimizing the efficacy of IL-1 inhibitors, improving their
selectivity and exploring their potential synergistic effects with other
immunotherapeutic agents are expected to be the focus of future
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gastritis in response to H. pylori by contributing to the control of infection and

IL-18 produced by gastric epithelial cells protects against pre-
neoplastic lesions in H. pylori infection in mice (165)

IL-23 promotes the migration and invasion of GC cells by inducing

epithelial-to-mesenchymal transition via the STAT3 pathway (170)

IL-23A can promoted GC cells growth by inducing the secretion of
IL-17A in TME (171)

1123 receptor, as a key cytokine receptor gene in the important
inflammatory IL-17/IL-23 axis, may contribute to GC predisposition
(172)

IL-8 and IL-23 induced an inflammatory response and leading to
apoptosis, which can lead to carcinogenesis (173)

research. For GC and other cancers associated with chronic
inflammation, these advances may provide new therapeutic options.

3.21L-2

IL-2 plays a key role in the TME and is an important
immunomodulatory factor. IL-2 maintains the immune response
mainly by promoting T-cell proliferation, activation and survival,
and also has a major influence on immune tolerance and
immunosuppression mechanisms (192). The most important are
the high affinity IL-2Ra, IL-2RP and IL-2Ry (193).

3.2.1 Role of IL-2 in gastritis and GC

IL-2 helps activate T cells and NK cells, leading to effective
pathogen clearance in H. pylori-infected gastritis (194). However,
excess IL-2 also promotes the expansion of regulatory T cells, which
interfere with the resolution of inflammation and contribute to a
pro-tumor environment (195), highlighting the dual role of IL-2
in immunomodulation.

By promoting both anti-tumor immunity and immune
tolerance, IL-2 plays a key role in GC. Early on, IL-2 promotes
activation of effector T and NK cells, which are essential for
targeting and eliminating tumor cells (117). IL-2 also stimulates T
cells to proliferate, contributing to immune tolerance and cancer
progression (117). This dual role of IL-2 highlights the need for a
balanced immune response to effectively fight cancer and avoid

immune suppression.

3.2.2 The role of IL-2 in the TME

The function of IL-2 in the TME is twofold. Especially in tumor
immunotherapy, where the use of IL-2 sometimes significantly
increases the therapeutic effect, IL-2 promotes the proliferation
and activation of effector T cells (196) and enhances anti-tumor
(197), antiviral (198) and antibacterial immune responses (199). IL-
2 is also important for the expansion of regulatory T cells that
maintain immune tolerance (196) and prevent autoimmune
reactions by secreting immunosuppressive cytokines (192, 200)
(eg, TGF-B, IL-10). Therefore, to avoid excessive immune
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response or immune escape, the level and role of IL-2 in the TME
must be maintained at an appropriate balance.

However, immunosuppressive factors in the TME such as TGF-
B and PD-L1 may block the effect of IL-2 (201). For this reason, IL-
2directed immunotherapy strategies often need to be combined
with other immune checkpoint inhibiting or immune-enhancing
agents to optimize therapeutic efficacy. In addition, an in-depth
understanding of the complex mechanisms of IL-2 action in the
TME is important to improve immunotherapy, as the effects of IL-2
on the TME are also regulated by its interactions with different
immune cells.

3.2.3 The future of IL-2

IL-2 has a promising future in immunotherapy, particularly for
cancer, autoimmune and infectious disease. Optimizing IL-2
delivery methods to enhance its anti-tumor effects while
minimizing side effects through adjustments in dosage and
delivery strategies will likely be the focus of future studies. In
addition, by regulating T-cell function, restoring the balance of
the immune system and alleviating disease symptoms, IL-2’s role in
immune tolerance represents a novel approach to the treatment of
autoimmune diseases. In addition, by enhancing local immune
responses and improving therapeutic outcomes, IL-2 is expected
to contribute to the development of vaccines and the treatment of
infectious diseases. Therefore, to pave the way for more targeted
and effective immunotherapy strategies, a deeper understanding of
the mechanisms of IL-2 will be critical.

3.31L-4

IL-4 is a key cytokine secreted by immune cells such as Th2
cells, mast cells, and eosinophils, and it plays a crucial role in
regulating the TME (202). Its primary function is to drive a Th2-
type immune response by promoting B cell differentiation into
plasma cells, which secrete antibodies, while simultaneously
suppressing Thl-type immune responses. IL-4 also has significant
roles in anti-inflammatory processes (203), fostering immune
tolerance (204), and facilitating immune escape mechanisms (205).

3.3.1 Role of IL-4 in gastritis and GC

Through modulation of the Th1/Th2 balance, IL-4 is a regulator
of the TME in gastritis (206). In H. pylori infection, it promotes a
Th2 response, reduces inflammatory cytokines such as IFN-y, and
limits gastric damage (118). IL-4 also supports B cell differentiation
(207) and eosinophil recruitment (208). However, chronic
expression of IL-4 can perpetuate inflammation, facilitate the
persistence of H. pylori, and increase the risk of progression to
GC (194).

In GC, IL-4 promotes an immunosuppressive
microenvironment by polarizing M2 macrophages and promoting
Treg expansion (209). This suppresses effector T and NK cell
activity. IL-4 also upregulates PD-L1 in tumor cells, which
impairs antigen presentation and promotes the escape of the
immune system. In addition, tumor proliferation, invasion and
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metastasis are enhanced by IL-4-activated (210). For GC
immunotherapy, targeting the IL-4 signaling pathway
offers potential.

3.3.2 The role of IL-4 in the TME

IL-4 secreted by Th2 cells not only promotes the activation,
proliferation, and secretion of antibodies but also suppresses the
cytotoxic immune response by Thl cells (211). In allergic diseases
(212), parasitic infections (213) and the TME of tumors (214), this
effect is particularly pronounced.

Stimulated by IL-4, M2 macrophages secrete immunosuppressive
factors to reduce inflammatory responses while supporting tissue
repair by remodeling the ECM and enhancing neovascularization
(215, 216). In the TME, however, M2-type macrophages can have
pro-tumorigenic effects by promoting tumor cell growth, promoting
immune escape, and inhibiting the immune response (209).

IL-4 affects not only immune cells but also nonimmune cells
such as fibroblasts, epithelial and endothelial cells. In chronic
inflammatory and fibrotic diseases, IL-4 promotes the fibrotic
process through stimulation of fibroblast proliferation and
collagen secretion (217, 218).

In the TME, IL-4 has a dual role to play. On the one hand, it has
a pro-tumorigenic effect by promoting the escape of the immune
system and supporting the proliferation of tumor cells (219). On the
other hand, IL-4 can also exert an inhibitory effect on certain
tumors by modulating the activity of immune cells (220).
Therapeutic strategies targeting IL-4 or its pathway have potential
in antitumor immunotherapy.

3.3.3 The future of IL-4

As a key regulator of the immune system, the dual role of IL-4 in
the regulation of inflammation and tumor immunity provides a
broad perspective for future research and treatment. Further
exploration of the IL-4 pathway, especially its interaction with
other signal transduction networks, will help to elucidate its
complex functions in the immune milieu. At the same time, new
avenues for regulating inflammation and restoring anti-tumor
immunity may be explored through the development of therapeutic
strategies targeting IL-4 or its receptors, such as IL-4 antagonists,
ADCs or small molecule inhibitors. Furthermore, combining IL-4
blockade strategies with existing immunotherapeutic approaches
[e.g. immune checkpoint inhibitors (221) or CAR-T therapy (222)]
may improve therapeutic efficacy and advance clinical intervention
for gastritis, GC and other related diseases.

3.4 1L-6

IL-6 is a multifunctional inflammatory cytokine secreted by a
variety of cells including macrophages, monocytes, fibroblasts and
tumor cells (223). It promotes the production of acute phase
proteins and the recruitment of immune cells in acute
inflammation, while in chronic inflammation it can be a trigger
for tissue damage and disease progression. In cancer development
and progression (224), IL-6 can promote tumor cell proliferation,
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anti-apoptosis and angiogenesis by activating JAK/STAT3 and
other signaling pathways (225, 226). At the same time, IL-6 can
inhibit anti-tumor immune responses.

3.4.1 Role of IL-6 in gastritis and GC

IL-6 is a pro-inflammatory cytokine that is central to the
immune response to H. pylori infection, the most common cause
of gastritis (227). It promotes the recruitment of immune cells such
as macrophages and neutrophils to the gastric mucosa and
contributes to the activation of inflammatory pathways (227).
This exacerbates tissue damage and inflammation through the
release of additional inflammatory mediators. Prolonged IL-6
signaling may lead to chronic inflammation that impairs mucosal
healing and promotes progression of gastritis to pre-cancerous
states such as atrophic gastritis or intestinal metaplasia (228).

In GC, IL-6 plays a dual role in tumor progression and in the
modulation of the immune system. It promotes cancer growth
through activation of the STAT3 pathway, enhancing cell
proliferation, survival, angiogenesis and metastasis (229). In
addition, IL-6 contributes to immune evasion by promoting the
expansion of MDSCs (230) and regulatory T cells (231). This
attenuates anti-tumor immune responses. Chronic elevation of
IL-6 in the TME also maintains the inflammatory state and
creates a niche that is favorable for the progression of cancer.

3.4.2 The role of IL-6 in the TME

IL-6 can not only participate in inflammatory response, but also
promote tumorigenesis and development in the TME. In gastritis,
IL-6 mainly affects the damage and repair process of gastric mucosa
by activating the JAK/STAT3 signaling pathway, regulating
inflammatory response and immune cell differentiation (225). In
GG, IL-6 enhances the proliferation and anti-apoptosis of tumor
cells by reshaping the TME, helping them evade the clearance of the
immune system (232). Therefore, IL-6 plays a crucial role in the
TME of gastritis and GC.

H. pylori infection induces IL-6 secretion, which protects the
gastric mucosa from acute inflammation, but long-term IL-6
signaling can lead to chronic inflammation and increase the risk of
GC (233). In GC, IL-6 promotes the activation of TAMs and CAFs,
which further enhance the inflammatory response by secreting IL-6
and other factors, creating a vicious cycle (227, 234). In addition, IL-6
directly promotes the proliferation, survival, and invasion of tumor
cells by activating STAT3 signaling (223).

IL-6 impairs immune surveillance of tumors by inducing T cells
differentiation and inhibiting the activity of effector T cells (235). In
addition, IL-6 can also inhibit the maturation and antigen
presentation function of dendritic cells, further reducing the
immune system’s ability to respond to pathogens or tumor cells
(223). High levels of IL-6 in chronic gastritis may lead to the
immune system’s tolerance to H. pylori, creating the conditions for
the persistence of inflammation and the development of GC. In
addition, IL-6 can help tumor cells achieve immune escape through
a variety of pathways (236).

In conclusion, IL-6 has an important dual role in the TME of
gastritis and GC.
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3.4.3 The future of IL-6

Although IL-6 has a role in fighting inflammation and supporting
immune defense, its tumori-promoting effect in GC makes it an
important target for immunotherapy. In the future, it is expected that
the treatment strategies for gastritis and GC will be optimized by
precisely regulating the IL-6 signaling pathway, combined with
immune checkpoint inhibitors or other treatments, and providing
patients with more effective clinical interventions.

3.51L-10

IL-10 is an anti-inflammatory cytokine that is mainly secreted
by regulatory T cells, B cells, monocytes, and TAMs, and plays an
important role in maintaining immune homeostasis and inhibiting
excessive inflammation (237).

3.5.1 Role of IL-10 in gastritis and GC

In the early stage of H. pylori-induced gastritis or gastritis
caused by other stimuli, immune cells such as macrophages and
Thl cells release large amounts of pro-inflammatory factors,
including TNF-o, IL-1f, and IFN-y. IL-10 downregulates the
expression of these factors by activating the STAT3 pathway. This
effectively alleviates the mucosal inflammatory response and
reduces tissue damage. Meanwhile, IL-10 inhibits the antigen-
presenting function of DCs and macrophages. It also reduces
CD4+ T cell activation and decreases chemokine expression.
Thus, IL-10 controls the excessive infiltration of immune cells
into the gastric mucosa and prevents the spread of inflammatory
responses (118, 124). However, persistent expression of IL-10
allows H. pylori to evade the immune system, maintain infection
and create a microenvironment conducive to GC progression (238).
Elevated levels of IL-10 may reduce bacterial immune clearance and
increase cancer risk in chronic H. pylori gastritis. IL-10 from B cells
has been associated with an accelerated rate of progression of GC.

3.5.2 The role of IL-10 in the TME

Within the complex milieu of the TME in cancer, IL-10 can
exhibit a dichotomous role, exhibiting antagonistic and stimulatory
properties in distinct contexts. Specifically, IL-10 has been shown to
reduce chronic inflammation, thereby lowering the risk of
tumorigenesis. Conversely, elevated levels of IL-10 within the
TME can impede effective anti-tumoral immune responses, thus
facilitating immune evasion and tumor progression (239).

3.5.3 The future of IL-10

Due to its potent anti-inflammatory properties, IL-10 holds
great promise for therapeutic applications in inflammation, cancer
and autoimmune diseases. Strategies are being developed to
improve the stability and delivery of IL-10 derivatives to
effectively modulate the immune balance in autoimmune diseases
such as rheumatoid arthritis (240) and inflammatory bowel disease
(241). In cancer, IL-10’s dual role is being intensively studied,
particularly its potential to enhance antitumor responses with
immune checkpoint inhibitors. Targeting IL-10 therapeutics to

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1628543
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

improve efficacy and minimize side effects is possible through
advances in (242) and precision delivery systems (243).
Personalized therapies for immune-related diseases may emerge
from further research into the signaling pathways and regulatory
mechanisms of IL-10.

3.6 IL-12

IL-12 is a key pro-inflammatory cytokine that regulates
immune responses and is secreted by antigen-presenting cells
such as dendritic cells and macrophages (244). It promotes the
differentiation of CD4+ T cells into Th1 cells (245). It drives the
production of IFN-y and enhances cell-mediated immunity (246).
In addition, bridging innate and adaptive immunity, IL-12 activates
NK cells and enhances their cytotoxic and antitumor functions
(247). In the TME, IL-12 inhibits tumoral growth and supports
anti-tumoral immunity. However, underscoring the need for
balanced IL-12 expression, excessive IL-12 can lead to harmful
inflammation and has been linked to autoimmune diseases (248).

3.6.1 Role of IL-12 in gastritis and GC

It has been established that IL-12 plays a crucial role in the
immune response associated with gastritis, particularly in cases of
H. pylori -induced gastritis. As a pro-inflammatory cytokine, IL-12
facilitates the differentiation of CD4+ T cells into Th1 cells, thereby
enhancing the production of IFN-7y, which, in turn, accelerates the
eradication of H. pylori (249). However, the predominance of this
Th1-type immune response can also intensify gastric inflammation,
thereby contributing to mucosal damage (250). The persistent
inflammation that is driven by IL-12 has been demonstrated to
heighten the risk of progression from gastritis to gastric atrophy,
and eventually, GC, thereby underscoring its dualistic role in both
protecting against infection and contributing to disease progression.

3.6.2 The role of IL-12 in the TME

Within the TME, IL-12 has been shown to regulate immune cell
function, activate effector T and NK cells, and augment anti-tumor
immune responses. By inducing a Thl-type immune response, IL-
12 contributes to enhancing cell-mediated immune responses and
impeding the growth and metastasis of tumor cells (251).
Furthermore, IL-12 has been observed to enhance antigen
presentation via its modulation of dendritic cells (252), thereby
contributing to the initiation and sustenance of immune
surveillance within tumors. Nevertheless, immunosuppressive
factors in the TME have the potential to impede the effects of IL-
12 and curtail its therapeutic potential (253).

Notwithstanding the capacity of IL-12 to augment the immune
response, tumor cells have the capacity to inhibit the action of IL-12
through a variety of mechanisms, thereby leading to immune evasion.
Immunosuppressive cells within the TME, such as regulatory T cells
(254) and M2 macrophages (255), may hinder the pro-inflammatory
effects of IL-12 by secreting cytokines like IL-10 (256), thereby
diminishing the strength of the immune response. Furthermore,
prolonged IL-12 activation has been shown to induce immune
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tolerance, a process that can impede the immune system’s capacity
to recognize and combat tumor cells, thus creating a favorable
environment for tumor cell proliferation and immune evasion (257).

3.6.3 The future of IL-12

It is reasonable to hypothesize that in the future, immunotherapy
strategies that target IL-12 will become more sophisticated. Research
is anticipated to prioritize optimizing targeted delivery of IL-12
through genetic engineering, reducing systemic adverse effects, and
enhancing its efficacy in the TME. A promising avenue for
advancement in GC and other tumors may lie in the combination
of IL-12 with other immunotherapy methods, such as immune
checkpoint inhibitors (258) and CAR-T cell therapy (259). The
significance of IL-12 in the realm of tumor immunotherapy is
anticipated to be further underscored by advancements in precision
medicine and targeted delivery methodologies.

3.7 IL-17

The IL-17 class of pro-inflammatory cytokines is secreted by
Th17 cells and their derivatives, including gamma delta T cells and
natural killer T cells (260). These cytokines play a pivotal role in
regulating inflammatory responses. The IL-17 family comprises IL-
17A, 1L-17B, IL-17C, IL-17D, IL-17E, and IL-17F (260). Among
them, IL-17A is regarded as the most representative and the most
extensively studied member. By binding to its receptor, designated as
IL-17R, IL-17 triggers the activation of multiple signaling pathways,
resulting in the promotion of downstream cytokine production and
leukocyte recruitment. This phenomenon manifests a dual effect on
both immune response and tissue damage (261).

3.7.1 Role of IL-17 in gastritis and GC

By promoting an inflammatory response that recruits and
activates immune cells such as neutrophils and macrophages, IL-
17 plays a central role in H. pylori-induced gastritis. IL-17 is critical
for the elimination of H. pylori (156). However, its overactivity can
lead to chronic inflammation, creating an environment conducive
to the development of GC. Particularly in individuals with gastritis,
elevated levels of IL-17 correlate with an increased risk of GC. IL-17
plays a dual function in the development of gastritis and cancer: in
the early stages, IL-17 can contribute to tumor cell killing, but in the
tumor environment, IL-17 supports immune evasion and promotes
tumor cell survival and growth through modulation of immune cell
function (262, 263).

Studies have shown that by promoting inflammatory responses,
activating immune cells and inducing the release of pro-
inflammatory factors, IL-17 is able to drive GC development and
progression (158). The dual role of IL-17 in GC makes it a potential
target for research and therapy.

3.7.2 The role of IL-17 in the TME

IL-17, produced by Th17 cells, ¥0 T cells and other immune
cells, is central to inflammation, immunity and tissue repair
through binding to its receptor, IL-17R, and activation of
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downstream pathways. It enhances local immune defense against
pathogens by inducing the secretion of pro-inflammatory cytokines.
Sustained IL-17 activity may drive chronic inflammation (264) and
contribute to cancer (156), autoimmunity (265) and fibrotic
disorders (266). In addition, IL-17 regulates immune cell
interactions by influencing the balance of Thl7 and Treg and
promoting immune suppression via MDSCs (267). This facilitates
immune escape in tumors.

By stimulating fibroblasts, collagen synthesis and ECM
remodeling, IL-17 also supports tissue repair (268). These processes
can exacerbate pathological fibrosis and tissue damage in chronic
conditions such as cancer and fibrosis (266). While the role of IL-17 is
protective, its dysregulation poses challenges. Therapeutic approaches
that target the IL-17 pathway are promising but require careful
management to balance benefits and risks.

3.7.3 The future of IL-17

Hitherto, research on IL-17 has focused on its role in immune
modulation. By leveraging an enhanced comprehension of the IL-17
signaling pathway, the development of more precise treatment
methodologies can be facilitated. These methodologies hold
promise in reducing adverse effects and enhancing the precision of
treatment, thus improving patient outcomes. Moreover, the potential
synergistic effect of IL-17 when employed in conjunction with other
immunotherapy modalities, such as with immune checkpoint
inhibitors (269), warrants further exploration. Consequently, the
therapeutic potential of IL-17 in tumor immunotherapy merits
further investigation, as it could offer novel concepts and strategies
for the management of GC, among other types of tumors.

3.8 1L-23

IL-23 is a pro-inflammatory cytokine that plays a pivotal role in
the TME, primarily through the regulation of Th17 cell differentiation
and function (270). Its function includes the maintenance of Th17
cell expansion through the activation of the JAK-STAT pathway, the
promotion of inflammatory factor production (e.g., IL-17 and IL-22),
and, consequently, the enhancement of mucosal barrier defense and
pathogen clearance (271). However, uncontrolled activation of IL-23
has been associated with the pathogenesis of various
autoinflammatory conditions, including psoriasis (272) and
inflammatory bowel disease (248). Within the TME, IL-23 exhibits
a dual role, functioning both to enhance anti-tumor immunity and to
promote tumor progression through the mechanisms of chronic
inflammation and immune escape (273). Consequently, IL-23
represents a significant target for the therapeutic management of
inflammatory diseases and demonstrates potential value in the
context of tumor immunotherapy.

3.8.1 Role of IL-23 in gastritis and GC

In H. pylori -induced gastritis, IL-23 drives chronic inflammation
by promoting the differentiation of Th17 cells, which in turn produce
pro-inflammatory cytokines such as IL-17 (263). This cytokine
cascade damages the gastric mucosa and impedes healing. This
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contributes to chronic gastritis. Persistent IL-23 activation is a
potential target for therapeutic intervention because it exacerbates
inflammation and may perpetuate H. pylori infection.

In GC, IL-23 has a dual role. Through Th17-mediated tumor
surveillance, it can enhance antitumor immunity. Chronic IL-23
activation promotes a proinflammatory milieu that is conducive to
angiogenesis (274), and cancer progression (170). The complex role
of IL-23 in GC is underscored by the interplay between its
protective and tumor-promoting effects.

3.8.2 The role of IL-23 in the TME

In the TME, IL-23 is a key player in chronic inflammatory
conditions and autoimmune diseases. It maintains the
inflammatory milieu and immune cell activation. IL-23 has been
shown to cause tissue damage and chronic inflammation, making
people more prone to cancer.

In the context of cancer, the role of IL-23 is more complex. On
the one hand, by activating Th17 cells and NK cells that can
recognize and kill cancer cells, it can enhance the immune
system’s ability to fight tumors (247, 275). On the other hand,
persistent IL-23 activity can contribute to a chronic inflammatory
environment that is conducive to tumor growth and progression
through the promotion of angiogenesis (276) and immune evasion
(277). Thus, depending on the specific context and balance of
immune responses, IL-23 is a double-edged sword in the TME.

3.8.3 The future of IL-23

Particularly in the treatment of autoimmune diseases, chronic
inflammation and cancer, the future of IL-23 research holds
significant therapeutic potential. Given its critical role in driving
Th17 cell differentiation and perpetuating inflammation, IL-23 is a
target for therapeutic intervention in diseases like psoriasis. In clinical
trials, monoclonal antibodies that inhibit IL-23 signaling have shown
promise. In cancer, the pro-inflammatory effects of IL-23 can also
promote tumor growth, although IL-23 may stimulate anti-tumor
immunity. The refinement of IL-23 modulation strategies to exploit
its therapeutic benefits while minimizing its potential to promote
chronic inflammation or immune evasion in cancer will likely be the
focus of future research.

4 TNF

TNF is a master regulator of inflammatory responses, produced
primarily by macrophages, dendritic cells and T cells (278). TNF
binds to TNFR1 and TNFR2 to mediate its effects (279). It plays a
critical role in acute inflammation by promoting the activation of
the endothelium and the adhesion and migration of leukocytes to
the sites of inflammation (280). TNF stimulates the production of
pro-inflammatory cytokines, and thus amplifies the immune
response. However, excessive or chronic TNF activity is
characteristic in autoimmune diseases, such as rheumatoid
arthritis (281) and inflammatory bowel disease (282), where it
drives tissue damage and systemic inflammation. The specific
mechanism of TNF in GC and gastritis is detailed in Table 3.
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TABLE 3 The mechanism of TNF in gastritis and GC.

Cytokines

Brief biological mechanism in gastritis

10.3389/fimmu.2025.1628543

Brief biological mechanism in GC

H. pylori infection promotes M1 macrophage polarization and gastric inflammation by
activation of NLRP3 inflammasome via TNF/TNFR1 axis (283)
Exopolysaccharide54 could effectively alleviate the gastritis in the H. pylori-infected mice
by down-regulating the mRNA expression levels of TNF-o. in gastric cell (284)
TNF-alpha is involved in pathogenesis of gastritis induced by Helicobacter felis infection

TNF-o

as IFN-gamma (285)

4.1 Role of TNF in gastritis and GC

TNF drives inflammation in H. pylori -induced gastritis by
activating the NF-xB pathway, stimulating the release of other
inflammatory cytokines (288, 290). This results in infiltration of
immune cells and damage to the stomach lining. Chronic elevated
TNF contributes to persistent inflammation and compromises
mucosal repair, laying the foundation for GC (278).

In GC, TNF drives tumor progression through NF-xB and
MAPK pathways, promotes angiogenesis, cell proliferation and
metastasis, and suppresses antitumor immunity (291). Reflecting
its dual function, despite its pro-tumor role, TNF also has apoptotic
effects on tumor cells (278).

4.2 The role of TNF in the TME

In the TME of a tumor, TNF-a plays a complex dual role, both
as an inhibitor of tumorigenesis and, under certain conditions, as a
potential promoter of tumor progression.

By activating cytotoxic T cells and NK cells, TNF-o. enhances its
anti-tumor effects. In addition, TNF-o. induces tumor cell
expression of death receptors (e.g., Fas (292) and TNFRI1 (293)),
which initiates apoptosis through extracellular pathways and
inhibits tumor growth. On the one hand, TNF-a. plays a key role
in enhancing the antigen-presenting function and promoting the
release of inflammatory factors, thereby providing the body with an
effective anti-tumor immune environment (294).

Under conditions of chronic inflammation, TNF-o. supports
tumor development and proliferation through multiple
mechanisms. First, TNF-o is able to promote angiogenesis and
tumor invasion through the up-regulation of VEGF (295) and
MMPs (296). Second, TNF-o. suppresses the activity of effector T
cells by recruiting immunosuppressive cells such as regulatory T cells
(235) and MDSCs (297), creating an immune escape environment. In
addition, TNF-o activates the M2-type polarization of TAMs (298)
and secretes inhibitory factors such as IL-10 and TGF-B, further
suppressing anti-tumor immune responses.

In summary, depending on its concentration, local environment
and regulatory status of signaling pathways, the role of TNF-o in
the TME varies. Therapeutic strategies based on TNF-o. need to
enhance its anti-tumor ability while at the same time avoiding its
tumor-promoting effects. In recent years, new ideas for optimizing
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Tipo secreted from H. pylori stimulates GC development by inducing
TNF-0, an endogenous tumor promoter, through its interaction with
nucleolin, a Tipot receptor (286)

TNFo. might activate TLR2-B-catenin-signaling in GC (287)

The TNF-0/TNFR2 pathway increases the expression of Foxp3 and
the production of TGF-B in T cells in the GC microenvironment (288)
Oridonin suppresses GC SGC-7901 cell proliferation by targeting the
TNF-alpha/androgen receptor/TGF-beta signalling pathway axis (289)

tumor immunotherapy have emerged, such as combination therapy
targeting TNF-a. signaling (299).

4.3 The future of TNF

The future of TNF research is aimed at optimizing its
therapeutic potential, particularly in autoimmune diseases and
cancer treatment. Efforts are focused on refining TNF-targeted
therapies to minimize side effects and improve outcomes. In
cancer, the combination of TNF modulation with immune
checkpoint inhibitors is being explored to boost anti-tumor
immunity while addressing its role in chronic inflammation and
immune tolerance. Understanding the dual role of TNF in disease
progression is essential for the development of more effective,
targeted therapies.

S5 IFN

IFNs are a family of cytokines that play a key role in the
regulation of the immune system and are divided into three types:
Type I (e.g., IFN-0, IFN-f), Type II (IFN-v), and Type III (IFN-L)
(300). In response to infection, stress and malignancy, these
cytokines are produced (301, 302). Their primary role in
inflammation is to initiate an antiviral response, to modulate the
function of immune cells, and to influence the inflammatory
cascade. The specific mechanism of IFNs in GC and gastritis is
detailed in Table 4.

5.1 Role of IFN in gastritis and GC

In gastritis caused by H. pylori, IFNs play an important role in
the immune response. The inflammatory response induces the
production of these cytokines, which increase local inflammation
and recruit other immune cells (T cells, NK cells) through
macrophage/dendritic cell activation (312). In H. pylori-induced
gastritis, the expression of IFN-y is elevated, enhancing the
antimicrobial immune response. IFN-y induces the expression of
PD-LI, which contributes to limiting persistent inflammation and
alleviating gastric mucosal tissue damage. However, PD-L1 binds to
PD-1on T cells, leading to T cell exhaustion and suppression of the
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TABLE 4 The mechanism of IFN in gastritis and GC.

Cytokines

Brief biological mechanism in gastritis

10.3389/fimmu.2025.1628543

Brief biological mechanism in GC

IEN-
¢ pathways probably mediated (303)
IEN-B S
IFN-y as a critical promoter of parietal cell atrophy with metaplasia
IEN-y during the progression of gastritis to gastric atrophy and metaplasia (307)

expression and reduced ghrelin expression (308)

immune response. This ultimately results in an immunosuppressive
microenvironment that promotes tumor cell survival, metastasis,
and therapeutic resistance (313). Recombinant forms of IFN-a have
been used to treat melanoma (314), renal cell carcinoma (315), and
GC (316) because of their ability to induce tumor cell apoptosis and
enhance immune activation. However, chronic IFN signaling in the
GC microenvironment may enhance tumor progression by
promoting vascularization and tumor survival via pathways
including VEGF and TGF-f (317, 318).

5.2 The role of IFN in the TME

IEN activate immune responses by modulating the activity of
immune cells and influencing the TME. Type I IFNs (IFN-0/f)
activate antigen presentation, enhance NK cell and macrophage
function, and stimulate the expression of ISGs to establish an
antiviral state. They play an essential role in early immune
responses to infections and tumors (319). Type II IFN (IFN-y),
produced mainly by T and NK cells, promotes Th1 differentiation,
macrophage activation and antigen presentation, which are critical
for controlling infection and tumor growth (320). However,
excessive or prolonged IFN signaling can induce chronic
inflammation, tissue damage and immune dysregulation (321). In
the TME, prolonged IFN exposure can upregulate immune
checkpoint molecules such as PD-L1, leading to immune
tolerance and facilitating immune escape (322). In addition,
prolonged IFN signaling may promote tumor cell survival,
angiogenesis, and metastasis, complicating its therapeutic use.
The balance between immune activation and suppression driven
by IENs is critical in cancer and chronic inflammatory diseases.

5.3 The future of IFN

Improving their therapeutic applications, particularly in cancer,
viral infections and autoimmune diseases, is the future of IFNs in
medical research. New approaches aim to refine the use of IFNs to
enhance immune responses against tumors. Combinations of IFNs
and immune checkpoint inhibitors show promise in boosting anti-
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IFN-o inhibits gastric acid secretion centrally through nitric oxide

Gastric infection and inflammation are associated with increased IFN-y

13

IFN-0 sensitizes human GC cells to TRAIL-induced apoptosis via activation of
the c-CBL-dependent MAPK/ERK pathway (304)
IFN-o enhanced 5-DFUR-induced apoptosis in GC cells by upregulation of
TP expression, which is partially regulated by activation of ERK signaling (305)

Cytosine deaminase and IFN-[ genes in the presence of 5-fluorocytosine
have significant synergistic anticancer effects (306)

sLAG-3 might inhibit the tumor growth, and promote the secretion of CD8
+T cells, IL-12 and IFN-y (309)
A combination of cyclosporin-A and IFN-y induces apoptosis in human
gastric carcinoma cells (310)
IFN-gamma suppressed cell growth through induction of both cell cycle

arrest and apoptosis (311)

tumor immunity. Researchers are also investigating strategies to
minimize the adverse effects of prolonged IFN signaling, which can
contribute to chronic inflammation and immune tolerance. Future
therapies may offer more effective and targeted solutions for a variety
of immune-related diseases through a better understanding of the
mechanisms of IFN signaling in the TME and autoimmune contexts.

6 Chemokines

Chemokines are a class of small signaling proteins that play
important roles in the immune response, primarily by directing
immune cell migration to sites of infection, inflammation, or injury
(323). They play a critical role in immune surveillance (324), tissue
homeostasis (325), and development of the immune system (326)
and receptor signaling in cancer (327). The specific mechanism of
Chemokines in GC and gastritis is detailed in Table 5.

6.1 CCL2

CCL2 also known as MCP-1, is an important chemokine (353).
It is a member of the C-C motif chemokine family. It promotes the
chemotaxis of immune cells, in particular monocytes, macrophages
and dendritic cells, by binding to its receptor CCR2.CCL2 (354)
plays an important role in a wide variety of physiological and
pathological processes, including inflammation, the immune
response, the TME and immune escape (354).

6.1.1 Role of CCL2 in gastritis and GC

In gastritis, especially chronic gastritis caused by H. pylori, the
role of CCL2 is particularly prominent. Infection with H. pylori
stimulates the gastric mucosa to produce CCL2, which in turn
attracts monocytes and macrophages to the site of inflammation
(355, 356). Macrophages promote gastric mucosal injury and repair
by secreting inflammatory factors such as IL-8 and JAK, which
enhance the local immune response. Although CCL2 contributes to
the antimicrobial immune response, its overexpression can also lead
to chronic inflammation and immune dysregulation (135, 357).
This may increase the risk of precancerous lesions such as GC.
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TABLE 5 The mechanism of chemokines in gastritis and GC.

Cytokines

Brief biological mechanism in gastritis

10.3389/fimmu.2025.1628543

Brief biological mechanism in GC

H. pylori induce eosinophil migration through the chemokine CCL2,

PDPN+ cancer-associated fibroblasts enhance GC angiogenesis via the
CCL2-ACKRI axis (329)

CCL2 which in turn causes gastritis (328) Ephrin Al Stimulates CCL2 Secretion to Facilitate Pre-metastatic Niche
Formation and Promote GC Liver Metastasis (330)
CCL2 expression correlates closely with HIF-1o. expression in GC (331)
H. pylori infection stlmulates' fmacrop hagt?s to .secr('ete C,:CLZ,’ thr?ugh the CCL3 and CCL20-recruited dendritic cells modified by melanoma antigen
CCL3 JAK1-STAT1 pathway and disrupts gastric epithelial tight junctions . . ) . .
. L. . gene-1 induce anti-tumor immunity against GC (333)
through phosphorylation of P38, resulting in gastritis (332)
A novel long noncoding RNA, TMEM92-AS1, promotes GC progression
by binding to YBX1 to mediate CCL5 (335)
CCL5(+) T cells, presumably activated cytotoxic T cells, would play Down-regulation of KLF5 in cancer-associated fibroblasts inhibit GC cells
CCL5 important roles in the active inflammatory process of chronic progression by CCL5/CCR5 axis (336)
gastritis (334) 17B-estradiol inhibits mesenchymal stem cells-induced human AGS
GC cell mobility via suppression of CCL5- Src/Cas/Paxillin signaling
pathway (337)
Streptococcus anginosus is a gram-positive coccus that leads to the
CXCLs upregulation of the pro-inflammatory chemokine CCL8, which has long- Guanylate binding protein 5 accelerates GC progression via the JAK1-
term effects on gastric barrier function and microbiota homeostasis, STAT1/GBP5/CXCL8 positive feedback loop (339)
resulting in superficial gastritis (338)
Huang-Jin-Shuang-Shen Decoction promotes CD8+ T-cell-mediated anti-
tumor immunity by regulating chemokine CXCL10 in GC (341)
CXCL10 and IL15 co-expressing chimeric antigen receptor T cells enhance
. X .. . . anti-tumor effects in GC by increasing cytotoxic effector cell accumulation
Palmatine ameliorates N-methyl-N’-nitrosoguanidine-induced chronic .
CXCL10 K . K and survival (342)
atrophic gastritis through the STAT1/CXCLI10 axis (340) K . L X
Targeting Autophagy Facilitates T Lymphocyte Migration by Inducing the
Expression of CXCL10 in GC Cell Lines (343)
CXCL10/CXCR3 axis promotes the invasion of GC via PI3K/AKT
pathway-dependent MMPs production (344)
The circular RNA circDLG1 promotes GC progression and anti-PD-1
resistance through the regulation of CXCL12 by sponging miR-141-3p
(346)
Upexpression of BHLHE40 in gastric epithelial cells increases CXCL12 g?{lﬂgiizség(cgidaizﬂ(’if;s in GC affect malignant progression via the
CXCL12 production through interaction with p-STAT3 in H. pylori -associated R . o
gastritis (345) me-}Z73h-5p suppre?ses CXCLI12 expression and inhibits GC cell
invasion and metastasis (348)
MicroRNA-200b-3p restrains GC cell proliferation, migration, and
invasion via C-X-C motif chemokine ligand 12/CXC chemokine receptor
7 axis (349)
Cytotoxin-associated gene A-Negative H. pylori promotes gastric Mucosal Lactate/G.PR81 recrulFs regulfitory T cells by mo‘dulatmg CX3CLL to
CX3CL1 CX3CR1CD#4 Effector Memory T Cell recruitment in mice, causing promote immune resistance in a highly glycolytic GC (351)

gastritis (350)

CCL2 plays a role in promoting the recruitment of immune cells,
particularly monocytes and macrophages, in the TME of GC (358).
By secreting CCL2, tumor cells induce immune cells into the TME.
These immune cells, particularly TAMs, can promote tumor growth
and metastasis by secreting various cytokines (e.g., IL-10, TGF-f,
etc.) to maintain an immunosuppressive status in the TME (358).
Macrophages not only play a role in immune escape from tumors,
but also exacerbate tumor progression through promotion of
angiogenesis and suppression of effector T cell function (359).
Therefore, the role of CCL2 in GC may be both to initiate the
immune response and to be part of the immune escape mechanism
of tumors.
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Overexpression of CX3CR1 is associated with cellular metastasis,
proliferation and survival in GC (352)

6.1.2 The role of CCL2 in the TME

By promoting the recruitment of immunosuppressive immune
cells such as TAMs and Treg cells, CCL2 contributes to tumor
immune escape. Tumor cells and CAFs recruit macrophages into
the TME by secreting CCL2, and these macrophages are usually
M2type with immunosuppressive function (354).

Researchers are exploring immunotherapeutic strategies that
target the CCL2/CCR2 pathway because of the important role of
CCL2 in immune escape (360). Inhibition of the binding of CCL2 to
CCR2 or blocking the production of CCL2 may decrease the
accumulation of immunosuppressive cells, such as M2
macrophages, in the TME and increase effector T-cell clearance

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1628543
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

(361, 362). This targeted therapy may represent a new direction for
immunotherapy of tumors such as GC, as it has shown good results
in preclinical studies in several tumor types.

6.1.3 The future of CCL2

In order to reduce the immunosuppressive effects in the TME
and enhance the anti-tumor immune response, future studies may
focus on fine-tuning the CCL2/CCR2 pathway. Furthermore,
combining CCL2 with other immunotherapeutic strategies (e.g.
immune checkpoint inhibitors, CAR-T cell therapies, etc.) can
significantly improve immunotherapy efficacy (363). New
opportunities for the treatment of GC and other tumors will be
opened by optimizing the targeting of CCL2 and better
understanding its complex role in the TME.

6.2 CCL3

CCL3 also known as MIP-10, is an important chemokine
belonging to the C-C motif chemokine family. CCL3 plays an
important role in inflammation, immunomodulation, infectious
diseases, and tumors (364).

6.2.1 Role of CCL3 in gastritis and GC

H. pylori infection was found to activate immune cells in the
gastric lining, leading to the production of CCL3, which promotes a
local immune response by binding to CCR-1 and CCR-5 receptors
and recruits immune cells including monocytes, macrophages and
T cells to the site of inflammation (332). However, prolonged
overexpression of CCL3 can lead to chronic inflammation,
providing a permissive environment for precancerous lesions
such as GC to develop (365).

CCL3 plays an important role in the TME of GC. Tumor cells
recruit immune cells, particularly macrophages and T cells, into the
TME through the secretion of CCL3 (333, 366). However, tumor
cells can suppress anti-tumor immune responses by altering the
function of immune cells. In addition, CCL3 has a role in the
promotion of angiogenesis, which may increase the supply of
oxygen and nutrients to tumors and promote tumor growth and
metastasis (367).

6.2.2 The role of CCL3 in the TME

By recruiting immunosuppressive cells such as M2-type
macrophages and Treg cells, CCL3 can promote immune evasion
during tumor immune escape (368). Although CCL3 can enhance
local immune evasion, its recruitment of these suppressive cells can
diminish effector T cell function and impair tumor cell recognition
and clearance, thereby promoting tumor growth and metastasis
(369). As a result, the role of CCL3 in the TME can be both
supportive of the immune response and contribute to immune
escape through immunosuppressive mechanisms. Targeting CCL3
with immunotherapeutic strategies, such as blocking the CCL3/
CCR1/CCR5 interaction, could reduce the accumulation of
immunosuppressive cells and enhance anti-tumor immune
responses (369, 370). The CCL3/CCR5 pathway is a promising
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target for overcoming immune escape in GC, as studies suggest that
CCR5 antagonists may improve the efficacy of immunotherapy in

various cancers.

6.2.3 The future of CCL3

Future studies targeting the CCL3/CCRS5 signaling pathway
may aim to enhance immunotherapy efficacy, particularly when
combined with immune checkpoint inhibitors or CAR-T cell
therapy (371, 372). Inhibiting CCL3 activity or its receptor could
reduce immunosuppressive effects in the TME, restoring anti-
tumor immune responses. Additionally, precise regulation of
CCL3 expression in the TME may offer new therapeutic strategies
for immunotherapy in GC and other malignancies.

6.3 CCL5

CCL5 also known as RANTES, is an important chemokine that
belongs to the C-C motif chemokine family (373). It is a chemokine
secreted mainly by T cells, macrophages, dendritic cells, endothelial
cells and tumor cells (374). It regulates the migration of immune
cells, especially immune cells such as T cells, macrophages and
eosinophils, by binding to CCR1, CCR3 and CCR5 receptors (375-
377). CCL5 not only promotes the aggregation of immune cells, but
also enhances cell-cell interactions, thereby strengthening the
immune response. In addition, CCL5 is involved in the regulation
of immune cell activation, proliferation, differentiation and cytokine
secretion (378).

6.3.1 Role of CCL5 in gastritis and GC

The expression of CCL5 is normally increased when the gastric
mucosa is infected or injured, which recruits immune cells such as T
cells and macrophages to the site of inflammation and enhances the
immune response (379). However, excessive CCL5 activity can lead
to a persistent activation of the immune response, which can induce
chronic inflammation and increase the damage to the gastric
mucosa, thus providing favorable conditions for pre-cancerous
lesions such as GC (379). In the TME of GC, CCL5 plays a
complex dual role. On the one hand, CCL5 enhances the anti-
tumor immune response by promoting the recruitment of T cells
and NK cells. Studies show that high CCL5 expression has been
linked to stronger anti-tumor immune responses, particularly
effector T-cell and NK cell recruitment (380-382). On the other
hand, by binding to the CCR5 receptor, CCL5 can recruit
immunosuppressive cells such as TAMs and inhibit the function
of tumor-specific T cells, thereby exacerbating tumor immune
escape (336, 379). In addition, CCL5 may also support tumor
growth through the promotion of angiogenesis and the
enhancement of tumor cell migration and metastasis (383).

6.3.2 The role of CCL5 in the TME

CCL5 can promote the immune response against tumors
through the recruitment of effector cells such as T cells and NK
cells, but in some TMEs it can also promote immune escape
through the recruitment of immunosuppressive cells such as M2
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macrophages and Treg cells (384). CCL5 recruits M2 macrophages
via the CCR5 receptor. M2 macrophages secrete anti-inflammatory
factors (e.g., IL-10, TGF-P) that suppress tumor-specific immunity
and promote tumor survival and metastasis (385). Because of its
role in immune escape, targeting the CCL5/CCR5 pathway has
become a focus of immunotherapy research.

6.3.3 The future of CCL5

The accumulation of suppressive cells can be reduced and anti-
tumor immune responses can be enhanced by inhibiting CCL5/
CCR5 binding (379). Studies have shown that CCR5 antagonists,
especially when combined with immune checkpoint inhibitors or
CAR-T cell therapy, can improve immunotherapy outcomes in
various cancers, making the CCL5/CCR5 pathway a promising
strategy for the treatment of GC (386).

6.4 CXCL8

CXCLS8 is an important chemokine belonging to the C-X-C
motif chemokine family, also known as IL-8 (387). It is
predominantly secreted by various cell types including
neutrophils, macrophages, endothelial cells, fibroblasts, tumor
cells and others (388). By binding to its receptors CXCR1 and
CXCR2, CXCLS8 exerts chemotactic effects on immune cells, in
particular neutrophil recruitment and activation (387).
Furthermore, CXCL8 plays important roles in physiological and
pathological processes including inflammation, immune response
and TME (387).

6.4.1 Role of CXCL8 in gastritis and GC

In the gastric mucosa, CXCL8 enhances local immune
responses by promoting neutrophil chemotaxis and activation,
thereby contributing to the resolution of infection (389).
However, prolonged high expression of CXCL8 and excessive
neutrophil recruitment can lead to chronic inflammation and
damage to the gastric mucosal lining, creating conditions
conducive to the development of diseases like GC (390). In
addition to enhancing local inflammatory responses in the tumor
by recruiting immune cells, CXCL8 may also promote tumor
development by promoting tumor cell growth, angiogenesis and
metastasis (391). CXCL8 recruitment and activation of neutrophils
by binding to CXCR1 and CXCR2 has been shown to enhance
tumor growth and proliferation through secretion of a variety of
cytokines and angiogenic factor release (392, 393). In addition, by
inducing the accumulation of TAMs, CXCL8 may promote
immune escape from the TME (394).

6.4.2 The role of CXCL8 in the TME

By regulating the migration and function of immune cells in the
TME, CXCL8 may support immune escape of tumor cells (394).
Targeting CXCL8 or its receptors (CXCR1 and CXCR2) has
emerged as a potential immunotherapeutic strategy due to the
important role of CXCL8 in immune escape. By inhibiting the
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binding of CXCL8 and CXCR1/2, the aggregation of
immunosuppressive cells (e.g., neutrophils, TAMs, etc.) in the
TME can be reduced, thereby promoting the anti-tumor activity
of effector T cells (392, 393). Studies have shown that inhibition of
the CXCL8 pathway has the potential to enhance the effectiveness of
immunotherapy, especially when combined with immune
checkpoint inhibitors or other immunotherapy (395).

6.4.3 The future of CXCL8

Therapeutic strategies that precisely target the CXCL8 receptor
to reduce immunosuppression in the TME and restore anti-tumor
immune responses are likely to be the focus of future CXCL8
research. New ideas and therapeutic approaches for the treatment
of GC and other malignancies may be provided by optimizing the
role of CXCL8 in the TME.

6.5 CXCL12

CXCLI12 also known as stromal cell-derived factor 1, is an
important chemokine (396). It belongs to the C-X-C motif
chemokine family. CXCL12 can be secreted by various cell types
including fibroblasts, endothelial cells, macrophages, and tumor cells
(397). CXCLI12 binds to the CXCR4 and CXCR7 receptors and is
involved in many physiological and pathologic processes, including
immune response, cell migration and tumor metastasis (397, 398).

6.5.1 Role of CXCL12 in gastritis and GC

When infected by H. pylori, the stomach produces CXCL12,
which recruits immune cells such as T cells and macrophages to the
inflamed area (399). CXCLI12 helps resolve the infection by
regulating immune cell localization and activation through
binding to CXCR4 and CXCR?7 receptors (400). However,
excessive expression of CXCL12 can lead to chronic
inflammation, which can damage the lining of the stomach and
increase the risk of pre-cancerous lesions such as GC (401). In the
TME of GC, CXCL12 plays a dual role. First, by recruiting immune
cells to the TME, CXCL12 enhances the immune response (347). In
some cases, CXCL12 expression may enhance effector T cells, NK
cells, and other antitumor immune function (402). However,
CXCLI2 can also promote tumor metastasis by facilitating the
migration and invasion of tumor cells. Tumor cells, CAFs, and
others may secrete CXCL12 and activate the CXCR4 receptor,
which directs tumor cells to specific sites and promotes metastatic
and neovascular growth (403, 404).

6.5.2 The role of CXCL12 in the TME

By recruiting immunosuppressive cells such as Treg cells and
M2 macrophages, the CXCL12/CXCR4 signaling pathway plays a
critical role in tumor immune escape (400). High CXCL12
expression has been implicated in immune escape, metastasis and
drug resistance in several tumor types, including GC (405). CXCL12
promotes immunosuppression by recruiting CAFs and reducing
effector T-cell and NK-cell function (406).
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6.5.3 The future of CXCL12

Targeting the CXCL12/CXCR4 signaling pathway by inhibiting
their binding or by blocking the expression of CXCL12 can reduce
the accumulation of immunosuppressive cells and enhance the anti-
tumor immunity. This pathway is a promising therapeutic target as
studies have shown that CXCR4 antagonists can improve immune
responses and slow tumor progression.

6.6 CXCL10

CXCL10, also known as IP-10 (IFN-y-induced protein 10), is an
important chemokine that belongs to the family of chemokines with
a C-X-C motif (407). CXCL10 has been shown to be secreted by
various cell types including macrophages, endothelial cells,
fibroblasts and tumor cells (408). The expression of CXCLIO is
significantly increased by the chemotaxis induced by IFN-y and is
involved in the chemotaxis of immune cells, the modulation of
immune responses, and the immune surveillance of the TME (409).

6.6.1 Role of CXCL10 in gastritis and GC

In chronic gastritis, CXCL10 enhances the immune response by
recruiting CD4+ T cells and CD8+ T cells for infection control
(341). CXCL10 modulates immune cell function and the intensity of
local immune responses by binding to the CXCR3 receptor (410).
CXCL10 potentiates the immune response against tumors and
reduces tumor growth and metastasis, mainly by regulating
immune cell migration and activation. The role of CXCL10 is to
recruit immunosuppressive cells (such as Treg cells) to the tumor,
and these cells suppress the activity of effector T cells (411).

6.6.2 The role of CXCL10 in the TME

CXCLI10, through its receptor CXCR3, plays a dual role in
tumor immune escape (412). On the one hand, it recruits anti-
tumor immune cells such as effector T cells and NK cells to the
tumor site. This enhances the immune response and promotes
tumor elimination (413). On the other hand, prolonged high
expression of CXCL10 can lead to an overaccumulation of
immunosuppressive cells, particularly Treg cells. Treg cells
suppress effector T cell function and contribute to immune escape
(414). Thus, its ability to direct immune cell recruitment, as well as
the local immune status and cell types present, determine the
impact of CXCL10 in the TME.

6.6.3 The future of CXCL10

Because of its role in the modulation of immune responses,
CXCL10 has emerged as a promising target for immunotherapy.
Strategies that increase CXCL10 expression or activate its CXCR3
receptor could enhance anti-tumor immunity by promoting effector
cell recruitment to the tumor site. The combination of CXCL10
modulation with immune checkpoint inhibitors (e.g. PD-1/PD-L1
inhibitors) (415), cancer vaccines or CAR T-cell therapies may
improve overall therapeutic efficacy through synergistic
enhancement of the immune response (416). As a result, the
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CXCL10/CXCR3 pathway is a valuable target for the development
of novel immunotherapeutic strategies in cancers such as GC.

6.7 CX3CL1

CX3CLlI, also known as fractalkine, is a unique chemokine. It
belongs to the C-X3-C motif chemokine family (417). Unlike other
chemokines, CX3CL1 can be expressed on the cell surface in either
soluble or membrane-associated forms and plays important roles in
the immune response, particularly in immune cell migration,
inflammatory responses, tissue repair and the TME (418).

6.7.1 Role of CX3CL1 in gastritis and GC

In gastritis, CX3CL1 regulates the migration of immune cells
(particularly monocytes and macrophages) by binding to the
CX3CRI receptor and helps to direct immune cells toward the
site of inflammation, thereby maintaining local immune responses
and preventing the spread of pathogens (350). However,
overexpression of CX3CL1 can lead to chronic inflammation that
damages the lining of the stomach and increases the risk of GC, and
can direct immunosuppressive cells, such as Treg cells, to
accumulate at the site of inflammation, thereby supporting
immune escape (419).

In GC, through increased recruitment of immune cells such as
effector T cells and NK cells, CX3CL1 enhances the anti-tumor
immune response and limits tumor growth and metastasis
(352, 420).

6.7.2 The role of CX3CL1 in the TME

By interacting with the CX3CRI1 receptor, CX3CL1 recruits
immunosuppressive cells (e.g., Treg cells, M2-type macrophages) to
help tumors evade immune surveillance during immune escape in
tumors (421, 422). At the same time, CX3CL1 enhances the
secretion of immunosuppressive factors, inhibits the anti-tumor
activity of effector T cells and NK cells, and promotes immune
escape and tumor growth (423).

6.7.3 The future of CX3CL1

By understanding the role of CX3CL1 in immune escape and
tumor immune modulation, new targeted therapeutic strategies
have been developed. In particular, new breakthroughs in the
treatment of malignancies such as GC may be achieved through
combination with immune checkpoint inhibitors, cytokine therapy
and CAR T-cell therapy (424, 425).

7 Targeted agents against
inflammatory cytokines

Targeted agents against inflammatory cytokines have been
widely applied in various diseases, including hematological
disorders, autoimmune diseases, and chronic inflammatory
conditions, with their efficacy and safety well established (426-
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TABLE 6 The application of inflammatory factor-targeted drugs in GC.

Canakinumab

Targets

IL-1B

Application
status

FDA approved for
CAPS, TRAPS,
HIDS/MKD, FMF,
AOSD, SJIA

Research in
GC and
gastritis

NA

Anakinra

IL-1Ra

FDA approved for
RA, DMARDs,
NOMID, DIRA

NA

Gevokizumab

IL-1B

A phase III clinical
trial (NCT02258867)
for BD

NA

DFV890

A phase II clinical
trial (NCT06031844)
for CHD

NA

Aldesleukin

FDA approved for
RCC, Melanoma

NA

Basiliximab

Bempegaldesleukin

Nemvaleukin alfa

IL-2Ra

IL-2

IL-2

FDA approved for
AOR in patients
receiving renal
transplantation

A phase II clinical
trial (NCT03548467)
for Melanoma,
NSCLC

A phase II clinical
trial (NCT04144517)
for HNSCC

NA

Preclinical research
(429)

NA

Dupilumab

IL-4Ro.

FDA approved for
AD, CRSWNP,
Asthma, EoE

Preclinical research
(430)

Tocilizumab

IL-6R

FDA approved for
RA, CRS

NA

Siltuximab

Satralizumab

1L-6

IL-6R

FDA approved for
MCD (HIV/HHV-8
negative)

FDA approved for
NMOSD (AQP4
antibody positive)

NA

NA

Olokizumab

IL-6

A phase III clinical
trial (NCT02760368)
for RA

NA

Clazakizumab

CT-P47

IL-6R

A phase II clinical
trial (NCT03380377)
for KTR

A phase III clinical
trial (NCT05489224)
for RA

NA

NA

Bazedoxifene

IL-6/IL-
11/STAT3

A phase II clinical
trial (NCT02448771)
for BC

Preclinical research
(431, 432)

BMS-986253

1L-8
(CXCL8)

A phase II clinical
trial (NCT02448771)
for NSCLC, HCC

NA
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Targets
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Application
status

Research in
GC and
gastritis

FDA approved for

Preclinical research

Secukinumab IL-17A PsO, AS, PsA (433)
X FDA approved for Preclinical research
Ixeki IL-17A
ekizumab 7 PsO, PsA, AS (433)
A phase II clinical
Sonelokimab IL-17A/F trial (NCT05640245) NA
for PsA
A phase II clinical
Tadekinig alfa IL-18BP trial (NCT02398435) NA
for AoSD
. IL-12/IL- FDA approved for
Ustekinumab 23p40 PsO, CD, UC NA
FDA approved for
Guselkumab 1L-23p19 PsO, PsA NA
. . FDA approved for
Risanki IL-23p1 NA
sankizumab p19 PsO. PsA, CD
FDA fi
Tildrakizumab | 1L-23p19 approved for NA
PsO
A phase III clinical
trial (NCT05767021)
for UC
Miriki: b IL-23p19 NA
frikdzama P A phase III clinical
trial (NCT04232553)
for CD
FDA approved for .
TNF- Preclinical h
Infliximab TNFg/ RA, CD, UG, AS, ree ‘“‘&34;6“3”
PsO, PsA
FDA approved for
Adalimumab TNEF-o RA, CD, UG, AS, NA
PsO, PsA
FDA approved for
E TNE- A
tanercept NF-o RA, AS, PsA N.
. FDA approved for
Golimumab TNF-o RA, UC, AS NA
Certolizumab FDA approved for
TNE- NA
pegol ¢ CD, RA, UG, AS
A phase III clinical
Ozoralizumab TNF-o trial (NCT04077567) NA
for RA
A phase II clinical
L19-TNF TNEF-ou trial (NCT03420014) NA
for STS
FDA approved for .
Intron A IFN-a2b HCL, KS, CHB, Pr“hnl(j;;)esemh
CHC, Melanoma
FDA approved for
Pegasys IFN-0.2a CHB, CHC NA
FDA approved for
Peglnt IFN-02b NA
egintron * CHC, Melanoma
(Continued)
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TABLE 6 Continued

Research in
GC and
gastritis

Application
status

Targets

FDA approved for

A IFN-B1 NA
vonex Bla RRMS
FDA fi
Rebif IEN-Bla approved for NA
RRMS
FDA fi
Betaseron IFN-B1b approved for NA
RRMS, SPMS
. FDA approved for
Acti IFN-y1b NA
ctummune ! CGD, Osteosclerosis
A phase II clinical
Carlumab CCL2 trial (NCT00992186) NA
for PCa
Maraviroc cCLs FDA approved for Preclinical research
HIV (436, 437)
A phase II clinical
Leronlimab CCL5 trial (NCT01276236) NA
for KS
A phase II clinical
. CXCL8/ R phase 1 cunica Preclinical research
Reparixin trial (NCT01861054)
CXCR1/2 (142, 438)
for BC
A phase II clinical
CXCLS/ / phase 1I clinica
SX-682 trial (NCT04599140) NA
CXCR1/2
for CRC
ceLiof Aphase III- ‘
X (Terminated) clinical
Vercirnon CCRY/ . NA
CXCR3 trial (NCT01536418)
for CD
CXCL12
. / FDA approved for Preclinical research
Plerixafor CXCR4/
MM, NHL (400, 439)
CXCR7
CXCL12/ EDA 46
Motixafortide CXCR4/ approvec for NA
MM
CXCR7
XCL12,
. CXCL1/ FDA approved for
Mavorixafor CXCR4/ WHIM Svndrome NA
CXCR7 th
CXCL12/ A phase IT clinical
NOX-A12 CXCR4/ trial (NCT04121455) NA
CXCR7 for GBM

The information is sourced from https://clinicaltrials.gov/ and https://www.fda.gov/. NA, Not
Applicable.

428). However, in inflammation-driven tumors—particularly in the
context of GC—the therapeutic effectiveness and safety profile of
these agents remain to be fully elucidated. The research progress of
several targeted agents is summarized in Table 6. IL-6, TNF-0, and
CXCL8 are three key pro-inflammatory cytokines extensively
involved in remodeling the TME, thereby promoting tumor cell
proliferation, metastasis, and immune evasion. Targeted
interventions against these cytokines have entered preclinical or
early-phase clinical research in various inflammation-associated
diseases and selected malignancies, demonstrating considerable
therapeutic potential.
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In the IL-6 signaling pathway, the IL-6 receptor antagonist
Tocilizumab has been approved by the FDA for the treatment of
rheumatoid arthritis and giant cell arteritis, and its potential
application in solid tumors is gaining increasing attention.
Related studies also indicate that Bempegaldesleukin, an IL-2
pathway agonist, significantly enhances the anti-tumor efficacy of
radiotherapy through a T cell-dependent mechanism (429).
Furthermore, Bazedoxifene inhibits IL-11-dependent STAT3
signaling, thereby blocking gastrointestinal tumor growth (431).

In the CXCL8 pathway, Reparixin, a CXCR1/2 receptor
inhibitor, has been shown to markedly suppress the malignant
behavior of GC MKN45 cells in vitro and in vivo. When combined
with first- and second-line chemotherapy, it reduces toxicity and
prolongs survival (438). Reparixin also diminishes the protective
effect of CAFs on CD8" T cells and improves the efficacy of anti-
PD-L1 antibodies, thereby enhancing cytotoxic immune
responses (142).

Plerixafor, a small-molecule CXCR4 antagonist, is a leading
candidate in gastrointestinal cancer therapy targeting the CXCL12-
CXCR4/CXCR7 axis (400). Studies demonstrate that Plerixafor
modulates TAMs, suppresses GC progression, and enhances
immune recognition and T cell activation (439).

In the TNF-o. pathway, inhibitors such as Infliximab and
Adalimumab are widely used in the clinical management of
inflammatory bowel disease. Research suggests that Infliximab
can suppress H. pylori-induced upregulation of CXCR4 by
inhibiting TNF-a signaling, thereby reducing GC cell migration
and exhibiting anti-tumor potential (434).

Additionally, the highly selective CCR5 antagonist Maraviroc,
when combined with cisplatin, significantly inhibits the growth of
GC organoids and shows promising anti- GC activity (436). Its
mechanism may involve blocking the CCR5 pathway, thereby
reducing GC cell migration induced by MIP-1o, MIP-1f3, and
RANTES (437).

Although the above targeted strategies have shown good
safety profiles in approved disease settings, their application
in the context of cancer still requires cautious evaluation.
Inflammatory cytokines play essential roles in maintaining
immune homeostasis; thus, long-term or systemic inhibition
may lead to immune imbalance and an increased risk of
infection. In addition, the presence of complex bidirectional
regulatory mechanisms among different signaling pathways may
result in unexpected immunosuppressive effects. In the future, it
will be necessary to integrate tumor molecular subtypes, immune
cell infiltration patterns, and peripheral pro-inflammatory
cytokine levels to accurately identify patient populations most
likely to benefit from cytokine-targeted therapies. A systematic
assessment of the synergistic effects between cytokine inhibitors
and immune checkpoint inhibitors, conventional chemotherapy,
and anti-angiogenic therapies is needed to improve overall
therapeutic efficacy and overcome resistance to monotherapy.
With the aid of these technologies, the cellular sources and
target sites of inflammatory cytokines can be precisely identified
at single-cell resolution, thus providing a basis for individualized
and precise therapeutic interventions.

frontiersin.org


https://clinicaltrials.gov/
https://www.fda.gov/
https://doi.org/10.3389/fimmu.2025.1628543
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

8 miRNA-driven inflammatory
persistence in gastric

MicroRNAs (miRNAs) regulate the intensity and persistence
of inflammatory signaling by targeting multiple signaling
components, acting as molecular adaptive mechanisms that
facilitate immune evasion (440). In the context of H. pylori
infection, key immunoregulatory miRNAs—particularly miR-155
and miR-146a—are significantly upregulated, thereby
reprogramming TLR/NF-xB and associated downstream
pathways (441). miR-155 is typically upregulated during infection
and chronic inflammation, promoting or sustaining Th1/Th17
responses and functional remodeling of myeloid cells. However,
its excessive or sustained expression may also indirectly promote
immune evasion and pro-tumor microenvironment formation by
modulating antigen presentation, suppressing certain inhibitory
factors, or affecting immune checkpoint pathways. Conversely,
miR-146a is often induced by NF-kB as a negative feedback
regulator, targeting upstream adaptors like IRAK1/TRAF6
to reduce excessive inflammatory output and protect tissues
(442). However, altered miR-146a expression (or functional
imbalance) during chronic infection and carcinogenesis may
contribute to dysregulated inflammation and influence tumor-
associated NF-xB activity and cell proliferation signaling (443).
Collectively, the dynamic regulation of miRNAs transforms
pathogen-induced initial NF-kB/TLR signaling into a more
persistent and individualized inflammatory state (444). This not
only explains how inflammation-repair imbalance is sustained
long-term to promote genomic instability and tumor progression
but also reveals the value of miRNA regulatory axes as potential

biomarkers or intervention targets.

9 Challenge and future perspective

In this review, we primarily focused on the inflammatory
mechanisms underlying H. pylori-induced chronic gastritis and
its progression to gastric cancer. However, relatively limited
discussion was devoted to other well-defined etiologies of
gastritis, such as autoimmune atrophic gastritis, bile reflux-
related chemical injury, eosinophilic/lymphocytic or
granulomatous gastritis, portal hypertensive gastropathy, and
gastric mucosal injury caused by non-H. pylori infections (e.g.,
certain viruses or bacteria). Moreover, the prevalence of H. pylori
infection varies across different geographic regions, which may
influence the risk assessment and mechanistic understanding of
gastric carcinogenesis. Future studies should place greater emphasis
on the inflammatory characteristics of these distinct gastritis
subtypes and their potential roles in gastric cancer development,
thereby contributing to a more comprehensive understanding of the
underlying pathogenic network.
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9.1 CagPAl-mediated signaling cascades
and pro-inflammatory responses

Among the various triggers of chronic gastritis, H. pylori
infection represents the most well-characterized and potent
inducer of gastric tumorigenesis. Persistent infection initiates and
sustains mucosal inflammation through continuous activation of
epithelial and immune signaling networks, ultimately transforming
the gastric microenvironment into a pro-tumor niche. The cag
pathogenicity island (cagPAI), a major virulence determinant,
encodes the complete Cag type IV secretion system (Cag-T4SS)
together with a set of structural and effector proteins that directly
remodel host signaling at multiple levels (445, 446).

During intimate bacterial-epithelial contact, the Cag-T4SS
assembles into transmembrane secretion and adhesion complexes,
including the outer membrane core complex (OMCC) and sheath/
axon-like structures (447). Structural components such as Cagy, CagX,
CagT, and CagM form the OMCC and determine the system’s material
transport capacity, while effector proteins including CagA and the
adhesion molecule CagL mediate host cell engagement and
downstream signaling (448). CagL binds integrins (a5p1, otV[36, etc.)
with high affinity, activating the FAK/Src axis and receptor tyrosine
kinase cascades (e.g, EGFR), leading to MAPK (ERK, JNK, p38)
activation (449). This cascade induces AP-1 and NF-kB-dependent
transcription of pro-inflammatory cytokines such as IL-8 and IL-6,
establishing a strong chemokine gradient that recruits neutrophils
and macrophages (450).

Concurrently, the Cag-T4SS delivers bacterial peptidoglycan
(PGN) and CagA into host cytoplasm. Intracellular PGN is
recognized by NODI, triggering the canonical NF-kB and MAPK
pathways that further amplify inflammatory gene expression (451).
Once translocated, CagA undergoes phosphorylation at its EPIYA
motifs by Src/Abl kinases; phosphorylated CagA aberrantly
activates SHP2, leading to dysregulated growth factor signaling,
enhanced proliferation, and motility (452, 453). Non-
phosphorylated CagA binds the polarity regulator PARID,
disrupting epithelial cell polarity and promoting epithelial-
mesenchymal transition (EMT)-like changes (454). Additionally,
CagA impairs DNA damage repair (e.g., BRCAl-dependent
pathways), induces mitochondrial dysfunction and ROS
accumulation, and increases genomic instability—all hallmarks of
malignant transformation (455).

Chronic infection with cagPAl-positive H. pylori strains
therefore promotes gastric carcinogenesis through sustained
cytokine and chemokine secretion (IL-8, IL-6, TNF-o, IL-1f),
which recruit and activate neutrophils and macrophages to
produce reactive oxygen and nitrogen species (445). In parallel,
persistent activation of IL-6/STAT3 and NF-xB signaling sustains
epithelial survival and proliferation, while simultaneously inducing
an immunomodulatory milieu characterized by the recruitment and
polarization of MDSCs, regulatory T cells, and TAMs (456). These
processes collectively establish a microenvironment with both pro-
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inflammatory and immunosuppressive features, fostering tumor
initiation and progression.

With respect to inflammasome activation, studies suggest cell
type- and strain-dependent variability. In macrophages and
dendritic cells, H. pylori can “prime” NLRP3 via TLR2/NOD2
signaling, allowing pro-IL-1P synthesis and its Caspase-1-
mediated maturation under specific stimuli. Conversely, other
studies indicate weak or inhibitory effects on canonical NLRP3
activation, implying that H. pylori may fine-tune inflammasome
responses to balance persistent inflammation and immune
evasion (457).

9.2 HLA and inflammatory heterogeneity

HLA class I/II molecules form the core immunogenetic locus
that regulates antigen presentation and determines the types of
peptides presented to CD4+ and CD8+ T cells. This influences Th1/
Th2/Th17 cell polarisation and the secretion of corresponding
cytokine profiles (e.g. IFN-y, IL-10, IL-1B and TNF-o) (458).
Numerous studies have shown that the frequency of HLA-II
alleles (particularly HLA-DQA1, HLA-DQB1 and HLA-DRBI1)
correlates with mucosal inflammation phenotypes and cytokine
expression following H. pylori infection (459). In certain
populations, specific HLA-II alleles have been found to correlate
with either increased IL-10 expression or a heightened risk of pro-
inflammatory factor production (e.g. IL-1f and TNF-o). This

10.3389/fimmu.2025.1628543

suggests that immunogenetic variation is a critical factor in
explaining the differences observed in the intensity of the
inflammatory response and disease susceptibility between
individuals (460). Failing to consider HLA and antigen
presentation polymorphisms restricts discussions of inflammatory
responses to the ‘commonality’ level of pathogen-signalling
pathways. This approach is unable to explain why different hosts
exhibit markedly divergent inflammatory profiles and disease
courses despite similar pathogen exposures.

9.3 Synergistic and antagonistic
interactions of inflammatory cytokines and
their signaling pathways in GC and gastritis

In the relationship between gastritis and GC, inflammatory
factors play a crucial role (461, 462). A long-term chronic
inflammatory response lays the foundation for the development
of GC in chronic gastritis, especially that caused by H. pylori (463).
The specific mechanisms of evolution are shown in Figure 2. This
figure systematically illustrates how chronic gastric mucosal
inflammation, induced by H. pylori infection or other high-risk
factors, drives the progression from gastritis to GC. It highlights the
cascade of inflammatory mediators and signaling pathways
involved, along with their positive feedback regulation mechanisms.

Inflammatory factors (464) such as cytokines like IL-1, IL-6,
TNF-q, IL-17 and chemokines like CXCL8 and CCL2 play an
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FIGURE 2

Progressive transition from chronic inflammation to GC: a multi-stage mechanism initiated by H. pylori infection and mediated by inflammatory

signaling.
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important role in this process. By activating multiple oncogenic
signaling pathways (464) (e.g., NF-xB, JAK-STAT, MAPK, etc.),
they promote tumor cell proliferation, survival, immune escape, and
enhance tumor invasiveness and metastasis.

A. In the initial phase, H. pylori infection or other risk factors
compromise the gastric mucosal barrier, leading to immune cell
infiltration (e.g., neutrophils, macrophages, T cells). These cells
release large amounts of pro-inflammatory cytokines such as TNF-
o, IL-1B, IL-6, and CXCLS8, marking the onset of the
gastritis response.

B. In the second phase, inflammatory cytokines activate
multiple signaling pathways, primarily NF-xB and JAK/STAT
axes, which regulate immune amplification, cell survival,
angiogenesis, and epithelial proliferation. These pathways engage
in positive feedback loops that sustain and amplify the chronic
inflammatory state. “Other signal pathways” may include MAPK,
PI3K/AKT, and TLRs, which cross-regulate each other to enhance
stress and injury responses in the gastric mucosa.

C. In the third phase, inflammatory mediators further promote
immune cell recruitment and activation—e.g., CCL2-mediated
monocyte/macrophage infiltration—forming a tripartite cycle of
immune cells, cytokines, and signaling pathways that reinforce
local inflammation.

D. In the fourth phase, sustained inflammation induces genetic
mutations, stem cell damage, and epigenetic reprogramming in the
gastric epithelium, leading to precancerous lesions such as intestinal
metaplasia, atrophic gastritis, and dysplasia.

E. In the final phase, chronic inflammation promotes
tumorigenesis by enhancing immune evasion, inducing EMT, and
facilitating angiogenesis and stromal remodeling, ultimately driving
the development of GC.

Inflammatory cytokines such as IL-1B, TNF-o, and IL-6
synergistically amplify immune responses during the early stage of
gastritis via classical signaling pathways including NF-xB, JAK/

10.3389/fimmu.2025.1628543

STAT3, and MAPK, promoting mucosal hyperplasia, angiogenesis,
and immune cell infiltration. Meanwhile, negative feedback
regulators such as IL-10, TGF-B, SOCS3]/, and A20 maintain
mucosal homeostasis by inhibiting these signaling axes and restrict
excessive inflammation during the precancerous phase. However,
when these antagonistic mechanisms become dysregulated or are
hijacked by tumor cells, pro-inflammatory and pro-tumorigenic
signals remain persistently active, while anti-inflammatory factors
paradoxically facilitate immune evasion and microenvironment
remodeling, thereby driving gastric carcinogenesis. This network
exhibits marked heterogeneity both temporally (from early
inflammation to precancerous lesions to advanced tumors) and
spatially (across different mucosal regions and tumor core versus
invasive margin). Only by constructing a multidimensional systems
model integrating factors, pathways, disease stages, and spatial
context can the dual regulatory roles and dynamic balance of
inflammation in gastritis-to-GC progression be comprehensively
elucidated. Detailed mechanisms are shown in Tables 7 and 8.

Immune cells such as Treg cells, MDSCs and M2-type
macrophages infiltrate the TME and form an immunosuppressive
microenvironment as the inflammatory response continues (475).
These immunosuppressive cells inhibit an effective anti-tumor
immune response through the secretion of immunosuppressive
cytokines, thus allowing tumor cells to escape from immune
surveillance (475). The development of immune escape mechanisms,
which allow tumors to continue to grow under the pressure of the
immune system, is an important feature of GC progression (476).

Inflammatory factors play an important role in immune escape
in GC (477). Factors such as TNF-o. and IL-1 exacerbate immune
escape by promoting infiltration of immunosuppressive cells,
upregulating immune checkpoint molecules such as PD-L1, and
promoting tumor cell survival through pathways such as NF-kB
(478-480). Thus, under the watchful eye of the immune system, GC
cells can continue to grow and metastasize.

TABLE 7 Synergistic roles of inflammatory cytokines and their signaling pathways in GC and gastritis.

Factor/Pathway

Early-stage gastritis Advanced-stage GC Synergistic mechanism

H. pylori stimulate macrophages to secrete IL
—1P, which activates NF-«B signaling in
epithelial cells, leading to the release of

In precancerous lesions, sustained
activation of NF-kB by IL-1B
promotes epithelial cell proliferation,
angiogenesis, and ECM remodeling

IL-1PB and NF-xB form a positive feedback
1L-1B/NF-KB (465, 466) loop, whereby NF-kB upregulates IL-13
? expression, and IL-1p in turn further activates

NF-«xB

chemokines and the recruitment of additional
immune cells

The IL-6/STATS3 signaling pathway is
highly expressed in GC, driving the
maintenance of stem-like phenotypes
and upregulation of

Epithelial cells and infiltrating immune cells
secrete IL-6, which activates STAT3 in
epithelial cells, thereby promoting cell survival

IL-6 and STAT3 form a positive feedback
loop, wherein STAT3 upregulates the
- 1 44
IL-6/JAK/STAT3 (133, 467) expression of IL-6 and its receptor, thereby

and regeneration. enhancing signal persistence.

immunosuppressive molecules

Macrophages and activated T cells secrete TNEF-
o, which promotes activation of the p38
mitogen-activated protein kinase (p38/MAPK)

GC cells and TME macrophages co-
secrete TNF-o, which enhances
MAPK signaling to promote

TNEF-o amplifies pro-inflammatory and pro-
metastatic signals simultaneously through
both NF-kB and p38 MAPK pathways, with
these two pathways synergistically driving

TNE-0/MAPK (291, 468)
pathway, thereby exacerbating mucosal injury epithelial-mesenchymal transition and

and inflammation. invasive potential. disease progression.

TAMs secrete increased levels of CCL2
and cooperate with IL-10 and TGF-§
to establish an immunosuppressive

. . CCL2 forms a network and other factors
CCL2 is upregulated at the site of . ) .
. K 2 R (JAK) to collaboratively recruit and activate
CCL2/CCR2 (355, 469) inflammation, recruiting CCR2" monocytes to . .
. pro-inflammatory and pro-tumor immune

migrate toward the mucosa. . .
microenvironment. cells.
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TABLE 8 Antagonistic roles of inflammatory cytokines and their signaling pathways in GC and gastritis.

Factor/Pathway

Early-stage gastritis Advanced-stage GC Synergistic mechanism

In a subset of early-stage cases, IL-10 may
restore CD8" T cell function; however, its

IL-10 inhibits the activation of macrophages and
dendritic cells, reducing the secretion of TNF-cr,
IL-1B, and IL-6, thereby alleviating mucosal
inflammation.

Activation of JAK/STAT and NF-«xB

IL-10/STAT3 (144, 470) signaling pathways promotes drug

elevated expression in advanced stages can . K
. . . resistance in GC cells.
contribute to immunosuppression.

During the adenoma stage, SOCS3 is

1 I i
SOCS1 and SOCS3 are upregulated in response downregulated and inactivated, leading to

to stimulation by IL-6 and TNF-q, serving to
limit excessive activation of the JAK/MAPK
pathway and protect tissue integrity.

As a prototypical negative feedback
inhibitor, it terminates signal
transduction by directly binding to JAK
or promoting receptor degradation.

SOCS family (471, 472) sustained activation of STAT3; in advanced
stages, it is further silenced through

mechanisms such as CpG island methylation.

By deubiquitinating EMT-related
transcription factors, it ultimately leads to a
malignant phenotype and poor prognosis
of GC.

In GC, A20 is frequently downregulated,
resulting in sustained activation of NF-«xB
and promoting tumor progression.

It is induced following NF-xB activation,
A20 (TNFAIP3) (473, 474) reduces inflammatory signaling, and contributes

to the maintenance of immune homeostasis.

9.4 The neuroinflammation—tumor parallel, both inflammation and neural activity jointly modulate

trian gu lar interaction network tumor cell proliferation, migration, and invasion. Conversely, tumor

cells can secrete various factors to remodel both the neural and

Within the TME, the nervous system, immune inflammation, and
tumor cells form a dynamically intertwined “third space” network.
Neural signaling can regulate inflammatory responses, while
inflammatory mediators, in turn, influence neuronal function. In

Activated Immune cells

Neuron

STAT3/NF-kB

immune landscape. These three components interact reciprocally
and causally, constituting a “neuroinflammation-tumor” triangular
interaction network (Figure 3A). The dysregulation of this network is
a critical driving force behind tumor initiation, progression, and
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(A) Activated immune cells release pro-inflammatory cytokines such as TNF-a and IL-6, which enhance neuronal activity. The activated neurons then secrete
neurotransmitters including VIP, SP, CGRP, NE, and ACh, which stimulate tumor cells to produce neurotrophic factors and chemokines. This reciprocal
interaction sustains the neuro—inflammation—cancer signaling loop. (B) Relevant neurotransmitters promote an immunosuppressive microenvironment and
tumor progression via the STAT3/NF-«B signaling pathway. This process facilitates the development of chronic inflammation and drives the polarization of
immune cells from the M1 (anti-tumor) to the M2 (pro-tumor) phenotype, thereby shifting gastric tissue responses from inflammation repair toward gastric
carcinogenesis. Meanwhile, tumor cells release neurotrophic factors that induce neural remodeling, further enhancing tumor growth and immune evasion.
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metastasis (372). Furthermore, the neuroimmune axis regulates
immune responses through the vagus nerve and other neural
pathways, maintaining immune homeostasis. This complex
interplay acts as a double-edged sword in both inflammation and
cancer. Inflammatory factors play a dual role in gastritis and GC, as
shown in Figure 3B. Future research should focus on this crosstalk
phenomenon, laying an important foundation for subsequent studies.

Within this network, the inflammatory response typically serves
as the initiating event. Immune cells such as macrophages, dendritic
cells, T cells, and microglia become activated within the TME and
release a wide array of pro-inflammatory cytokines, including TNF-a,
IL-1B, IL-6, and CXCL1. These cytokines not only directly promote
tumor cell growth and metastasis but also act on local nerve endings,
leading to increased neuronal excitability and neural remodeling.

Neural signaling regulates immune cells via adrenergic and
cholinergic receptors. The sympathetic nervous system releases
norepinephrine, which binds to (,-adrenergic receptors on
macrophages, dendritic cells, and T cells, promoting M2
polarization and suppressing Thl responses. This modulation
influences cytokine production, cell migration, and overall
immune function. Conversely, the parasympathetic nervous
system regulates neural architecture through acetylcholine or
modulates immune cell recruitment, polarization, and function
via neuropeptides. Simultaneously, aberrant neural fiber growth
within tumors—referred to as neoneurogenesis—can enhance
tumor malignancy by transferring miRNAs and IncRNAs to
tumor cells via exosomal pathways.

Tumor cells also play an active role in this interactive network.
They can secrete neurotrophic factors (e.g., NGF, BDNF),
chemokines (e.g., CXCL12), and extracellular vesicles to induce
neural regeneration or remodeling, thereby establishing a more
complex “tumor-nerve” axis. Some tumors even acquire neuronal-
like properties through transcriptional reprogramming—a
phenomenon known as neuronal mimicry—which enhances their
responsiveness to neural signals. In addition, tumor-derived factors
can reshape the inflammatory microenvironment by promoting the
recruitment of immunosuppressive cells such as regulatory T cells
and MDSCs, thus enabling immune evasion (475, 476).

This triangular interaction network can ultimately form a
positive feedback loop: inflammation promotes neural activation;
neural signals regulate immune responses; immune activity further
facilitates tumor progression; and tumor cells, in turn, reactivate
both inflammatory and neural pathways. Therefore, targeting the
“neuro-inflammation-tumor” interaction network has emerged as
a promising therapeutic strategy in cancer treatment. Potential
approaches include blocking neurotransmitter signaling,
inhibiting neurotrophic factors, modulating immune cell
polarization, or applying denervation techniques to suppress
tumor progression.

9.5 Application of emerging technologies

In recent years, emerging high-throughput technologies such as
single-cell RNA sequencing (481, 482) and spatial transcriptomics
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(483, 484) have been widely applied in the study of gastrointestinal
diseases, offering unprecedented resolution in elucidating the
relationship between inflammatory factors and gastric
pathologies. These techniques enable the dissection of
transcriptional heterogeneity among different cell types—such as
epithelial cells, immune cells, and fibroblasts—within the gastric
mucosa at single-cell resolution, allowing for precise identification
of the sources and targets of inflammatory mediators. For example,
in models of chronic gastritis and H. pylori infection, single-cell
analysis has revealed that pro-inflammatory cytokines such as IL-6
is primarily secreted by activated macrophages and mucosa-
associated T cells, and can further influence the proliferation and
differentiation trajectories of gastric epithelial stem cells (234, 485).
Moreover, spatial transcriptomics enables the visualization of
inflammatory factor expression across distinct anatomical regions
of the gastric mucosa, thereby shedding light on the spatial
relationship between localized inflammation and tumor
progression. These advances are reshaping our understanding of
gastric disease pathogenesis from the perspectives of cellular
ecology and microenvironmental remodeling, and offer more
precise strategies for early diagnosis and therapeutic intervention.

New avenues for the treatment of GC are emerging, including
immunotherapy, particularly suppression of immune checkpoints
such as PD-1/PD-L1 antibodies (486, 487), and targeted therapies
against inflammatory factors (477, 488). Through the reversal of
immune suppression and the reactivation of anti-tumor immune
responses, these therapies are expected to be more effective in the
treatment of GC patients. However, the challenge remains how to
effectively control pro-inflammatory and escape mechanisms to
improve patient prognosis.

10 Conclusions

This review highlights the central role of inflammatory factors in
the transition from chronic gastritis to gastric cancer, emphasizing
their interactions within the tumor microenvironment that promote
both tumorigenesis and immune evasion. Inflammatory mediators
establish a dynamic pro-tumor network through multiple signaling
cascades. On one hand, they induce epithelial injury, stimulate
aberrant proliferation, and foster genomic instability, thereby
driving chronic inflammation toward malignant transformation.
On the other hand, the same inflammatory signals sculpt
an immunosuppressive microenvironment that dampens anti-
tumor immunity and facilitates tumor immune escape. Thus,
carcinogenesis and immune evasion represent interdependent
processes—two facets of a single pathological continuum—Iinked
by temporal and spatial feedback loops orchestrated by
inflammatory signaling.

From this integrative perspective, targeting a single
inflammatory pathway only offers limited and transient
therapeutic benefit. A combinatorial strategy that suppresses pro-
inflammatory signalling, reprograms immunosuppressive cells and
activates anti-tumour immunity offers greater therapeutic potential.
Biomarkers reflecting inflammatory network dynamics and the
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status of the TME are essential for patient stratification,
combination therapy design and treatment response monitoring.
Furthermore, additional longitudinal clinical samples and
mechanistic studies are required in order to identify biomarkers
that can predict treatment response and guide stratified therapy. In
summary, unravelling the interactive networks of inflammatory
factors within the TME will provide a theoretical foundation for
developing combined, personalised therapeutic strategies,
ultimately improving clinical outcomes for gastric cancer patients.
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Glossary
GC

H. pylori
IL

TNF
IEN
TME
ECM
VEGF
TAMs
MDSCs
NSAIDs
TGF
ROS
ADCs
PD-L1
PD-1
miRNAs
CagPAI
Cag-T4SS
PGN
EMT
CAFs
OMCC
TNFR
MMPs
ISGs
MCP-1
MIP-1o
RANTES
MIP
SOCS
CAPS

TRAPS

HIDS
MKD
FMF
AOSD
SJIA

RA

Gastric Cancer

Helicobacter pylori

Interleukin

Tumor Necrosis Factor

Interferon

Tumor microenvironment
Extracellular matrix

Vascular endothelial growth factor
Tumor-associated macrophages
Myeloid-derived suppressor cells
Nonsteroidal anti-inflammatory drugs
Transforming Growth Factor
Reactive oxygen species
Antibody-drug conjugates
Programmed death-ligand 1
Programmed death-1

MicroRNAs

Cag pathogenicity island

Cag type IV secretion system
Peptidoglycan
Epithelial-mesenchymal transition
Cancer-associated fibroblasts

Outer membrane core complex
Tumor Necrosis Factor Receptor
Matrix metalloproteinases
Interferon-stimulated genes
Monocyte chemotactic protein-1
Macrophage inflammatory protein-1o
Regulated on Activation, Normal T Expressed and Secreted
Macrophage inflammatory proteins
Suppressor of Cytokine Signaling
Cryopyrin-Associated Periodic Syndromes

Tumor Necrosis Factor Receptor Associated
Periodic Syndrome

Hyperimmunoglobulin D Syndrome
Mevalonate Kinase Deficiency
Familial Mediterranean Fever

Active Adult-Onset Still’s Disease
Systemic Juvenile Idiopathic Arthritis

Rheumatoid Arthritis
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BD
CHD
DMARDs
NOMID
DIRA
RCC
AOR
NSCLC
HNSCC
AD
CRSWNP
EoE
CRS
MCD
NMOSD
KTR

BC
HCC
PsO

AS

PsA
AoSD
CD

ucC

STS
HCL

KS

CHB
CHC
RRMS
SPMS
CGD
HIV
PCa
CRC
MM
NHL

GBM
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Behget’s Disease

Coronary Heart Disease

Disease modifying antirheumatic drugs
Neonatal Onset Multi-System Inflammatory Disease
Interleukin-1 Receptor Antagonist

Renal Cell Carcinoma

Acute organ rejection

Non-Small Cell Lung Cancer

Head and Neck Squamous Cell Carcinoma
Atopic Dermatitis

Chronic rhinosinusitis with nasal polyposis
Eosinophilic Esophagitis

Cytokine Release Syndrome

Multicentric Castleman Disease
Neuromyelitis Optica Spectrum Disorder
Kidney Transplant Rejection

Breast Cancer

Hepatocellular Carcinoma

Psoriasis

Ankylosing Spondylitis

Psoriatic Arthritis

Adult -Onset Still’s Disease

Crohn’s Disease

Ulcerative Colitis

Soft Tissue Sarcoma

Hairy Cell Leukemia

Kaposi Sarcoma

Chronic Hepatitis B

Chronic Hepatitis C

Relapsing Multiple Sclerosis

Secondary Progressive Multiple Sclerosis
Chronic Granulomatous Disease

Human Immunodeficiency Virus
Prostate Cancer

Colorectal Cancer

Multiple Myeloma

Non-Hodgkin Lymphoma

Glioblastoma
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