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Long-term inflammatory reaction may promote gastric cancer initiation and

development through multiple mechanisms. Recent studies have demonstrated

that inflammatory mediators play a crucial role in the transition from gastritis to

gastric cancer. Pro-inflammatory cytokines, chemokines, and other signaling

molecules interact and synergistically regulate gastric epithelial cell proliferation,

apoptosis, migration, and invasiveness, thereby promoting tumorigenesis.

Specifically, interleukins activate immune cells, induce the secretion of

inflammatory mediators, and maintain local immune responses; however, in

the context of cancer, they exhibit a dual role by both enhancing anti-tumor

immunity and driving tumor progression. Tumor necrosis factor amplifies

immune responses by stimulating the production of pro-inflammatory

cytokines, yet excessive or chronic Tumor necrosis factor activity is a hallmark

of autoimmune diseases. Interferons initiate antiviral responses, modulate

immune cell functions, and influence the inflammatory cascade. Chemokines

primarily mediate the recruitment of immune cells to sites of infection,

inflammation, or injury, but also play key roles in immune evasion and tumor

immune regulation. This review summarizes the cooperative roles of these

inflammatory mediators in the progression from gastritis to gastric cancer and

discusses their potential as therapeutic targets. A better understanding of these

mechanisms may facilitate the development of novel strategies for the

prevention and treatment of gastric cancer.
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1 Introduction

1.1 Inflammation and tumorigenesis

In 1863, Rudolf Virchow first proposed the connection between

inflammation and cancer, suggesting that certain stimuli, along with

the tissue damage and inflammation they induce, can drive cell

proliferation (1, 2). The inflammatory cells and cytokines present in

the TME play a crucial role in promoting tumor growth, metastasis,

and modulating immune responses (3). This concept has evolved

over time, and decades of research have provided further validation

of this link. Chronic inflammation is considered a marker of cancer

(4). Mutations contribute to tumorigenesis; however, in the

majority of cases (>90%), cancer development is closely linked to

chronic inflammation in some form (5).

The relationship between inflammation and tumorigenesis is both

complex and deeply interconnected, with chronic inflammation widely

regarded as a key factor driving tumor initiation and progression

across various cancers. Inflammatory processes, whether infectious—

such as H. pylori-induced gastritis (6) or hepatitis B virus-related

chronic hepatitis (7)—or non-infectious (8), including autoimmune

diseases and chronic tissue damage caused by environmental factors,

contribute to tumorigenesis through multifaceted mechanisms (9–12).

Chronic inflammation is often characterized by repeated cycles of

tissue injury and repair, leading to accelerated cell proliferation, genetic

mutation accumulation, disrupted signaling pathways, and diminished

immune surveillance, collectively creating a conducive environment

for tumor development (9, 13).

In the context of chronic inflammation, inflammatory cells such

as macrophages, neutrophils, and lymphocytes release significant

amounts of pro-inflammatory cytokines (e.g., IL-6, TNF-a, IL-1b),
chemokines, and reactive oxygen species (ROS) or reactive nitrogen

species (RNS). These mediators not only induce direct DNA

damage (14) but also lead to epigenetic alterations (15, 16) that

silence tumor suppressor genes or activate oncogenes. Additionally,

pro-inflammatory signals activate critical intracellular pathways

such as NF-kB and STAT3, which drive abnormal cell

proliferation, inhibit apoptosis, and enhance the invasive and

metastatic capabilities of cells (17, 18). Accumulated ROS and

RNS further impair DNA repair mechanisms, heightening

genomic instability and fostering conditions that facilitate the

emergence of cancer cells (19, 20).

Beyond cellular effects, inflammation profoundly influences

tumorigenesis by shaping the TME (21). Chronic inflammation

drives ECM remodeling paving the way for tumor cell invasion and

metastasis (22). Furthermore, pro-angiogenic factors like VEGF

(23) secreted within the inflammatory milieu significantly promote

angiogenesis, supplying tumors with essential nutrients and oxygen

while enabling cancer cells to enter the circulatory system (22, 24).

Chronic inflammation also weakens immune surveillance. For

instance, TAMs (25) and MDSCs (26), which accumulate in

inflammatory conditions, secrete immunosuppressive cytokine

that dampen the activity of effector T cells, thereby aiding tumor

cells in evading immune responses.
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The effects of inflammation on tumorigenesis vary across tissue

types and inflammation forms. Chronic inflammation is notably

linked to specific cancers, such as colorectal cancer associated with

chronic ulcerative colitis (27) and hepatocellular carcinoma linked

to chronic hepatitis (28). Compared to acute inflammation, which

may transiently activate immune defenses, chronic inflammation

exerts more subtle yet persistent effects, including genomic

instability, localized immune suppression, and profound

alterations to the TME, thereby amplifying tumorigenic

potential.In fact, not all chronic inflammatory diseases increase

the risk of cancer. Some of these diseases, such as psoriasis, can even

reduce the risk of cancer (29).

In conclusion, inflammation serves as a “double-edged sword”

in tumorigenesis. While acute inflammation may bolster immune

surveillance and eliminate abnormal cells, chronic inflammation

promotes genetic mutations, activates oncogenic pathways,

suppresses immune defenses, and reconfigures the TME, thereby

facilitating cancer initiation and progression. Elucidating the

mechanisms linking chronic inflammation to tumorigenesis will

deepen our understanding of cancer biology and support the

development of innovative anti-inflammatory and anticancer

therapies, paving the way for more effective and personalized

treatment strategies.
1.2 Inflammation and tumorigenesis

Inflammatory factors are a class of cytokines, chemical

substances, or small molecules secreted by immune cells,

epithelial cells, and other tissue cells during the inflammatory

response (30). These factors play a critical role in regulating the

immune system, promoting tissue repair, and maintaining

homeostasis. However, the excessive or prolonged activation of

inflammatory factors may lead to chronic inflammation, which can

trigger a variety of diseases, including autoimmune diseases (31),

cardiovascular diseases (32), and cancer (33).

Based on their function and chemical properties, inflammatory

factors can be classified into several categories: Pro-inflammatory

factors (34) enhance the inflammatory response by activating pro-

inflammatory signaling pathways, resulting in tissue damage and

abnormal cell proliferation. Second, anti-inflammatory factors (34)

play a key role in maintaining the balance of the inflammatory

response by inhibiting the production of pro-inflammatory factors

and reducing tissue damage. In addition, chemokines (34) primarily

function to recruit immune cells to the site of inflammation, thereby

expanding the scope of the inflammatory response. The functions of

inflammatory factors and their communication network are shown

in Table 1 and Figure 1.

Inflammatory factors play a central role in the link between

inflammation and cancer through various mechanisms. In GC,

inflammatory factors contribute to tumorigenesis by activating

signaling pathways, reshaping the TME, and suppressing immune

surveillance, thus driving the entire process from early tumor

formation to late-stage metastasis (98). A comprehensive
frontiersin.org
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TABLE 1 Inflammatory factors and their functions.

Classify Cytokines Source Receptor Target cell Key features

IL

IL-1
Macrophages, B cell,

dendritic cell
CD121a B cells, NK cell, T cell

Pyrogenic (34, 35), pro-inflammatory (36),
proliferative and differentiated (37)

IL-2 Th1 cell CD25
Activated T cells and B cell, NK

cell
Adaptive immunity (38), cell proliferation
(39), activated T cell, NK cell function (40)

IL-4 Th cell CD124 B cell, T cell, macrophage

Adaptive immunity (41), B cell and
cytotoxic T cell proliferation (42), enhances

MHC class II expression (43), and
stimulates IgG and IgE production (44)

IL-6
Th cell, macrophage,

fibroblast
CD126, 130 B cell, plasma cell

pro-inflammatory (45), B cell differentiation
(46)

IL-10
T cell, B cell,
macrophage

CDw210 B cell, macrophage
Anti-inflammatory (47), Inhibits cytokine
production and monocyte function (48)

(49)

IL-12
T cell, macrophage,

monocyte
CD212 NK cell, macrophage, tumor cell

Pro-inflammatory (50), Activation of NK
cell, phagocytic cell activation (51),

endotoxin shock (52), tumor cytotoxicity
(53), cachexia (54)

IL-17 Th17 cell IL-17R Monocyte, neutrophil
Monocytes and neutrophils are recruited to

the site of infection (55)

IL-18
Macrophage,

dendritic cell, and
epithelial cell

CD218a
(IL-18Ra)

Monocyte and T cell
Recruit monocytes and T lymphocytes (56).
In combination with IL-12, it induces IFN-g
production and inhibits angiogenesis (57).

TNF

TNF-a Macrophage CD120a, b Macrophage
Pro-inflammatory (58), Phagocytic cell
activation (59), endotoxin shock (60)

TNF-b T cell CD120a, b Macrophage, tumor cell
Pro-inflammatory (61), Chemotactic,

phagocytosis, tumor suppression, induction
of other cytokines (62)

IFN

IFN-a
macrophage,

neutrophil, and
some somatic cell

CD118 (IFNAR1,
IFNAR2)

extensive Pro-inflammatory (63), Antiviral (64)

IFN-b fibroblast
CD118 (IFNAR1,

IFNAR2)
extensive

Pro-inflammatory (65), Antiviral (66),
antiproliferative (67)

IFN-g T cell and NK cell
CDw119
(IFNG R1)

extensive

Pro-inflammatory (68), Antiviral (69),
macrophage activation (70), enhanced

neutrophil and monocyte function (71) and
expression of MHC-I and -II on cells (72)

Chenokines

CCL2
Endothelial cell,

monocyte, fibroblast
CCR2, CCR4

Basophil, monocyte, T cell,
dendritic cell

Induces chemotaxis (73), regulates
macrophage activity (74), and regulates

cytokine production (75)

CCL3

Monocyte,
neutrophil,

fibroblast, and
dendritic cell

CCR1, CCR4,
CCR5

Eosinophil, monocyte, T cell,
dendritic cell

Induces various pro-inflammatory activities,
such as leukocyte chemotaxis (76).
Granulomas, asthma, T1D, and key
inflammatory mediators in other

autoimmune diseases (77)

CCL5
T cell, monocyte,

NK cell,
CCR1, CCR3,
CCR4, CCR5

Basophil, eosinophil, monocyte,
T cell, dendritic cell

Promotes apoptosis (78), antiviral (79),
tumor development (80), and plays a role in
insulin secretion of pancreatic islet cells by

activating GPR75 (81)

CXCL8(IL-8)
Neutrophil,

endothelial cell,
fibroblast

CXCR1, CXCR2 Neutrophil, basophil

Recruitment and activation of neutrophils
to sites of inflammation (82), tissue damage
(83), fibrosis (84), angiogenesis (85), and

tumorigenesis (86)

(Continued)
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understanding of the function and regulatory mechanisms of

inflammatory factors will not only help elucidate the pathogenesis

of GC but also provide novel insights into the development of

targeted anti-inflammatory cancer therapies, laying a theoretical

foundation for personalized treatment strategies.
1.3 Gastritis and GC

Gastritis broadly refers to inflammatory or reactive injury of the

gastric mucosa with diverse etiologies (e.g., H. pylori, autoimmune

atrophic gastritis, bile-reflux/chemical injury, eosinophilic or

lymphocytic gastritis). Clinically, it is important to distinguish

reactive/chemical injury from leukocyte-predominant

inflammatory gastritis and to record acute versus chronic patterns

and anatomic distribution (antrum-predominant, corpus-

predominant, or pangastritis), which in turn influence

mechanisms and risks of progression from chronic inflammation

to cancer (99, 100). GC is a significant global health issue, often

resulting from a multifactorial process involving genetic,

environmental, and microbial factors (101, 102).

When gastritis becomes chronic, it can lead to progressive damage

of the stomach lining, starting with atrophy (thinning of the gastric

mucosa), followed by metaplasia (the transformation of normal cells

into abnormal ones) and dysplasia (abnormal cell growth) (99). These

changes are considered precursors to GC. Persistent inflammation can

also lead to the accumulation of genetic mutations, disruption of

normal cell signaling pathways, and the activation of pro-

inflammatory factors, all of which contribute to the development of

cancer. If left untreated, this chronic inflammatory process can

eventually promote the transformation of normal gastric cells into

malignant cancer cells, resulting in GC.
2 ILs in inflammation and cancer

ILs play a central role in inflammation by regulating the

immune response and the inflammatory response (103, 104). By

promoting the activation of immune cells, secreting pro-
Frontiers in Immunology 04
inflammatory factors, and maintaining local immune responses,

they are involved in acute and chronic inflammatory processes.

However, persistent or excess expression of ILs can lead to chronic

inflammation and increase the risk of diseases like infectious

diseases (105), cardiovascular diseases (106) and cancer (107).

In cancer, the role of ILs is even more complex. ILs can both

enhance tumor immunity by modulating immune cell function in

the TME (108) and drive tumor progression by promoting immune

escape and tumor cell growth (109). Thus, the role of ILs in cancer is

a dual one, both protective and potentially aggravating. The specific

mechanism of IL in GC and gastritis is detailed in Table 2.
3 ILs

3.1 IL-1

IL-1 is a pivotal cytokine produced by various cell types,

including monocytes, macrophages, and fibroblasts, primarily in

two isoforms: IL-1a and IL-1b (174). We will focus primarily on IL-

1b, IL-1a, and IL-1b, although the IL-1 family also includes the

disease-associated cytokines IL-18, IL-33, and IL-36 (175). It serves

as a central mediator in the immune and inflammatory responses,

regulating immune activity (176), enhancing inflammation (177),

and influencing cellular proliferation and tissue repair through the

activation of multiple signaling pathways (178, 179). The

involvement of IL-1 in gastritis (180), GC (115), and the TME

(181) is extensive and multifaceted, playing a significant role in the

pathogenesis and progression of these conditions.

3.1.1 Role of IL-1 in gastritis and GC
IL-1 is a critical mediator in the onset and progression of

gastritis, especially in chronic forms, where elevated IL-1 levels

amplify inflammation (182). Through activation of NF-kB, IL-1
induces the release of pro-inflammatory cytokines such as TNF-a
and IL-6, exacerbating the inflammatory response (106, 183).

During H. pylori infection, IL-1 promotes immune cell infiltration

and gastric epithelium injury, which may exacerbate lesions and

contribute to disease progression (184).
TABLE 1 Continued

Classify Cytokines Source Receptor Target cell Key features

CXCL10
Monocyte,

endothelial cell,
fibroblast

CXCR3 Monocyte, T cell, NK cell
Chemotactic activity (87), induces apoptosis
(88), regulates cell growth and proliferation,

and tumor formation (89)

CXCL12 Stromal cell CXCR4, CXCR7 All cell types

It plays a key role in the pathological
process of some diseases such as

inflammation, tumor formation and
metastasis, pathogen infection, wound

repair, etc. (90) (91)

XCL1 T cell, NK cell XCR1 T cell
Chemotactic activity (92), which contributes

to the development of T cells (93)

CX3CL1
Endothelial cell,
neuronal cell

CX3CR1 Monocyte, T cell, NK cell
Chemotactic activity (94), immune response
(95), inflammation (96), cell adhesion (97)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1628543
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


lar mechanisms. The figure was adapted from Thermo Fisher
ck text represents structural or molecular entities.

Z
h
an

g
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.16

2
8
5
4
3

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
5

FIGURE 1

Schematic representation of the dynamic regulatory network of inflammatory factor secretion, cellular targeting effects, and associated molecu
(https://www.thermofisher.cn/). Red text indicates system-related pathologies, green text denotes biological or pathological processes, and bla

https://www.thermofisher.cn/
https://doi.org/10.3389/fimmu.2025.1628543
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1628543
TABLE 2 The mechanism of IL in gastritis and GC.

Cytokines Brief biological mechanism in gastritis Brief biological mechanism in GC

IL-1

IL-1b Suppresses Gastrin via Primary Cilia and Induces Antral Hyperplasia,
leading to gastritis (110)

IL-1b play a role in chronic inflammation of the gastric mucosa in H. pylori
infection with functional dyspepsia patients (111)

ETS1 synergizes with IL-1 through the NF-kB signaling pathway for gastritis
(112)

pylori infection, IL-1b is highly expressed that result in gastric acid
inhibition, GC -related gene methylations and disfunctions,

angiogenesis (113)
IL-1 Up-regulates MicroRNA 135b to Promote Inflammation-

Associated Gastric Carcinogenesis in Mice (114)
IL-1b-associated NNT acetylation orchestrates iron-sulfur cluster

maintenance and cancer immunotherapy resistance (115)

IL-2
Astaxanthin slows down gastritis of H. pylori infection by enhancing IL-2

secretion (116)
Tumor-infiltrating mast cells stimulate ICOS regulatory T cells

through an IL-33 and IL-2 axis to promote GC progression (117)

IL-4

berberine activated IL-4-STAT6 signaling pathway in vivo and in vitro when H.
pylori infection and presented anti-inflammatory activities (118)

IL-4 addresses gastric inflammation by stimulating gastric D cells to release
somatostatin (119)

Protoberberine alkaloids have demonstrated therapeutic effects on
chronic atrophic gastritis and GC by activating IL-4/STAT6 pathway

(120)
IL-4 inhibited proliferation of HTB-135 GC cells by down-regulating

G0-G1 cell cycle nuclear-regulating factors (121)

IL-6

Serum exosomes of chronic gastritis patients infected with H. pylori mediate IL-
1a expression via IL-6 trans-signalling in gastric epithelial cells (122)

Lactobacillus plantarum ZJ316 significantly reduces IFN-g and IL-6 levels,
increases IL-10 levels, repairs mucosal damage, and has preventive and

therapeutic effects on H. pylori -induced gastritis (123)
Weierning tablet reduces the mRNA level of IL-6 and thus improves gastritis

(124)
YJHD alleviated NLRP3 inflammasome formation and pyroptosis of epithelial
cells in Chronic atrophic gastritis, potentially through the inactivation of IL-6/

STAT3 pathways (125)
H pylori gastritis is associated with increased gastric mucosal production of TNF

alpha and IL-6 (126)
H. pylori infection results in a local increase in ILs-6 receptor associated with

high-grade mucosal inflammation (127)

H. pylori Activates IL-6-STAT3 Signaling in Human GC Cells:
Potential Roles for ROS (128)

IL-6 mediates epithelial-stromal interactions and promotes gastric
tumorigenesis (129)

RBMS1 promotes GC metastasis through autocrine IL-6/JAK2/
STAT3 signaling (130)

Berberine inhibits GC development and progression by regulating
the JAK2/STAT3 pathway and downregulating IL-6 (131)

VPS35 promotes GC progression through integrin/FAK/SRC
signalling-mediated IL-6/STAT3 pathway activation in a YAP-

dependent manner (132)
MFGE8 promotes GC progression by activating the IL-6/JAK/

STAT3 signaling (133)

IL-8

IL-8 upregulates the inflammatory response to H. pylori infection and plays an
important role in cell proliferation and gastric mucosal injury (134)

IL-8 may play an important role in neutrophil transport from mucosal blood vessels
to gastric epithelium and may be involved in regulating H. pylori gastritis (135)

astaxanthin inhibits H. pylori-induced ROS-mediated IL-8 expression by activating
PPAR-g and catalase in gastric epithelial cells (136)

H. pylori-derived OMVs may aid the development of various gastric diseases by
inducing IL-8 production and NF-kB activation (137)

a-LA may prevent the development of H. pylori-associated gastric diseases by
decreasing ROS-mediated IL-8 expression in gastric epithelial cells (138)

H. pylori with trx1 high expression promotes gastric diseases via
upregulating the IL23A/NF-kB/IL8 pathway (139)

CAFs-derived IL-8 plays important roles in chemoresistance,
immunosuppression, and lymph node metastasis of GC (140)

FAK/IL-8 axis promotes the proliferation and migration of GC cells
(141)

Cancer-Associated Fibroblast-Derived IL-8 Upregulates PD-L1
Expression in GC Through the NF-kB Pathway (142)

Tumor-derived IL-8 facilitates lymph node metastasis of GC via PD-
1 up-regulation in CD8 T cells (143)

IL-10

Yangyin Huowei mixture alleviates chronic atrophic gastritis by inhibiting the
IL-10/JAK1/STAT3 pathway (144)

H. pylori controls NLRP3 expression by regulating hsa-miR-223-3p and IL-10 in
cultured and primary human immune cells (145)

Regulatory dendritic cells produce IF-10 to protect against autoimmune gastritis
in mice (146)

Gastric tumorigenesis induced by combining H. pylori infection and
chronic alcohol through IL-10 inhibition (147)

Gut microbiome-derived butyrate inhibits the immunosuppressive
factors PD-L1 and IL-10 in TAMs in GC (148)

IL−10 secreted by cancer−associated macrophages regulates
proliferation and invasion in GC cells via c−Met/STAT3 signaling (149)

IL-12
PAR1 inhibits IRF5 and IL-12 secreted by macrophages, and the host inhibits

mucosal Th1 and Th17 responses to H. pylori infection through this mechanism
(150)

IL-12 treatment reduces tumor growth and modulates the
expression of CASKA and MIR-203 in athymic mice bearing tumors

induced by the HGC-27 GC cell line (151)

IL-17

H. pylori activate NF-kB signaling through CagA, thereby inducing IL-17A
expression in FOXP3 T cells, leading to gastritis (152)

IL-17 produces T cells capable of inducing severe autoimmune gastritis (153)
IL-17 expression showed a significant increase with the severity of chronic

gastritis (154)
IL-17 induces IL-8 secretion by activating the ERK 1/2 MAP kinase pathway,

and the released IL-8 attracts neutrophils to promote gastritis (155)

IL-17RA signaling activates a protective pathway to prevent
excessive inflammation and reduces the risk of stomach cancer (156)
Tumor-associated neutrophils induce EMT by IL-17a to promote

migration and invasion in GC cells (157)
IL-17B signaling in IL-17RB directly promotes cancer cell survival,
proliferation, and migration, and induces resistance to conventional

chemotherapeutic agents (158)
LCN2 Mediated by IL-17 Affects the Proliferation, Migration,
Invasion and Cell Cycle of GC Cells by Targeting SLPI (159)

IL-18

IL-18, and possibly CD14 receptor signalling pathway, may be involved in
macrophage activation and subsequent IL-8 and IL-1 beta release, involved in

gastritis response to H. pylori infection (160)
IL-18 may have an important role in promoting gastric Th1 responses in H.

pylori infection (161)

Eupafolin hinders cross-talk between GC cells and cancer-associated
fibroblasts by abrogating the IL18/IL18RAP signaling axis (163)

Inflammasome Adaptor ASC Suppresses Apoptosis of GC Cells by
an IL18-Mediated Inflammation-Independent Mechanism (164)

(Continued)
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IL-1 promotes tumor growth and metastasis through a variety

of mechanisms and plays an important role in GC. Such as NF-kB
pathway, thereby promoting cell proliferation, survival, and

metastasis (185). IL-1 also alters the TME by upregulating

immune suppressive cells like T cells (186) and M2 macrophages

(187), which reduces the immune response against tumors and

promotes tumor growth.

3.1.2 The role of IL-1 in the TME
In both gastritis and GC, IL-1 plays a key role in the tolerance of

the immune system. In gastritis, IL-1 promotes immune responses,

but if dysregulated, can impair immune tolerance, leading to

chronic inflammation and tissue damage. In GC, IL-1 promotes

immune escape by establishing an immunosuppressive

microenvironment which enables tumor cells to escape immune

surveillance, making immunotherapeutic approaches difficult.

IL-1 enhances the immune response in gastritis by promoting

antigen presentation through the activation of dendritic cells (188)

and macrophages (189). However, excessive IL-1 can damage the

gastric mucosa (114). In GC, tumors manipulate IL-1 to interfere

with the presentation of antigens, weaken the immune response,

and facilitate immune escape (190).

In GC in particular, IL-1 is a promising target for

immunotherapy. Inhibitors of IL-1 have shown the potential to

reduce the immune escape of the tumor and to increase the activity

of T cells (191). However, to develop effective treatments for

gastritis and GC, it is critical to balance its pro-inflammatory and

immunosuppressive effects.

3.1.3 The future of IL-1
Going forward, targeted therapies targeting IL-1 are poised to

become a key strategy in treating GC. Novel IL-1 inhibitors or

combination therapies with other immunotherapies could be

developed to more effectively regulate the TME and restore the

anti-tumor function of the immune system by gaining a deeper

understanding of the mechanisms by which IL-1 modulates the

TME. Optimizing the efficacy of IL-1 inhibitors, improving their

selectivity and exploring their potential synergistic effects with other

immunotherapeutic agents are expected to be the focus of future
Frontiers in Immunology 07
research. For GC and other cancers associated with chronic

inflammation, these advances may provide new therapeutic options.
3.2 IL-2

IL-2 plays a key role in the TME and is an important

immunomodulatory factor. IL-2 maintains the immune response

mainly by promoting T-cell proliferation, activation and survival,

and also has a major influence on immune tolerance and

immunosuppression mechanisms (192). The most important are

the high affinity IL-2Ra, IL-2Rb and IL-2Rg (193).

3.2.1 Role of IL-2 in gastritis and GC
IL-2 helps activate T cells and NK cells, leading to effective

pathogen clearance in H. pylori-infected gastritis (194). However,

excess IL-2 also promotes the expansion of regulatory T cells, which

interfere with the resolution of inflammation and contribute to a

pro-tumor environment (195), highlighting the dual role of IL-2

in immunomodulation.

By promoting both anti-tumor immunity and immune

tolerance, IL-2 plays a key role in GC. Early on, IL-2 promotes

activation of effector T and NK cells, which are essential for

targeting and eliminating tumor cells (117). IL-2 also stimulates T

cells to proliferate, contributing to immune tolerance and cancer

progression (117). This dual role of IL-2 highlights the need for a

balanced immune response to effectively fight cancer and avoid

immune suppression.

3.2.2 The role of IL-2 in the TME
The function of IL-2 in the TME is twofold. Especially in tumor

immunotherapy, where the use of IL-2 sometimes significantly

increases the therapeutic effect, IL-2 promotes the proliferation

and activation of effector T cells (196) and enhances anti-tumor

(197), antiviral (198) and antibacterial immune responses (199). IL-

2 is also important for the expansion of regulatory T cells that

maintain immune tolerance (196) and prevent autoimmune

reactions by secreting immunosuppressive cytokines (192, 200)

(eg, TGF-b, IL-10). Therefore, to avoid excessive immune
TABLE 2 Continued

Cytokines Brief biological mechanism in gastritis Brief biological mechanism in GC

The cytokine IL-18 induces production of IFN-g by activated T lymphocytes and
promotes a Th1 profile, causing chronic active gastritis (162)

IL-18 produced by gastric epithelial cells protects against pre-
neoplastic lesions in H. pylori infection in mice (165)

IL-23

IL-23 was released in the presence of H. pylori from the inflamed gastric
mucosa, which was positively correlated with neutrophil and monocyte

infiltration (166)
IL-23 plays a role in the activation of the immune response and induction of
gastritis in response to H. pylori by contributing to the control of infection and

severity of gastritis (167)
Upregulation of IL-23 occurs early in the host response to H. pylori and may

contribute to the severity of induced gastric lesions (168)
A role for RUNX3 in inflammation-induced expression of IL23A in gastric

epithelial cells (169)

IL-23 promotes the migration and invasion of GC cells by inducing
epithelial-to-mesenchymal transition via the STAT3 pathway (170)
IL-23A can promoted GC cells growth by inducing the secretion of

IL-17A in TME (171)
IL23 receptor, as a key cytokine receptor gene in the important

inflammatory IL-17/IL-23 axis, may contribute to GC predisposition
(172)

IL-8 and IL-23 induced an inflammatory response and leading to
apoptosis, which can lead to carcinogenesis (173)
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response or immune escape, the level and role of IL-2 in the TME

must be maintained at an appropriate balance.

However, immunosuppressive factors in the TME such as TGF-

b and PD-L1 may block the effect of IL-2 (201). For this reason, IL-

2directed immunotherapy strategies often need to be combined

with other immune checkpoint inhibiting or immune-enhancing

agents to optimize therapeutic efficacy. In addition, an in-depth

understanding of the complex mechanisms of IL-2 action in the

TME is important to improve immunotherapy, as the effects of IL-2

on the TME are also regulated by its interactions with different

immune cells.

3.2.3 The future of IL-2
IL-2 has a promising future in immunotherapy, particularly for

cancer, autoimmune and infectious disease. Optimizing IL-2

delivery methods to enhance its anti-tumor effects while

minimizing side effects through adjustments in dosage and

delivery strategies will likely be the focus of future studies. In

addition, by regulating T-cell function, restoring the balance of

the immune system and alleviating disease symptoms, IL-2’s role in

immune tolerance represents a novel approach to the treatment of

autoimmune diseases. In addition, by enhancing local immune

responses and improving therapeutic outcomes, IL-2 is expected

to contribute to the development of vaccines and the treatment of

infectious diseases. Therefore, to pave the way for more targeted

and effective immunotherapy strategies, a deeper understanding of

the mechanisms of IL-2 will be critical.
3.3 IL-4

IL-4 is a key cytokine secreted by immune cells such as Th2

cells, mast cells, and eosinophils, and it plays a crucial role in

regulating the TME (202). Its primary function is to drive a Th2-

type immune response by promoting B cell differentiation into

plasma cells, which secrete antibodies, while simultaneously

suppressing Th1-type immune responses. IL-4 also has significant

roles in anti-inflammatory processes (203), fostering immune

tolerance (204), and facilitating immune escape mechanisms (205).

3.3.1 Role of IL-4 in gastritis and GC
Through modulation of the Th1/Th2 balance, IL-4 is a regulator

of the TME in gastritis (206). In H. pylori infection, it promotes a

Th2 response, reduces inflammatory cytokines such as IFN-g, and
limits gastric damage (118). IL-4 also supports B cell differentiation

(207) and eosinophil recruitment (208). However, chronic

expression of IL-4 can perpetuate inflammation, facilitate the

persistence of H. pylori, and increase the risk of progression to

GC (194).

I n GC , I L - 4 p r omo t e s a n immuno supp r e s s i v e

microenvironment by polarizing M2 macrophages and promoting

Treg expansion (209). This suppresses effector T and NK cell

activity. IL-4 also upregulates PD-L1 in tumor cells, which

impairs antigen presentation and promotes the escape of the

immune system. In addition, tumor proliferation, invasion and
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metastasis are enhanced by IL-4-activated (210). For GC

immunotherapy, targeting the IL-4 signaling pathway

offers potential.

3.3.2 The role of IL-4 in the TME
IL-4 secreted by Th2 cells not only promotes the activation,

proliferation, and secretion of antibodies but also suppresses the

cytotoxic immune response by Th1 cells (211). In allergic diseases

(212), parasitic infections (213) and the TME of tumors (214), this

effect is particularly pronounced.

Stimulated by IL-4, M2macrophages secrete immunosuppressive

factors to reduce inflammatory responses while supporting tissue

repair by remodeling the ECM and enhancing neovascularization

(215, 216). In the TME, however, M2-type macrophages can have

pro-tumorigenic effects by promoting tumor cell growth, promoting

immune escape, and inhibiting the immune response (209).

IL-4 affects not only immune cells but also nonimmune cells

such as fibroblasts, epithelial and endothelial cells. In chronic

inflammatory and fibrotic diseases, IL-4 promotes the fibrotic

process through stimulation of fibroblast proliferation and

collagen secretion (217, 218).

In the TME, IL-4 has a dual role to play. On the one hand, it has

a pro-tumorigenic effect by promoting the escape of the immune

system and supporting the proliferation of tumor cells (219). On the

other hand, IL-4 can also exert an inhibitory effect on certain

tumors by modulating the activity of immune cells (220).

Therapeutic strategies targeting IL-4 or its pathway have potential

in antitumor immunotherapy.

3.3.3 The future of IL-4
As a key regulator of the immune system, the dual role of IL-4 in

the regulation of inflammation and tumor immunity provides a

broad perspective for future research and treatment. Further

exploration of the IL-4 pathway, especially its interaction with

other signal transduction networks, will help to elucidate its

complex functions in the immune milieu. At the same time, new

avenues for regulating inflammation and restoring anti-tumor

immunity may be explored through the development of therapeutic

strategies targeting IL-4 or its receptors, such as IL-4 antagonists,

ADCs or small molecule inhibitors. Furthermore, combining IL-4

blockade strategies with existing immunotherapeutic approaches

[e.g. immune checkpoint inhibitors (221) or CAR-T therapy (222)]

may improve therapeutic efficacy and advance clinical intervention

for gastritis, GC and other related diseases.
3.4 IL-6

IL-6 is a multifunctional inflammatory cytokine secreted by a

variety of cells including macrophages, monocytes, fibroblasts and

tumor cells (223). It promotes the production of acute phase

proteins and the recruitment of immune cells in acute

inflammation, while in chronic inflammation it can be a trigger

for tissue damage and disease progression. In cancer development

and progression (224), IL-6 can promote tumor cell proliferation,
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anti-apoptosis and angiogenesis by activating JAK/STAT3 and

other signaling pathways (225, 226). At the same time, IL-6 can

inhibit anti-tumor immune responses.

3.4.1 Role of IL-6 in gastritis and GC
IL-6 is a pro-inflammatory cytokine that is central to the

immune response to H. pylori infection, the most common cause

of gastritis (227). It promotes the recruitment of immune cells such

as macrophages and neutrophils to the gastric mucosa and

contributes to the activation of inflammatory pathways (227).

This exacerbates tissue damage and inflammation through the

release of additional inflammatory mediators. Prolonged IL-6

signaling may lead to chronic inflammation that impairs mucosal

healing and promotes progression of gastritis to pre-cancerous

states such as atrophic gastritis or intestinal metaplasia (228).

In GC, IL-6 plays a dual role in tumor progression and in the

modulation of the immune system. It promotes cancer growth

through activation of the STAT3 pathway, enhancing cell

proliferation, survival, angiogenesis and metastasis (229). In

addition, IL-6 contributes to immune evasion by promoting the

expansion of MDSCs (230) and regulatory T cells (231). This

attenuates anti-tumor immune responses. Chronic elevation of

IL-6 in the TME also maintains the inflammatory state and

creates a niche that is favorable for the progression of cancer.
3.4.2 The role of IL-6 in the TME
IL-6 can not only participate in inflammatory response, but also

promote tumorigenesis and development in the TME. In gastritis,

IL-6 mainly affects the damage and repair process of gastric mucosa

by activating the JAK/STAT3 signaling pathway, regulating

inflammatory response and immune cell differentiation (225). In

GC, IL-6 enhances the proliferation and anti-apoptosis of tumor

cells by reshaping the TME, helping them evade the clearance of the

immune system (232). Therefore, IL-6 plays a crucial role in the

TME of gastritis and GC.

H. pylori infection induces IL-6 secretion, which protects the

gastric mucosa from acute inflammation, but long-term IL-6

signaling can lead to chronic inflammation and increase the risk of

GC (233). In GC, IL-6 promotes the activation of TAMs and CAFs,

which further enhance the inflammatory response by secreting IL-6

and other factors, creating a vicious cycle (227, 234). In addition, IL-6

directly promotes the proliferation, survival, and invasion of tumor

cells by activating STAT3 signaling (223).

IL-6 impairs immune surveillance of tumors by inducing T cells

differentiation and inhibiting the activity of effector T cells (235). In

addition, IL-6 can also inhibit the maturation and antigen

presentation function of dendritic cells, further reducing the

immune system’s ability to respond to pathogens or tumor cells

(223). High levels of IL-6 in chronic gastritis may lead to the

immune system’s tolerance to H. pylori, creating the conditions for

the persistence of inflammation and the development of GC. In

addition, IL-6 can help tumor cells achieve immune escape through

a variety of pathways (236).

In conclusion, IL-6 has an important dual role in the TME of

gastritis and GC.
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3.4.3 The future of IL-6
Although IL-6 has a role in fighting inflammation and supporting

immune defense, its tumori-promoting effect in GC makes it an

important target for immunotherapy. In the future, it is expected that

the treatment strategies for gastritis and GC will be optimized by

precisely regulating the IL-6 signaling pathway, combined with

immune checkpoint inhibitors or other treatments, and providing

patients with more effective clinical interventions.
3.5 IL-10

IL-10 is an anti-inflammatory cytokine that is mainly secreted

by regulatory T cells, B cells, monocytes, and TAMs, and plays an

important role in maintaining immune homeostasis and inhibiting

excessive inflammation (237).

3.5.1 Role of IL-10 in gastritis and GC
In the early stage of H. pylori-induced gastritis or gastritis

caused by other stimuli, immune cells such as macrophages and

Th1 cells release large amounts of pro-inflammatory factors,

including TNF-a, IL-1b, and IFN-g. IL-10 downregulates the

expression of these factors by activating the STAT3 pathway. This

effectively alleviates the mucosal inflammatory response and

reduces tissue damage. Meanwhile, IL-10 inhibits the antigen-

presenting function of DCs and macrophages. It also reduces

CD4+ T cell activation and decreases chemokine expression.

Thus, IL-10 controls the excessive infiltration of immune cells

into the gastric mucosa and prevents the spread of inflammatory

responses (118, 124). However, persistent expression of IL-10

allows H. pylori to evade the immune system, maintain infection

and create a microenvironment conducive to GC progression (238).

Elevated levels of IL-10 may reduce bacterial immune clearance and

increase cancer risk in chronic H. pylori gastritis. IL-10 from B cells

has been associated with an accelerated rate of progression of GC.

3.5.2 The role of IL-10 in the TME
Within the complex milieu of the TME in cancer, IL-10 can

exhibit a dichotomous role, exhibiting antagonistic and stimulatory

properties in distinct contexts. Specifically, IL-10 has been shown to

reduce chronic inflammation, thereby lowering the risk of

tumorigenesis. Conversely, elevated levels of IL-10 within the

TME can impede effective anti-tumoral immune responses, thus

facilitating immune evasion and tumor progression (239).

3.5.3 The future of IL-10
Due to its potent anti-inflammatory properties, IL-10 holds

great promise for therapeutic applications in inflammation, cancer

and autoimmune diseases. Strategies are being developed to

improve the stability and delivery of IL-10 derivatives to

effectively modulate the immune balance in autoimmune diseases

such as rheumatoid arthritis (240) and inflammatory bowel disease

(241). In cancer, IL-10’s dual role is being intensively studied,

particularly its potential to enhance antitumor responses with

immune checkpoint inhibitors. Targeting IL-10 therapeutics to
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improve efficacy and minimize side effects is possible through

advances in (242) and precision delivery systems (243).

Personalized therapies for immune-related diseases may emerge

from further research into the signaling pathways and regulatory

mechanisms of IL-10.
3.6 IL-12

IL-12 is a key pro-inflammatory cytokine that regulates

immune responses and is secreted by antigen-presenting cells

such as dendritic cells and macrophages (244). It promotes the

differentiation of CD4+ T cells into Th1 cells (245). It drives the

production of IFN-g and enhances cell-mediated immunity (246).

In addition, bridging innate and adaptive immunity, IL-12 activates

NK cells and enhances their cytotoxic and antitumor functions

(247). In the TME, IL-12 inhibits tumoral growth and supports

anti-tumoral immunity. However, underscoring the need for

balanced IL-12 expression, excessive IL-12 can lead to harmful

inflammation and has been linked to autoimmune diseases (248).

3.6.1 Role of IL-12 in gastritis and GC
It has been established that IL-12 plays a crucial role in the

immune response associated with gastritis, particularly in cases of

H. pylori -induced gastritis. As a pro-inflammatory cytokine, IL-12

facilitates the differentiation of CD4+ T cells into Th1 cells, thereby

enhancing the production of IFN-g, which, in turn, accelerates the

eradication of H. pylori (249). However, the predominance of this

Th1-type immune response can also intensify gastric inflammation,

thereby contributing to mucosal damage (250). The persistent

inflammation that is driven by IL-12 has been demonstrated to

heighten the risk of progression from gastritis to gastric atrophy,

and eventually, GC, thereby underscoring its dualistic role in both

protecting against infection and contributing to disease progression.
3.6.2 The role of IL-12 in the TME
Within the TME, IL-12 has been shown to regulate immune cell

function, activate effector T and NK cells, and augment anti-tumor

immune responses. By inducing a Th1-type immune response, IL-

12 contributes to enhancing cell-mediated immune responses and

impeding the growth and metastasis of tumor cells (251).

Furthermore, IL-12 has been observed to enhance antigen

presentation via its modulation of dendritic cells (252), thereby

contributing to the initiation and sustenance of immune

surveillance within tumors. Nevertheless, immunosuppressive

factors in the TME have the potential to impede the effects of IL-

12 and curtail its therapeutic potential (253).

Notwithstanding the capacity of IL-12 to augment the immune

response, tumor cells have the capacity to inhibit the action of IL-12

through a variety of mechanisms, thereby leading to immune evasion.

Immunosuppressive cells within the TME, such as regulatory T cells

(254) and M2 macrophages (255), may hinder the pro-inflammatory

effects of IL-12 by secreting cytokines like IL-10 (256), thereby

diminishing the strength of the immune response. Furthermore,

prolonged IL-12 activation has been shown to induce immune
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tolerance, a process that can impede the immune system’s capacity

to recognize and combat tumor cells, thus creating a favorable

environment for tumor cell proliferation and immune evasion (257).

3.6.3 The future of IL-12
It is reasonable to hypothesize that in the future, immunotherapy

strategies that target IL-12 will become more sophisticated. Research

is anticipated to prioritize optimizing targeted delivery of IL-12

through genetic engineering, reducing systemic adverse effects, and

enhancing its efficacy in the TME. A promising avenue for

advancement in GC and other tumors may lie in the combination

of IL-12 with other immunotherapy methods, such as immune

checkpoint inhibitors (258) and CAR-T cell therapy (259). The

significance of IL-12 in the realm of tumor immunotherapy is

anticipated to be further underscored by advancements in precision

medicine and targeted delivery methodologies.
3.7 IL-17

The IL-17 class of pro-inflammatory cytokines is secreted by

Th17 cells and their derivatives, including gamma delta T cells and

natural killer T cells (260). These cytokines play a pivotal role in

regulating inflammatory responses. The IL-17 family comprises IL-

17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F (260). Among

them, IL-17A is regarded as the most representative and the most

extensively studied member. By binding to its receptor, designated as

IL-17R, IL-17 triggers the activation of multiple signaling pathways,

resulting in the promotion of downstream cytokine production and

leukocyte recruitment. This phenomenon manifests a dual effect on

both immune response and tissue damage (261).

3.7.1 Role of IL-17 in gastritis and GC
By promoting an inflammatory response that recruits and

activates immune cells such as neutrophils and macrophages, IL-

17 plays a central role in H. pylori-induced gastritis. IL-17 is critical

for the elimination of H. pylori (156). However, its overactivity can

lead to chronic inflammation, creating an environment conducive

to the development of GC. Particularly in individuals with gastritis,

elevated levels of IL-17 correlate with an increased risk of GC. IL-17

plays a dual function in the development of gastritis and cancer: in

the early stages, IL-17 can contribute to tumor cell killing, but in the

tumor environment, IL-17 supports immune evasion and promotes

tumor cell survival and growth through modulation of immune cell

function (262, 263).

Studies have shown that by promoting inflammatory responses,

activating immune cells and inducing the release of pro-

inflammatory factors, IL-17 is able to drive GC development and

progression (158). The dual role of IL-17 in GC makes it a potential

target for research and therapy.

3.7.2 The role of IL-17 in the TME
IL-17, produced by Th17 cells, gd T cells and other immune

cells, is central to inflammation, immunity and tissue repair

through binding to its receptor, IL-17R, and activation of
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downstream pathways. It enhances local immune defense against

pathogens by inducing the secretion of pro-inflammatory cytokines.

Sustained IL-17 activity may drive chronic inflammation (264) and

contribute to cancer (156), autoimmunity (265) and fibrotic

disorders (266). In addition, IL-17 regulates immune cell

interactions by influencing the balance of Th17 and Treg and

promoting immune suppression via MDSCs (267). This facilitates

immune escape in tumors.

By stimulating fibroblasts, collagen synthesis and ECM

remodeling, IL-17 also supports tissue repair (268). These processes

can exacerbate pathological fibrosis and tissue damage in chronic

conditions such as cancer and fibrosis (266).While the role of IL-17 is

protective, its dysregulation poses challenges. Therapeutic approaches

that target the IL-17 pathway are promising but require careful

management to balance benefits and risks.

3.7.3 The future of IL-17
Hitherto, research on IL-17 has focused on its role in immune

modulation. By leveraging an enhanced comprehension of the IL-17

signaling pathway, the development of more precise treatment

methodologies can be facilitated. These methodologies hold

promise in reducing adverse effects and enhancing the precision of

treatment, thus improving patient outcomes. Moreover, the potential

synergistic effect of IL-17 when employed in conjunction with other

immunotherapy modalities, such as with immune checkpoint

inhibitors (269), warrants further exploration. Consequently, the

therapeutic potential of IL-17 in tumor immunotherapy merits

further investigation, as it could offer novel concepts and strategies

for the management of GC, among other types of tumors.
3.8 IL-23

IL-23 is a pro-inflammatory cytokine that plays a pivotal role in

the TME, primarily through the regulation of Th17 cell differentiation

and function (270). Its function includes the maintenance of Th17

cell expansion through the activation of the JAK-STAT pathway, the

promotion of inflammatory factor production (e.g., IL-17 and IL-22),

and, consequently, the enhancement of mucosal barrier defense and

pathogen clearance (271). However, uncontrolled activation of IL-23

has been associated with the pathogenesis of various

autoinflammatory conditions, including psoriasis (272) and

inflammatory bowel disease (248). Within the TME, IL-23 exhibits

a dual role, functioning both to enhance anti-tumor immunity and to

promote tumor progression through the mechanisms of chronic

inflammation and immune escape (273). Consequently, IL-23

represents a significant target for the therapeutic management of

inflammatory diseases and demonstrates potential value in the

context of tumor immunotherapy.

3.8.1 Role of IL-23 in gastritis and GC
InH. pylori -induced gastritis, IL-23 drives chronic inflammation

by promoting the differentiation of Th17 cells, which in turn produce

pro-inflammatory cytokines such as IL-17 (263). This cytokine

cascade damages the gastric mucosa and impedes healing. This
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contributes to chronic gastritis. Persistent IL-23 activation is a

potential target for therapeutic intervention because it exacerbates

inflammation and may perpetuate H. pylori infection.

In GC, IL-23 has a dual role. Through Th17-mediated tumor

surveillance, it can enhance antitumor immunity. Chronic IL-23

activation promotes a proinflammatory milieu that is conducive to

angiogenesis (274), and cancer progression (170). The complex role

of IL-23 in GC is underscored by the interplay between its

protective and tumor-promoting effects.

3.8.2 The role of IL-23 in the TME
In the TME, IL-23 is a key player in chronic inflammatory

conditions and autoimmune diseases. It maintains the

inflammatory milieu and immune cell activation. IL-23 has been

shown to cause tissue damage and chronic inflammation, making

people more prone to cancer.

In the context of cancer, the role of IL-23 is more complex. On

the one hand, by activating Th17 cells and NK cells that can

recognize and kill cancer cells, it can enhance the immune

system’s ability to fight tumors (247, 275). On the other hand,

persistent IL-23 activity can contribute to a chronic inflammatory

environment that is conducive to tumor growth and progression

through the promotion of angiogenesis (276) and immune evasion

(277). Thus, depending on the specific context and balance of

immune responses, IL-23 is a double-edged sword in the TME.

3.8.3 The future of IL-23
Particularly in the treatment of autoimmune diseases, chronic

inflammation and cancer, the future of IL-23 research holds

significant therapeutic potential. Given its critical role in driving

Th17 cell differentiation and perpetuating inflammation, IL-23 is a

target for therapeutic intervention in diseases like psoriasis. In clinical

trials, monoclonal antibodies that inhibit IL-23 signaling have shown

promise. In cancer, the pro-inflammatory effects of IL-23 can also

promote tumor growth, although IL-23 may stimulate anti-tumor

immunity. The refinement of IL-23 modulation strategies to exploit

its therapeutic benefits while minimizing its potential to promote

chronic inflammation or immune evasion in cancer will likely be the

focus of future research.
4 TNF

TNF is a master regulator of inflammatory responses, produced

primarily by macrophages, dendritic cells and T cells (278). TNF

binds to TNFR1 and TNFR2 to mediate its effects (279). It plays a

critical role in acute inflammation by promoting the activation of

the endothelium and the adhesion and migration of leukocytes to

the sites of inflammation (280). TNF stimulates the production of

pro-inflammatory cytokines, and thus amplifies the immune

response. However, excessive or chronic TNF activity is

characteristic in autoimmune diseases, such as rheumatoid

arthritis (281) and inflammatory bowel disease (282), where it

drives tissue damage and systemic inflammation. The specific

mechanism of TNF in GC and gastritis is detailed in Table 3.
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4.1 Role of TNF in gastritis and GC

TNF drives inflammation in H. pylori -induced gastritis by

activating the NF-kB pathway, stimulating the release of other

inflammatory cytokines (288, 290). This results in infiltration of

immune cells and damage to the stomach lining. Chronic elevated

TNF contributes to persistent inflammation and compromises

mucosal repair, laying the foundation for GC (278).

In GC, TNF drives tumor progression through NF-kB and

MAPK pathways, promotes angiogenesis, cell proliferation and

metastasis, and suppresses antitumor immunity (291). Reflecting

its dual function, despite its pro-tumor role, TNF also has apoptotic

effects on tumor cells (278).
4.2 The role of TNF in the TME

In the TME of a tumor, TNF-a plays a complex dual role, both

as an inhibitor of tumorigenesis and, under certain conditions, as a

potential promoter of tumor progression.

By activating cytotoxic T cells and NK cells, TNF-a enhances its

anti-tumor effects. In addition, TNF-a induces tumor cell

expression of death receptors (e.g., Fas (292) and TNFR1 (293)),

which initiates apoptosis through extracellular pathways and

inhibits tumor growth. On the one hand, TNF-a plays a key role

in enhancing the antigen-presenting function and promoting the

release of inflammatory factors, thereby providing the body with an

effective anti-tumor immune environment (294).

Under conditions of chronic inflammation, TNF-a supports

tumor development and proliferation through multiple

mechanisms. First, TNF-a is able to promote angiogenesis and

tumor invasion through the up-regulation of VEGF (295) and

MMPs (296). Second, TNF-a suppresses the activity of effector T

cells by recruiting immunosuppressive cells such as regulatory T cells

(235) andMDSCs (297), creating an immune escape environment. In

addition, TNF-a activates the M2-type polarization of TAMs (298)

and secretes inhibitory factors such as IL-10 and TGF-b, further
suppressing anti-tumor immune responses.

In summary, depending on its concentration, local environment

and regulatory status of signaling pathways, the role of TNF-a in

the TME varies. Therapeutic strategies based on TNF-a need to

enhance its anti-tumor ability while at the same time avoiding its

tumor-promoting effects. In recent years, new ideas for optimizing
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tumor immunotherapy have emerged, such as combination therapy

targeting TNF-a signaling (299).
4.3 The future of TNF

The future of TNF research is aimed at optimizing its

therapeutic potential, particularly in autoimmune diseases and

cancer treatment. Efforts are focused on refining TNF-targeted

therapies to minimize side effects and improve outcomes. In

cancer, the combination of TNF modulation with immune

checkpoint inhibitors is being explored to boost anti-tumor

immunity while addressing its role in chronic inflammation and

immune tolerance. Understanding the dual role of TNF in disease

progression is essential for the development of more effective,

targeted therapies.
5 IFN

IFNs are a family of cytokines that play a key role in the

regulation of the immune system and are divided into three types:

Type I (e.g., IFN-a, IFN-b), Type II (IFN-g), and Type III (IFN-l)
(300). In response to infection, stress and malignancy, these

cytokines are produced (301, 302). Their primary role in

inflammation is to initiate an antiviral response, to modulate the

function of immune cells, and to influence the inflammatory

cascade. The specific mechanism of IFNs in GC and gastritis is

detailed in Table 4.
5.1 Role of IFN in gastritis and GC

In gastritis caused by H. pylori, IFNs play an important role in

the immune response. The inflammatory response induces the

production of these cytokines, which increase local inflammation

and recruit other immune cells (T cells, NK cells) through

macrophage/dendritic cell activation (312). In H. pylori-induced

gastritis, the expression of IFN-g is elevated, enhancing the

antimicrobial immune response. IFN-g induces the expression of

PD-L1, which contributes to limiting persistent inflammation and

alleviating gastric mucosal tissue damage. However, PD-L1 binds to

PD-1 on T cells, leading to T cell exhaustion and suppression of the
TABLE 3 The mechanism of TNF in gastritis and GC.

Cytokines Brief biological mechanism in gastritis Brief biological mechanism in GC

TNF-a

H. pylori infection promotes M1 macrophage polarization and gastric inflammation by
activation of NLRP3 inflammasome via TNF/TNFR1 axis (283)

Exopolysaccharide54 could effectively alleviate the gastritis in the H. pylori-infected mice
by down-regulating the mRNA expression levels of TNF-a in gastric cell (284)

TNF-alpha is involved in pathogenesis of gastritis induced by Helicobacter felis infection
as IFN-gamma (285)

Tipa secreted from H. pylori stimulates GC development by inducing
TNF-a, an endogenous tumor promoter, through its interaction with

nucleolin, a Tipa receptor (286)
TNFa might activate TLR2-b-catenin-signaling in GC (287)

The TNF-a/TNFR2 pathway increases the expression of Foxp3 and
the production of TGF-b in T cells in the GC microenvironment (288)
Oridonin suppresses GC SGC-7901 cell proliferation by targeting the
TNF-alpha/androgen receptor/TGF-beta signalling pathway axis (289)
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immune response. This ultimately results in an immunosuppressive

microenvironment that promotes tumor cell survival, metastasis,

and therapeutic resistance (313). Recombinant forms of IFN-a have

been used to treat melanoma (314), renal cell carcinoma (315), and

GC (316) because of their ability to induce tumor cell apoptosis and

enhance immune activation. However, chronic IFN signaling in the

GC microenvironment may enhance tumor progression by

promoting vascularization and tumor survival via pathways

including VEGF and TGF-b (317, 318).
5.2 The role of IFN in the TME

IFN activate immune responses by modulating the activity of

immune cells and influencing the TME. Type I IFNs (IFN-a/b)
activate antigen presentation, enhance NK cell and macrophage

function, and stimulate the expression of ISGs to establish an

antiviral state. They play an essential role in early immune

responses to infections and tumors (319). Type II IFN (IFN-g),
produced mainly by T and NK cells, promotes Th1 differentiation,

macrophage activation and antigen presentation, which are critical

for controlling infection and tumor growth (320). However,

excessive or prolonged IFN signaling can induce chronic

inflammation, tissue damage and immune dysregulation (321). In

the TME, prolonged IFN exposure can upregulate immune

checkpoint molecules such as PD-L1, leading to immune

tolerance and facilitating immune escape (322). In addition,

prolonged IFN signaling may promote tumor cell survival,

angiogenesis, and metastasis, complicating its therapeutic use.

The balance between immune activation and suppression driven

by IFNs is critical in cancer and chronic inflammatory diseases.
5.3 The future of IFN

Improving their therapeutic applications, particularly in cancer,

viral infections and autoimmune diseases, is the future of IFNs in

medical research. New approaches aim to refine the use of IFNs to

enhance immune responses against tumors. Combinations of IFNs

and immune checkpoint inhibitors show promise in boosting anti-
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tumor immunity. Researchers are also investigating strategies to

minimize the adverse effects of prolonged IFN signaling, which can

contribute to chronic inflammation and immune tolerance. Future

therapies may offer more effective and targeted solutions for a variety

of immune-related diseases through a better understanding of the

mechanisms of IFN signaling in the TME and autoimmune contexts.
6 Chemokines

Chemokines are a class of small signaling proteins that play

important roles in the immune response, primarily by directing

immune cell migration to sites of infection, inflammation, or injury

(323). They play a critical role in immune surveillance (324), tissue

homeostasis (325), and development of the immune system (326)

and receptor signaling in cancer (327). The specific mechanism of

Chemokines in GC and gastritis is detailed in Table 5.
6.1 CCL2

CCL2 also known as MCP-1, is an important chemokine (353).

It is a member of the C-C motif chemokine family. It promotes the

chemotaxis of immune cells, in particular monocytes, macrophages

and dendritic cells, by binding to its receptor CCR2.CCL2 (354)

plays an important role in a wide variety of physiological and

pathological processes, including inflammation, the immune

response, the TME and immune escape (354).

6.1.1 Role of CCL2 in gastritis and GC
In gastritis, especially chronic gastritis caused by H. pylori, the

role of CCL2 is particularly prominent. Infection with H. pylori

stimulates the gastric mucosa to produce CCL2, which in turn

attracts monocytes and macrophages to the site of inflammation

(355, 356). Macrophages promote gastric mucosal injury and repair

by secreting inflammatory factors such as IL-8 and JAK, which

enhance the local immune response. Although CCL2 contributes to

the antimicrobial immune response, its overexpression can also lead

to chronic inflammation and immune dysregulation (135, 357).

This may increase the risk of precancerous lesions such as GC.
TABLE 4 The mechanism of IFN in gastritis and GC.

Cytokines Brief biological mechanism in gastritis Brief biological mechanism in GC

IFN-a
IFN-a inhibits gastric acid secretion centrally through nitric oxide

pathways probably mediated (303)

IFN-a sensitizes human GC cells to TRAIL-induced apoptosis via activation of
the c-CBL-dependent MAPK/ERK pathway (304)

IFN-a enhanced 5’-DFUR-induced apoptosis in GC cells by upregulation of
TP expression, which is partially regulated by activation of ERK signaling (305)

IFN-b ―
Cytosine deaminase and IFN-b genes in the presence of 5-fluorocytosine

have significant synergistic anticancer effects (306)

IFN-g

IFN-g as a critical promoter of parietal cell atrophy with metaplasia
during the progression of gastritis to gastric atrophy and metaplasia (307)
Gastric infection and inflammation are associated with increased IFN-g

expression and reduced ghrelin expression (308)

sLAG-3 might inhibit the tumor growth, and promote the secretion of CD8
+T cells, IL-12 and IFN-g (309)

A combination of cyclosporin-A and IFN-g induces apoptosis in human
gastric carcinoma cells (310)

IFN-gamma suppressed cell growth through induction of both cell cycle
arrest and apoptosis (311)
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CCL2 plays a role in promoting the recruitment of immune cells,

particularly monocytes and macrophages, in the TME of GC (358).

By secreting CCL2, tumor cells induce immune cells into the TME.

These immune cells, particularly TAMs, can promote tumor growth

and metastasis by secreting various cytokines (e.g., IL-10, TGF-b,
etc.) to maintain an immunosuppressive status in the TME (358).

Macrophages not only play a role in immune escape from tumors,

but also exacerbate tumor progression through promotion of

angiogenesis and suppression of effector T cell function (359).

Therefore, the role of CCL2 in GC may be both to initiate the

immune response and to be part of the immune escape mechanism

of tumors.
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6.1.2 The role of CCL2 in the TME
By promoting the recruitment of immunosuppressive immune

cells such as TAMs and Treg cells, CCL2 contributes to tumor

immune escape. Tumor cells and CAFs recruit macrophages into

the TME by secreting CCL2, and these macrophages are usually

M2type with immunosuppressive function (354).

Researchers are exploring immunotherapeutic strategies that

target the CCL2/CCR2 pathway because of the important role of

CCL2 in immune escape (360). Inhibition of the binding of CCL2 to

CCR2 or blocking the production of CCL2 may decrease the

accumulation of immunosuppressive cells, such as M2

macrophages, in the TME and increase effector T-cell clearance
TABLE 5 The mechanism of chemokines in gastritis and GC.

Cytokines Brief biological mechanism in gastritis Brief biological mechanism in GC

CCL2
H. pylori induce eosinophil migration through the chemokine CCL2,
which in turn causes gastritis (328)

PDPN+ cancer-associated fibroblasts enhance GC angiogenesis via the
CCL2-ACKR1 axis (329)
Ephrin A1 Stimulates CCL2 Secretion to Facilitate Pre-metastatic Niche
Formation and Promote GC Liver Metastasis (330)
CCL2 expression correlates closely with HIF-1a expression in GC (331)

CCL3
H. pylori infection stimulates macrophages to secrete CCL3 through the
JAK1-STAT1 pathway and disrupts gastric epithelial tight junctions
through phosphorylation of P38, resulting in gastritis (332)

CCL3 and CCL20-recruited dendritic cells modified by melanoma antigen
gene-1 induce anti-tumor immunity against GC (333)

CCL5
CCL5(+) T cells, presumably activated cytotoxic T cells, would play
important roles in the active inflammatory process of chronic
gastritis (334)

A novel long noncoding RNA, TMEM92-AS1, promotes GC progression
by binding to YBX1 to mediate CCL5 (335)
Down-regulation of KLF5 in cancer-associated fibroblasts inhibit GC cells
progression by CCL5/CCR5 axis (336)
17b-estradiol inhibits mesenchymal stem cells-induced human AGS
GC cell mobility via suppression of CCL5- Src/Cas/Paxillin signaling
pathway (337)

CXCL8

Streptococcus anginosus is a gram-positive coccus that leads to the
upregulation of the pro-inflammatory chemokine CCL8, which has long-
term effects on gastric barrier function and microbiota homeostasis,
resulting in superficial gastritis (338)

Guanylate binding protein 5 accelerates GC progression via the JAK1-
STAT1/GBP5/CXCL8 positive feedback loop (339)

CXCL10
Palmatine ameliorates N-methyl-N’-nitrosoguanidine-induced chronic
atrophic gastritis through the STAT1/CXCL10 axis (340)

Huang-Jin-Shuang-Shen Decoction promotes CD8+ T-cell-mediated anti-
tumor immunity by regulating chemokine CXCL10 in GC (341)
CXCL10 and IL15 co-expressing chimeric antigen receptor T cells enhance
anti-tumor effects in GC by increasing cytotoxic effector cell accumulation
and survival (342)
Targeting Autophagy Facilitates T Lymphocyte Migration by Inducing the
Expression of CXCL10 in GC Cell Lines (343)
CXCL10/CXCR3 axis promotes the invasion of GC via PI3K/AKT
pathway-dependent MMPs production (344)

CXCL12
Upexpression of BHLHE40 in gastric epithelial cells increases CXCL12
production through interaction with p-STAT3 in H. pylori -associated
gastritis (345)

The circular RNA circDLG1 promotes GC progression and anti-PD-1
resistance through the regulation of CXCL12 by sponging miR-141-3p
(346)
Cancer-associated fibroblasts in GC affect malignant progression via the
CXCL12-CXCR4 axis (347)
miR-1273h-5p suppresses CXCL12 expression and inhibits GC cell
invasion and metastasis (348)
MicroRNA-200b-3p restrains GC cell proliferation, migration, and
invasion via C-X-C motif chemokine ligand 12/CXC chemokine receptor
7 axis (349)

CX3CL1
Cytotoxin-associated gene A-Negative H. pylori promotes gastric Mucosal
CX3CR1CD4 Effector Memory T Cell recruitment in mice, causing
gastritis (350)

Lactate/GPR81 recruits regulatory T cells by modulating CX3CL1 to
promote immune resistance in a highly glycolytic GC (351)
Overexpression of CX3CR1 is associated with cellular metastasis,
proliferation and survival in GC (352)
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(361, 362). This targeted therapy may represent a new direction for

immunotherapy of tumors such as GC, as it has shown good results

in preclinical studies in several tumor types.

6.1.3 The future of CCL2
In order to reduce the immunosuppressive effects in the TME

and enhance the anti-tumor immune response, future studies may

focus on fine-tuning the CCL2/CCR2 pathway. Furthermore,

combining CCL2 with other immunotherapeutic strategies (e.g.

immune checkpoint inhibitors, CAR-T cell therapies, etc.) can

significantly improve immunotherapy efficacy (363). New

opportunities for the treatment of GC and other tumors will be

opened by optimizing the targeting of CCL2 and better

understanding its complex role in the TME.
6.2 CCL3

CCL3 also known as MIP-1a, is an important chemokine

belonging to the C-C motif chemokine family. CCL3 plays an

important role in inflammation, immunomodulation, infectious

diseases, and tumors (364).

6.2.1 Role of CCL3 in gastritis and GC
H. pylori infection was found to activate immune cells in the

gastric lining, leading to the production of CCL3, which promotes a

local immune response by binding to CCR-1 and CCR-5 receptors

and recruits immune cells including monocytes, macrophages and

T cells to the site of inflammation (332). However, prolonged

overexpression of CCL3 can lead to chronic inflammation,

providing a permissive environment for precancerous lesions

such as GC to develop (365).

CCL3 plays an important role in the TME of GC. Tumor cells

recruit immune cells, particularly macrophages and T cells, into the

TME through the secretion of CCL3 (333, 366). However, tumor

cells can suppress anti-tumor immune responses by altering the

function of immune cells. In addition, CCL3 has a role in the

promotion of angiogenesis, which may increase the supply of

oxygen and nutrients to tumors and promote tumor growth and

metastasis (367).

6.2.2 The role of CCL3 in the TME
By recruiting immunosuppressive cells such as M2-type

macrophages and Treg cells, CCL3 can promote immune evasion

during tumor immune escape (368). Although CCL3 can enhance

local immune evasion, its recruitment of these suppressive cells can

diminish effector T cell function and impair tumor cell recognition

and clearance, thereby promoting tumor growth and metastasis

(369). As a result, the role of CCL3 in the TME can be both

supportive of the immune response and contribute to immune

escape through immunosuppressive mechanisms. Targeting CCL3

with immunotherapeutic strategies, such as blocking the CCL3/

CCR1/CCR5 interaction, could reduce the accumulation of

immunosuppressive cells and enhance anti-tumor immune

responses (369, 370). The CCL3/CCR5 pathway is a promising
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target for overcoming immune escape in GC, as studies suggest that

CCR5 antagonists may improve the efficacy of immunotherapy in

various cancers.

6.2.3 The future of CCL3
Future studies targeting the CCL3/CCR5 signaling pathway

may aim to enhance immunotherapy efficacy, particularly when

combined with immune checkpoint inhibitors or CAR-T cell

therapy (371, 372). Inhibiting CCL3 activity or its receptor could

reduce immunosuppressive effects in the TME, restoring anti-

tumor immune responses. Additionally, precise regulation of

CCL3 expression in the TME may offer new therapeutic strategies

for immunotherapy in GC and other malignancies.
6.3 CCL5

CCL5 also known as RANTES, is an important chemokine that

belongs to the C-C motif chemokine family (373). It is a chemokine

secreted mainly by T cells, macrophages, dendritic cells, endothelial

cells and tumor cells (374). It regulates the migration of immune

cells, especially immune cells such as T cells, macrophages and

eosinophils, by binding to CCR1, CCR3 and CCR5 receptors (375–

377). CCL5 not only promotes the aggregation of immune cells, but

also enhances cell-cell interactions, thereby strengthening the

immune response. In addition, CCL5 is involved in the regulation

of immune cell activation, proliferation, differentiation and cytokine

secretion (378).

6.3.1 Role of CCL5 in gastritis and GC
The expression of CCL5 is normally increased when the gastric

mucosa is infected or injured, which recruits immune cells such as T

cells and macrophages to the site of inflammation and enhances the

immune response (379). However, excessive CCL5 activity can lead

to a persistent activation of the immune response, which can induce

chronic inflammation and increase the damage to the gastric

mucosa, thus providing favorable conditions for pre-cancerous

lesions such as GC (379). In the TME of GC, CCL5 plays a

complex dual role. On the one hand, CCL5 enhances the anti-

tumor immune response by promoting the recruitment of T cells

and NK cells. Studies show that high CCL5 expression has been

linked to stronger anti-tumor immune responses, particularly

effector T-cell and NK cell recruitment (380–382). On the other

hand, by binding to the CCR5 receptor, CCL5 can recruit

immunosuppressive cells such as TAMs and inhibit the function

of tumor-specific T cells, thereby exacerbating tumor immune

escape (336, 379). In addition, CCL5 may also support tumor

growth through the promotion of angiogenesis and the

enhancement of tumor cell migration and metastasis (383).

6.3.2 The role of CCL5 in the TME
CCL5 can promote the immune response against tumors

through the recruitment of effector cells such as T cells and NK

cells, but in some TMEs it can also promote immune escape

through the recruitment of immunosuppressive cells such as M2
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macrophages and Treg cells (384). CCL5 recruits M2 macrophages

via the CCR5 receptor. M2 macrophages secrete anti-inflammatory

factors (e.g., IL-10, TGF-b) that suppress tumor-specific immunity

and promote tumor survival and metastasis (385). Because of its

role in immune escape, targeting the CCL5/CCR5 pathway has

become a focus of immunotherapy research.

6.3.3 The future of CCL5
The accumulation of suppressive cells can be reduced and anti-

tumor immune responses can be enhanced by inhibiting CCL5/

CCR5 binding (379). Studies have shown that CCR5 antagonists,

especially when combined with immune checkpoint inhibitors or

CAR-T cell therapy, can improve immunotherapy outcomes in

various cancers, making the CCL5/CCR5 pathway a promising

strategy for the treatment of GC (386).
6.4 CXCL8

CXCL8 is an important chemokine belonging to the C-X-C

motif chemokine family, also known as IL-8 (387). It is

predominantly secreted by various cell types including

neutrophils, macrophages, endothelial cells, fibroblasts, tumor

cells and others (388). By binding to its receptors CXCR1 and

CXCR2, CXCL8 exerts chemotactic effects on immune cells, in

particular neutrophil recruitment and activation (387).

Furthermore, CXCL8 plays important roles in physiological and

pathological processes including inflammation, immune response

and TME (387).

6.4.1 Role of CXCL8 in gastritis and GC
In the gastric mucosa, CXCL8 enhances local immune

responses by promoting neutrophil chemotaxis and activation,

thereby contributing to the resolution of infection (389).

However, prolonged high expression of CXCL8 and excessive

neutrophil recruitment can lead to chronic inflammation and

damage to the gastric mucosal lining, creating conditions

conducive to the development of diseases like GC (390). In

addition to enhancing local inflammatory responses in the tumor

by recruiting immune cells, CXCL8 may also promote tumor

development by promoting tumor cell growth, angiogenesis and

metastasis (391). CXCL8 recruitment and activation of neutrophils

by binding to CXCR1 and CXCR2 has been shown to enhance

tumor growth and proliferation through secretion of a variety of

cytokines and angiogenic factor release (392, 393). In addition, by

inducing the accumulation of TAMs, CXCL8 may promote

immune escape from the TME (394).

6.4.2 The role of CXCL8 in the TME
By regulating the migration and function of immune cells in the

TME, CXCL8 may support immune escape of tumor cells (394).

Targeting CXCL8 or its receptors (CXCR1 and CXCR2) has

emerged as a potential immunotherapeutic strategy due to the

important role of CXCL8 in immune escape. By inhibiting the
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binding of CXCL8 and CXCR1/2, the aggregation of

immunosuppressive cells (e.g., neutrophils, TAMs, etc.) in the

TME can be reduced, thereby promoting the anti-tumor activity

of effector T cells (392, 393). Studies have shown that inhibition of

the CXCL8 pathway has the potential to enhance the effectiveness of

immunotherapy, especially when combined with immune

checkpoint inhibitors or other immunotherapy (395).

6.4.3 The future of CXCL8
Therapeutic strategies that precisely target the CXCL8 receptor

to reduce immunosuppression in the TME and restore anti-tumor

immune responses are likely to be the focus of future CXCL8

research. New ideas and therapeutic approaches for the treatment

of GC and other malignancies may be provided by optimizing the

role of CXCL8 in the TME.
6.5 CXCL12

CXCL12 also known as stromal cell-derived factor 1a, is an

important chemokine (396). It belongs to the C-X-C motif

chemokine family. CXCL12 can be secreted by various cell types

including fibroblasts, endothelial cells, macrophages, and tumor cells

(397). CXCL12 binds to the CXCR4 and CXCR7 receptors and is

involved in many physiological and pathologic processes, including

immune response, cell migration and tumor metastasis (397, 398).

6.5.1 Role of CXCL12 in gastritis and GC
When infected by H. pylori, the stomach produces CXCL12,

which recruits immune cells such as T cells and macrophages to the

inflamed area (399). CXCL12 helps resolve the infection by

regulating immune cell localization and activation through

binding to CXCR4 and CXCR7 receptors (400). However,

excessive express ion of CXCL12 can lead to chronic

inflammation, which can damage the lining of the stomach and

increase the risk of pre-cancerous lesions such as GC (401). In the

TME of GC, CXCL12 plays a dual role. First, by recruiting immune

cells to the TME, CXCL12 enhances the immune response (347). In

some cases, CXCL12 expression may enhance effector T cells, NK

cells, and other antitumor immune function (402). However,

CXCL12 can also promote tumor metastasis by facilitating the

migration and invasion of tumor cells. Tumor cells, CAFs, and

others may secrete CXCL12 and activate the CXCR4 receptor,

which directs tumor cells to specific sites and promotes metastatic

and neovascular growth (403, 404).

6.5.2 The role of CXCL12 in the TME
By recruiting immunosuppressive cells such as Treg cells and

M2 macrophages, the CXCL12/CXCR4 signaling pathway plays a

critical role in tumor immune escape (400). High CXCL12

expression has been implicated in immune escape, metastasis and

drug resistance in several tumor types, including GC (405). CXCL12

promotes immunosuppression by recruiting CAFs and reducing

effector T-cell and NK-cell function (406).
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6.5.3 The future of CXCL12
Targeting the CXCL12/CXCR4 signaling pathway by inhibiting

their binding or by blocking the expression of CXCL12 can reduce

the accumulation of immunosuppressive cells and enhance the anti-

tumor immunity. This pathway is a promising therapeutic target as

studies have shown that CXCR4 antagonists can improve immune

responses and slow tumor progression.
6.6 CXCL10

CXCL10, also known as IP-10 (IFN-g-induced protein 10), is an

important chemokine that belongs to the family of chemokines with

a C-X-C motif (407). CXCL10 has been shown to be secreted by

various cell types including macrophages, endothelial cells,

fibroblasts and tumor cells (408). The expression of CXCL10 is

significantly increased by the chemotaxis induced by IFN-g and is

involved in the chemotaxis of immune cells, the modulation of

immune responses, and the immune surveillance of the TME (409).

6.6.1 Role of CXCL10 in gastritis and GC
In chronic gastritis, CXCL10 enhances the immune response by

recruiting CD4+ T cells and CD8+ T cells for infection control

(341). CXCL10 modulates immune cell function and the intensity of

local immune responses by binding to the CXCR3 receptor (410).

CXCL10 potentiates the immune response against tumors and

reduces tumor growth and metastasis, mainly by regulating

immune cell migration and activation. The role of CXCL10 is to

recruit immunosuppressive cells (such as Treg cells) to the tumor,

and these cells suppress the activity of effector T cells (411).

6.6.2 The role of CXCL10 in the TME
CXCL10, through its receptor CXCR3, plays a dual role in

tumor immune escape (412). On the one hand, it recruits anti-

tumor immune cells such as effector T cells and NK cells to the

tumor site. This enhances the immune response and promotes

tumor elimination (413). On the other hand, prolonged high

expression of CXCL10 can lead to an overaccumulation of

immunosuppressive cells, particularly Treg cells. Treg cells

suppress effector T cell function and contribute to immune escape

(414). Thus, its ability to direct immune cell recruitment, as well as

the local immune status and cell types present, determine the

impact of CXCL10 in the TME.
6.6.3 The future of CXCL10
Because of its role in the modulation of immune responses,

CXCL10 has emerged as a promising target for immunotherapy.

Strategies that increase CXCL10 expression or activate its CXCR3

receptor could enhance anti-tumor immunity by promoting effector

cell recruitment to the tumor site. The combination of CXCL10

modulation with immune checkpoint inhibitors (e.g. PD-1/PD-L1

inhibitors) (415), cancer vaccines or CAR T-cell therapies may

improve overall therapeutic efficacy through synergistic

enhancement of the immune response (416). As a result, the
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CXCL10/CXCR3 pathway is a valuable target for the development

of novel immunotherapeutic strategies in cancers such as GC.
6.7 CX3CL1

CX3CL1, also known as fractalkine, is a unique chemokine. It

belongs to the C-X3-C motif chemokine family (417). Unlike other

chemokines, CX3CL1 can be expressed on the cell surface in either

soluble or membrane-associated forms and plays important roles in

the immune response, particularly in immune cell migration,

inflammatory responses, tissue repair and the TME (418).

6.7.1 Role of CX3CL1 in gastritis and GC
In gastritis, CX3CL1 regulates the migration of immune cells

(particularly monocytes and macrophages) by binding to the

CX3CR1 receptor and helps to direct immune cells toward the

site of inflammation, thereby maintaining local immune responses

and preventing the spread of pathogens (350). However,

overexpression of CX3CL1 can lead to chronic inflammation that

damages the lining of the stomach and increases the risk of GC, and

can direct immunosuppressive cells, such as Treg cells, to

accumulate at the site of inflammation, thereby supporting

immune escape (419).

In GC, through increased recruitment of immune cells such as

effector T cells and NK cells, CX3CL1 enhances the anti-tumor

immune response and limits tumor growth and metastasis

(352, 420).

6.7.2 The role of CX3CL1 in the TME
By interacting with the CX3CR1 receptor, CX3CL1 recruits

immunosuppressive cells (e.g., Treg cells, M2-type macrophages) to

help tumors evade immune surveillance during immune escape in

tumors (421, 422). At the same time, CX3CL1 enhances the

secretion of immunosuppressive factors, inhibits the anti-tumor

activity of effector T cells and NK cells, and promotes immune

escape and tumor growth (423).

6.7.3 The future of CX3CL1
By understanding the role of CX3CL1 in immune escape and

tumor immune modulation, new targeted therapeutic strategies

have been developed. In particular, new breakthroughs in the

treatment of malignancies such as GC may be achieved through

combination with immune checkpoint inhibitors, cytokine therapy

and CAR T-cell therapy (424, 425).
7 Targeted agents against
inflammatory cytokines

Targeted agents against inflammatory cytokines have been

widely applied in various diseases, including hematological

disorders, autoimmune diseases, and chronic inflammatory

conditions, with their efficacy and safety well established (426–
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TABLE 6 The application of inflammatory factor-targeted drugs in GC.

Drugs Targets
Application

status

Research in
GC and
gastritis

Canakinumab IL-1b

FDA approved for
CAPS, TRAPS,

HIDS/MKD, FMF,
AOSD, SJIA

NA

Anakinra IL-1Ra
FDA approved for
RA, DMARDs,
NOMID, DIRA

NA

Gevokizumab IL-1b
A phase III clinical
trial (NCT02258867)

for BD
NA

DFV890 IL-1b
A phase II clinical

trial (NCT06031844)
for CHD

NA

Aldesleukin IL-2
FDA approved for
RCC, Melanoma

NA

Basiliximab IL-2Ra

FDA approved for
AOR in patients
receiving renal
transplantation

NA

Bempegaldesleukin IL-2

A phase II clinical
trial (NCT03548467)

for Melanoma,
NSCLC

Preclinical research
(429)

Nemvaleukin alfa IL-2
A phase II clinical

trial (NCT04144517)
for HNSCC

NA

Dupilumab IL-4Ra
FDA approved for
AD, CRSwNP,
Asthma, EoE

Preclinical research
(430)

Tocilizumab IL-6R
FDA approved for

RA, CRS
NA

Siltuximab IL-6
FDA approved for
MCD (HIV/HHV-8

negative)
NA

Satralizumab IL-6R
FDA approved for
NMOSD (AQP4
antibody positive)

NA

Olokizumab IL-6
A phase III clinical
trial (NCT02760368)

for RA
NA

Clazakizumab IL-6
A phase II clinical

trial (NCT03380377)
for KTR

NA

CT-P47 IL-6R
A phase III clinical
trial (NCT05489224)

for RA
NA

Bazedoxifene
IL-6/IL-
11/STAT3

A phase II clinical
trial (NCT02448771)

for BC

Preclinical research
(431, 432)

BMS-986253
IL-8

(CXCL8)

A phase II clinical
trial (NCT02448771)
for NSCLC, HCC

NA

(Continued)
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TABLE 6 Continued

Drugs Targets
Application

status

Research in
GC and
gastritis

Secukinumab IL-17A
FDA approved for
PsO, AS, PsA

Preclinical research
(433)

Ixekizumab IL-17A
FDA approved for
PsO, PsA, AS

Preclinical research
(433)

Sonelokimab IL-17A/F
A phase II clinical

trial (NCT05640245)
for PsA

NA

Tadekinig alfa IL-18BP
A phase II clinical

trial (NCT02398435)
for AoSD

NA

Ustekinumab
IL-12/IL-
23p40

FDA approved for
PsO, CD, UC

NA

Guselkumab IL-23p19
FDA approved for

PsO, PsA
NA

Risankizumab IL-23p19
FDA approved for
PsO, PsA, CD

NA

Tildrakizumab IL-23p19
FDA approved for

PsO
NA

Mirikizumab IL-23p19

A phase III clinical
trial (NCT05767021)

for UC
A phase III clinical
trial (NCT04232553)

for CD

NA

Infliximab
TNF-a/
TNFR

FDA approved for
RA, CD, UC, AS,

PsO, PsA

Preclinical research
(434)

Adalimumab TNF-a
FDA approved for
RA, CD, UC, AS,

PsO, PsA
NA

Etanercept TNF-a
FDA approved for

RA, AS, PsA
NA

Golimumab TNF-a
FDA approved for

RA, UC, AS
NA

Certolizumab
pegol

TNF-a
FDA approved for
CD, RA, UC, AS

NA

Ozoralizumab TNF-a
A phase III clinical
trial (NCT04077567)

for RA
NA

L19-TNF TNF-a
A phase II clinical

trial (NCT03420014)
for STS

NA

Intron A IFN-a2b
FDA approved for
HCL, KS, CHB,
CHC, Melanoma

Preclinical research
(435)

Pegasys IFN-a2a
FDA approved for

CHB, CHC
NA

PegIntron IFN-a2b
FDA approved for
CHC, Melanoma

NA

(Continued)
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428). However, in inflammation-driven tumors—particularly in the

context of GC—the therapeutic effectiveness and safety profile of

these agents remain to be fully elucidated. The research progress of

several targeted agents is summarized in Table 6. IL-6, TNF-a, and
CXCL8 are three key pro-inflammatory cytokines extensively

involved in remodeling the TME, thereby promoting tumor cell

proliferation, metastasis, and immune evasion. Targeted

interventions against these cytokines have entered preclinical or

early-phase clinical research in various inflammation-associated

diseases and selected malignancies, demonstrating considerable

therapeutic potential.
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In the IL-6 signaling pathway, the IL-6 receptor antagonist

Tocilizumab has been approved by the FDA for the treatment of

rheumatoid arthritis and giant cell arteritis, and its potential

application in solid tumors is gaining increasing attention.

Related studies also indicate that Bempegaldesleukin, an IL-2

pathway agonist, significantly enhances the anti-tumor efficacy of

radiotherapy through a T cell–dependent mechanism (429).

Furthermore, Bazedoxifene inhibits IL-11–dependent STAT3

signaling, thereby blocking gastrointestinal tumor growth (431).

In the CXCL8 pathway, Reparixin, a CXCR1/2 receptor

inhibitor, has been shown to markedly suppress the malignant

behavior of GC MKN45 cells in vitro and in vivo. When combined

with first- and second-line chemotherapy, it reduces toxicity and

prolongs survival (438). Reparixin also diminishes the protective

effect of CAFs on CD8+ T cells and improves the efficacy of anti-

PD-L1 antibodies, thereby enhancing cytotoxic immune

responses (142).

Plerixafor, a small-molecule CXCR4 antagonist, is a leading

candidate in gastrointestinal cancer therapy targeting the CXCL12–

CXCR4/CXCR7 axis (400). Studies demonstrate that Plerixafor

modulates TAMs, suppresses GC progression, and enhances

immune recognition and T cell activation (439).

In the TNF-a pathway, inhibitors such as Infliximab and

Adalimumab are widely used in the clinical management of

inflammatory bowel disease. Research suggests that Infliximab

can suppress H. pylori–induced upregulation of CXCR4 by

inhibiting TNF-a signaling, thereby reducing GC cell migration

and exhibiting anti-tumor potential (434).

Additionally, the highly selective CCR5 antagonist Maraviroc,

when combined with cisplatin, significantly inhibits the growth of

GC organoids and shows promising anti- GC activity (436). Its

mechanism may involve blocking the CCR5 pathway, thereby

reducing GC cell migration induced by MIP-1a, MIP-1b, and
RANTES (437).

Although the above targeted strategies have shown good

safety profiles in approved disease settings, their application

in the context of cancer still requires cautious evaluation.

Inflammatory cytokines play essential roles in maintaining

immune homeostasis; thus, long-term or systemic inhibition

may lead to immune imbalance and an increased risk of

infection. In addition, the presence of complex bidirectional

regulatory mechanisms among different signaling pathways may

result in unexpected immunosuppressive effects. In the future, it

will be necessary to integrate tumor molecular subtypes, immune

cell infiltration patterns, and peripheral pro-inflammatory

cytokine levels to accurately identify patient populations most

likely to benefit from cytokine-targeted therapies. A systematic

assessment of the synergistic effects between cytokine inhibitors

and immune checkpoint inhibitors, conventional chemotherapy,

and anti-angiogenic therapies is needed to improve overall

therapeutic efficacy and overcome resistance to monotherapy.

With the aid of these technologies, the cellular sources and

target sites of inflammatory cytokines can be precisely identified

at single-cell resolution, thus providing a basis for individualized

and precise therapeutic interventions.
TABLE 6 Continued

Drugs Targets
Application

status

Research in
GC and
gastritis

Avonex IFN-b1a
FDA approved for

RRMS
NA

Rebif IFN-b1a
FDA approved for

RRMS
NA

Betaseron IFN-b1b
FDA approved for
RRMS, SPMS

NA

Actimmune IFN-g1b
FDA approved for
CGD, Osteosclerosis

NA

Carlumab CCL2
A phase II clinical

trial (NCT00992186)
for PCa

NA

Maraviroc CCL5
FDA approved for

HIV
Preclinical research

(436, 437)

Leronlimab CCL5
A phase II clinical

trial (NCT01276236)
for KS

NA

Reparixin
CXCL8/
CXCR1/2

A phase II clinical
trial (NCT01861054)

for BC

Preclinical research
(142, 438)

SX-682
CXCL8/
CXCR1/2

A phase II clinical
trial (NCT04599140)

for CRC
NA

Vercirnon
CCL10/
CCR9/
CXCR3

A phase III
(Terminated) clinical
trial (NCT01536418)

for CD

NA

Plerixafor
CXCL12/
CXCR4/
CXCR7

FDA approved for
MM, NHL

Preclinical research
(400, 439)

Motixafortide
CXCL12/
CXCR4/
CXCR7

FDA approved for
MM

NA

Mavorixafor
CXCL12/
CXCR4/
CXCR7

FDA approved for
WHIM Syndrome

NA

NOX-A12
CXCL12/
CXCR4/
CXCR7

A phase II clinical
trial (NCT04121455)

for GBM
NA
The information is sourced from https://clinicaltrials.gov/ and https://www.fda.gov/. NA, Not
Applicable.
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8 miRNA-driven inflammatory
persistence in gastric

MicroRNAs (miRNAs) regulate the intensity and persistence

of inflammatory signaling by targeting multiple signaling

components, acting as molecular adaptive mechanisms that

facilitate immune evasion (440). In the context of H. pylori

infection, key immunoregulatory miRNAs—particularly miR-155

and miR-146a—are significantly upregulated, thereby

reprogramming TLR/NF-kB and associated downstream

pathways (441). miR-155 is typically upregulated during infection

and chronic inflammation, promoting or sustaining Th1/Th17

responses and functional remodeling of myeloid cells. However,

its excessive or sustained expression may also indirectly promote

immune evasion and pro-tumor microenvironment formation by

modulating antigen presentation, suppressing certain inhibitory

factors, or affecting immune checkpoint pathways. Conversely,

miR-146a is often induced by NF-kB as a negative feedback

regulator, targeting upstream adaptors like IRAK1/TRAF6

to reduce excessive inflammatory output and protect tissues

(442). However, altered miR-146a expression (or functional

imbalance) during chronic infection and carcinogenesis may

contribute to dysregulated inflammation and influence tumor-

associated NF-kB activity and cell proliferation signaling (443).

Collectively, the dynamic regulation of miRNAs transforms

pathogen-induced initial NF-kB/TLR signaling into a more

persistent and individualized inflammatory state (444). This not

only explains how inflammation-repair imbalance is sustained

long-term to promote genomic instability and tumor progression

but also reveals the value of miRNA regulatory axes as potential

biomarkers or intervention targets.
9 Challenge and future perspective

In this review, we primarily focused on the inflammatory

mechanisms underlying H. pylori–induced chronic gastritis and

its progression to gastric cancer. However, relatively limited

discussion was devoted to other well-defined etiologies of

gastritis, such as autoimmune atrophic gastritis, bile reflux–

re lated chemical injury , eos inophi l ic/ lymphocytic or

granulomatous gastritis, portal hypertensive gastropathy, and

gastric mucosal injury caused by non–H. pylori infections (e.g.,

certain viruses or bacteria). Moreover, the prevalence of H. pylori

infection varies across different geographic regions, which may

influence the risk assessment and mechanistic understanding of

gastric carcinogenesis. Future studies should place greater emphasis

on the inflammatory characteristics of these distinct gastritis

subtypes and their potential roles in gastric cancer development,

thereby contributing to a more comprehensive understanding of the

underlying pathogenic network.
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9.1 CagPAI-mediated signaling cascades
and pro-inflammatory responses

Among the various triggers of chronic gastritis, H. pylori

infection represents the most well-characterized and potent

inducer of gastric tumorigenesis. Persistent infection initiates and

sustains mucosal inflammation through continuous activation of

epithelial and immune signaling networks, ultimately transforming

the gastric microenvironment into a pro-tumor niche. The cag

pathogenicity island (cagPAI), a major virulence determinant,

encodes the complete Cag type IV secretion system (Cag-T4SS)

together with a set of structural and effector proteins that directly

remodel host signaling at multiple levels (445, 446).

During intimate bacterial–epithelial contact, the Cag-T4SS

assembles into transmembrane secretion and adhesion complexes,

including the outer membrane core complex (OMCC) and sheath/

axon-like structures (447). Structural components such as CagY, CagX,

CagT, and CagM form the OMCC and determine the system’s material

transport capacity, while effector proteins including CagA and the

adhesion molecule CagL mediate host cell engagement and

downstream signaling (448). CagL binds integrins (a5b1, aVb6, etc.)
with high affinity, activating the FAK/Src axis and receptor tyrosine

kinase cascades (e.g., EGFR), leading to MAPK (ERK, JNK, p38)

activation (449). This cascade induces AP-1 and NF-kB–dependent
transcription of pro-inflammatory cytokines such as IL-8 and IL-6,

establishing a strong chemokine gradient that recruits neutrophils

and macrophages (450).

Concurrently, the Cag-T4SS delivers bacterial peptidoglycan

(PGN) and CagA into host cytoplasm. Intracellular PGN is

recognized by NOD1, triggering the canonical NF-kB and MAPK

pathways that further amplify inflammatory gene expression (451).

Once translocated, CagA undergoes phosphorylation at its EPIYA

motifs by Src/Abl kinases; phosphorylated CagA aberrantly

activates SHP2, leading to dysregulated growth factor signaling,

enhanced proliferation, and motility (452, 453). Non-

phosphorylated CagA binds the polarity regulator PAR1b,

disrupting epithelial cell polarity and promoting epithelial–

mesenchymal transition (EMT)-like changes (454). Additionally,

CagA impairs DNA damage repair (e.g., BRCA1-dependent

pathways), induces mitochondrial dysfunction and ROS

accumulation, and increases genomic instability—all hallmarks of

malignant transformation (455).

Chronic infection with cagPAI-positive H. pylori strains

therefore promotes gastric carcinogenesis through sustained

cytokine and chemokine secretion (IL-8, IL-6, TNF-a, IL-1b),
which recruit and activate neutrophils and macrophages to

produce reactive oxygen and nitrogen species (445). In parallel,

persistent activation of IL-6/STAT3 and NF-kB signaling sustains

epithelial survival and proliferation, while simultaneously inducing

an immunomodulatory milieu characterized by the recruitment and

polarization of MDSCs, regulatory T cells, and TAMs (456). These

processes collectively establish a microenvironment with both pro-
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inflammatory and immunosuppressive features, fostering tumor

initiation and progression.

With respect to inflammasome activation, studies suggest cell

type– and strain-dependent variability. In macrophages and

dendritic cells, H. pylori can “prime” NLRP3 via TLR2/NOD2

signaling, allowing pro–IL-1b synthesis and its Caspase-1–

mediated maturation under specific stimuli. Conversely, other

studies indicate weak or inhibitory effects on canonical NLRP3

activation, implying that H. pylori may fine-tune inflammasome

responses to balance persistent inflammation and immune

evasion (457).
9.2 HLA and inflammatory heterogeneity

HLA class I/II molecules form the core immunogenetic locus

that regulates antigen presentation and determines the types of

peptides presented to CD4+ and CD8+ T cells. This influences Th1/

Th2/Th17 cell polarisation and the secretion of corresponding

cytokine profiles (e.g. IFN-g, IL-10, IL-1b and TNF-a) (458).

Numerous studies have shown that the frequency of HLA-II

alleles (particularly HLA-DQA1, HLA-DQB1 and HLA-DRB1)

correlates with mucosal inflammation phenotypes and cytokine

expression following H. pylori infection (459). In certain

populations, specific HLA-II alleles have been found to correlate

with either increased IL-10 expression or a heightened risk of pro-

inflammatory factor production (e.g. IL-1b and TNF-a). This
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suggests that immunogenetic variation is a critical factor in

explaining the differences observed in the intensity of the

inflammatory response and disease susceptibility between

individuals (460). Failing to consider HLA and antigen

presentation polymorphisms restricts discussions of inflammatory

responses to the ‘commonality’ level of pathogen-signalling

pathways. This approach is unable to explain why different hosts

exhibit markedly divergent inflammatory profiles and disease

courses despite similar pathogen exposures.
9.3 Synergistic and antagonistic
interactions of inflammatory cytokines and
their signaling pathways in GC and gastritis

In the relationship between gastritis and GC, inflammatory

factors play a crucial role (461, 462). A long-term chronic

inflammatory response lays the foundation for the development

of GC in chronic gastritis, especially that caused by H. pylori (463).

The specific mechanisms of evolution are shown in Figure 2. This

figure systematically illustrates how chronic gastric mucosal

inflammation, induced by H. pylori infection or other high-risk

factors, drives the progression from gastritis to GC. It highlights the

cascade of inflammatory mediators and signaling pathways

involved, along with their positive feedback regulation mechanisms.

Inflammatory factors (464) such as cytokines like IL-1, IL-6,

TNF-a, IL-17 and chemokines like CXCL8 and CCL2 play an
FIGURE 2

Progressive transition from chronic inflammation to GC: a multi-stage mechanism initiated by H. pylori infection and mediated by inflammatory
signaling.
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important role in this process. By activating multiple oncogenic

signaling pathways (464) (e.g., NF-kB, JAK-STAT, MAPK, etc.),

they promote tumor cell proliferation, survival, immune escape, and

enhance tumor invasiveness and metastasis.

A. In the initial phase, H. pylori infection or other risk factors

compromise the gastric mucosal barrier, leading to immune cell

infiltration (e.g., neutrophils, macrophages, T cells). These cells

release large amounts of pro-inflammatory cytokines such as TNF-

a , IL-1b , IL-6, and CXCL8, marking the onset of the

gastritis response.

B. In the second phase, inflammatory cytokines activate

multiple signaling pathways, primarily NF-kB and JAK/STAT

axes, which regulate immune amplification, cell survival,

angiogenesis, and epithelial proliferation. These pathways engage

in positive feedback loops that sustain and amplify the chronic

inflammatory state. “Other signal pathways” may include MAPK,

PI3K/AKT, and TLRs, which cross-regulate each other to enhance

stress and injury responses in the gastric mucosa.

C. In the third phase, inflammatory mediators further promote

immune cell recruitment and activation—e.g., CCL2-mediated

monocyte/macrophage infiltration—forming a tripartite cycle of

immune cells, cytokines, and signaling pathways that reinforce

local inflammation.

D. In the fourth phase, sustained inflammation induces genetic

mutations, stem cell damage, and epigenetic reprogramming in the

gastric epithelium, leading to precancerous lesions such as intestinal

metaplasia, atrophic gastritis, and dysplasia.

E. In the final phase, chronic inflammation promotes

tumorigenesis by enhancing immune evasion, inducing EMT, and

facilitating angiogenesis and stromal remodeling, ultimately driving

the development of GC.

Inflammatory cytokines such as IL-1b, TNF-a, and IL-6

synergistically amplify immune responses during the early stage of

gastritis via classical signaling pathways including NF-kB, JAK/
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STAT3, and MAPK, promoting mucosal hyperplasia, angiogenesis,

and immune cell infiltration. Meanwhile, negative feedback

regulators such as IL-10, TGF-b, SOCS3]/, and A20 maintain

mucosal homeostasis by inhibiting these signaling axes and restrict

excessive inflammation during the precancerous phase. However,

when these antagonistic mechanisms become dysregulated or are

hijacked by tumor cells, pro-inflammatory and pro-tumorigenic

signals remain persistently active, while anti-inflammatory factors

paradoxically facilitate immune evasion and microenvironment

remodeling, thereby driving gastric carcinogenesis. This network

exhibits marked heterogeneity both temporally (from early

inflammation to precancerous lesions to advanced tumors) and

spatially (across different mucosal regions and tumor core versus

invasive margin). Only by constructing a multidimensional systems

model integrating factors, pathways, disease stages, and spatial

context can the dual regulatory roles and dynamic balance of

inflammation in gastritis-to-GC progression be comprehensively

elucidated. Detailed mechanisms are shown in Tables 7 and 8.

Immune cells such as Treg cells, MDSCs and M2-type

macrophages infiltrate the TME and form an immunosuppressive

microenvironment as the inflammatory response continues (475).

These immunosuppressive cells inhibit an effective anti-tumor

immune response through the secretion of immunosuppressive

cytokines, thus allowing tumor cells to escape from immune

surveillance (475). The development of immune escape mechanisms,

which allow tumors to continue to grow under the pressure of the

immune system, is an important feature of GC progression (476).

Inflammatory factors play an important role in immune escape

in GC (477). Factors such as TNF-a and IL-1 exacerbate immune

escape by promoting infiltration of immunosuppressive cells,

upregulating immune checkpoint molecules such as PD-L1, and

promoting tumor cell survival through pathways such as NF-kB
(478–480). Thus, under the watchful eye of the immune system, GC

cells can continue to grow and metastasize.
TABLE 7 Synergistic roles of inflammatory cytokines and their signaling pathways in GC and gastritis.

Factor/Pathway Early-stage gastritis Advanced-stage GC Synergistic mechanism

IL-1b/NF-kB (465, 466)

H. pylori stimulate macrophages to secrete IL
−1b, which activates NF−kB signaling in
epithelial cells, leading to the release of

chemokines and the recruitment of additional
immune cells

In precancerous lesions, sustained
activation of NF-kB by IL-1b

promotes epithelial cell proliferation,
angiogenesis, and ECM remodeling

IL-1b and NF-kB form a positive feedback
loop, whereby NF-kB upregulates IL-1b

expression, and IL-1b in turn further activates
NF-kB

IL-6/JAK/STAT3 (133, 467)

Epithelial cells and infiltrating immune cells
secrete IL-6, which activates STAT3 in

epithelial cells, thereby promoting cell survival
and regeneration.

The IL-6/STAT3 signaling pathway is
highly expressed in GC, driving the
maintenance of stem-like phenotypes

and upregulation of
immunosuppressive molecules

IL-6 and STAT3 form a positive feedback
loop, wherein STAT3 upregulates the

expression of IL-6 and its receptor, thereby
enhancing signal persistence.

TNF-a/MAPK (291, 468)

Macrophages and activated T cells secrete TNF-
a, which promotes activation of the p38

mitogen-activated protein kinase (p38/MAPK)
pathway, thereby exacerbating mucosal injury

and inflammation.

GC cells and TME macrophages co-
secrete TNF-a, which enhances
MAPK signaling to promote

epithelial-mesenchymal transition and
invasive potential.

TNF-a amplifies pro-inflammatory and pro-
metastatic signals simultaneously through

both NF-kB and p38 MAPK pathways, with
these two pathways synergistically driving

disease progression.

CCL2/CCR2 (355, 469)
CCL2 is upregulated at the site of

inflammation, recruiting CCR2+ monocytes to
migrate toward the mucosa.

TAMs secrete increased levels of CCL2
and cooperate with IL-10 and TGF-b
to establish an immunosuppressive

microenvironment.

CCL2 forms a network and other factors
(JAK) to collaboratively recruit and activate
pro-inflammatory and pro-tumor immune

cells.
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9.4 The neuroinflammation–tumor
triangular interaction network

Within the TME, the nervous system, immune inflammation, and

tumor cells form a dynamically intertwined “third space” network.

Neural signaling can regulate inflammatory responses, while

inflammatory mediators, in turn, influence neuronal function. In
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parallel, both inflammation and neural activity jointly modulate

tumor cell proliferation, migration, and invasion. Conversely, tumor

cells can secrete various factors to remodel both the neural and

immune landscape. These three components interact reciprocally

and causally, constituting a “neuroinflammation–tumor” triangular

interaction network (Figure 3A). The dysregulation of this network is

a critical driving force behind tumor initiation, progression, and
TABLE 8 Antagonistic roles of inflammatory cytokines and their signaling pathways in GC and gastritis.

Factor/Pathway Early-stage gastritis Advanced-stage GC Synergistic mechanism

IL-10/STAT3 (144, 470)

IL-10 inhibits the activation of macrophages and
dendritic cells, reducing the secretion of TNF-a,
IL-1b, and IL-6, thereby alleviating mucosal

inflammation.

In a subset of early-stage cases, IL-10 may
restore CD8+ T cell function; however, its
elevated expression in advanced stages can

contribute to immunosuppression.

Activation of JAK/STAT and NF-kB
signaling pathways promotes drug

resistance in GC cells.

SOCS family (471, 472)

SOCS1 and SOCS3 are upregulated in response
to stimulation by IL-6 and TNF-a, serving to
limit excessive activation of the JAK/MAPK

pathway and protect tissue integrity.

During the adenoma stage, SOCS3 is
downregulated and inactivated, leading to
sustained activation of STAT3; in advanced

stages, it is further silenced through
mechanisms such as CpG island methylation.

As a prototypical negative feedback
inhibitor, it terminates signal

transduction by directly binding to JAK
or promoting receptor degradation.

A20 (TNFAIP3) (473, 474)
It is induced following NF-kB activation,
reduces inflammatory signaling, and contributes
to the maintenance of immune homeostasis.

In GC, A20 is frequently downregulated,
resulting in sustained activation of NF-kB

and promoting tumor progression.

By deubiquitinating EMT-related
transcription factors, it ultimately leads to a
malignant phenotype and poor prognosis

of GC.
FIGURE 3

(A) Activated immune cells release pro-inflammatory cytokines such as TNF-a and IL-6, which enhance neuronal activity. The activated neurons then secrete
neurotransmitters including VIP, SP, CGRP, NE, and ACh, which stimulate tumor cells to produce neurotrophic factors and chemokines. This reciprocal
interaction sustains the neuro–inflammation–cancer signaling loop. (B) Relevant neurotransmitters promote an immunosuppressive microenvironment and
tumor progression via the STAT3/NF-kB signaling pathway. This process facilitates the development of chronic inflammation and drives the polarization of
immune cells from the M1 (anti-tumor) to the M2 (pro-tumor) phenotype, thereby shifting gastric tissue responses from inflammation repair toward gastric
carcinogenesis. Meanwhile, tumor cells release neurotrophic factors that induce neural remodeling, further enhancing tumor growth and immune evasion.
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metastasis (372). Furthermore, the neuroimmune axis regulates

immune responses through the vagus nerve and other neural

pathways, maintaining immune homeostasis. This complex

interplay acts as a double-edged sword in both inflammation and

cancer. Inflammatory factors play a dual role in gastritis and GC, as

shown in Figure 3B. Future research should focus on this crosstalk

phenomenon, laying an important foundation for subsequent studies.

Within this network, the inflammatory response typically serves

as the initiating event. Immune cells such as macrophages, dendritic

cells, T cells, and microglia become activated within the TME and

release a wide array of pro-inflammatory cytokines, including TNF-a,
IL-1b, IL-6, and CXCL1. These cytokines not only directly promote

tumor cell growth and metastasis but also act on local nerve endings,

leading to increased neuronal excitability and neural remodeling.

Neural signaling regulates immune cells via adrenergic and

cholinergic receptors. The sympathetic nervous system releases

norepinephrine, which binds to b2-adrenergic receptors on

macrophages, dendritic cells, and T cells, promoting M2

polarization and suppressing Th1 responses. This modulation

influences cytokine production, cell migration, and overall

immune function. Conversely, the parasympathetic nervous

system regulates neural architecture through acetylcholine or

modulates immune cell recruitment, polarization, and function

via neuropeptides. Simultaneously, aberrant neural fiber growth

within tumors—referred to as neoneurogenesis—can enhance

tumor malignancy by transferring miRNAs and lncRNAs to

tumor cells via exosomal pathways.

Tumor cells also play an active role in this interactive network.

They can secrete neurotrophic factors (e.g., NGF, BDNF),

chemokines (e.g., CXCL12), and extracellular vesicles to induce

neural regeneration or remodeling, thereby establishing a more

complex “tumor–nerve” axis. Some tumors even acquire neuronal-

like properties through transcriptional reprogramming—a

phenomenon known as neuronal mimicry—which enhances their

responsiveness to neural signals. In addition, tumor-derived factors

can reshape the inflammatory microenvironment by promoting the

recruitment of immunosuppressive cells such as regulatory T cells

and MDSCs, thus enabling immune evasion (475, 476).

This triangular interaction network can ultimately form a

positive feedback loop: inflammation promotes neural activation;

neural signals regulate immune responses; immune activity further

facilitates tumor progression; and tumor cells, in turn, reactivate

both inflammatory and neural pathways. Therefore, targeting the

“neuro–inflammation–tumor” interaction network has emerged as

a promising therapeutic strategy in cancer treatment. Potential

approaches include blocking neurotransmitter signaling,

inhibiting neurotrophic factors, modulating immune cell

polarization, or applying denervation techniques to suppress

tumor progression.
9.5 Application of emerging technologies

In recent years, emerging high-throughput technologies such as

single-cell RNA sequencing (481, 482) and spatial transcriptomics
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(483, 484) have been widely applied in the study of gastrointestinal

diseases, offering unprecedented resolution in elucidating the

relationship between inflammatory factors and gastric

pathologies. These techniques enable the dissection of

transcriptional heterogeneity among different cell types—such as

epithelial cells, immune cells, and fibroblasts—within the gastric

mucosa at single-cell resolution, allowing for precise identification

of the sources and targets of inflammatory mediators. For example,

in models of chronic gastritis and H. pylori infection, single-cell

analysis has revealed that pro-inflammatory cytokines such as IL-6

is primarily secreted by activated macrophages and mucosa-

associated T cells, and can further influence the proliferation and

differentiation trajectories of gastric epithelial stem cells (234, 485).

Moreover, spatial transcriptomics enables the visualization of

inflammatory factor expression across distinct anatomical regions

of the gastric mucosa, thereby shedding light on the spatial

relationship between localized inflammation and tumor

progression. These advances are reshaping our understanding of

gastric disease pathogenesis from the perspectives of cellular

ecology and microenvironmental remodeling, and offer more

precise strategies for early diagnosis and therapeutic intervention.

New avenues for the treatment of GC are emerging, including

immunotherapy, particularly suppression of immune checkpoints

such as PD-1/PD-L1 antibodies (486, 487), and targeted therapies

against inflammatory factors (477, 488). Through the reversal of

immune suppression and the reactivation of anti-tumor immune

responses, these therapies are expected to be more effective in the

treatment of GC patients. However, the challenge remains how to

effectively control pro-inflammatory and escape mechanisms to

improve patient prognosis.
10 Conclusions

This review highlights the central role of inflammatory factors in

the transition from chronic gastritis to gastric cancer, emphasizing

their interactions within the tumor microenvironment that promote

both tumorigenesis and immune evasion. Inflammatory mediators

establish a dynamic pro-tumor network through multiple signaling

cascades. On one hand, they induce epithelial injury, stimulate

aberrant proliferation, and foster genomic instability, thereby

driving chronic inflammation toward malignant transformation.

On the other hand, the same inflammatory signals sculpt

an immunosuppressive microenvironment that dampens anti-

tumor immunity and facilitates tumor immune escape. Thus,

carcinogenesis and immune evasion represent interdependent

processes—two facets of a single pathological continuum—linked

by temporal and spatial feedback loops orchestrated by

inflammatory signaling.

From this integrative perspective, targeting a single

inflammatory pathway only offers limited and transient

therapeutic benefit. A combinatorial strategy that suppresses pro-

inflammatory signalling, reprograms immunosuppressive cells and

activates anti-tumour immunity offers greater therapeutic potential.

Biomarkers reflecting inflammatory network dynamics and the
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status of the TME are essential for patient stratification,

combination therapy design and treatment response monitoring.

Furthermore, additional longitudinal clinical samples and

mechanistic studies are required in order to identify biomarkers

that can predict treatment response and guide stratified therapy. In

summary, unravelling the interactive networks of inflammatory

factors within the TME will provide a theoretical foundation for

developing combined, personalised therapeutic strategies,

ultimately improving clinical outcomes for gastric cancer patients.
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Glossary

GC Gastric Cancer
Frontiers in Immunol
H. pylori Helicobacter pylori
IL Interleukin
TNF Tumor Necrosis Factor
IFN Interferon
TME Tumor microenvironment
ECM Extracellular matrix
VEGF Vascular endothelial growth factor
TAMs Tumor-associated macrophages
MDSCs Myeloid-derived suppressor cells
NSAIDs Nonsteroidal anti-inflammatory drugs
TGF Transforming Growth Factor
ROS Reactive oxygen species
ADCs Antibody-drug conjugates
PD-L1 Programmed death-ligand 1
PD-1 Programmed death-1
miRNAs MicroRNAs
CagPAI Cag pathogenicity island
Cag-T4SS Cag type IV secretion system
PGN Peptidoglycan
EMT Epithelial–mesenchymal transition
CAFs Cancer-associated fibroblasts
OMCC Outer membrane core complex
TNFR Tumor Necrosis Factor Receptor
MMPs Matrix metalloproteinases
ISGs Interferon-stimulated genes
MCP-1 Monocyte chemotactic protein-1
MIP-1a Macrophage inflammatory protein-1a
RANTES Regulated on Activation, Normal T Expressed and Secreted
MIP Macrophage inflammatory proteins
SOCS Suppressor of Cytokine Signaling
CAPS Cryopyrin-Associated Periodic Syndromes
TRAPS Tumo r Ne c r o s i s F a c t o r R e c e p t o r A s s o c i a t e d

Periodic Syndrome
HIDS Hyperimmunoglobulin D Syndrome
MKD Mevalonate Kinase Deficiency
FMF Familial Mediterranean Fever
AOSD Active Adult-Onset Still’s Disease
SJIA Systemic Juvenile Idiopathic Arthritis
RA Rheumatoid Arthritis
ogy 37
BD Behçet’s Disease
CHD Coronary Heart Disease
DMARDs Disease modifying antirheumatic drugs
NOMID Neonatal Onset Multi-System Inflammatory Disease
DIRA Interleukin-1 Receptor Antagonist
RCC Renal Cell Carcinoma
AOR Acute organ rejection
NSCLC Non-Small Cell Lung Cancer
HNSCC Head and Neck Squamous Cell Carcinoma
AD Atopic Dermatitis
CRSwNP Chronic rhinosinusitis with nasal polyposis
EoE Eosinophilic Esophagitis
CRS Cytokine Release Syndrome
MCD Multicentric Castleman Disease
NMOSD Neuromyelitis Optica Spectrum Disorder
KTR Kidney Transplant Rejection
BC Breast Cancer
HCC Hepatocellular Carcinoma
PsO Psoriasis
AS Ankylosing Spondylitis
PsA Psoriatic Arthritis
AoSD Adult -Onset Still’s Disease
CD Crohn’s Disease
UC Ulcerative Colitis
STS Soft Tissue Sarcoma
HCL Hairy Cell Leukemia
KS Kaposi Sarcoma
CHB Chronic Hepatitis B
CHC Chronic Hepatitis C
RRMS Relapsing Multiple Sclerosis
SPMS Secondary Progressive Multiple Sclerosis
CGD Chronic Granulomatous Disease
HIV Human Immunodeficiency Virus
PCa Prostate Cancer
CRC Colorectal Cancer
MM Multiple Myeloma
NHL Non-Hodgkin Lymphoma
GBM Glioblastoma
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