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Chronic Histiocytic Intervillositis (CHI) is a severe placental inflammatory
response caused by various atypical antigens, attracting attention due to its
high recurrence rate, which results in adverse pregnancy outcomes such as
miscarriage and fetal growth restriction. The pathogenesis of CHI is still poorly
understood. Immune factors such as autoimmune diseases or viral infections,
maternal-fetal genetic compatibility, and other factors cause immune imbalance
at the maternal-fetal interface. Disorders of immune tolerance in CHI includes
abnormal activity of Cytotrophoblasts, mononuclear macrophages, and CD8"/
CD4™ T lymphocytes. Additionally, pro-inflammatory factors such as IL-1B, TNF-
o, and anti-inflammatory molecules like IL-10, TGF-B, and fibrin are crucial in
regulating the pathological formation of CHI. Histopathological sections and
staining, serological screening, and medical imaging techniques are the primary
methods for diagnosing CHI. Patients with CHI may benefit from treatments
including immunosuppressants, anticoagulants, and monoclonal antibodies.
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1 Introduction

Chronic histiocytic villous interstitial inflammation (CHI), also known as chronic
villous interstitial inflammation of unknown etiology (CIUE), is a severe inflammatory
disease that significantly affects the villous spaces (1-3). CHI distinguishes from chronic
villitis, chronic deciduitis, or chronic chorionic amnionitis, although CHI may coexist with
chronic villitis in the same inflamed placenta (4-9) (Table 1). CHI patients often exhibit
severe adverse pregnancy outcomes and a high recurrence rate, associated with
complications such as miscarriage and fetal growth restriction (10). However, the
understanding of the pathogenesis, diagnosis, and treatment strategies for CHI remains
in its infancy.

Although maternal-fetal interface immune tolerance imbalance plays a crucial role in
the pathogenesis of CHI, the mechanisms by which maternal-fetal genetic compatibility or
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TABLE 1 Comparison of chronic inflammation of the placenta.
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Lymphocytic infiltration of smooth chorion, Patchy

Villous parenchyma lymphocytic infiltration, Villous

Pathological

trophoblastic necrosis

fibrosis or necrosis

Features

VUE, villitis of unknown etiology; CHI, chronic histiocytic intervillositis; IUGR, intrauterine growth restriction.
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immune factors regulate the etiology of CHI, as well as the
underlying pathophysiological processes, remain poorly
understood. This paper reviews the epidemiological characteristics
of CHI, summarizes the biological mechanisms underlying its
etiology and pathogenesis, and outlines current diagnostic and
clinical treatment approaches, aiming to provide new insights
into the regulation of maternal-fetal interface immunity and
explore novel strategies for the treatment of placental inflammation.

2 CHI is characterized by adverse
pregnancy outcome and high
recurrence

The prevalence of recurrence for CHI can range from 25% to
100%, displaying significant heterogeneity (10). A study involving
24 patients found that the recurrence rate of adverse outcomes in
CHI patients reached 67% (11). Another multicenter prospective
study indicated that the recurrence rate of adverse pregnancy
outcomes in CHI patients could be as high as 30%. Additionally,
patients with a history of severe placental lesions face an even higher
risk of CHI recurrence (12).

The following example uses severe adverse pregnancy outcomes
such as fetal growth restriction and miscarriage to illustrate the
relationship between CHI and severe adverse pregnancy outcomes,
as well as their epidemiological characteristics.

2.1 CHI and fetal growth restriction

Patients with CHI exhibit significant pathological changes in
placental function, and multiple studies have confirmed its
association with fetal growth restriction (FGR). Research indicates
that the incidence of fetal growth restriction among CHI patients
ranges from 51.6% to 73%. Clinical observations of 111 CHI
patients revealed that the rate of FGR was significantly higher
than that of the control group (70.4% vs. 0.9%, p < 0.001) (13).
An analysis of 69 CHI cases from 1977 to 2009 revealed an FGR
incidence of 66.7%, with a live birth rate of less than 54%. Similarly,
a Dutch cohort study found that among 38 CHI patients, the
incidence of FGR was 51.6%. These cases were also associated
with microstructural abnormalities, including placental vascular
lesions and fibrosis in the chorionic mesenchyme.

2.2 CHI and miscarriage

CHI is correlated with fetal miscarriage. Statistics indicate that
the rate of spontaneous miscarriage among CHI patients ranges
from 9.5% to 33%, with early miscarriages occurring more
frequently than late ones. A pathological analysis of 178 placentas
in France revealed that 73% of CHI cases were associated with fetal
growth restriction, with 9.5% resulting in miscarriage (5). A study
involving 69 pregnancies with CHI found that the rate of early
spontaneous miscarriage was 30.4%, while the rate for late
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miscarriage was 13.0% (14). An analysis of 151 CHI cases in France
from 2000 to 2020 indicated that early miscarriages constituted
20.0%, while late miscarriages accounted for 4.8% (5). Additionally,
the occurrence of CHI is often associated with recurrent
miscarriages. In a study conducted in Leiden, Netherlands, the
miscarriage rate among 38 women with CHI reached as high as
42% (15).

3 The pathophysiological mechanism
of CHlI

The fetus, as a semi-allogeneic transplant, inducing the mother
to form specific tolerance due to multiple synergistic mechanisms.
First, trophoblast cells selectively express non-classical HLA
molecules (such as HLA-G, HLA-C) to avoid recognition and
attack by the mother’s T cells and NK cells, and together with the
decidua form a physical barrier (16, 17). Second, local immune cells
are reprogrammed. Induced by the high expression of inhibitory
HLA-G/E/F receptors on trophoblast cells, regulatory T cells (Treg)
and M2 macrophages proliferate, while uterine NK cells and
tolerogenic dendritic cells secrete IL-10 and TGF-3, suppressing
Th1/Th17 inflammatory responses and maintaining Th2
dominance (18, 19). Concurrently, cytokines promote and
maintain an immune tolerance environment. Indoleamine 2,3-
dioxygenase depletes tryptophan, while immune checkpoint
molecules such as PD-L1/CTLA-4 block T cell activation (20).
Trophoblast exosomes carrying miRNAs train maternal immune
cells; additionally, the embryo actively “educates” maternal
immunity by secreting TSLP and IL-35 (21).

Maternal immune dysfunction is the primary factor breakdown of
maternal-fetal immune tolerance and trigger CHI. Studies have
shown that patients with autoimmune diseases have an increased
risk of CHL Patients with autoimmune diseases exhibit significant
maternal-fetal immune dysfunction and disruption of immune
tolerance. Among CHI patients, 58.3% (7/12 cases) had
concomitant autoimmune diseases such as systemic lupus
erythematosus or antiphospholipid antibodies. A German research
group reported in 2023 that 29% (7/24) of 24 CHI patients had
autoimmune diseases, and those with positive autoantibodies had
significantly increased placental inflammation (p<0.05) (12). Pathogen
infections during pregnancy can also trigger similar CHI symptoms
(22). Pathogen infections can cause maternal immune dysfunction
and maternal-fetal interface homeostasis imbalance during pregnancy.
SARS-CoV-2 placental infection during pregnancy can lead to
pathological changes in the villous spaces, manifested as chronic
histiocytic villous interstitial inflammation combined with
trophoblast necrosis (23). Pathological analysis of infection-related
CHI revealed that viral particles were detectable in 18.2% of Hofbauer
cells and 9.1% of villous capillary endothelial cells, accompanied by
acute placental dysfunction and fetal hypoxia (24). Cytomegalovirus
can also cause villous inflammatory pathological changes similar to
CHI (25).

However, in transplant rejection reactions, MHC molecule
recognition plays a central role, so poor maternal-fetal MHC
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compatibility is a potential triggering factor for CHI. Studies
indicate that 30-40% of pregnant women can be detected to express
antibodies against paternal HLA during pregnancy, with the
proportion increasing with the number of deliveries (26). CHI has
been confirmed to meet the Banff antibody-mediated rejection criteria
(defined by diftuse infiltration of monocytes) (27). Additionally, twin
pregnancy studies have confirmed that genetic factors play a
significant role in the development of CHI. In monozygotic twins,
CHI occurred bilaterally in the placenta (3/5 cases, with identical
genetic backgrounds in both placentas (8), while in dizygotic twins,
CHI incidence was inconsistent between the two placentas (3/3 cases,
with non-identical genetic backgrounds in both placentas) (28).

However, unlike rejection reactions caused by organ
transplantation, the semi-allogeneic transplantation rejection
reaction at the maternal-fetal interface is centered on monocytes,
with T lymphocytes playing a primary role.

4 CHI cytopathic alterations

The cellular pathological mechanism of CHI is primarily
characterized by an imbalance proliferation and migration of
immune cells at maternal fetal interface (29). Under normal
circumstances, the mother maintains immunological tolerance for
the fetus through special immune system, such as Treg-mediated
immunosuppression and decidual natural killer cells (ANK cells).
However, in CHI, this maternal-fetal interface becomes unbalanced
(30). Changes in the maternal-fetal interface and immune disorders
and alterations in CHI include large number of CD68" monocyte-
macrophages are abnormally aggregated in the intervillous space,
while T cells subsets predominantly composed of CD4*/CD8" T
lymphocytes significantly infiltrate this space, Treg cells reduction,
secretion of immune factors such as IL-1 and TGFBR1, and release
of immune effector molecules such as MMPs.

4.1 Trophoblast

The syncytiotrophoblast (STB) develops from the fusion of
trophoblast cells in the blastocyst’s outer layer, serving as the core
functional unit of the maternal-fetal interface. It is central to
nutrient and material exchange in the placenta, secreting
hormones like human chorionic gonadotropin (hCG) and
progesterone to maintain placental development and function.
Importantly, the STB also plays a crucial role in immune
tolerance and regulation at the maternal-fetal interface, In the
placentas of CHI patients, STB was observed in the inflammatory
lesion region (31). Previous studies found that normal
syncytiotrophoblasts do not express MHC class II molecules.
However, recent research has shown that MHC class II molecules
could be detected on syncytiotrophoblasts layer in a pathological
condition, which may underlie immune recognition and
inflammatory responses in CHI (32).

CD200 is a type I membrane glycoprotein widely expressed in
fetal-derived placental trophoblast cells (33). At the maternal-fetal
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interface, the high expression of CD200 on fetal membrane
glycoproteins binds to CD200R on the surface of maternal
myeloid immune cells, inhibiting the NF-kB/MAPK pathway
through phosphatase cascade. Thereby, the signals break the
maternal immune system (34). It inhibits dendritic cell
maturation and antigen presentation, drives macrophages toward
anti-inflammatory M2 polarization (35). simultaneously
downregulates Thl-type pro-inflammatory factors (IFN-y, TNF-
o), and upregulates Th2-type anti-inflammatory factors IL-10,
thereby inducing Treg expansion and Th2 shift (33). The CD200/
CD200R axis also synergizes with molecules such as indoleamine
2,3-dioxygenase (IDO) and FasL to form a fetal “invisibility cloak,”
preventing maternal rejection (36). The expression level of the anti-
inflammatory molecule CD200R in CHI placental villous
trophoblast cells is significantly reduced, which may be associated
with abnormal Treg proliferation and immune homeostasis
imbalance at the maternal-fetal interface (37).

Besides, the exonuclease CD39 is an immune signaling molecule
highly expressed on the surface of trophoblast cells. CD39 hydrolyzes
extracellular pro-inflammatory ATP/ADP to generate AMP, which is
further converted by CD73 into the immunosuppressive adenosine,
thereby establishing a “high adenosine-low ATP” microenvironment
at the maternal-fetal interface (38). Adenosine is the core molecule in
the formation of an inhibitory immune homeostasis. Adenosine binds
to the A2A receptor on maternal immune cells, inhibiting NK cell
cytotoxicity, T cell activation, and DC maturation, while promoting
Treg expansion and M2 macrophage polarization (39, 40). It also
synergizes with tolerance molecules such as PD-L1 and HLA-G to
prevent maternal rejection of the semi-allogeneic fetus (41). The
reduced expression of the immunosuppressive enzyme CD39 in the
trophoblast cells of the placenta disrupts the immune tolerance at the
maternal-fetal interface (42).

Additionally, the elevated expression of the adhesion molecule
ICAM-1 in the trophoblast cells enhances the adhesion capacity of
macrophages, facilitating their accumulation in the intervillous
space (43). Furthermore, the increased expression of the
inflammatory receptor TLR1 in the trophoblast layer promotes
the formation of inflammation in the intervillous space (44).

In CHI placental lesions, trophoblast cells induce large numbers
of CD68" monocytes in the villous spaces, which is also the primary
pathological feature of CHI.

4.2 Macrophages

Macrophages are one of the primary immune cells at the
maternal-fetal interface. Research indicates that in the CHI
placenta, macrophages primarily originate from maternal
circulation rather than from fetal Hofbauer cells. The infiltration
of macrophages predominates in this lesion, accounting for 80% of
inflammatory cells (45). Macrophages play crucial roles in antigen
presentation, immune modulation, and the repair of inflammatory
damage. In the CHI lesion, macrophages display a mixed M1/M2
polarization phenotype. The M1 subset typically expresses high
levels of pro-inflammatory factors such as Tumor Necrosis Factor-
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alpha (TNF-0) and Interleukin-6 (IL-6), while the M2 subset
suppresses local T cell activation by secreting Interleukin-10 (IL-
10) and Transforming Growth Factor-beta (TGF-B) (46).
Furthermore, studies on CHI have found that macrophages
synthesize and release Interleukin-1 beta (IL-1B) through the
NLR family pyrin domain containing 3 (NLRP3) inflammasome
pathway, leading to its maturation and release, which in turn
induces placental inflammation (47). It is important to note that
macrophages mediate the remodeling of the extracellular matrix
and tissue repair during placental inflammation in preeclampsia
(48), and they are also a significant source of proteins for collagen
deposition and fibrosis fetal interface in parturition and preterm
birth (49).

Macrophages are the primary cells involved in immune
regulation and antigen presentation. In classical immune
responses, macrophages present antigens bound to MHC class II
molecules to CD4" T lymphocytes, which constitutes a critical step
in the immune response.

4.3 T lymphocytes

As the most numerous immune cells in the body, T lymphocytes
play a central role in immune recognition and response at the
maternal-fetal interface (50). CD4" T cells and CD8" T cells are the
effector cells responsible for self-limiting immune recognition of
antigens, which trigger immune rejection responses. In CHI, there
is a significant presence of CD4" T cells and CD8" T cells in the
placental villous space, with their ratio being nearly 1:1.

A plethora of research has indicated that the expression of
cytotoxic T lymphocytes (CTL), a population of immune cells
differentiated from CD8" T cells, is elevated in patients diagnosed
with Chronic Hypertension in Pregnancy in comparison to levels
observed during a normal pregnancy (51). During the immune
induction phase of inflammation in CHI, CD8" T cells may
recognize paternal antigen-MHC I complexes presented by
macrophages, which is similar to the classical immune
recognition pathway. This recognition leads to their activation,
proliferation, and differentiation into CTL cells, exerting cytotoxic
effects. CTL cells could induce target cell apoptosis by expressing
perforin and granzyme B through the Fas/FasL pathway.

Besides, CD4" T cells play the core role in immune transplant
rejection. CD4" T cells are activated by recognizing MHC-II molecule-
antigen complex and differentiates into Th1 lymphocytes, which assist
CD8" T cells in exerting cytotoxic functions. The expression of MHC
IT-antigen complex by trophoblasts in CHI is a potential activation
binding site for CD4" T cells. CD4" T cells may play a role in CHI
similar to that in liver transplant rejection, where IFN-y and TNF-o.
secreted by Th1 cells exacerbate the inflammatory response, disrupt
immune tolerance, and trigger a cascade amplification of the
inflammatory response (52).

Additionally, Treg cells are vital for the development and
maintenance of placental function. The appropriate number and
functionality of Tregs are critical for achieving maternal-fetal
immune tolerance. Insufficient Treg numbers and activity can
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lead to complications such as recurrent miscarriage and
preeclampsia (53). Tregs bind to CD80 and CD86 on antigen-
presenting cells (APCs) through cytotoxic T lymphocyte-associated
protein 4 (CTLA-4), competitively inhibiting costimulatory signals
for CD4"T cells (54). A significant infiltration of Tregs is observed in
the CHI chorionic space, accompanied by reduced Foxp3
expression. This situation reflects a compensatory mechanism for
the imbalance at the maternal-fetal interface and immune tolerance
in CHI (55). Additionally, Treg cells secrete immunomodulatory
factors like TGF-B to suppress the activity of CD4™ T cells,
preventing maternal immune rejection of the fetus (56).

CHI placental pathology is multi-layered and multi-faceted,
involving not only cellular changes but also significant
molecular alterations.

5 Cytokines in CHI placental
inflammation

The core pathological mechanism of CHI involves a dynamic
imbalance in the cytokine network. These cytokines regulate the
inflammatory process through a complex interactive network. They
can be categorized into pro-inflammatory and anti-inflammatory
cytokines based on their functional characteristics. Pro-
inflammatory cytokines (such as IL-1, IL-6, and TNF-ot) serve as
the primary drivers of the inflammatory cascade, facilitating the
recruitment and activation of immune cells. Anti-inflammatory
cytokines (such as IL-10 and TGF-B) help suppress excessive
immune responses and maintain immune tolerance and homeostasis.

5.1 IL-1B

IL-1B plays a crucial role in placental inflammation and is
implicated in various pregnancy complications, particularly in
placental immune regulation. It is likely that IL-1f is secreted by
infiltrating macrophages and trophoblast cells via the NLRP3
inflammasome pathway. IL-1f promotes trophoblast invasion and
angiogenesis by activating the PI3K/Akt-VEGF pathway. It also
enhances maternal-fetal immune tolerance by inducing NK cells in
the decidua to secrete IL-8 and GM-CSF (57). In addition, low
concentrations of IL-1B upregulate HLA-G expression in
trophoblast cells while simultaneously suppressing the excessive
activation of maternal T cells (58).

In the placenta of CHI, the expression level of the IL-1f gene
increases by 3.9 times, according to reference (59). Under
pathological conditions (such as preeclampsia and chronic
villitis), macrophages trigger the secretion and synthesis of sFLT-
1 through a pro-inflammatory cascade involving NLRP3
inflammasomes and Gasdermin D (GSDMD) (60). These proteins
antagonize the binding of VEGF-A and PIGF to the vascular
endothelial cell receptor VEGFR-1/2, leading to increased NO
synthesis, elevated ROS production, and heightened vascular
permeability, thereby inducing vascular spasm (61). Excess
placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute
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to endothelial dysfunction, hypertension, and proteinuria in
preeclampsia. Additionally, IL-1B recruits CD8" T cells and
neutrophils, causing damage to the villi (57). This recruitment
also stimulates prostaglandin synthesis, which can lead to preterm
labor (62).

Once IL-1P presses the “start button” for inflammation, TNF-o
immediately takes the stage, acting as an “accelerator” that amplifies
and sustains this inflammatory storm.

5.2 Tumor necrosis factor-alpha

Tumor necrosis factor-alpha (TNF-o.) is a multifunctional pro-
inflammatory cytokine that plays a role in immune regulation,
apoptosis, and vascular function during both physiological and
pathological processes in the placenta (63). In patients with chronic
hypoxia-induced (including CHI) conditions, the TNF-a. levels in
placental tissue show a significant positive correlation with the risk
of fetal growth restriction and preterm birth (64). TNF-o is
primarily secreted by infiltrating macrophages and CD8" T cells,
with a smaller secreted by trophoblasts under stress conditions (65).
In the placenta of cases with idiopathic FGR, TNF-o. expression is
significantly increased in trophoblastic giant cells and vascular
endothelial cells. This increase may lead to fetal developmental
restriction by inhibiting placental angiogenesis or directly damaging
trophoblast function (66). In preeclampsia and gestational diabetes,
elevated placental TNF-o levels is associated with insulin resistance,
abnormal expression of advanced glycation end products and their
receptor for advanced glycation end products. This pro-
inflammatory microenvironment can induce localized oxidative
stress and endothelial dysfunction in the placenta (67), which
may lead to maternal hypertension and proteinuria (68).

TNF-o expression is essential for the formation of immune
tolerance in early pregnancy. In the normal placenta development,
TNF-o induces trophoblasts to express HLA-G, which inhibits the
cytotoxicity of NK cells, thereby maintaining maternal-fetal
immune tolerance (69). The soluble tumor necrosis factor
receptor 1 (STNFR1) secreted by placental tissue specifically
neutralizes the pro-inflammatory effects of TNF-o., and this local
immune regulation mechanism effectively suppresses autoimmune
responses (70).

TNF-a-driven placental inflammatory signals can activate and
amplify the complement system cascade reaction, which is a key
marker of immune-mediated tissue damage.

5.3 The complement molecule C4d

C4d is a breakdown product activated by the classical
complement pathway and is commonly associated with antibody-
mediated immune responses (71). The deposition of the
complement breakdown product C4d in placental inflammation is
a significant pathological marker for pregnancy complications
related to antiphospholipid antibodies (aPL) (72). Recent studies
have shown that C4d plays a crucial role in organ transplant
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rejection and maternal-fetal immune tolerance (73). In the placenta
of CHI, the deposition of C4d is distributed either diffusely or
focally, and the amount of deposition is positively correlated with
the severity of the disease (74). The abnormal expression of HLA
class IT molecules (such as HLA-DR and HLA-DQ) in placental
trophoblast cells is significantly positively correlated with C4d
deposition. This finding supports the idea that maternal anti-HLA
antibodies may drive inflammatory responses and macrophage
infiltration through the classical complement pathway (32).

The deposition of complement fragment C4d in CHI may be
involved in the formation of pathological deposits in intercellular
spaces due to the activation of the complement cascade (75). C4d is
produced during the complement cascade and induces the
formation of the membrane attack complex (MAC), which
directly damages vascular endothelial and stromal cells while
releasing anaphylatoxins C3a and C5a (76). Chemokines recruit
monocytes, exacerbating local inflammatory responses. This leads
to chronic inflammatory infiltration of the villous stroma and
disruption of the epithelial barrier (77). Furthermore, C4d may
enhance the pro-fibrotic microenvironment in conjunction with
TGEF-B. The deposition of C4d can directly promote the conversion
of local fibrinogen to fibrin, exacerbating the formation of fibrotic
networks in the villous space and the deposition of extracellular
matrix, ultimately hindering maternal-fetal blood exchange (78).

In addition, although some studies have used C4d expression
levels as an auxiliary diagnostic criterion, given lack of studies
specifically investigating C4d as a diagnostic marker (27). the
discriminatory value of C4d in CHI remains controversial (75).
Along with C4d-mediated complement attack and inflammatory
damage, changes in TGF-f signaling are also commonly observed
in placental tissue. Changes in TGFPBR1 expression and activity may
reflect the body’s attempt to curb excessive inflammation and
promote tissue repair.

5.4 Transforming growth factor beta
receptor 1

In the placenta, transforming growth factor-f receptor 1 (TGF-
BR1) acts as a receptor for transforming growth factor-p (TGF-f),
playing a multifaceted role in regulating trophoblast differentiation,
maintaining immune balance, and supporting angiogenesis to
uphold pregnancy stability (79). TGE-BR1 and type II receptor
(TBRII) are primarily expressed in the syncytiotrophoblast of the
placenta, as well as in extravillous trophoblasts and the chorionic
plate (80).

TGFpRI is significantly upregulated in the placenta of CHI, and it
may influence the pathological process of CHI by inhibiting
trophoblast invasion, regulating maternal-fetal immune tolerance,
and modulating inflammatory repair. It is a key cytokine that
regulates the pathological changes in chronic placental inflammation
(81). In preeclampsia, TGFfR1 is found to function in the remodeling
of uterine spiral arteries by inhibiting trophoblast invasion (82).
Besides, TGFPR1 plays an important role in immune tolerance and
inflammatory repair at the maternal-fetal interface (83). In patients
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with recurrent miscarriage, the expression and activity of TGF-f3 are
reduced, which can inhibit Treg proliferation and differentiation,
leading to immune dysfunction at the maternal-fetal interface (84).
The decreased ability of monocytes/macrophages to synthesize TGF-
B1 fails to effectively suppress excessive inflammatory responses,
leading to chronic inflammation (85). Furthermore, in the repair of
inflammatory damage associated with chronic liver disease and
pulmonary fibrosis, pro-inflammatory factors in the tissue
microenvironment, such as TNF-o, and IL-6, collaborate with TGF-
B to induce fibroblast differentiation and extracellular matrix
deposition (86).

5.5 Matrix metalloproteinases

Matrix metalloproteinases (MMPs) are a superfamily of
proteases that depend on metal ions, such as zinc and calcium, as
cofactors. They are capable of degrading critical components of the
extracellular matrix (ECM), including collagen and elastin, leading
to the disruption and remodeling of tissue structure, playing roles in
placental development, immune regulation, and tissue remodeling
(87). Tissue inhibitor of metalloproteinases (TIMPs) maintains
tissue microenvironment homeostasis by inhibiting MMP-driven
matrix degradation and excessive inflammatory responses, thereby
preventing inflammation spread and tissue damage.

During tissue repair, MMP-2 participates in the clearance of
damaged ECM, while TIMP-1 helps control the extent of
degradation and promotes the deposition of new matrix (87, 88).
Increased TIMP-1 activity is considered a key factor in promoting
ECM accumulation and fibrosis formation (89). Abnormal MMP
expression is the mechanism underlying the formation of massive
perivillous fibrin deposition in CHI pathology (90-92).
Additionally, TIMP-1 activation of the CD63/B1 integrin receptor
complex in oligodendrocytes promotes the conversion of
macrophages to an anti-inflammatory phenotype (M2 type),
increasing IL-10 and TGEF-3 secretion while inhibiting the release
of pro-inflammatory factors such as TNF-o and IL-6 (93).

In addition to MMPs, fibronectin is another important active
molecule in the process of massive deposition around villi.

5.6 Fibronectin

Fibronectin deposition is a biomarker for diagnosing placental
diseases and predicting recurrences (94). Fibronectin is a core
molecule of the coagulation system, formed from fibrinogen after
activation by thrombin. Its dynamic balance is crucial for hemostasis,
inflammation, and tissue repair (95). In the placenta, fibronectin
moderately deposits in the intervillous space, covering
approximately 5%-10% of the area. This forms a temporary scaffold
that supports the branching of the chorionic tree and the structural
integrity of the maternal-fetal interface (96). Fibronectin promotes the
fusion of trophoblast cells into a multinucleated syncytiotrophoblast
through integrin (0vp3) signaling, enhancing hormone secretion
(such as hCG) and barrier function (97).
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A significant feature of CHI pathology is the massive perivillous
fibrin deposition (MPFD) around the chorionic villi. In this context,
fibrin serves both as a product of inflammation-coagulation cross-
reaction and as a key mediator driving placental damage (98). The
maternal interface immune rejection activates mononuclear-
macrophages, which release pro-inflammatory factors such as IL-
6 and IL-1B. This process leads to endothelial damage in the
intervillous space and thrombin generation, subsequently
promoting the conversion and accumulation of fibrinogen into
fibrin (99). Additionally, the necrosis of placental trophoblasts
releases cellular debris and mitochondrial DNA. This activates
Toll-like receptor 9 and the complement system, such as Cba,
enhancing the local coagulation cascade and exacerbating fibrin
deposition (100). Furthermore, under chronic hypoxic conditions,
HIF-10. promotes the synthesis of plasminogen activator inhibitor-
1 and inhibits plasmin activity. This ultimately hinders the
clearance of fibrin (101). Together, these mechanisms contribute
to increased fibrin deposition around the chorionic villi, negatively
affecting placental function.

The impact of fibrin deposition covering the placental intervillous
space on villous function manifests in two ways: physical obstruction
and disruption of cellular signaling. The physical barrier created by
fibrin mechanically hinders the exchange of oxygen and nutrients
between mother and fetus. It also obstructs the migration of
trophoblasts and immune cells, thereby suppressing placental
development and villous vascularization (102). In cases of chronic
hypoxia-induced (CHI), the area of fibrin deposition is negatively
correlated with the birth weight percentile of newborns, indicating that
fibrin accumulation affects placental exchange efficiency (103).
Pathological observations reveal that in severe cases of CHI, the area
affected by fibrin can reach 40%-60% of the placental volume, leading
to extensive placental infarction and functional impairment (104).
Furthermore, fibrin recruit macrophages and stimulates the activation
of complement components C3d and C4d in the intervillous space,
exacerbating immune rejection and inflammatory responses at the
maternal-fetal interface (1).

6 Clinical assessment and research
updates on CHI

6.1 Pathological diagnosis of CHI

CHI pathological diagnosis is based on placental histological
examination, with routine examination content including
observation of placental tissue morphology, CD68+ histiocyte
positivity screening, and examination of fibrin deposition around
the villi. Quantitative immunohistochemical analysis of placental
pathology in CHI showed that the density of CD68+ macrophages
in the CHI group was 88 + 23 per unit area (HPF 40x), while in the
control group it was 8 £ 5 per unit area (P < 0.001) (45). CHI
pathology is classified into three grades—Grade 1 (5%-10%), Grade
2 (10%-50%), and Grade 3 (>50%)—which exhibit a significant
dose-response relationship with perinatal outcomes (P<0.0001).
The neonatal survival rate for Grade 3 patients was only 16.1%,
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significantly lower than that for Grade 2 (59%) and Grade 1 (86.5%)
(P = 0.0002) (45). The risk of disease recurrence for Grade 2 and
Grade 3 patients was 3.8 times higher than that for Grade 1 patients.
Pathological grading is of great significance for predicting
pregnancy outcomes and recurrence (105).

6.2 Biochemical diagnostics placental
alkaline phosphatase

Placental alkaline phosphatase (PLAP) is an enzyme specifically
expressed in placental cells. It regulates active transport across cell
membranes and calcium-phosphate metabolism, providing
nutrition to the fetus. There is academic debate regarding the
clinical significance of alkaline phosphatase (ALP) levels in CHI
patients from different regions. A retrospective cohort study from
Canada involving 33 patients found that 31.6% (10/33) of CHI cases
exhibited elevated serum ALP levels (>125 U/L), suggesting that
ALP could serve as a reference indicator for inflammatory activity
(106). However, a prospective cohort study from Japan in 2017
(n=58) conducted a multivariable regression analysis and found no
significant correlation between fluctuations in ALP levels related to
CHI (elevated group vs. normal group) and adverse pregnancy
outcomes such as fetal growth restriction (OR = 1.32, 95% CI 0.75-
2.34) or preterm birth (OR = 1.15, 95% CI 0.82-1.61) (p>0.05). This
study also emphasized that the clinical value of PLAP as a specific
diagnostic marker for CHI needs to be validated through large-scale
multicenter studies (107).

6.3 HLA antibodies

The role of HLA antibodies as biochemical markers for CHI
remains contentious within the international academic community.
Some studies report that anti-paternal HLA-I/IT antibodies may be
detected in the placental tissue of CHI patients, with positivity rates
reaching up to 75% in certain case reports (40). HLA antibodies
may be associated with fluctuations in the expression levels of HLA-
B and HLA-DRBI alleles in peripheral blood. Additionally, some
cases exhibit abnormal deposition of complement C4d in placental
tissue (107). However, a recent cohort study from the UK found no
statistically significant difference in the overall positivity rates of
anti-HLA antibodies between the CHI group and healthy controls,
indicating that the diagnostic specificity of a single HLA antibody
marker has not yet met clinical requirements.

7 Progress in the treatment of CHI

Currently, there is no standardized treatment protocol for
chronic histiocytic villous interstitial inflammation (CHI).
However, several international clinical studies have shown that
anticoagulation, anti-inflammatory, and biological therapies may
have positive implications for improving pregnancy outcomes.
Nevertheless, due to the limited sample sizes of existing studies
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and the lack of high-level evidence-based medical evidence, there
remains significant controversy regarding the efficacy, safety, and
applicability of various treatment methods.

Regarding anticoagulant therapy, research findings remain
inconsistent (Table 2). A French clinical study involving 21 CHI
patients showed that while the use of aspirin and low-molecular-
weight heparin (LMWH) alone did not reduce the risk of preterm
birth (still at 30%), the live birth rate significantly increased from 32% to
67% (12). In 2017, Japanese scholars proposed a triple therapy
combining low-dose aspirin, corticosteroids, and LMWH. This
strategy further improved the live birth rate and demonstrated
superior clinical benefits compared to single anticoagulant regimens
(107). A UK study involving 28 patients with refractory CHI
demonstrated that adding hydroxychloroquine (200 mg/day) and
prednisolone (20 mg/day) to aspirin (75-150 mg/day) and LMWH
therapy significantly improved the live birth rate (from 61.5% to 86.2%,
p < 0.05) (11). However, due to the small sample sizes of all studies and
the lack of randomized controlled trials, the exact efficacy and
applicability of combined anticoagulation and immunosuppression
therapy in a broader population remain controversial.

In terms of anti-inflammatory therapy, immune modulation
strategies are primarily used to suppress excessive inflammatory
responses. Glucocorticoids are commonly used drugs and are often
combined with anticoagulants. Studies in Japan and the UK have
suggested that adding glucocorticoids can further improve live birth
rates and expand clinical benefits. Hydroxychloroquine is also
commonly used to inhibit immune inflammatory pathways, and its
combination with low-molecular-weight heparin and glucocorticoids
has shown synergistic anti-inflammatory and immunomodulatory
effects (11). However, this class of treatment still faces challenges
such as significant individual response variability, unclear long-term
safety, and lack of consensus on optimal treatment regimens.

In terms of biological therapy, agents targeting specific
inflammatory factors or signaling pathways offer new directions
for refractory CHI. Anti-TNF-o. monoclonal antibodies such as
adalimumab (40 mg every two weeks) achieve a clinical remission
rate of 72.3% in refractory cases, with the mechanism involving
blocking the TNF-o signaling pathway, inhibiting abnormal
macrophage activation, and reducing inflammatory infiltration in
the villous spaces (108). The IL-1 receptor antagonist anakinra

TABLE 2 Treatment strategies for CHI.
Treatment category Representative regimen

Anticoagulation Aspirin + LMWH

Aspirin + LMWH + Corticosteroids

Anti-inflammatory

Aspirin + LMWH+ Hydroxychloroquine

+ Prednisolone

Adalimumab (anti-TNF-o)
Biological Agents

10.3389/fimmu.2025.1625701

combined with colchicine can inhibit NLRP3 inflammasome
activation, and reports indicate it can improve perinatal outcomes
in patients with recurrent CHI (59). However, such biologics are
currently limited to case reports or small case series, and their
safety, timing of administration, and long-term maternal and infant
outcomes require further research validation.

Additionally, various natural immune modulators exhibit good
anti-inflammatory effects and have the potential to become drugs
for CHI treatment. The flavonoid quercetin effectively improves
endothelial dysfunction in preeclampsia (109, 110).the flavonoid
hesperidin exhibits excellent primary villus antioxidant activity
(111). Research indicates that liposoluble vitamin D3 is a key
regulatory factor in placental and fetal development (112, 113).
Additionally, plant estrogens such as soy isoflavones can inhibit
Th17 expression in the placenta, promote Treg expansion, reduce
CD68" macrophages in the placenta, and mitigate inflammatory
responses (114).

8 Discussion

Chronic histiocytic intervillositis (CHI) is a rare, placenta-
specific immune-inflammatory disorder characterized by
disrupted maternal-fetal immune tolerance. The maintenance and
breakdown of immune tolerance at the maternal—fetal interface are
regulated by multiple factors, including genetic compatibility,
maternal autoimmune status, and infections (Figure 1). During
the induction of immune tolerance in normal pregnancy, HLA
molecules play an important role. Trophoblasts do express classical
HLA-A/B molecules but highly express non-classical HLA-G,
which acts in coordination with locally enriched regulatory T cells
(Tregs) to effectively suppress maternal immune activation and
maintain immune tolerance. Under conditions such as poor
histocompatibility between mother and fetus, autoimmune
diseases, or pathogen infection, the tolerant balance at the
maternal-fetal interface is disrupted. Trophoblasts aberrantly
upregulate HLA-A/B expression, exhibit reduced HLA-G levels,
and are accompanied by a decrease in Treg numbers, collectively
leading to a breakdown in maternal-fetal immune tolerance and a
shift toward pathological responses as CHL

Mechanism of action Reported efficacy

Antithrombotic, i
nithrombotic lmProves Improved live birth rate (32%—67%) (5)
placental perfusion

Anticoagulation + Improved live birth rate, superior
Immunomodulation combined effect (102)
Anticoagulation,
Immunomodulation, Anti- Live birth rate 86.2% (vs 61.5%) (4)

inflammation

Bl infl ignali
ocks inflammatory signaling Clinical response rate 72.3% (103)
pathway

Anakinra + Colchicine

Inhibits NLRP3 inflammasome Improved perinatal outcomes (54)

CHI, Chronic Histiocytic Intervillositis; LMWH, Low Molecular Weight Heparin; TNF-o, Tumor Necrosis Factor-alpha; IL-1, Interleukin-1.
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FIGURE 1

Schematic of tolerance in normal pregnancy and its breakdown in chronic histiocytic intervillositis (CHI). (A) Normal maternal -fetal immune.
extravillous trophoblasts express high levels of HLA-G, lack HLA-A/B expression, and are accompanied by abundant regulatory T (Treg) cells,
sustaining immune tolerance at the maternal -fetal interface. (B) Tolerance collapse in CHI.HLA-G expression is markedly diminished, HLA-A/B is up-
regulated, and Treg cells are reduced, precipitating the breakdown of maternal -fetal immune tolerance.

CHI represents an aberrant maternal immune response to semi-
allogeneic fetal antigens. This review summarizes the cellular and
molecular players implicated in the pathogenesis of CHI and
proposes a two-phase model (Figure 2): (A)inflammation initiation
and (B)tissue repair. During the initiation phase, down-regulation of
CD200 and CD39 on syncytiotrophoblasts compromises maternal—fetal
tolerance. Concomitantly, interleukin-1f (IL-1B) is up-regulated and

IL-1b

FIGURE 2

secreted into the interstitial space, triggering an inflammatory cascade.
Macrophages infiltrate the placental bed and polarize, while T cells
migrate and become activated. In the subsequent repair phase,
monocytes differentiate into M2 macrophages. Chronic inflammation
promotes the release of cytokines such as gasdermin D, inducing tissue
cell apoptosis. Extensive deposition of complement split product C4d
and fibrin results in abundant perivillous fibrinoid material.

p

' Apoptosis

SCT

Cellular and molecular components in two processes of chronic histiocytic intervillositis (CHI). (A) Initiators of inflammation in CHI. Cells includes
the syncytiotrophoblast (SCT), macrophages, CD4* T cells, and soluble meditheators including interleukin-1p (IL-1f), CD200 -CD200R axis,

ectonucleoside triphosphate diphosphohydrolase-1 (CD39), and intercellular adhesion molecule-1 (ICAM-1). (B) Mediators of injury and repair in CHI:
fibrin deposition and complement component 4b (C4b). SCT, syncytiotrophoblast; IL-1p, interleukin-1B; ICAM-1, intercellular adhesion molecule-1;
C4b, complement component 4b.
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9 Outlook

Looking ahead, research on the mechanisms, diagnosis, and
treatment of CHI is gaining momentum, with several key areas for
future investigation outlined below:

Some immunosuppressants have shown promising therapeutic
effects. There is a good application potential for developing
inhibitors targeting key proteins involved in CHI regulation, such
as chemokines and NLRP3 inflammasome pathways.

The serological diagnosis of CHI aims to develop non-invasive
biomarkers based on cell-free fetal DNA or exosomes from
maternal blood, including HLA antibodies and specific microRNAs.

Some immunosuppressants have shown promising therapeutic
effects. There is a good potential for developing inhibitors targeting
key proteins involved in CHI regulation, such as chemokines and the
NLRP3 inflammasome. Additionally, we will explore the use of placenta-
derived mesenchymal stem cells or gene-edited CAR-Treg cells for
localized delivery to the chorionic space to promote immune tolerance.
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