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Snakebite envenoming remains a predominant neglected disease in tropical and

subtropical regions, with high rates of morbidity and mortality worldwide.

Bothrops snakebite envenoming. is characterized by severe injuries at the site

of venom injection, which include tissue necrosis, hemorrhage, blistering, and

edema. Haemotoxicity is typically attributed to the strong procoagulant state

induced by the majority Bothrops venoms leading to coagulation factor

consumption and incoagulable blood. Concomitantly with this procoagulant

state, a complex host response develops in the affected tissues, accompanied by

the recruitment of inflammatory and immunocompetent cells, along with the

activation of resident cells, and the synthesis of a plethora of pro-inflammatory

mediators and damage-associated molecular patterns from injured tissue. An

increasing body of evidence suggests that this intricate response is, in fact,

related to the well-documented immunothrombosis and thromboinflammation

integrated features. Of note, thrombotic complications are extremely rare in

Bothrops snakebite envenoming. However, in the case of Bothrops lanceolatus

and B. caribbaeus, which are respectively endemic to Martinique and St. Lucia,

the absence of overt consumption coagulopathy due to their weak procoagulant

effects may be related to the thrombotic effects, as clotting factors are present in

the bloodstream by the time the thrombogenic and inflammatory mechanisms

are operating in blood vessels. Prior to the era of immunotherapy, B. lanceolatus

envenoming was associated with thrombotic complications in 25% of cases and

was fatal in approximately 10% of cases. This review examines the potential role

of thromboinflammation as a mechanism of thrombotic accidents in B.

lanceolatus snakebite envenoming.
KEYWORDS
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Highlights
Fron
• Bothrops snakes are the most common venomous snakes in

tropical regions.

• Venoms of Bothrops snake have a complex composition of

toxins that can trigger a series of systemic effects,

including haemotoxicity.

• While thrombosis is a rare feature in Bothrops envenoming,

B. lanceolatus bite can elicit thrombotic complications in

25% of cases.

• Understanding the exact pathological mechanisms involved

in B. lanceolatus venom-induced thrombotic events are still

a challenge for the scientific community.

• Increasing evidence suggests that specific processes

involved in thromboinflammation are operative in B.

lanceolatus envenoming.

• Thromboinflammation may provide new options for the

therapeutical approach of B. lanceolatus envenoming, such

as antithrombin, activated protein C, thrombomodulin, and

interleukin inhibitors.
1 Introduction

Increasing evidence suggests that specific processes involved in

thromboinflammation are operative in Bothrops snakebite envenoming.

The terms “immunothrombosis” and “thromboinflammation” refer to

the complex interplay between thrombotic and inflammatory pathways

(1, 2) Immunothrombosis has been proposed to describe an innate

immune response involving intravascular thrombus formation that can

lead to the recognition, containment, and destruction of pathogens (1,

3–5). Thromboinflammation is associated with specific pathways that

operate through mechanisms involving platelets, leukocytes and

immunocompetent cells, and the contact kinin system (3, 6–9).

Thromboinflammation is increasingly recognized in several

pathologies, including infection and sepsis, as well as stroke, deep

vein thrombosis, and myocardial infarction (3, 6–13). Thrombo-

inflammatory pathways can exacerbate inflammation and immune

cell interactions, eventually leading to vascular occlusion, tissue

ischemia, and ultimately irreversible organ damage (1, 3, 4, 6, 9, 13).

The procoagulant components of Bothrops venoms can cause

intravascular coagulation, in most cases can induce a consumption

coagulopathy, which results in defibrinogenation and

incoagulability, as reflected by abnormal blood clotting tests (14).

Envenomed patients present increased prothrombin time (PT) and

activated partial thromboplastin time (aPTT), with low level of

fibrinogen. Extensive experimental, clinical, and laboratory data

underpinned the fact that Bothrops snakebite envenoming also

elicits a pro-inflammatory state, along with multiple blood cell

activation (15–18). However, despite procoagulant state and pro-

inflammatory activation, thrombotic complications are extremely

rare in Bothrops sp. snakebite envenoming, except for those

associated with B. lanceolatus and B. caribbaeus snakes. B.

lanceolatus and B. caribbaeus are endemic to Martinique and St.

Lucia, respectively and genetically close (19–25). Better known as”
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trigonocephalus” or “fer-de-lance”, the Bothrops lanceolatus

(Bonnaterre, 1790) is a species of snake belonging to the

Crotalinae subfamily and the Vipiridae family, just like the

Bothrops caribbaeus (Garman, 1887).

Prior to the era of immunotherapy, B. lanceolatus envenoming

was associated with thrombotic complications in 25% of cases and

was fatal in approximately 10% of cases (20–22). The proposed

mechanism of these thrombotic events has been related to the

combination of two processes: a weak procoagulant effect of B.

lanceolatus and B. caribbaeus venoms, which does not induce

coagulation factor consumption, along with the simultaneous

potent activation of thrombogenic and inflammatory processes

operating in blood vessels (23, 26–30).

The question of whether the thrombogenic and inflammatory

processes induced by B. lanceolatus would be considered a

manifestation of thromboinflammation has not been explored. This

review provides an update to gain insight into the pathophysiological

mechanisms involved in thrombo-inflammatory processes associated

with Bothrops snakebite envenoming. We will discuss the central role

of platelet activation, recruitment of peripheral leukocytes and

immunocompetent cells, and activation of the contact kinin system.

In addition, we will investigate whether thromboinflammation may

represent a valuable mechanism of thrombotic accidents in Bothrops

snakebite envenoming.
2 Overview of the toxic effects of
Bothrops venoms

2.1 Local effects

The local effects of Bothrops snakebite envenoming are

characterized by an intense inflammatory response, a

consequence of the direct and indirect action of the venom toxins

on the tissues (31). The toxins can directly activate leukocyte

receptors, such as Toll-like receptors (TLRs), recognizing venom-

associated molecular patterns (VAMPs), and immunological

soluble molecules (32–34). In addition, venom toxin-induced

tissue damage results in the release of damage-associated

molecular patterns (DAMPs), which also contribute to

inflammation (35). Direct activation of the complement system

by the toxins represents another important mechanism in the

pathogenesis of local inflammation (36). The clinical features of

Bothrops envenomation are well-established, typically presenting

with pain, edema, blistering, ecchymosis, local hemorrhage, and, in

severe cases, compartment syndrome and necrosis (37–49).
2.2 Systemic effects

Bothrops venom also induces systemic changes, characterized

mainly by coagulation disorders. These can be caused by the direct

action of the toxins on coagulation factors, activating the

coagulation cascade, leading to a state of blood incoagulability,

and by the direct action on platelets, causing platelet death, platelet
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activation, or cleavage of platelet activation receptors (50). These

mechanisms result in platelet consumption, and consequently

thrombocytopenia. Together, these factors favor the development

of hemorrhage, which can lead to death if not promptly controlled.

Thrombotic microangiopathy (TMA) is another systemic

manifestation, but less common. TMA appears to be triggered by

thrombin generation followed by fibrin formation and deposition in

the vascular bed, which are involved in microangiopathic hemolytic

anemia and blood vessel wall damage in the micro-circulation.

TMA hence carries a risk of organ damage and failure (51–53).

Renal dysfunction following Bothrops envenomation may result

from dysregulation of the coagulation cascade, direct nephrotoxicity

of venom components, systemic hemodynamic alterations such as

hypotension, and, in certain cases, the development of thrombotic

microangiopathy (TMA) (15, 18, 54–59). Nonetheless, clinical data

indicate that the predominant mechanism of acute kidney injury

(AKI) in human envenomation cases is closely associated with

coagulation disturbances. AKI has been reported in patients

exhibiting prolonged activated partial thromboplastin time

(aPTT), hemorrhagic manifestat ions, e levated lactate

dehydrogenase (LDH) levels, and evidence of TMA (23, 60, 61).
3 Bothrops venom induced
procoagulant effects and
thrombotic events

Bothrops venom has been observed to have a range of effects,

including thrombotic, procoagulant, and inflammatory properties

(15–18). The genus Bothrops is the most reported genus responsible

for snakebites in South America. Of these, B. atrox (Linnaeus, 1758)

is the species most frequently involved in cases of life-threatening

envenoming in humans (17). In the French Departments of

America, B. atrox is the predominant species involved in

envenoming in French Guiana, whereas B. lanceolatus is the sole

venomous snake present in Martinique, where it is endemic (23–25,

62). The biological active toxins responsible for these features

include SVMPs, serine proteinases (SVSPs), phospholipases A2,

C-type lectin-like toxins, disintegrins, and L-amino acid oxidases

(15–18). Bothrops snakebite envenoming causes significant local

tissue damage and systemic manifestations, including

coagulopathies, bleeding, and hemorrhage related to enzymatic

degradation and rupture of vessel walls (16, 18).
3.1 Procoagulant effects of
Bothrops venoms

Envenomed patients typically display increased prothrombin

time and activated partial thromboplastin time, along with low level

of fibrinogen. Procoagulant toxins derived from Bothrops venom

have been observed to activate a number of coagulation factors,

including factor Factors II, V, VII, X, XIII II (26–28, 63, 64). Factors

involved in the intrinsic pathway (factors VIII, IX, XI, XII) are less

frequently reduced (26–28, 63, 64). Activation of the coagulation
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cascade ultimately results in the generation of intravascular

thrombin. From a biological standpoint, one of the most notable

distinctions between B. lanceolatus and B. caribbaeus, in

comparison to other Bothrops species, pertains to their respective

procoagulant activities. The procoagulant activities of Bothrops

venoms elicit the conversion of prothrombin to thrombin, which

is responsible for consumptive coagulopathy. The majority of

Bothrops venoms are capable of activating thrombin without the

involvement of cofactors such as calcium and phospholipids (26–

28, 30).

Previous research has produced inconsistent findings on the

procoagulant effects of B. lanceolatus venom (27, 29, 30, 65–69).

Early studies suggested that the venom lacked procoagulant or

defibrinogenating activity, as it failed to induce clot formation in

citrated human plasma (65, 67, 69). However, these in vitro

experiments assessed coagulation in citrated plasma without

added calcium or phospholipids—key cofactors that modulate

procoagulant activity. More recent thrombo-elastography studies

using human plasma or whole blood have shown that B. lanceolatus

venom can exhibit procoagulant effects when sufficient calcium and

phospholipids are present (27, 29, 30, 66, 68). In brief, the

procoagulant activity of B. lanceolatus venom appears weaker

than that of other Bothrops venoms. This activity is entirely

calcium-dependent, with a minor reliance on phospholipids (27).

Unlike typical procoagulant Bothrops venoms—which act by

directly activating thrombin (via prothrombin conversion) or

indirectly by activating upstream zymogens like factor X (26)—B.

lanceolatus venom displays a pseudo-coagulant effect. This results

in fragile, unstable fibrin clots that degrade quickly (30), possibly

explaining its limited procoagulant activity in citrated plasma.
3.2 Bothrops venom can induce
thrombotic complications

Thrombotic complications induced by Bothrops venoms are less

common than hemorrhagic complications in Amazonian Bothrops

snakebite envenoming (26). Only a limited number of cases of

ischemic strokes have been documented so far (Supplementary

Table 1 summarized the reported thrombotic complications

involved in Bothrops sp. envenoming).

In contrast to with the typical hemorrhagic profile, venoms of

Bothrops, such as B. lanceolatus (endemic to Martinique), B.

caribbaeus (endemic to St. Lucia, located approximately 40 km

south of Martinique), and B. atrox can induce a thrombotic

biological profile, which may result in cerebral, myocardial, and

pulmonary infarctions (20–22). Prior to the advent of

immunotherapy, B. lanceolatus envenoming was linked to

systemic thrombotic complications in approximately 30% of cases

and was fatal in approximately 10% of cases (20–22). Previous

studies failed to identify a distinctive proteomic profile between B.

lanceolatus and B. caribbaeus venoms compared with other

Bothrops venoms (27, 29, 65). It has been, however, demonstrated

that enzymatic or non-enzymatic proteins present in B. lanceolatus

and B. atrox venoms may differ in their peptide sequences, which
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could be responsible for the different biological effects observed,

namely hemorrhagic versus thrombotic profiles (29).

Laboratory test abnormalities have been documented regarding

activated partial thromboplastin time (aPTT), prothrombin time

(PT), prothrombin activity, International Normalized Ratio (INR),

fibrinogen consumption, fibrin degradation product increase,

thrombocytopenia, along with anemia and leukocytosis (21, 22,

70–79). Furthermore, fibrinogen is a determinant of blood viscosity

and platelet activation, also playing a role in the inflammatory

process, and is considered a marker related to ischemic stroke (80,

81). Consistent evidence has shown that high levels of fibrinogen

may increase the risk of ischemic stroke (82). However, in the case

of Bothrops snakebites, hypofibrinogenemia occurs as the result of

the action of toxins, which are capable of directly cleaving the

chains of fibrinogen releasing fibrinopeptide A and traces of

fibrinopeptide B (83). In addition, fibrinogen may be also

decreased or consumed as the result of coagulation cascade

activation. In this regard, toxins from B. atrox, B. caribbaeus, B.

lanceolatus and B. marajoensis (snakes with reports of snakebite

envenoming with thrombotic complications) can activate the

coagulation cascade via the intrinsic, extrinsic or common

pathway. B. atrox venom activates factors II, X, XII and V, and

increases the procoagulant activity of factor VIII, which, as a result,

leads to the generation of intravascular thrombin and

hypofibrinogenemia (84–86). In the case of B. lanceolatus venom,

toxins that may alter coagulation factor activation have not been

previously isolated and characterized. It is known, however, that B.

lanceolatus venom can induce the formation of fibrin in plasma and

in purified human fibrinogen, indicating activity similar to

thrombin, as well as the degradation of fibrinogen (30). Similarly,

B. caribbaeus venom can hydrolyze fibrinogen in vitro resulting in

hypofibrinogenemia and increased levels of fibrin/fibrinogen

degradation products in vivo, but no increase in D-dimer levels

(87). In acute ischemic stroke and infarcts related to B. lanceolatus

snakebite, a decrease in aPTT and an increase in PT have been

observed. Thrombotic complications with (or without)

hemorrhagic transformations triggered by B. atrox venom involve

an increase in PT. It is noteworthy that reduced aPTT has been

associated with ischemic stroke, severity and neurological

worsening (88), although other studies do not corroborate this

(89). Of note, the specific pathogenic mechanisms and toxins

involved in thrombotic complications associated with B.

lanceolatus envenoming remain unknown. Proposed mechanisms

include venom-induced endothelial injury, platelet activation,

involvement of von Willebrand factor, and proinflammatory

activity of the venom (26, 90).

In addition to interspecies differences, intra-species factors such

as age, gender, geographic location, diet, and captivity conditions

may alter Bothrops venom composition (29, 91, 92). Accidents with

juvenile Bothrops cause higher incidence of hemorrhage and

coagulation disorders than snakebite with adult snakes, while the

latter inflict less inflammation and more severe local tissue damage

(93, 94). In the case of B. lanceolatus, thrombotic complications are

more frequently observed in patients bitten by juvenile snakes (i.e.,

small snakes of less than 70 cm in length), while envenoming by
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adult snakes produce more swelling (95). In Bothrops sp.,

ontogenetic variation refers to changes in venom composition as

the snake progresses from juvenile to adult stages, often correlating

with shifts in diet and prey type (93–97). Sexual variation,

conversely, denotes differences between male and female venom,

potentially linked to physiological or behavioral dimorphism.

Ontogenetic and/or sexual variations have been documented in

several Bothrops snakes, such as B. leucurus (Wagler, 1824), B.

pauloensis (Amaral, 1925), B. jararaca, B. jararacussu, B. moojeni

and B. atrox (93–99). These researchers consistently demonstrate

that venom from Bothrops juvenile snakes often exhibit higher

coagulotoxicity with procoagulant activities, whereas venom from

Bothrops adult snakes display increased hemorrhagic and

proteolytic activities. Likewise, previous reports have indicated

sexual variations in protein levels, like higher disintegrins in

female B. atrox and higher serine protease effects in B. moojeni,

which may influence venom coagulant effects (99, 100).
4 Proinflammatory effects of
Bothrops venoms

4.1 The inflammatory process

Inflammation is an immune system response triggered by

various factors, such as pathogens, damaged cells, and toxic

compounds (101, 102). This process involves the coordinated

activation of signaling pathways—primarily NF-kB, MAPK, and

JAK-STAT—which regulate the release of inflammatory mediators

from resident tissue cells and modulate the activity of blood-derived

immune cells (103, 104). Platelets are among the first responders to

endothelial injury and microbial threats. Their expression of P-

selectin is crucial for forming platelet-leukocyte aggregates,

facilitating leukocyte recruitment and their rolling adhesion to the

vascular endothelium in the presence of activated platelets (86).

Following platelet activation, circulating neutrophils and

monocytes rapidly infiltrate injured tissues (105). Meanwhile,

resident macrophages and dendritic cells play key roles in tissue

immunosurveillance and antigen presentation. The inflammatory

response is tightly controlled by mediators such as cytokines,

chemokines, vasoactive amines, and eicosanoids, which act both

locally and systemically. These molecules are released near the

injury site by endothelial cells and resident immune cells (e.g.,

mast cells and macrophages) during the early inflammatory phase,

preceding leukocyte infiltration (101, 102).
4.2 Inflammatory effects of specific
Bothrops sp. toxins

Among biological active toxins isolated from Bothrops sp.

venoms, metalloproteases, phospholipases A2 and C-type lectin-

like proteins play a relevant role by activating platelet function, the

coagulation cascade, and the inflammatory host response (50,

103, 104).
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4.2.1 Bothrops sp. venom SVMPs
The innate immune response may be initiated by a large

diversity of Bothrops SVMPs. Among them, jararhagin isolated

from Bothrops jararaca (Wied, 1824), BaP1 from Bothrops asper

(Garman, 1883), batroxase from B. atrox, neuwiedase from

Bothrops neuwiedi (Wagler, 1824), moojenactivase from Bothrops

moojeni (Hoge, 1966), HF3 from B. jararaca can activate many

features of the immune response, including priming of monocyte/

macrophage immune competent cells, neutrophil recruitment and

activation, release of proinflammatory cytokines and chemokines,

and activation of the complement cascade (C5a and C3a release)

(59, 103, 104). For example, jararhagin can elicit the recruitment of

inflammatory cells and induce the release of inflammatory

mediators such as IL-1b, IL-6, IL-8, and IL-11 in vitro (106, 107).

Likewise, batroxase can induce the release of pro-inflammatory

cytokines (e.g., IL-6, IL-1b, IL-10) and increase the local release of

PGE2 prostaglandins (108). BaP-1 activates the complement system

(release of C5a), induces leukocyte infiltration and mast cells

degranulation, as well as cytokine release (109, 110).

In addition to their direct effects on the immune competent

cells, SVMPs can indirectly activate platelets by diverse

mechanisms, such prothrombin activation, vWF, factor X, and II

and the complement cascade (C5a and C3a) release, along with

engagement of platelet glycoprotein receptors (103, 104). For

example, berythractivase help to upregulate tissue factor (TF)

expression in endothelial cells in vitro, which favor a systemic

thrombogenic and inflammatory activities (111, 112). Likewise,

moojenactivase induce factor X, and II activation and platelet

tissue factor (TF) expression leading to thrombosis and

inflammation (113). SVMPs, such as botrocetin and jararhagin,

can engage platelet glycoprotein receptors, which also favor

thrombosis and inflammation (114, 115).

4.2.2 Bothrops sp. venom phospholipases A2
Several PLA2 have been shown to induce a wide range of

inflammatory effects (116). Snake venom PLA2 also play a role in

inflammation, intervening in microvascular permeability, edema

formation, leukocyte recruitment and cytokine release (104, 117,

118). Among snake venom PLA2, bothropstoxins from Bothrops

jararacussu (Lacerda, 1884) can induce mast cell degranulation and

stimulate neutrophil chemotaxis by releasing leukotriene B4 (LTB4)

and platelet-activating factor (119). Snake venom PLA2 such as

batrox PLA2 from B. atrox, BJ-PLA2-I from B. jararaca and

piratoxin from Bothrops pirajai (Amaral, 1923) can also induce

mast cell degranulation, stimulate neutrophil recruitment, and

increase the production of various cytokines and chemokines

(108, 119–122). Snake venom Lys49 PLA2 homologs MT-II and

MT-III from B. asper activate the inflammatory process through

NF-kB activation and can increase macrophage phagocytic activity

(108). A purified PLA2 from the venom of B. lanceolatus was

recently shown to increase the production of TNF-a, CXCL8,
CCL2 and CCL5 and activate the complement system (C5a and

C3a release). The venom PLA2 also triggered the generation of lipid

mediators, as evidenced by the detected high levels of LTB4, PGE2

and thromboxane TXB2 prostanoid (123).
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4.2.3 Bothrops sp. venom C-type lectin-like
toxins

C-type lectin family comprises proteins that bind carbohydrates

in a Ca2+-dependent manner and non-sugar-binding snake venom

C-type lectin-related proteins (SV-CLRPs), so called snaclecs.

Snaclecs from snake venom interact with several proteins or

receptors having a role in thrombus formation and inflammation,

which include C-type lectin-like receptor 2 (CLEC-2), coagulation

and vWF factors, GPIb and GPVI receptors on platelets as well as

a2b1 receptors of integrins (103, 104). Snaclecs are known to

modulate platelet aggregation and their proinflammatory

activities. For example, pro-inflammatory activity of B. jararaca

on mouse and human platelets has been recently described (103,

104). Likewise, engagement of platelet glycoprotein receptors and

prothrombin activate platelet can stimulate the pro-inflammatory

host response. More specifically, snaclecs from B. jararacussu and

Bothrops leucurus venoms can stimulate immune competent cells

(mononuclear cells and neutrophils) to produce proinflammatory

mediators (124, 125). Galatrox, a glycan-binding protein from B.

atrox snake venom promotes neutrophil migration and induces the

release of pro-inflammatory cytokines, such as IL-1 and IL-6 both

in vitro and in vivo. Galatrox also stimulates macrophages to

produce pro-inflammatory mediators through the TLR4-MyD88

signaling pathway suggesting its role in mediating the

proinflammatory action of B. atrox venom (126). Likewise, BJcul

from B. jararacussu venom can activate NLRP3 inflammasome

through TLR4 signaling pathway and also induce the activation of

NF-kB, resulting in the release of several cytokines such IL-1b and

proinflammatory mediators (124–127).

4.2.4 Bothrops sp. venom serine proteases
SVSPs are monomeric glycoproteins displaying proteolytic

activites that are directly involved in the coagulation machinery

by inducing platelet aggregation and activation of coagulation

factors. The activity of serine proteases has been mainly

correlated to the thrombin-like activity of Bothrops sp. venoms,

but “kininogenases” present in these venoms have also been shown

to participate to inflammatory processes (103, 104). Recent findings

suggest the participation of SVSPs in the local and systemic

inflammation processes induced by crude Bothrops sp. venom.

SVSPs from B. pirajai snake venom, BpirSP27 and BpirSP41, can

promote neutrophil recruitment in the peritoneal inflammatory

exudate (108). In contrast, the SVSP batroxobin from B. moojeni is a

defibrinogenating agent that can inhibit human NETs induced by

TNF-a (128). Beside Bothrops sp. SVSPs, KnBa from the African

viper Bitis arietans can increase the production of IL-1b, TNF a,
and IL-6 and also upregulated chemokines such as IL-8, RANTES

and MCP-1 (129).

As stated above, the most described activity of SVSPs is

thrombin-like, but theses pro-coagulant enzymes also present other

activities, such as kallikrein-like, platelet aggregation, and activators

of the following substrates: plasminogen, factor X, factor V,

prothrombin, and protein C, which may be involved in several

inflammatory processes (120). Notably, certain kallikrein-like

SVSPs are known to generate vasoactive kinins from a kininogens,
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which are involved in the regulation of blood pressure, vascular

permeability, and inflammatory processes (130). Among others,

kininogenase from B. jararaca, BjussuSP-I, from B. jararacussu,

leucurobin from B. leucurus, and BpSP-I from B. pauloensis

venoms display kallikrein-like activity and elicit the release of

kallikrein that directly liberates bradykinin and derived vasoactive

proinflammatory peptides (131–133). Following B1 and B2 receptor

binding, bradykinin can induce numerous pathophysiological

processes, including expression of adhesion molecules, leukocyte

infiltration and formation of inter-endothelial gaps and protein

extravasation (134–136).
4.3 Inflammation initiated by whole
Bothrops sp. venoms

The inflammatory response triggered by Bothrops venoms

involves platelet activation, leukocyte recruitment (primarily

polymorphonuclear and mononuclear cells at the injury site), and

the participation of endothelial cells and resident immune cells,

which release cytokines in response to the venom (50, 90, 103). In

Bothrops envenomation, both local and systemic inflammation can

occur. A hallmark feature of local tissue damage caused by Bothrops

venoms is blister formation, characterized by the accumulation of

protein-rich fluid due to inflammatory exudation. Analyses of

wound exudates and blister fluid consistently reveal elevated

levels of pro-inflammatory mediators (41, 45, 137, 138).

Additionally, among the numerous DAMPs detected, the most

abundant proteins in these exudates are linked to platelet

degranulation, innate immune activation, complement pathways,

and coagulation cascade.
4.4 The role of platelets and neutrophils in
inflammation caused by Bothrops venoms

In addition to hemostasis, platelets are involved in a multitude

of physiological and pathological processes, including the innate

immune response induced by Bothrops venoms. It is well

established that Bothrops venoms exert effects on platelets, which

are known to be affected by mechanisms including binding or

degradation of vWF or platelet receptors, activation of protease-

activated receptors (PARs) by thrombin-like enzymes, and

modulation of adenosine diphosphate (ADP) and thromboxane

A2 release (26, 50, 103, 139).

Neutrophils, the primary component of the innate immune

system’s initial response, have been identified as a key player in the

context of inflammation induced by Bothrops venoms (140). Upon

activation, neutrophils produce substantial quantities of pro-

inflammatory cytokines and are capable of releasing neutrophil

extracellular traps (NETs), thereby influencing the course of

inflammatory processes (50, 140). The effects of Bothrops venoms

on neutrophils have been extensively studied, resulting in a

substantial body of knowledge accumulated over decades (140).
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4.5 Activation of complement system,
endothelial response and inflammatory
mediator release caused by Bothrops
venoms

Bothrops venoms have the capacity to activate the complement

cascade, resulting in the generation of substantial quantities of

anaphylatoxins, including C3a, C4a, and C5a (108, 141–145).

These anaphylatoxins are regarded as the pivotal mediators

between innate and adaptive immunity. Another typical

characteristic of the systemic inflammatory syndrome induced by

Bothrops venoms is the cytokine and chemokine storm, which

reflects the emergence of multiple disorders in the regulation of

the immune response. Once more, a plethora of proinflammatory

activities has been observed in Bothrops sp (141–145).

B. lanceolatus venom exerts a profound impact on the

complement system, revealing that the toxins activate both the

alternative and classical complement pathways, unbalancing the

homeostasis of this immune system (143). Activation of the

alternative pathway is accompanied by a paradoxical inhibition of

its lytic activity, while the classical pathway is activated by the

cleavage of C1 inhibitor by proteases present in the venom. The

convergence of the three complement pathways results in the

formation of C5 convertase, which cleaves C5 into C5a and C5b.

The C5a fragment, a potent anaphylatoxin, induces inflammation

and the recruitment of inflammatory cells (146, 147). An elegant

study of Delafontaine et al. indicates that metalloproteases in the

venom are primarily responsible for the generation of C5a (143).

The C5b portion initiates the assembly of the membrane attack

complex (MAC), which forms pores in the cell membrane, leading

to cell lysis. In addition to this effector function, the complement

system, when activated by the venom, performs other biological

functions, such as opsonization of pathogens, formation of NETs by

neutrophils, and release of anaphylatoxins (C3a and C5a), which

amplify the inflammatory response (148–150). On the other hand,

venoms of B. atrox inhibit the activation of the complement system

by the alternative pathway (144). Thus, contribution of the

complement system to thromboinflammation in snakebite still

remains unclear and requires further exploration.

An ex vivo model based on human whole blood demonstrated

that B. lanceolatus venom elicited an inflammatory reaction

comprising the production of pro-inflammatory interleukins (IL-1b,
IL-6 and TNF-a), chemokine upregulation (MCP-1, RANTES and

IL-8), complement activation and eicosanoid release (leukotriene,

prostaglandin and thromboxane) (142). Similarly, the administration

of B. lanceolatus and B. atrox venoms in rats has been observed to

result in elevated levels of plasmatic proinflammatory cytokines,

including interleukin-1 b (IL-1b), interleukin-6 (IL-6), tumor

necrosis factor-alpha (TNF-a), and monocyte chemoattractant

protein-1 (MCP-1) (28). In the latter study, plasmatic

proinflammatory mediator levels were observed to be higher in rats

treated with B. lanceolatus compared to those treated with B. atrox.

Previous in vivo and in vitro studies have yielded consistent

results regarding the deleterious effects of Bothrops venoms on
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endothelial cell integrity and function (26, 50, 90). Degradation of

basement membrane and the subsequent disruption of endothelial

cell integrity have been described (151). Detachment of endothelial

cells from their surrounding basal lamina, leading to discontinuity

of endothelial cell line and extravasation (111, 152, 153). While

many SVMPs have no direct cytotoxic effect on capillary

endothelium, jararhagin can decrease endothelial cell viability and

induce cellular apoptosis, which can be reinforced by phospholipase

A2 action (111).

An organ‐on‐a‐chip approach used to investigate the effects of

various venoms on a perfused microfluidic blood vessel model have

recently suggested that endothelial barrier function of the

microvasculature can be affected by two different mechanisms,

including disruption of the endothelial cell membrane and

delamination of the endothelial cell monolayer from its matrix

(154). SVMPs toxins, isolated from Bothrops venoms, induce the

expression of adhesion molecules on the microvasculature of

murine cremaster muscle. In vivo, intravenous injection of B.

jararaca venom in rabbits induces endothelial injury as evidenced

by increase plasma soluble thrombomodulin levels (155). Likewise,

SVMPs isolated from venom can render endothelial cells highly

thrombogenic, with the release of vWF and expression of tissue

factor TF, ICAM-1 and E-selectin (155). SVMPs can also cleaves

endothelial glycocalyx proteoglycans, which participle to the

disruption of microvasculature integrity (156). In the case of B.

lanceolatus venom, endothelial injury as evidenced by ICAM-1,

VCAM-1, E-selectin, and TF expression, seem to be particularly low

compared to B. jararaca venom, while longer times of incubation

enhanced B. lanceolatus venom induced cytotoxicity (143, 157).

Overall, based on these experimental findings, B. lanceolatus venom

exhibits poor direct endothelial cell toxicity, while intermediate

system such as the involvement of the complement system may

activate endothelium in vivo.

The link between the complement system and thrombosis is

complex and multifaceted. Although complement is primarily

known for its immunological function, recent studies have

demonstrated its involvement in inflammatory processes and

blood coagulation. One point that is noteworthy is that C3 is a

target of Bothrops toxins, and in stroke, elevated plasma C3 levels

are markers of worse prognosis in patients with ischemic stroke. In

fact, in brain tissue, C3 is produced locally and its activation

contributes to ischemic injury (158). Different mechanisms by

which the complement cascade can activate coagulation

(immunothrombosis) have been reported. Elevated concentrations

of complement C3 in the normal population are associated with an

increased risk of venous thromboembolism (VTE) (159). When

activated, C3 plays a crucial role in amplifying thrombus formation

by activating platelets and modulating tissue factor (TF) function by

inducing conformational changes in TF, increasing its procoagulant

activity and facilitating the exposure of phosphatidylserine (160).

C5a can promote the release of prothrombotic factors from

platelets, induce the expression of endothelial tissue factor, and

promote the natural production of anticoagulants. Other

complement components may promote fibrinogen cleavage and

increase XIIIa activity, among other mechanisms (161, 162).
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Therefore, complement dysregulation disorders, such as those

caused by Bothrops venoms, may result in a prothrombotic state

and thrombotic microangiopathy (small vessel thrombosis).
5 Immunothrombosis and
thromboinflammation

5.1 Immunothrombosis

“Immune thrombosis” refers to an excessive inflammatory

response that leads to thrombotic events. The concept of

“immunothrombosis,” first introduced by Engelmann and

Massberg (1), describes a thrombus formation process mediated

by immune cells and thrombosis-related molecules. This

mechanism aids in pathogen recognition, damaged cell detection,

and containment of microbial dissemination in circulation (1, 3–5).

Immunothrombosis thus represents an evolutionarily conserved

connection between coagulation and innate immunity (163). In

contrast, “thromboinflammation” denotes a concurrent

inflammatory and thrombotic response occurring in microvessels

following exposure to harmful stimuli, such as pathogens or

DAMPs (3, 6–9).

Immunothrombosis is emerging as a distinct host defense

mechanism against infection, employing specialized molecular

pathways to enhance antimicrobial protection. This process enables

pathogen recognition, limits microbial dissemination, and

contributes to vascular immunity by integrating coagulation and

immune responses within the bloodstream (1, 3–5). Microbial

components, designated as pathogen-associated molecular patterns

(PAMPs), are recognized by pattern recognition receptors (PRRs) on

immune competent cells, such as monocytes (164). Following the

recognition of the pathogen, monocytes present activated tissue factor

(TF) on their surfaces, which is released in situ, thus activating the

extrinsic pathway of coagulation (165, 166). Monocytes release

decrypted TF in a process called pyroptosis, which provokes

leakage in response to NLRP3 inflammasome and caspase pathway

(IL-1b and IL-18) activation (4). Additionally, monocyte activation

can result in the release of pro-inflammatory cytokines (165, 166).

Proinflammatory molecules recruit neutrophils, which contribute to

immunothrombosis through the release of NETs. NETs directly

activate factor XII, thereby initiating the contact-dependent

pathway of coagulation. NETs bind von Willebrand factor (vWF)

and facilitate the recruitment and activation of platelets. NETs cleave

and inactivate natural anticoagulants, including tissue factor pathway

inhibitor and thrombomodulin (166–170). Additionally, NETs can

externalize and bind tissue factor TF, which further promotes the

activation of the extrinsic pathway of coagulation (171).

Immunothrombosis describes an overshooting inflammatory

reaction that results in detrimental thrombotic activity. The major

pathological outcome is thrombosis (occlusion of a blood vessel)

due to platelet-involved thrombotic activity in response to initial

inflammatory stimuli, such as pathogen invasion. Upon activation,

platelets promote the immunothrombotic process by triggering the

contact-dependent pathway of coagulation through the release of
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polyphosphates. In collaboration with endothelial cells, they

facilitate the generation of fibrin (172, 173). Once activated,

platelets release substantial quantities of pro-inflammatory

cytokines, thereby contributing to the establishment of an

inflammatory microenvironment. As a result of this mechanism,

pathogens are trapped within the fibrin-based NETs and eliminated

in this intravascular restricted compartment (3–5, 7).

In this scenario, immunothrombosis is primarily initiated by

monocytes and neutrophils and is facilitated by the formation of

microthrombi in microvessels (167, 168, 174–176). It is of particular

importance to note the crucial role played by tissue factor, monocyte

triggering via NLRP3 inflammasome activation, release of NETs,

and activated platelets in the cross talk of inflammation with

the coagulation processes. It is noteworthy that the term

“immunothrombosis” is now employed in a more expansive manner

to encompass thrombotic events driven by infection or sterile

inflammation. The primary consequence of immunothrombosis is a

process of microcoagulation, which does not elicit an adverse systemic

response and effectively immobilizes invading pathogens or foreign

“alarmin” structures (in the context of sterile inflammation) for

subsequent clearance by immune competent cells (1, 3–5).
5.2 Thromboinflammation

This term denotes a process whereby inflammation and

thrombosis coexist within microvessels in response to noxious

stimuli, including pathogens, injured cells, and other harmful

molecules. Thromboinflammation represents the manifestation of

dysregulation of the two most crucial defensive and wound-healing

responses of the body: inflammation and hemostasis (3, 6–9).

Thromboinflammation describes the interplay of platelets and

coagulation with the vascular system, resulting in the recruitment

of immune cells. In this process, the initial platelet adhesion/

activation pathways act in concert with key components of

immune cells and the contact pathway of plasmatic coagulation

(factor XII—kallikrein/kinin pathway) (5, 12, 166, 172).

Intravenous thrombotic processes can, in turn, trigger aberrant

complement, coagulation, platelet, and endothelial cell activation,

which may ultimately result in disrupted vascular integrity. It is

well-established that viral and bacterial infections, as well as

ischemia–reperfusion (e.g., acute ischemic stroke, coronary heart

disease), can cause microvascular thrombi and fuel inflammatory

processes (3, 6–11, 13). Overall, thrombo-inflammation describes

the interplay of platelets and coagulation with the immunovascular

system. The major pathological outcome is resulting in the

recruitment of immune cells.
6 Thromboinflammation induced by
Bothrops venoms

Thromboinflammation triggered by Bothrops snakebite

envenoming represents a distinct pathophysiological pathway with

unique biological characteristics (3, 6–9). Supplementary Table 2
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summarized the main characteristics of thromboinflammation in

Bothrops sp. envenoming comparing the effects of venoms with

hemorrhagic profile with those with thrombotic profile.

Previous research has suggested an interaction between

inflammatory and coagulation processes in these envenomation

cases (50). A recent investigation of B. atrox bite victims

demonstrated that fibrinogen concentrations modulate

inflammatory mediator responses (177). The researchers found

that fibrinogen levels directly influence cytokine and chemokine

expression patterns including CXCL-8 CXCL-9 CCL-2 and IL-6.

They also documented elevated CCL-5 levels alongside decreased

IFN-g concentrations in patients with reduced plasma fibrinogen.

This study provided the first evidence that thromboinflammation

involving reciprocal interactions between inflammation and

coagulation mechanisms occurs in Bothrops envenomation

cases (177).
6.1 Role of platelets

Platelets mediate a harmful interaction between coagulation

pathways and immune cells. Within the framework of

thromboinflammation this dysregulated crosstalk leads to NETs

formation and activation of immune-competent cells including

monocytes (178). The P-selectin/PSGL-1 axis serves as a crucial

mediator of cellular interactions involving endothelial cells immune

cells and neutrophils. P-selectin remains stored within a-granules
of resting platelets and Weibel-Palade bodies of endothelial cells.

PSGL-1 functions as the principal receptor for P-selectin facilitating

neutrophil recruitment and fostering a proinflammatory milieu

through monocyte/macrophage activation (3 6 173). Extensive

research has characterized the impact of Bothrops venoms on

platelet aggregation and activation (179–181). However relatively

few studies have examined adhesion molecule expression on platelet

surfaces following Bothrops venom exposure. Both in vitro and in

vivo experiments have demonstrated that Bothrops venoms can

upregulate various adhesion molecules including L-selectin integrin

aLb2 (LFA-1) ICAM-1 PECAM-1 and CD18. Notably only a single

investigation has reported P-selectin expression on platelet surfaces

during the early hours following B. jararaca envenomation in

rabbits (182). These findings underscore the need for greater

emphasis on understanding the P-selectin/PSGL-1 pathway’s role

in Bothrops envenomation pathophysiology.
6.2 Role of leukocytes

Although the interaction between platelets and monocytes/

leukocytes through P-selectin-PSGL1 binding has not been

specifically investigated, the increased expression of E-selectin and

L-selectin induced by Bothrops venoms has been demonstrated to

facilitate leukocyte rolling and adhesion to the endothelium (28,

183–185). In accordance with the aforementioned findings, an

elegant study employing intravital microscopy has demonstrated

that jararhagin, a multi-domain snake venom metalloproteinase
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isolated from B. jararaca venom, can increase the number of rolling

leukocytes in post-capillary venules of mouse cremaster muscle

(186). Furthermore, in vivo studies have demonstrated that

Bothrops venoms can induce the migration of polymorphonuclear

neutrophils to the envenoming sites and function as phagocytes and

inflammatory response controllers (141, 184–186).

As part of the host defense mechanisms against snake venom

reaction, neutrophils generate reactive oxygen species (ROS),

produce several proinflammatory cytokines and eicosanoids, and

release of NETs (140). NETs production represents a convergence

point for the processes of inflammation, coagulation, and

thrombosis (3–5, 12, 168, 169, 171, 176, 187, 188). NETs are

regarded as a crucial element in the thrombotic process, as they

intensify platelet and endothelial cell activation and facilitate fibrin

formation in Bothrops envenoming (87, 88). In vitro and in vivo

studies have demonstrated that Bothrops venom can induce NET

formation (131, 189–191). Several toxins of snake venoms were able

to induce in vitro DNA release from human neutrophils. For

example, BaTX-II, a phospholipase A2 from B. atrox induced the

release of double strand DNA from neutrophils collected from

healthy donors (190). Similar results have been obtained with

BjussuMP-II, a P–I class of SVMPs from the B. jararacussu (191).
6.3 Role of high molecular weight vWF
multimers

The vascular occlusion observed in thromboinflammation

depends critically on interactions between ultra-large von

Willebrand factor (vWF) and NETs (2, 9, 167, 174–176).

Research has shown that Bothrops snake venoms can directly

influence vWF polymerization in circulating blood (189).

Experimental studies in rats revealed temporary reductions in

plasma ADAMTS13 concentrations following envenomation by B.

jararaca and B. lanceolatus (28, 192). Interestingly these venom-

induced decreases in ADAMTS13 activity did not consistently lead

to elevated vWF antigen levels or a shift toward ultra large and high

molecular weight vWF multimers in circulation. This apparent

paradox has been explained by the proteolytic degradation of

these multimers through the action of venom metalloproteinases

(192–194).

The lack of detectable ultralarge vWF multimers in plasma does

not exclude their potential role in thromboinflammation. These

multimers may still participate in NET formation and vascular

adhesion particularly when considering venom-induced endothelial

activation. The combined effects of immune cell activation

endothelial stimulation and impaired vWF cleavage due to

reduced ADAMTS13 activity likely promote platelet-vessel wall

interactions that drive microthrombus formation. Histological

examinations of thrombi from both animal models and human

cases consistently demonstrate colocalization of fibrin NETs and

vWF within the thrombus structure (2). Supporting these findings

microthrombi have been identified in pulmonary vessels of

envenomed mice and in postmortem analysis of a case of B.

lanceolatus envenomation (23, 29).
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6.4 Thromboinflammation as a unifying
mechanism of Bothrops venom-induced
thrombosis

To gain a deeper understanding into underlying mechanisms of

thrombotic complications in Bothrops snakebite envenoming, it is

essential to consider two lines of evidence. Firstly, the absence of

overt consumption coagulopathy due to the weak procoagulant

effects of the venoms of these snakes may be associated with the

thrombotic effects, as clotting factors are present in the bloodstream

by the time the thrombogenic and inflammatory mechanisms

induced by the venom are operating in blood vessels (28).

Secondly, in addition to the presence of normal coagulation

factors and a proinflammatory response, it is necessary to

examine whether the biological response elicited by Bothrops

venoms exhibits the typical signature of thrombo-inflammation.

B. lanceolatus and B. caribbaeus venoms, that display a

prothrombotic profile, can exhibit specific biological characteristics

that are identical to those observed in thromboinflammation. Firstly, it

can be argued that the lack of overt consumption coagulopathy due to

the weak procoagulant effects of B. lanceolatus and B. caribbaeus

venoms in comparison to other Bothrops venoms is a crucial factor

that allows for a hypercoagulable state. Similarly, it has been

demonstrated that the systemic proinflammatory response elicited by

B. lanceolatus venom ismore pronounced than that induced byB. atrox

venom (28). Therefore, the thrombotic effects of B. lanceolatus venom

may be attributable to the combined action of clotting factor activation

and the concurrent operation of potent inflammatory mechanisms

within the blood vessels (123, 142, 143, 157). Secondly, an increasing

body of evidence indicates thatB. lanceolatus andB. caribbaeus venoms

exhibit distinctive characteristics of thromboinflammation, which are

not observed in other Bothrops venoms. For example, distinct

kallikrein-like activity and ADAMTS13/von Willebrand factor (vWF)

interactions have been observed in B. lanceolatus and B. atrox venoms

(30). A summary of major drivers involved in inflammation and

coagulation activation eventually leading to thromboinflammatory

pathways in Bothrops snakebite envenoming is displayed Figure 1.

Before concluding that Bothrops sp. envenoming is related to

thromboinflammation, it is important to consider the dualistic

effects of snake venoms on hemostasis. Snake venoms are

intricate biochemical arsenals that often contain toxins with

opposing effects on hemostasis, including both procoagulant and

anticoagulant factors, as well as platelet-activating and platelet-

inhibiting components (16, 26). The resulting disturbances in

hemostasis and inflammation can arise through independent,

synergistic, or antagonistic mechanisms, contributing to

the diverse and sometimes paradoxical effects observed in

snakebite victims. At first glance, anticoagulant toxins and

thromboinflammation appear to represent opposing mechanisms

—anticoagulants prevent clotting, while thromboinflammation

involves thrombosis-driven inflammatory responses. Nevertheless,

despite their anticoagulant effects, some venom toxins can

indirectly drive thromboinflammation through the cleavage of

fibrinogen that releases fibrinopeptides and other breakdown

products, which may activate TLR4, elicit pro-inflammatory
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cytokine release and leukocyte recruitment (104). Likewise, some

anticoagulant toxins (e.g., disintegrins) block platelet aggregation,

but can activate platelets (179–181), which may release

microparticles (procoagulant surfaces) and serotonin, along with

P-selectin expression and leukocyte recruitment creating a

prothrombotic microenvironment and vascular inflammation.

Overall, antiplatelet toxins do not simply prevent clotting—they

shift thrombosis to alternative pathways (platelet activation,

NETosis, tissue factor-driven coagulation, endothelial injury).
7 Advances and perspectives for the
study of thromboinflammation in
snakebite envenoming

The interaction between hemostasis and activation of innate

immunity is highly complex, which makes it difficult to precisely

define the relative contribution of each of these two processes to the

pathogenesis of different complications, possibly explaining the absence

of a direct association between classical biomarkers of hemostasis

activation and the risk or severity of some of these clinical

manifestations. Thus, the crossover between inflammation and

thrombosis is very well exemplified during snakebite envenoming,

due to the presence of a wide variety of characterized proteins that can

activate the innate immune system and/or hemostasis.

Evidence supports the crossover between inflammation and

hemostasis: (i) studies in animal models report hemostasis

disorders; despite some heterogeneity within the model and
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within the venom, a less effective hemostatic system is associated

with an increase in hemorrhagic manifestations; (ii) it has been

shown that components of the coagulation system, such as platelets,

also signal through immunological pathways; (iii) there are

examples of toxins and venoms whose mechanisms disrupt local

hemostatic balance and induce inflammation; and (iv) studies show

that leukocytes are not only found at the site of envenoming, but

also in arterial and venous thrombi. However, it is noteworthy that

to date, little studies about Bothrops snakebite envenoming causing

thrombotic complications have been carried out.

To advance our understanding of the role of thromboinflammation

in the development of thrombotic clinical complications in Bothrops

snakebite envenoming, it is necessary to develop new study models and

apply advanced study techniques. This limitation to date is due to the

use of less robust techniques and studies that report changes in only

one of the axes of thromboinflammation, resulting in incomplete

reports and fragmented conclusions. It is important to mention that

research on thromboinflammation involves a variety of approaches,

and some are proteomics, animal models, biomarkers for

thromboinflammation measure, use of image techniques and others.

This will not be an easy task for the scientific community, and among

the challenges we can list the difficulty associated with (i) multiple

molecular interactions, considering that thromboinflammation

involves a complex cascade of biochemical reactions, with the

participation of several cells and molecules; (ii) heterogeneity of the

disease, since the clinical manifestations of thromboinflammation vary

widely between different diseases and individuals, making it difficult to

create universal models, especially for snake envenoming; (iii) study of
FIGURE 1

Major drivers involved in inflammation and coagulation activation eventually leading to thromboinflammatory pathways in Bothrops sp. envenoming.
Proposed mechanisms of contact phase activation with NET formation, extrinsic coagulation, von Willebrand factor (vWF) and kallikrein/bradykinin
pathway following Bothrops sp. venom exposure. H, histone; NE, neutrophil elastase; TF, tissue factor; HK, high-molecular-weight kininogen;
PPK, plasma prekallikrein; B1R/B2R, bradykinin 1/2 receptors. Adapted from Teixeira C et al. Inflammation Induced by Platelet-Activating Viperid
Snake Venoms: Perspectives on Thromboinflammation. Front Immunol. 2019;10:2082. doi:10.3389/fimmu.2019.02082.
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the inflammatory microenvironment, which is dynamic and

heterogeneous, influencing the progression of thrombosis.

Proteomics is a useful tool for studying thromboinflammation in a

more comprehensive manner, allowing us to identify changes in

biochemical processes related to hemostasis and inflammation

(complement system, inflammatory cells, cytokines, chemokines) and

other elements to thromboinflammation (195–197). This can be done

using animal models, which is a limiting factor, because other models

have already been developed to study the pulmonary thrombotic effect

induced by Bothrops snake venom (29), we do not yet have models for

cerebral thrombotic complications. Studies characterizing biomarkers

of thrombo-inflammation in patients with cerebral thrombotic

complications from Bothrops snakebite envenoming will also be

useful, as will the use of proteomics to study these cases (198). The

use of imaging techniques, such as computed tomography and

magnetic resonance imaging, can be used to visualize thrombus

formation and assess the impact of thromboinflammation on

different organs. The use of organoids and organ chips will allow for

more realistic simulation of the in vivo microenvironment, genetically

modified animal models to study the role of specific pathways and

proteins in thromboinflammation, the analysis of large data sets and

the application of machine learning algorithms; and finally,

collaboration between different areas, such as biology, medicine,

engineering, and computer science, will be essential to overcome the

challenges of modeling thromboinflammation.
8 Conclusions

Bothrops snake venom, which is common in tropical regions, has a

complex composition of toxins that can trigger a series of systemic

effects, including coagulopathies and thrombotic events. Understanding

the exact mechanisms involved in this pathogenesis is still a challenge

for the scientific community, but some theories have been proposed to

explain this complex interaction between the venom and the human

organism. The thromboinflammation theory has emerged as one of the

main hypotheses to explain the effects of Bothrops venom.

Thrombotic complications are extremely rare in Bothrops snakebite

envenoming. Several factors can contribute to the development of

ischemic stroke in patients bitten by Bothrops snakes, which include the

procoagulant activity of venom toxins, hypovolemic shock, and

endothelial dysfunction and injury. In the specific cases of B.

lanceolatus and B. caribbaeus, thrombotic events are frequent.

Proposed mechanism has been related to the combination of two

processes: a weak procoagulant effect of B. lanceolatus and B. caribbaeus

venoms, which does not induce coagulation factor consumption, along

with the simultaneous activation of thrombogenic and inflammatory

processes operating in blood vessels. Despite early and adequate

initiation of treatment for B. lanceolatus and B. caribbaeus

envenoming, the patient can develop a catastrophic stroke, resulting

in significant disability. Proposal of thromboinflammation as a key

pathophysiological event in these envenoming will provide options for

the development of new therapeutical issues, which may target

antithrombin, act ivated protein C, thrombomodulin,

glycosaminoglycans and interleukin inhibitors.
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99. Guércio RA, Shevchenko A, Shevchenko A, López-Lozano JL, Paba J, Sousa MV,
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