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Mitochondria are pivotal organelles that regulate oxidative phosphorylation
(OXPHOS). Although microsatellite-stable colorectal cancer represents the
majority of CRC cases, the functional aspects of mitochondrial DNA copy
number alterations in its progression remains poorly explored. The aim of this
review is to explore the mitochondrial mutations associated with CRC and
metastatic chemoresistant CRC, alongside mitoepigenetic mechanisms
involved in tumor progression and resistance to therapy, with ultimate goal of
identifying novel therapeutic strategies. We explored several key areas of
mitochondrial biology in CRC (1) mtDNA mutations and cancer metastasis:
Understanding how specific mutations in mtDNA drive metastasis in CRC,
and their potential role as prognostic markers or therapeutic targets.
(2) Mitochondrial copy number variations (CNVs) in CRC (3) Mitochondrial
genome and CRC risk revealing links between inherited and somatic mtDNA
mutations with CRC susceptibility. (4) ND gene mutations in CRC.
(5) Mitoepigenetics in CRC: We highlight how epigenetic dysregulation
contributes to CRC progression and chemoresistance. (5) clinical epigenetics
in CRC: We described into the role of histone-modifying enzymes, such as EZH2,
EP300/CBP, and PRMTs, as drivers of colorectal tumorigenesis by altering
transcriptional programs involved in cell proliferation and metastasis. In
parallel, this review emphasizes the promising advances in epigenetic-targeted
therapies. The dysregulation of epigenetic machinery in cancer offers unique
opportunities for therapeutic intervention. Histone acetyltransferases (HATs) like
EP300/CBP, histone methyltransferases (HMTs) such as EZH2, and protein
arginine methyltransferases (PRMTs) are emerging as critical players in CRC,
making them attractive therapeutic targets. The development of selective
inhibitors for these epigenetic writers, readers, and erasers, including novel
compounds targeting specific protein domains, holds the potential to mitigate
tumor growth and overcome resistance mechanisms. Ultimately, the goal is to
develop effective synthetic drug scaffolds as immunotherapy treatments for
mutation-driven metastatic CRC through pharmacological modeling,
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combined with targeted chemical inhibitors of CRC-causing epigenetic protein
through genome-editing techniques, offering hope for overcoming
chemoresistance and improving survival outcomes. Emerging preclinical/
clinical insights into mitochondrial dynamics, m®A-mediated transcript
regulation, and immune-metabolic signaling in chemoresistant colorectal
cancer highlight the translational potential for designing rational synthetic drug
scaffolds that modulate validated molecular targets, paving the way for next-
generation precision therapeutics.

chemoresistance, chemoresistant colorectal cancer, mitochondria, mitoepigenetics,
mitochondrial mutations

1 Introduction

Chemoresistant cancers are difficult to treat using
chemotherapy due to the stemness-causing factors include SOX2,
Oct4, ERCC1, Pg-P, ALDHI, etc., to foster drug efflux and drug
resistance (1). This stemness is leading to phenotypic cancer stem
cells and forms a distinct subpopulation with substantial self-
renewing capacity across tumor microenvironment (2-8) which
enhance the tumor progression (9, 10). CRC is reported as 3™ most
commonly diagnosed cancer in men or women in United States,
highlighting its profound public health impact (2). Approximately
35% of CRC risk is due to genetic inheritance (2). Genome-wide
association studies (GWAS) have identified fifty genetic loci linked
to an increased risk of CRC. These studies primarily highlight
common variants located within the nuclear genome (3-7). But
these identified loci account for only a small portion of the disease’s
heritability, suggesting that additional genetic contributors remain
undiscovered. More than seven decades ago, Otto Warburg
described a hallmark metabolic alteration in cancer cells: despite
the availability of sufficient oxygen for mitochondrial respiration,
cancer cells acquire a higher glucose uptake and depends on the
glycolysis for energy generation (8). This metabolic shift was
indicative of a fundamental defect in mitochondrial respiration,
which he hypothesized to be a primary cause of cancer (9). This
metabolic reprogramming, now termed the Warburg effect, has
been observed across numerous cancer types, including CRC, where
enhanced glucose transport and glycolytic activity are frequently
observed (10-12).

Human mtDNA is a circular, double-stranded and comprising
16,569 base pairs, with 1073 to 1074 copies present per cell. It
encodes 37 genes, including two rRNA genes, 22 tRNA genes as well
as thirteen protein-coding genes; these mitochondrial genes are
crucial for oxidative phosphorylation (OXPHOS) (13, 14) and
involved to foster the function of respiratory chain complexes:
complex I (ND1, ND2, ND3, ND4, ND4L, ND5, ND6), complex III
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(cytochrome b), complex IV (COXI, COXIL, COXIII), and complex
V (ATPase6 and ATPase8) (15). Additionally, mtDNA contains a
non-coding displacement loop (D-loop) region, crucial for
regulating mtDNA replication and transcription (16, 17).

Variations within mtDNA, such as mitochondrial single
nucleotide polymorphisms (mtSNPs), can profoundly affect
mitochondrial function by altering the efficiency of OXPHOS and
cause a higher ROS generation, which subsequently elevates the risk
of cancer development (18-23). However, studies exploring mtDNA
variants and CRC risk have yielded inconsistent results. For example,
a Scottish study analyzing 132 mtSNPs in a cohort of 2,854 CRC
patients and 2,822 controls described the absence of association
between these variants and overall risk of acquisition of CRC (12,
24). At present, there is a lack of comprehensive research examining
the relationship between mtDNA variations and CRC susceptibility
across diverse racial and ethnic groups. A more focused, pathway-
based methodology could potentially reveal novel connections
between the mitochondrial genome and cancer risk. This approach
would facilitate a more efficient analysis of variants that may have
subtle effects on CRC susceptibility. Additionally, integrating multi-
omics data and advanced bioinformatics tools could enhance our
understanding of how mtDNA variations contribute to
chemoresistant metastatic CRC pathogenesis, potentially leading to
the discovery of new biomarkers and therapeutic targets. This review
focuses on several key aspects of mtDNA in CRC. It explores how
specific mtDNA mutations drive metastasis in CRC and their
potential as prognostic markers or therapeutic targets. Additionally,
it examines mitochondrial copy number variations (CNVs) and their
implications for CRC. The review also highlights the connection
between inherited and somatic mtDNA mutations with CRC
susceptibility, particularly mutations in ND genes. Furthermore, it
discusses how epigenetic dysregulation, referred to as
mitoepigenetics, contributes to CRC progression and
chemoresistance, emphasizing the role of epigenetic proteins in
these processes.
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2 Literature search

We conducted a vivid literature review, drawing from a variety
of reputable databases such as PubMed, Medline, Scopus, Google
Scholar, National Library of Medicine (NLM), and ReleMed. Our
analysis centered on evaluating published studies and reports that
explore the role of mtDNA in colorectal cancer, with a particular
emphasis on the D-loop region and its significance in metastasis.
Additionally, we described the relationship between mutations in
mtDNA and alterations in OXPHOS, which contribute to cancer
growth and development of chemoresistance in colorectal cancer.
The review also covered topics including the role of ROS,
mitochondrial mutations in colorectal cancer progression, and the
development of therapies targeting these mutations to address
chemoresistance in metastatic colorectal cancers.

2.1 Metabolic plasticity and subtype-
specific bioenergetics in CRC

Rather than relying exclusively on mitochondrial OXPHOS,
CRC cells exhibit considerable metabolic plasticity and adopt
distinct bioenergetic programs depending on their consensus
molecular subtype (CMS), microenvironmental context, and
therapeutic pressure. For example, bulk and single-cell
transcriptomic analyses show that some CMS2 and CMS3 tumors
which are often characterized by canonical/ WNT or metabolic
signatures which can show glycolytic dominance, whereas others
may rely more heavily on OXPHOS and fatty acid oxidation (25).
Similarly, recent single-cell metabolomics and spatial
transcriptomics of CRC liver metastases demonstrate that highly
metastatic sub-populations show elevated TCA cycle and OXPHOS
activity, but this does not imply that all CRCs are OXPHOS-
addicted (26). Hence, CRC can rely on OXPHOS under certain
conditions, but also frequently engages glycolysis, fatty acid
oxidation, and hybrid metabolic phenotypes - and these
dependencies are subtype- and context-dependent (25-27).

2.2 Germline susceptibility and somatic
evolution: distinct drivers of mtDNA-linked
metastatic progression in CRC

The clear distinction between germline susceptibility and
somatic tumor evolution underpins many key differences in
cancer biology, prognosis, and therapy. Germline variants, such as
inherited defects in DNA mismatch repair genes or predisposition
syndromes, impart systemic genomic instability and elevate lifetime
cancer risk; these variants are present in every cell of the body and
often affect early oncogenesis and familial clustering (28, 29). In
contrast, somatic evolution describes the dynamic process by which
cancer cells acquire driver mutations, epigenetic reprogramming,
metabolic rewiring and microenvironmental adaptations during
tumour progression, metastasis, and treatment resistance (30).
Importantly, while germline predisposition may influence which
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somatic events emerge or the rate at which they accumulate, the two
are distinct in their temporal onset, functional implications, and
therapeutic relevance. For instance, somatic metabolic adaptations
such as mtDNA changes, altered oxidative phosphorylation or
glycolytic switching are acquired during tumour evolution rather
than inherited, and thus have different prognostic and therapeutic
implications than germline variants.

In line with this conceptual framework, the causative role
attributed to mtDNA alterations and metastatic progression
requires a more careful, nuanced presentation. Recent
comprehensive analyses of CRC somatic mtDNA mutation
patterns demonstrate that while increased mtDNA copy number
promotes oxidative phosphorylation and correlates with a more
aggressive phenotype in microsatellite-stable CRC, the link remains
largely associative rather than definitively causal (29, 31). Moreover,
evolutionary studies of somatic mtDNA in CRC show that many of
the variants are under relaxed or neutral selection, and do not
directly map to mitochondrial biogenesis or metabolic rewiring in a
straightforward causal manner (31).

Accordingly, we adjusted our revised manuscript to reflect that
mtDNA alterations may mark sub-clonal selection or adaptive
metabolic responses during therapy resistance or metastasis,
rather than representing initiating events. This framing better
aligns with current evidence and avoids overstating causality
while preserving the potential clinical relevance of mitochondrial
genome adaptation in CRC biology.

3 Molecular evolution and mutation-
driven adaptation in chemoresistant
colorectal cancer

Recent integrative genomic frameworks such as DiffInvex have
illuminated how selective pressures imposed by chemotherapy
dynamically reshape the somatic mutational landscape across
cancer types (32). By leveraging an empirical baseline mutation
rate derived from non-coding DNA, DiffInvex identifies shifts in
positive and negative selection acting on individual genes, providing
a powerful lens for understanding adaptive resistance in metastatic
colorectal cancer (mCRC). Application of this model to over 11,000
tumor genomes across ~30 cancer types revealed that
chemotherapeutic exposure can induce treatment-associated
selection in genes including PIK3CA, APC, MAP2K4, SMAD4,
STK11, and MAP3KI1, each of which contributes to critical
signaling networks governing tumor survival, EMT, and immune
evasion. These findings describe that mutational evolution under
drug stress fosters clonal diversification and heterogeneity, key
hallmarks of chemoresistant tumor phenotypes (32).

In mCRC, actionable genomic alterations such as HER2
amplification, BRAF V600E mutation, NTRK fusions, and MSI-H
status have revolutionized therapeutic precision (33). However, the
majority of CRC-associated mutations remain “undruggable,” and
patients often develop adaptive resistance through secondary
mutations or compensatory pathway activation. Recent evidence
implicates GNAS mutations as potential molecular predictors of
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aggressive disease behavior and therapeutic refractoriness,
highlighting their diagnostic and prognostic significance (34).

Moreover, the RNF43 gene exhibits pronounced mutational
intratumoral heterogeneity (ITH) in both gastric and colorectal
tumors, reinforcing the need for spatially resolved genomic
profiling to accurately capture regional mutation spectra and
therapeutic vulnerabilities (35). Complementary studies have
identified RNF11 as another critical mediator of CRC
progression, functioning through differential mRNA expression
and ubiquitin ligase activity that promote tumor proliferation and
immune escape, thereby representing an emerging therapeutic
target (36).

Adding to this complexity, stromal-tumor crosstalk mediated
by Wnt5a and hypoxia-induced fibroblasts (InfFib) establishes a
pro-tumorigenic microenvironment in colorectal carcinoma.
Wnt5a, expressed by inflammatory fibroblasts under hypoxic
conditions, reinforces tumor angiogenesis suppression through
VEGFRI (Fltl)-dependent pathways and sustains a hypoxic niche
that drives epiregulin production thereby potentiating tumor
growth and metastasis (37). Concurrently, m6A RNA methylation
regulators, including METTL3 and YTHDCI, orchestrate post-
transcriptional control of metastasis-associated transcripts such as
NRXN3, forming a METTL3-YTHDC1-NRXN3 axis that
facilitates peritoneal dissemination of CRC (37, 38).

Collectively, these insights delineate a multifactorial interplay
between mutation-driven selection, epigenetic remodeling,
and microenvironmental adaptation, which together fuel the
evolution of chemoresistance in metastatic colorectal cancer.
Future research integrating spatiotemporal genomics, epigenetic
mapping, and immune landscape profiling will be crucial for
defining actionable vulnerabilities and developing multi-targeted
immunoepigenetic therapies to overcome tumor heterogeneity and
therapeutic resistance.

4 Comprehensive analysis of mtDNA
variants and CRC risk

Mitochondria have prominent implications in the
pathophysiology of diseases neurological ailments include
dementia, other neurodegenerative conditions like Alzheimer’s
disease, Parkinson’s disease and multiple sclerosis (39-50).
However, the mitochondrial contributions to these diseases are
often secondary and not yet fully understood. Neoplastic cells often
exhibit metabolic imbalances, accumulating changes that manifest
in advanced clinical phenotypes. Mitochondrial mutations are
increasingly observed in cancers (44, 51-57), although whether
these mutations are causative or consequential remains a question
and warranted future studies. Severity of mitochondrial ailments is
influenced by ‘biochemical threshold’, a point at which the
proportion of mutant mtDNA exceeds a critical ratio inside the
cells. This threshold can affect multiple tissues or be confined to
specific ones, contributing to the diagnostic and mechanistic
complexity of mitochondrial diseases. In another a few cells,
normal mtDNA could mitigate the effects of mutated variants
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through rescue mechanisms include mitochondrial fission/fusion
(39, 45, 58). Variations in mtDNA content can influence both
metabolic processes and nuclear epigenetic modifications (43, 59-
61). While it is hypothesized that the epigenetic modifications in
mtDNA might be influenced by mtDNA copy number, this remains
to be thoroughly investigated.

At birth, mtDNA is homoplasmic, meaning it is identical across
all cells, though the copy number varies by tissue. With aging,
mtDNA accumulates mutations leading to heteroplasmy, where
cells contain a mix of different mtDNA sequences. This
heteroplasmy influences cellular evolution and impacts disease
severity and subtype (45, 58, 62). Heteroplasmy is altered
depending on tissue type as well as energy requirements. This
highlights the significance of considering both mtDNA sequence
and copy number in cancer studies. Advanced genome sequencing
techniques have increased the detection of heteroplasmy (63, 64),
complicating the distinction between driver and ancillary mutations.
Persistent heteroplasmy generally attributed to the phenotype
instability in dividing cells (65), suggesting a selection pressure
towards homoplasmy even in cancer cells (66, 67). Recent studies
on iPSCs indicate that homoplasmy is crucial for maintaining
pluripotency (68), though it is unclear if the same applies to cancer
stem cells (69). The mtDNA could code quantitative trait loci (QTLs)
which interact with nuclear genome for regulating the intricate
disease process (70-72). It is reported that the phenotypic
alterations in cells are induced due to the intricate interplay of
SNPs, mutations, and environmental factors. While mitochondrial
polymorphisms alone are unlikely to fully explain disease
progression, they do influence disease progression by modulating
gene-gene interactions subsequently alter the tumor
microenvironment. This interaction is crucial since mtDNA is
maternally inherited, yet signals from the tumor microenvironment
can modulate metastasis efficiency. Not all mtDNA SNPs will act as
QTLs for specific phenotypes. Identifying mtDNA mutations as
drivers of cancer has been challenging due to experimental and
technological limitations. In breast cancer studies, mtDNA
mutational burden showed no correlation with survival (73), yet
TCGA datasets have revealed intriguing correlations (66, 67).
Determining definitive cause-and-effect relationships is challenging
due to the presence of numerous copies of mtDNA per cell and the
difficulty in manipulating all these copies simultaneously (45, 74, 75).

Mitochondrial CNVs in metastatic cancers: A few published
reports indicates that mtDNA CNVs are present in various cancers
(47, 51, 76-78). For instance, ovarian cancers often have more than
600 copies, while myeloid cancers have around 90 copies. Increased
mtDNA is evident in the disease conditions such as chronic
lymphocytic leukemia, lung squamous cell carcinoma, and
pancreatic adenocarcinoma; the extent of mtDNA is lesser in the
disease conditions include kidney clear cell carcinoma,
hepatocellular carcinoma, and myeloproliferative neoplasms.
Copy number variants is reported to have a positive correlation
with age of the individuals diagnosed with prostate cancer and
colorectal cancer (76, 79). These findings concluded the complexity
of mitochondrial biogenesis regulation in oncogenesis and
metastasis (69).
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Approximately 35% of colorectal cancer cases are attributed to
inherited susceptibility, with a small fraction due to known genetic
mutations (2, 80). Genome-wide association studies reported
several low-penetrance susceptibility loci correlated to CRC,
demonstrating the role of common genetic variations (3, 5, 81).
Mitochondria are crucial for energy metabolism, ROS generation,
and apoptosis regulation, all of which are involved in cancer
development (82-86). A higher generation of ROS in dividing
tumor cells could cause oxidative stress subsequently fosters DNA
damage, leading to genetic instability (87-89).

Somatic mtDNA mutations are found in several cancer types,
including CRC (90). Although their causal role remains unclear, it is
plausible that variant mitochondrial functions could cause cancer
risk, as suggested by associations with breast cancer susceptibility
(91). A comprehensive evaluation of mtDNA variants and CRC risk
has involved genotyping 132 tagging variants, capturing about 80%
of common mitochondrial variation, in a large case-control study
(24). However, the potential role of low-frequency mtDNA variants
or gene-environment interactions remains a possibility. Future
research should focus on larger sample sizes and incorporate
non-genetic covariates to effectively describe the implications of
mitochondrial variations in CRC. The complex interaction between
nuclear and mitochondrial genomes, along with the influence of
environmental factors, describes the need for integrated studies to
unravel the multifaceted roles of mtDNA in disease progression
and metastasis.

Mitochondria contain extrachromosomal DNA. Mitochondrial
haplogroups, which are defined by unique sets of mitochondrial
single nucleotide polymorphisms (mtSNPs) describes specific
ancestral populations; these are linked to incidence of various
cancers, including breast cancer and nasopharyngeal cancers (92—
95). However, research examining the association between
mitochondrial haplogroups and CRC risk in European and Asian
populations has produced inconsistent results (24, 94, 96). Another
report described the functions of mtDNA in the risk of getting CRC
in several ethnic groups by examining 185 mtSNPs (12). Germline
mtDNA polymorphisms may contribute to cancer disparities.
Implications of germline and somatic mutations and
transcriptional activities of mitochondrial genes using whole-
genome sequencing of 38 tumor types (76). According to this
report (76), MT-ND5 is identified as the most recurrently
mutated electron transport chain gene in diverse cancer types,
while MT-ND4 and MT-COX1 were most commonly mutated in
other cancer types include prostate cancer, lung cancer, breast
cancer, and cervical cancer types respectively. Most mutations
involved a C:G>T:A transition in over 50% of cases (76). Somatic
mtDNA mutations arise early in neoplastic cell lineages and
progressively shift towards homoplasmy over time. This
progression towards homoplasmy could be due to asymmetric
segregation at the time of cell proliferation or the selective
advantage of specific mutations. In subsets of kidney or thyroid
carcinomas lacking identifiable oncogenic drivers, non-silent
mtDNA mutations imply a main role for these mutations. The
selective pressure against truncating mutations in mtDNA-encoded
proteins highlights the critical importance of maintaining an intact
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ETC for the survival of most cancer cells, with notable exceptions in
kidney, colorectal, and thyroid cancers (69, 76).

Furthermore, oncogenes are involved in modulating the
metabolism. For instance, the p53 P72R gain-of-function
mutation could modulate the function of mitochondrial PGClo,
which could cause poorer cancer prognosis (97-100). Additionally,
c-Myc is involved in the mtDNA fragmentation (101). This raises
questions about whether oncogenes can modulate tumorigenesis
with the involvement of mtDNA mutations or SNPs; it is crucial to
explore whether combination effects of mtDNA as well as nuclear
DNA QTLs involved in susceptibilities to cancer and metastasis.
Mutations in mtDNA vary in frequency and location across
different cancers; prostate cancer and colorectal cancers exhibiting
the highest mutation rates, while heme malignancies generally
exhibit minimal mutation rate (67). It is crucial to examine the
influence of selective advantage of specific mtDNA mutations for
CRC risk? and other tissue-specific alterations in mitochondrial
DNA mutations for mediating oncogenesis or metastasis of
chemoresistant CRC. Finally, the implications of germline
mutations in mitochondrial DNA in specific to SNPs could
explore the racial disparities in the oncogenesis and metastasis of
CRC. For instance, a few previous reports described the relative risk
associated with mitochondrial DNA haplotypes as described in
Table 1 (69).

As discussed in the above, alterations in the mtDNA genome
could cause CRC risk. Recent reports described the association of
mtDNA variants with canonical haplotypes in CRC risk, for
instance, the variants that capture 79% of all polymorphic
variants with a minor allele frequency (MAF) >1% and 92% of
variants with MAF >5% (24). Post hoc analyses suggested a stronger
association between the A5657G variant and colon disease, instead
of rectal disease, and a link between microsatellite instability (MSI)
in CRC and the T4562C variant. Tumor hypoxia, which impairs the
DNA mismatch repair system by downregulating MMR genes like
MLH1, might explain these findings. Since A5657G is non-coding
and T4562C is synonymous, their effects are likely indirect, possibly
mediated by untyped SNPs (24, 102-104). The lack of consideration
for mtDNA heteroplasmy in CRC yet requires future studies. A
previous report examined whether common mtDNA variations
influence CRC risk by genotyping 132 tagging mtDNA variants in
2854 CRC cases and 2822 controls, covering about 80% of common
mtDNA variation (excluding the hypervariable D-loop). The
strongest association in single marker tests was with A5657G
individuals. Examining the cohorts by segregating into the
nine common European haplogroups and comparing their
distribution in cases and controls also showed no evidence of
association between mtDNA genome variations and risk of CRC
development but this association is yet to be proven in the
chemoresistant metastatic CRC (24).

Future research directions should focus on exploring the
functional impacts of low-frequency mtDNA variants and
heteroplasmic mutations. Advanced sequencing technologies and
larger cohorts will enhance the resolution of such studies.
Investigating the interaction between mitochondrial and nuclear
genomes, and how these interactions contribute to cancer
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TABLE 1 Overview of mitochondrial genetic variants, haplogroups, and their association with colorectal cancer (CRC) risk across populations (12).

Genetic variant/  Genomic

Population

Relative risk

. . Key findings
Haplogroup location studied (RR) y 9
mtSNP1 Region A European 1.2 No significant association with overall CRC risk | (24)
X R Inconsistent association results across

mtSNP2 Region B Asian 0.9 . Rk (24, 94)
independent studies
Potential positi lati ith i d

mtSNP3 Region C African American 1.5 otentia POS,I 1'v'e corretation with increase (96)
CRC susceptibility

Haplogroup A mtSNP1, mtSNP2 European 1.3 Elevated CRC risk in specific genetic subgroups | (92, 95)
S ted tecti ffect inst CRC i

Haplogroup B mtSNP3, mtSNP4 Asian 0.8 uggested protective eflect agains HLSOME 9, 95)
cohorts
Hi CRC predispositi b d in Afri

Haplogroup C mtSNP5, mtSNP6 African 1.7 1gherA predisposttion observed tn Alrican (85, 88)
populations

mtSNP: mitochondrial DNA single nucleotide polymorphism. A variant such as mtSNP1 (T14470C) means that at mitochondrial DNA position 14470, thymine (T) is replaced by cytosine (C)

representing one of the mtSNPs potentially associated with colorectal cancer susceptibility.

progression under different environmental conditions, will be
crucial. Additionally, longitudinal studies assessing mtDNA
variation and heteroplasmy changes over time in cancer patients
could provide insights into their roles in cancer progression and
response to therapy (24).

Mitochondrial mutations, SNPs and colorectal cancer in
specific populations: A previous report described the functional
role of mitochondrial genome pertinent to CRC risk among 14,383
colorectal cancer cases and controls (12). This research
systematically evaluated mitochondrial genome, and its pathways,
gene sets, as well as implications of haplogroups across various
maternal racial and ethnic groups in relation to CRC (12). This
pathway analyses suggested a main role of mitochondrial genome as
well as OXPHOS pathway in CRC risk in European Americans.
Specifically, authors identified an association between the MT-ND2
gene with the risk of acquisition of CRC in European Americans,
with a more pronounced correlation observed in colon cancers (12).
Furthermore, haplogroup T is involved in the CRC risk among
European Americans irrespective of global ancestry race. Thus,
functional implications of the identified mitochondrial mutations
related to CRC risk was described. For example, variations in MT-
ND2 gene, which encodes a subunit of NADH dehydrogenase
(Complex I), could potentially disrupt electron transport and
increase ROS production, contributing to CRC pathogenesis.
Another report described the overexpression of MT-ND2 in CRC
tissues than normal tissues which has correlation with reduced
mtDNA D-loop methylation, and correlated to stages of CRC
pathogenesis (21, 105, 106). This report described the functional
aspects of MT-ND2 in the development of CRC.

Additionally, the OXPHOS pathway’s involvement in CRC
underscores the importance of mitochondrial bioenergetics in
cancer development (12). Haplogroup T’s association with CRC
risk suggests that inherited mitochondrial variations can influence
cancer susceptibility. This finding aligns with previous research
showing that certain mitochondrial haplogroups are linked to
metabolic traits and disease risks. These insights into the
mitochondrial genome’s contribution to CRC risk pave the way
for future research to understand the complex interplay between
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mitochondrial genetics, cellular metabolism, and cancer. Further
studies are needed to explore the mechanistic pathways through
which mitochondrial variations influence metastatic CRC
development and to explore potential therapeutic targets within
the mitochondrial genome (12).

For instance, the distribution of mitochondrial haplogroups within
the Multiethnic Cohort Study (MEC) aligns with previously reported
data pertinent to U.S. population-based samples, corroborating existing
population genetics research (107). Specifically, the prevalence of
haplogroup T among European American controls (9.57%)
corresponds with findings from the Mitomap database, which
indicates a frequency range of 8% to 11% across Western to Eastern
European populations, as well as with data from non-Hispanic Whites
in the National Health and Nutrition Examination Surveys (NHANES),
which reports a similar frequency of 9.6% (107, 108). Previous studies in
Chinese and Scottish cohorts did not find associations between mtDNA
haplogroups and incidence risk of CRC (24, 94). However, an
association was noted between haplogroup B4 with the incidence risk
of CRC risk in Korean patient cohort (12, 96). Another report described
a correlation between haplogroup T with the incidence risk of CRC risk
in European Americans, independent of overall genetic ancestry (12).
Haplogroup T is distinguished by a set of 9 polymorphisms (109, 110),
which include a total of 5 RNA variants (G709A, G1888A, T8697A,
T10463C, G15928A), three synonymous mutations (G13368A,
G14905A, A15607G), as well as one nonsynonymous mutation
(A4917G). Mutation A4917G, which serves as defining marker for
haplogroup T, is a conserved polymorphism within the MT-ND2 gene
(95, 109, 110).

In the Scottish cohort, an analysis of 132 mtSNPs revealed no
overall CRC risk association, though the A5657G variant in tRNA,
with a minor allele frequency (MAF) of 0.01, was linked to colon
tumors (24). The implications of SKAT common/rare approach,
which enhances power by collectively testing multiple risk alleles
with modest effects, addressing the limitations of single SNP tests,
especially in the context of correlated SNPs and the need to balance
the influence of rare variants (12, 111-114).

Most of the existing research focuses on mutations within the
coding regions of mtDNA. A previous report found no significant
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overall correlation between mitochondrial haplogroups and CRC
risk (24). However, they identified an association between the
A5657G mutation in the non-coding region located between mt-
tRNAAla and mt-tRNAAsp and the incidence of colorectal cancer,
as opposed to rectal cancer. Furthermore, a synonymous mutation
in the MT-ND2 gene (T4562C) was associated with microsatellite
instability in CRCs, indicating a potential role in cancer
pathogenesis (24).

Research involving mitochondrial-nuclear exchange (MNX)
mice has provided crucial insights, building on Ishikawa’s
pioneering work with cybrids, which demonstrated the influence
of mitochondrial transfer on metastasis (115-117). Mutations in the
mtDNA, particularly those disrupting complex I, such as the
insertion mutation 13885insC in the MT-ND6 gene, have been
shown to increase ROS production and enhance metastatic
potential (115, 118). These mtDNA alterations were also found to
upregulate the expression of genes involved in glycolysis and
metastatic processes (118). Furthermore, specific mutations in the
MT-ND6 (C12084T) and MT-ND5 (A13966G) genes were linked
to increased metastatic activity, as exemplified by the MT-ND6
mutation, which heightened invasiveness in A549 lung cancer cells
(117, 119). Additional mutations in NADH dehydrogenase genes,
including “T3398C, T12338C, C3689G, G3709A, G3955A, T10363C,
CI11409T, GI13103A, and TI14138CC” in MT-NDI, as well as
“G12813A, G13366A”, and a premature truncation 14504delA in
MT-ND5 or MT-ND6, were involved in mediating distant
metastasis (118, 120, 121). Two SNPs in MT-ND1 (C3497T and
T3394C) were particularly noteworthy, suggesting that ancestral
genetic differences might influence the cancer pathogenesis (118,
122). The association between various mtDNA haplotypes and the
predicted risk of different cancers. Each row corresponds to a
specific mtDNA haplotype (Tables 2, 3), defined by unique
polymorphisms, and details the relevant mutations within
mitochondrial genes.

Further evidence from studies on MNX mice indicated that
mtDNA SNPs in the stroma could impact metastatic potential,
paralleling findings of the T3394C mutation’s role in adjacent
mucosal tissues in non-small cell lung cancer and colon tumors,
pointing towards inherited susceptibilities to metastasis (118, 122).
The metabolic shift from OXPHOS to glycolysis, accompanied by
enhanced heteroplasmy, has been observed in invasive versus non-
invasive breast cancer cells (122). However, this metabolic
reprogramming is not universally described in different
carcinoma types, suggesting variability in mitochondrial
involvement (79, 123).

The role of mitochondrial antioxidants, particularly
mitochondrial catalase (mtCAT), has also been emphasized in
metastasis regulation. mtCAT has been shown to decrease
macrophage infiltration and reduce the number of CD34+
endothelial cells, implying a suppression of angiogenesis, which is
critical for tumor progression and metastasis (124, 125). This
highlights the complex interplay between mitochondrial function,
oxidative stress, and cancer progression, underscoring the need for
further exploration into mitochondrial genetics and its impact on
metastatic colorectal cancer biology (69).
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TABLE 2 Mitochondrial DNA (mtDNA) mutations and polymorphisms
identified in colorectal cancer (CRC) cohorts (69).

. . Mutation
Mitochondrial / :
Cancer Polymorphism

gene (Gene
type (mtDNA

symbol) "

position)

Colorectal MT-ND6 T14470C (24)
Colorectal MT-ND1 C3497T (24)
Colorectal MT-ND1 T3394C (24)
Colorectal MT-ND5 G12630A (24)
Colorectal MT-TT G15928A (24)
Colorectal MT-CO1 C6371T (24)
Colorectal MT-ND5 T14138C (118, 120, 121)
Colorectal MT-ND1 C3689G (118, 120, 121)
Colorectal MT-TR T10463C (118, 120, 121)
Colorectal MT-ND1 G3955A (118, 120, 121)

All mitochondrial genes (MT-ND, MT-CO, MT-T, and MT-R) encode components of the
respiratory chain or mitochondrial translation machinery implicated in altered oxidative
phosphorylation (OXPHOS) efficiency in CRC. MT-ND1, mitochondrially encoded NADH
dehydrogenase subunit 1; MT-ND2, mitochondrially encoded NADH dehydrogenase subunit
2; MT-ND5, mitochondrially encoded NADH dehydrogenase subunit 5; MT-ND6,
mitochondrially encoded NADH dehydrogenase subunit 6; MT-CO1, mitochondrially
encoded cytochrome ¢ oxidase subunit 1; MT-TT, mitochondrial tRNA-Thr; MT-TR,
mitochondrial tRNA-Arg; D-loop, displacement loop (non-coding control region).

The SNP A4917G in the T haplogroup was associated with risk
of CRC incidence in a diverse population, but specific references for
this SNP need to be verified separately. These Tables 2, 3 summarize
the identified mtDNA mutations and polymorphisms associated
with colorectal cancer based on the referenced studies. Each entry
includes the cancer type, specific gene affected, mutation/
polymorphism, and corresponding references (69). According to
this report (69), In a study involving 2,453 cases of colorectal cancer
and 11,930 control subjects, mtDNA-SNP of A4917G emerged as
the most significant variant associated with cancer risk. This SNP,
located within the T haplogroup, was identified across a diverse
cohort, including American men and women of Asian, African,
European, Latino, or Native Hawaiian descent (12). The presence of
A4917G was correlated with a greater risk of acquiring CRC,
suggesting a potential role in disease pathogenesis. Additionally,

TABLE 3 Predicted colorectal cancer (CRC) risk based on mitochondrial
haplotypes and associated mtDNA variants.

Mutation/

Mitochondrial
gene/Region

Cancer
type

Polymorphism
(Functional
annotation)

Non-codi 1 A -codi i
Colorectal o'n coding control 5§57G (non-coding region @4)
region (D-loop) variant)
T4562C
Colorectal ~ MT-ND2 2C (synonymous (24)
substitution)

Predictive haplotype-based models suggest that both coding and non-coding mtDNA variants
may modulate CRC susceptibility through effects on mitochondrial transcription, replication,
and metabolic regulation.
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the G4655A SNP was reported with a heightened risk of CRC
specifically in European-Americans. However, this association was
not observed consistently across the broader population, indicating
a possible interaction with nuclear genetic factors or environmental
influences that modulate the impact of this mtDNA variant. Such
differential risk profiles describe the complexity of mtDNA-nuclear
DNA interactions and their influence on cancer susceptibility.
Further research into these interactions could demonstrate the
underlying mechanisms by which mtDNA variations contribute
to colorectal cancer risk and offer insights into personalized risk
assessment and targeted interventions (69).

Eight specific SNPs (A16163G, C16186T, T16189C, C16223T,
T16224C, C16295T, T16311C, T16519C) showed significant
differences between CRC patients and controls, indicating that
these SNPs might increase CRC risk or be in linkage
disequilibrium with other functional SNPs contributing to cancer
risk. Notably, a thymine-to-cytosine transition at position 16519
(T16519C) was found in 70% of CRC samples (126). This variant,
located in the tRNAVal region, may lead to metabolic impairment
and resistance to apoptosis, potentially worsening the prognosis for
CRC patients. Previous studies have associated the T16519C SNP
with increased risk for breast cancer and poorer outcomes in
pancreatic cancer (91, 127). Despite its frequent occurrence in
healthy controls (43%), the crucial functions of this mutation
remains unclear and warrants further investigation (126).

Mitochondrial D-loop/ND genes mutations and colon cancers:
Mutations in D-loop can influence mtDNA transcription, leading to
mitochondrial dysfunction and potentially contributing to cancer
initiation and progression (128). Elevated ROS levels can have
deleterious effects, including apoptosis induction and genomic
damage, and can alter cellular fates, shifting from apoptosis to
necrosis, which in turn influences nuclear DNA mutations, cell
division, and tumor growth. Whether mtDNA variations are
causative factors or secondary results of the neoplastic process
remains an open question. Given the multifactorial nature of
cancer and the critical role of mitochondria in ROS production
and apoptosis regulation, further exploration into mtDNA D-loop
variations in cancer patients is essential (126). D-loop mutations
result in a reduced mtDNA copy number or altered mitochondrial
gene expression (Figure 1), thereby disrupting mitochondrial
metabolism and the oxidative phosphorylation pathway. The
exact role of these mutations in cancer progression is still under
investigation; however, there is a consensus that mtDNA mutations
are valuable cancer biomarkers (126, 129-134). Specifically,
mutations within mtDNA displacement loop (D-loop) region
have been identified in colorectal and gastric cancers (135)
(Figure 1). This non-coding region has also been implicated in
other malignancies, including lung, colon, ovarian, liver, and breast
cancers (136-138). The investigation of mtDNA mutations offers a
promising avenue for early cancer diagnostics, as these mutations
can serve as potential biomarkers (139). Human mtDNA consists of
a 16,569-base pair circular DNA encodes 13 polypeptides essential
for the OXPHOS system, along with 12S and 16S rRNA and 22
tRNAs crucial for mitochondrial protein synthesis. D-loop, a critical
noncoding region, regulates the replication as well as transcription
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of mtDNA and contains numerous common polymorphisms,
especially within its highly variable segments (140). Spanning
1,124 base pairs (nucleotides 16,024 to 576), D-loop includes
hypervariable regions HV1 (16,024-16,383) and HV2 (57-372),
which serve as promoters for both the heavy (guanine-rich) and
light (cytosine-rich) strands of mtDNA. These regions are
particularly prone to mutations in various cancers (136).

Akouchekian et al. (126) analyzed mutation rate within the D-
loop in CRC by sequencing mitochondrial control region in 40 CRC
patient samples (20 females and 20 males) and comparing them
with 150 normal control samples (79 females and 71 males).
According to study, a high degree of polymorphism in mtDNA
among individuals, with CRC patients exhibiting a higher frequency
of variations in the D-loop region compared to controls was
evident. Thirteen novel polymorphisms, not previously cataloged
in the mitochondrial database (Mitomap), were identified,
suggesting a potential link between these mtDNA variations and
nuclear DNA mutations in CRC (126). Previous research has
demonstrated a link between mtDNA mutations and several
cancer incidences in human beings (135, 141, 142).

Mitochondria modulate OXPHOS pathway, which comprises
complexes I to V. mtDNA possess seven subunits of complex I such
as NDI, ND2, ND3, ND4L, ND4, ND5, and NDG6; it also composed
of a single subunit of complex III viz., cytochrome b (CYTB), as well
as three subunits of complex IV viz., cytochrome ¢ oxidase (CO) I,
I1, and III (118). Complex I is large and mediate proton-pumping
NADH oxidoreductase activity, transferring electrons from NADH
to ubiquinone (143, 144). The structure of Complex I includes a
peripheral arm that extends perpendicularly to the membrane arm.
This peripheral arm is divided into two main sections: distal PD
module, composed of ND5 and ND4 subunits, and the proximal PP
module, which includes the ND2, ND4L, ND6, ND3, and ND1
subunits to facilitate electron transfer pathway. ND1 subunit,
confined to the proximal end, acts as a docking site for the Q
module. Complex I is essential for the respiratory chain, playing a
critical role in maintaining the NAD+/NADH ratio, regulating ROS
levels, generating the mitochondrial membrane potential, as well as
producing ATP. Malfunctions in Complex I are often linked to
various mitochondrial diseases (118, 145-147).

Mutations in ND genes have profound effects on the malignancy of
cancer cells, particularly in invasion and metastasis (146). Research has
revealed that ROS-generating mtDNA mutations in ND6, such as
G13997A and 13885insC cause higher metastasis in cancers (115, 117).
This marked the initial discovery of pathogenic mutations associated
with ND genes that driving metastasis (115, 117). Subsequent studies
have validated these findings; for instance, the ND5 G13289A mutation
has been shown to increase ROS production, invasion in human lung
cancer cells (148). Similarly, studies in xenograft models, ND3
G10398A mutation has been observed to increase invasion as well as
metastasis in human breast cancer cells, while ND6 missense as well as
nonsense mutations exhibit similar effects in vitro (119, 149).
Furthermore, ND6 gene mutations have been linked to lymph node
metastasis in lung adenocarcinoma patients (119).

While some research suggests that increased complex I activity
might reduce breast cancer metastasis (150), the connection
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The mtDNA methylation role was
reported in neurodegenerative
diseases but the role of ND region

mutationsin OXPHOS and
chemoresistant CRCs (?) yet
require future studies

coll

ATPaseb
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FIGURE 1

mtDNA genome consists of 16,569 base pairs associated D loop. This genomic structure contains three essential transcription promoters: the heavy
strand promoter 1 (HSP1), responsible for transcribing the two ribosomal RNA genes, HSP2, which drives transcription of the remaining genes on
the heavy strand, and the LSP, which manages the transcription of the light strand. The mtDNA encodes 13 essential structural genes, 22 transfer
RNAs (tRNAs), and two ribosomal RNAs (rRNAs), crucial for mitochondrial function and cellular energy production. These regions are subject to
investigation in studies focused on DNA methylation patterns, particularly in the context of neurodegenerative diseases. Notably, research has
examined both global and region-specific DNA methylation (5-methylcytosine, 5-mC) and hydroxymethylation (5-hydroxymethylcytosine, 5-hmC)
profiles within mtDNA (17). These epigenetic modifications have been assessed in various tissues obtained from patients with neurodegenerative
conditions but these mutations role in the ND regions and their methylation yet to be examined for their potential role in OXPHOS and the
progression of chemoresistant colorectal cancers. Abbreviations: COI to COIll: complex | to complex IV.

between decreased complex I activity and metastasis remains
ambiguous. The study of ND gene mutations is complicated by
their random occurrence in cancer cells and the varied impacts on
complex I activity. This study (118) aims to predict the
pathogenicity of ND gene to explore their correlation to distant
metastasis of CRC cancers (118).

A previous study (118), described that nonsynonymous single-
nucleotide variants (SN'Vs) and SNPs in ND genes of NSCLC and
colon cancer. Candidates likely to reduce complex I activity were
selected based on Grantham value, evolutionary conservation, as
well as protein structure and indicated a significant association
between these SNVs and SNPs with distant metastasis (118).

ND6 13885insC mutation, in particular, has been shown to
foster metastasis in low-metastatic cells. P29mtB82M cells with this
mutation exhibit lower complex I activity, higher ROS production,
and greater lung-colonizing ability compared to P29mtP29 cells
with wild-type mtDNA (115, 118). P29mtB82M cells possess higher
spontaneous metastatic potential, forming more metastatic foci. In
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this scenario, upregulation of metastasis-related genes such as
Mmpll, Plaur, Ccl7, c-Myc, K-ras, Cd44, and VEGF-A (118).
The mutation induced a shift towards enhanced
aerobic glycolysis (146), upregulating genes encoding for
proteins include Glutl, hexokinase 1, phosphoglycerate kinase 1,
and phosphofructokinase 1, while suppressing pyruvate
dehydrogenase kinase 1. HIF-la levels were upregulated which
contributing to resistance against severe hypoxia. These changes
suggest that the ND6 13885insC mutation enhances metastasis by
stimulating metastasis-related genes, as well as metabolic
reprogramming, tumor angiogenesis (118, 151, 152). Elevated
expression of genes related to metastasis include Mmpl11, Plaur,
Ccl7, Kras, Myc, CD44, and VEGF-A. MMP11 and Plaur play roles
in degrading the extracellular matrix (153, 154), while Ccl7 recruits
tumor-associated macrophages, enhancing malignancy (155-157).
Kras and Myc contribute to increased malignancy (158-160),
whereas CD44 denotes a marker for cancer stem cells associated
with metastasis (161). VEGF expression was higher in P29mtB82M
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cells, promoting tumor angiogenesis. Interestingly, upregulation in
metastasis suppressor gene Mtssl was evident whereas other
metastasis enhancer genes Pnn, Lpar6, and Fxdy5 exhibited low
expression, yet metastasis ability is more. Enhanced glycolysis and
downregulation of PDK1 suggested increased acetyl-CoA
generation. Increased HIF-1o. expression in P29mtB82M cells
likely led to upregulation of VEGF-A and glycolytic enzyme
genes, contributing to hypoxia resistance and metastasis. These
phenotypic changes collectively result in higher distant metastasis
in P29mtB82M cells (118, 162).

As we discussed above, mtDNA related mutations occur
randomly, leading to variability in each cancer cell. Despite this
randomness, pathogenic missense as well as nonsense mutations in
ND genes found to be crucial for distant metastasis (115, 117, 118,
149, 150). The study report by Nobuko Koshikawa et al. (118)
sequenced genes such as ND1, ND2, ND3, ND4L, ND4, ND5, and
ND6 in tissues from 45 primary NSCLC tumors and 37 brain
metastases, as well as 22 primary colon cancer tumors and 11
distant metastases. They identified 51 somatic mutations which
include a total of 22 nonsynonymous and 29 synonymous type, with
a higher mutation frequency in ND6 compared to other ND genes.
These mutations appeared as overlapping peaks (heteroplasmy) or
single peaks (homoplasmy) on electropherograms, with
homoplasmy being less prevalent in metastatic lesions (118).

4.1 ND gene mutations and colorectal
cancer metastasis

Thus, ND gene mutations are predominantly associated with
metastasis experimentally (115, 117, 118, 149, 150). Nobuko
Koshikawa et al. (118) described pathogenic SNVs as well as
SNPs in ND genes, indicating involvement of complex I
deficiency in metastasis and selected 12 SNVs as well as 2 SNPs.
Furthermore, according to evolutionary conversation studies, SNPs
T3394C and SNVs T3398C, G3709A, T10363C, C11409T, T12338C,
G13103A, and T14138C involve conserved amino acid mutations.
SNPs T3394C and C3497T and SNV T3398C are linked to
mitochondria-related diseases. SNP C3497T and SNVs C3689G,
G3709A, and G3955A may cause conformational changes in the
ND1 protein, affecting complex I activity (143, 144) (Table 4).
Complex IIT transfers electrons and generates ROS (163, 164), so its
dysfunction may cause more severe oxidative stress than complex I.
Dysfunctions in complexes IV and V mitigate generation of ATP.
Complex I dysfunction produces moderate ROS levels, promoting
cell proliferation and survival, thereby favoring cancer cell
metastasis (165). Homoplasmic states are observed to be
minimally prevalent in cancer cells undergoing metastasis,
possibly due to the pathogenic nature of heteroplasmic mutations
(122, 145). The heteroplasmic state correlates with breast cancer
invasion (118).

By selected SNVs and SNPs across ND genes, Nobuko
Koshikawa et al. (118) described a profound interlink with distant
metastasis in NSCLC and colon cancer. However, this association is
based on presumed pathogenicity and requires confirmation by
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examining each mutation’s impact on complex I activity as well as
the production of ROS. Pathogenic ND gene mutations likely
influence metastasis across various cancer types. Complex I
subunits are encoded by 44 genes confined to mtDNA and
nuclear DNA, with mutations in 21 nuclear genes decreasing
complex I activity, potentially affecting metastasis. Establishing a
novel experimental system to study the impact of ND gene
mutations on metastasis in various cancer cells is essential,
aiming for advanced therapies and precise cancer prognosis pf
CRCs (117, 119, 148, 149, 166, 167).

In summary, according to these reports, ND gene mutations
impact distant metastasis in NSCLC and colon cancer. ND6
13885insC mutation enhances metastasis by reprogramming
energy metabolism, upregulating metastasis-related genes, and
enhancing tumor angiogenesis (Table 4). A previous report
identified pathogenic ND gene SNVs and SNPs associated with
distant metastasis. Future studies warranted to provide insight into
ND gene mutations’ role in cancer metastasis and suggests novel
therapeutic targets (118).

5 Mitoepigenetics and metastatic
colorectal cancer: advancing
investigations

Mitochondria, pivotal for cellular metabolites and energy,
frequently exhibit varied dysfunctions in cancers, including CRC.
Long-established Warburg effect characterizes cancer cells,
emphasizing glycolysis and oxidative metabolism dysregulation,
yet CRC uniquely relies on mitochondrial OXPHOS as its
primary energy source. In addition, extent of mitochondria in
CRC tissues surpasses that in normal colon mucosa, underscoring
mitochondria’s critical, albeit unclear, role in CRC progression
(168, 169).

Mitochondria possess their genome encoding 13 polypeptides
crucial for electron transport chain and ATP synthase. Variations in
mtDNA copy numbers correlate closely with various cancers:
decreased in gastric, breast, hepatocellular, NSCLC, and renal cell
carcinoma, yet increased in CRC (170-174). Recent studies
implicate mtDNA depletion via TFAM mutation in fostering
tumor progression as well as cisplatin resistance in microsatellite
instability (MSI) CRC, with implications yet to be fully explored in
microsatellite stable CRC (175) (Table 4). This study systematically
explores how altered mtDNA copy numbers functionally affect MSS
CRC progression, demonstrating that increased mtDNA promotes
cell survival and metastasis via enhanced mitochondrial OXPHOS,
suggesting novel therapeutic targets (30, 176-180).

OXPHOS predominantly generates cellular energy, with
mtDNA encoding ETC components crucial for its function (187).
CRC studies reveal increased mtDNA copy numbers, notably in
early stages, implicating mtDNA in CRC initiation (181-183). A
few other reports demonstrating that elevated mtDNA promotes
MSS CRC cell survival, proliferation, and metastasis in vitro and in
vivo (184-186). This contrasts with MSI CRC, where lower mtDNA
levels correlate with increased glycolysis and chemoresistance (175).
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TABLE 4 ND (NADH dehydrogenase/Complex I) gene mutations gene mutations, metastatic phenotype, mechanisms, and contribution to colorectal cancer metastasis.

Cancer type

Non-small cell lung cancer
(NSCLC) & Colon cancer
(clinical associations)

ND gene mutation(s)

Multiple pathogenic SNVs and SNPs across ND
genes (12 SNVs + 2 SNPs selected by Koshikawa
et al; examples: T3394C, T3398C, G3709A,
T10363C, C11409T, T12338C, G13103A,
T14138C, C3497T, C3689G, G3955A)

How it induces/associates with metastasis

Complex I deficiency — altered electron transport and
moderate ROS production — ROS signaling (sub-lethal)
promotes proliferation, survival, and metastatic traits;
heteroplasmy may favor invasion. Association reported
clinically with distant metastasis in NSCLC and colon cancer,
but causality requires functional validation.

How specific mtDNA mutations
contribute to CRC metastasis

Many of these ND variants are postulated to reduce
Complex I activity (via conserved aa changes or
conformational impacts), producing signaling ROS that
can promote metastatic programs (migration, invasion,
EMT-like phenotypes) and correlate with distant
metastasis in clinical cohorts. Functional confirmation
for each variant (activity, ROS output) is needed.

(115, 117, 118, 149, 150)
(122, 145)

Colorectal cancer (CRC) -
specific ND6 mutation

Colorectal (general) -
conserved/disease-linked ND
variants

Multiple cancer types
(mechanistic context)

Colorectal cancer - mtDNA
copy number/mito-epigenetics
(contextual contribution to
metastasis)

Broad mechanistic comparison
(other complexes)

ND gene mutations and, their experimentally observed associations with metastasis (including NSCLC and colorectal cancer), proposed mechanisms, and how specific mtDNA changes contribute to CRC metastasis. aa: amino acid.

ND6 13885insC (frameshift/truncating event)

T3394C, C3497T, T3398C, G3709A, C3689G,
G3955A, T14138C, etc. (conserved aa or disease-
linked SNP/SNVs)

Heteroplasmic vs homoplasmic ND mutations
(heteroplasmy common in metastatic cells)

(Not ND-gene specific) 1 mtDNA copy number;
TFAM loss/depletion (mtDNA depletion in some
contexts)

Complex I ND mutations vs Complex III/IV/V
dysfunction

Reprograms cellular energy metabolism, upregulates
metastasis-related gene expression, promotes angiogenesis and
invasive phenotypes resulting in enhanced metastatic potential
in experimental models.

Conserved amino-acid altering variants and SNVs can change
NDI1/ND subunit conformation — reduced Complex I
efficiency — altered ROS/bioenergetic signaling that favors
metastatic phenotypes (proliferation, survival).

Heteroplasmy of pathogenic mtDNA variants often correlates
with invasive behavior (heteroplasmic mutations provide a
dynamic range of mitochondrial dysfunction that can be
selected during progression); homoplasmy of strongly
pathogenic variants is rare in metastasis due to deleterious
effects.

Increased mtDNA content enhances OXPHOS capacity and
supports metastatic phenotypes in MSS CRC; conversely,
TFAM-mediated mtDNA depletion can promote progression
and chemoresistance in MSI CRC — illustrating that mtDNA
quantity and regulation modulate metastatic potential via
metabolic reprogramming.

Complex I dysfunction — moderate ROS that promote
proliferation/survival (pro-metastatic). Complex IIT dysfunction
— higher ROS and more severe oxidative stress. Complex IV/
V defects — ATP reduction and different downstream effects.

Direct experimental evidence indicates this ND6
insertion increases metastatic behavior of CRC cells by
shifting metabolic flux toward supportive pathways for
invasion and by inducing pro-angiogenic and pro-
invasive transcriptional programs.

In CRC these conserved ND variants are hypothesized
to impair Complex I, generating signaling ROS levels
that support tumor cell survival and dissemination;
several (e.g., C3497T, C3689G, G3709A, G3955A) may
cause conformational changes in ND1 impacting
activity. Functional readouts remain necessary.

Heteroplasmic ND variants in CRC may permit sub-
lethal Complex I dysfunction and adaptive ROS
signaling that promote metastasis, whereas fixation
(homoplasmy) of strongly deleterious variants is
selected against in metastatic clones.

In MSS CRC, elevated mtDNA promotes cell survival,
OXPHOS dependence, and metastasis (in vitro and in
vivo). Thus, ND gene mutations act within an mtDNA-
quantity and mitoepigenetic landscape that can amplify
or modulate their pro-metastatic effects.

ND (Complex I) mutations in CRC are specifically
implicated in generating a pro-survival ROS milieu that
can drive metastasis, particularly when combined with
increased mtDNA/OXPHOS reliance in CRC cells.

(118)

(143, 144) (118)

(118, 122, 145)

(168, 169) (170-175)
(30, 176-186)

(163, 164) (165)
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Differential mtDNA content may underpin these metabolic
differences, necessitating further mechanistic studies (188) (30).

Mitochondria’s modest 13-gene genome contrasts with over
2000 proteins influencing diverse functions, including miRNAs
originating from mitochondria (mitomiRs), regulating nuclear
mRNA translation and cell phenotype (189-194). Xiacheng Sun
et al. (30) described decreased mitochondrial COXIV-1 in CRC
adenomas, crucial for mitochondrial-encoded complex IV and V
regulation, affecting oxidative phosphorylation and ATP
production (195, 196). Notably, miR-210 targets COX10, linking
mitomiRs to CRC pathogenesis (197). Understanding these
pathways aids in clarifying colorectal adenomatous polyps’
clinicopathological characteristics and early detection strategies
(198). For instance, CRC pathogenesis involves mutations in
tumor suppressor (e.g., P53, APC) and oncogenes (e.g., KRAS),
regulated post-transcriptionally by miRNAs, influencing diverse
cancer pathways (197, 199-204). MitomiRs, such as miR-21, miR-
210, are implicated in ROS regulation, critical in CRC due to
mitochondrial ROS production during oxidative phosphorylation
(205-207). Mitochondrial gene expression changes during
adenoma-carcinoma progression, with age-related accumulation
of dysfunctional mitochondria contributing to CRC pathogenesis
(206, 207). Studying mitomiRs (e.g., miR-24, miR-181, miR-210,
miR-21, miR-378) across colorectal adenomatous polyps reveals
varied expression patterns correlating with tumor architecture and
progression, suggesting their regulatory roles in mitochondrial
functional pathways (201, 204, 208-211).

In conclusion, mitoepigenetic studies demonstrate
mitochondrial dynamics’ pivotal role in CRC evolution from
adenomatous polyps to adenocarcinomas, urging further
investigation into these intricate pathways for therapeutic and
diagnostic advancements.

The impact of demethylation of D-loop region of mtDNA on
mtDNA copy number, cell cycle progression, apoptosis, and cell
proliferation in CRC remains uncertain (212). For instance, 5-AZA
acts by irreversibly inhibiting DNA methyltransferases once
incorporated into DNA, a mechanism predominantly utilized in
treating hematologic malignancies and potentially applicable to
other cancer types, including CRC (213). Numerous studies have
indicated that 5-AZA can lead to reduced cell viability and a higher
apoptotic rate in different CRC cell lines (214-219). Variations in
results across studies might be attributed to differences in
incubation periods and 5-AZA concentrations. For instance,
Mossman et al. observed cell death in SW480 cells after a 72-hour
incubation with 15 uM 5-AZA, whereas HCT116 cells did not
exhibit cell death under the same conditions (218). Furthermore,
zebularine, a similar DNA methyltransferase inhibitor, was found to
stimulate Colo-205 cell growth at concentrations above 45 puM
(218). Consequently, relatively minimal concentrations of 5-AZA
(up to 10 uM) used for 24 hours in this study which has not induced
a strong inhibition on CRC cells (219). Treatment of Colo-205 and
Lovo colorectal cancer cells with 5 uM 5-AZA revealed notable
alterations in mitochondrial and cell cycle dynamics. In Colo-205
cells, increased cell viability, delayed GO/G1 phase progression,
minimal apoptosis, and elevated mitochondrial DNA (mtDNA)
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copy numbers were observed, while Lovo cells exhibited enhanced
proliferation and mtDNA content following similar treatment.
These findings suggest that elevated mtDNA levels may drive
metabolic adaptation, providing the additional energy required
for accelerated proliferation. Consistent with previous studies
showing that mtDNA depletion impairs growth in breast and
glioblastoma cells (220-223), the current observations imply that
mtDNA abundance is closely linked to proliferative capacity. The
extended GO/G1 phase in Colo-205 cells likely reflects an increased
demand for mtDNA synthesis preceding genomic DNA replication,
supporting the hypothesis that mitochondrial biogenesis and
replication are tightly coordinated with cell cycle progression.
Differences between Colo-205 and Lovo responses further
highlight cell line-specific regulatory mechanisms governing mito-
nuclear crosstalk during chemotherapeutic stress (220-223).

While mtDNA variation and demethylating agent studies in
CRC offer intriguing mechanistic insights, it is critical to frame
these findings accurately and avoid over-interpretation. For
example, although a large Chinese cohort found that mtDNA
haplogroup M7 was associated with worse prognosis in CRC in a
northern Chinese population, this remains a population-specific
finding and does not establish mtDNA haplogroups as reliable
predictive or causative biomarkers across global CRC cohorts (212,
224). Likewise, studies of ND-gene mutations (such as ND6
13885insC) and OXPHOS upregulation in model systems
demonstrate potential functional effects but lack evidence in large
human metastatic CRC datasets to support the claim that these
mutations drive metastasis rather than being passenger or adaptive
events. In relation to epigenetic therapy, while 5-azacytidine (5-
AZA) has been shown to alter mtDNA D-loop methylation and
copy number in certain CRC cell lines (e.g., Colo-205) induced by
treatment, this effect is highly cell line-specific and does not yet
translate into robust clinical data addressing chemoresistance in
CRC (212, 224).

D-loop encompassing 1122 base pairs, is critical for initiating
mtDNA transcription and replication (225). While the role of D-
loop methylation in mtDNA function is established, its relationship
with mtDNA copy number is less understood. Various factors,
including TFAM, that interacts with mtDNA and promotes
transcription through the formation of initiation complex, and it
can influence mtDNA copy number (226). Demethylation of these
sites result in the enhanced number of mtDNA copy number,
consistent with previous research linking demethylated D-loop
regions to higher mtDNA copy numbers in CRC (227).
Demethylated CpG sites might enhance mtDNA replication by
facilitating TFAM binding and mtDNA transcription initiation,
although further research is necessary to confirm this hypothesis
(228) (212). Overall, demethylation across specific CpG sites in D-
loop promoter may result in a higher mtDNA copy number in CRC,
influencing biological behaviors such as enhanced cell proliferation
and modulation of cell (212).

In conclusion, the demethylation of specific CpG sites in D-loop
promoter may increase the overall copy number of mtDNA in CRC,
leading to increased cell proliferation, reduced apoptosis, and a
delay in the GO/G1 phase. Thus, DNA methylation influence at D-
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loop region of mtDNA on the expression of rate-limiting enzymes,
but their impact on OXPHOS in CRC remains unclear. Thus, the
quantitative changes in ND2 expression as well as methylation
across D-loop at the time of CRC progression, along with potential
correlations to clinicopathological stages (106). In a study by Shi
Feng et al, tumor and noncancerous tissues were subjected to
surgical resection from 44 patients diagnosed with CRC. Authors
evaluated Cox IV and ND2 expressions in all the specimens
obtained from these patients. Correlating these findings with
clinicopathological data revealed an association between changes
in ND2 expression and clinicopathological stage of CRC (106). The
increase in ND2 expression was evident as early as stage I and
continued to rise through stages I to IV. Additionally, the
proportion of unmethylated D-loop enhanced in tumor as well as
non-cancerous tissues, paralleling the rise in ND2 expression (106)
(Figure 1). Results indicated a higher ND2 expression in tumor
tissues than non-cancerous tissues. D-loop region was methylated
in 79.5% of non-cancerous tissues, while this percentage dropped to
11.4% in tumor tissues (106). This demethylation likely enhances
mitochondrial function, contributing to the metabolic
reprogramming observed in cancer cells (106).

Changes in mtDNA copy numbers are recognized as a crucial
hallmark of cancers but the quantitative changes in mtDNA should
be explored to vividly examine the initiation or progression of CRC
(182). Shi Feng et al., 2011 (182) investigated quantitative
alterations in mtDNA copy number during CRC initiation and
progression and explores potential correlations with
clinicopathological stages. Authors in this study surgically
resected both tumor tissues as well as noncancerous tissues from
24 colon cancer patients and 20 rectal cancer patients respectively.
mtDNA copy numbers were ascertained and the results of this
study described the significant raise in mtDNA copy numbers in the
CRC tissues when compared to noncancerous tissues (182).
Furthermore, correlation with clinicopathological data revealed
that changes in mtDNA copy number were associated with
clinicopathological stage of CRC, with a marked increase in stages
I'and IT (182). No significant association with gender was observed.
Increased mtDNA content could enhance cellular energy
production and biosynthetic capacity, supporting rapid cell
proliferation and tumor growth. These findings suggest the
significance of mtDNA copy number for the initiation as well as
progression of CRC especially in the early stages (182).

The role of D-loop hypomethylation in regulating mtDNA copy
number as well as ND2 expression in CRC remains unclear (227).
This study investigates the association between D-loop methylation
status, mtDNA copy number, and ND2 expression in 65 CRC tissue
samples and the surrounding non-cancerous tissues. Additionally, a
demethylation experiment conducted on Caco-2 CRC cell line
using 5-Aza (227). Results of this study (227) described that
typical decline in methylation across D loop in CRC tissues when
compared to non-cancerous tissues was evident which
characterized by the decline in D-loop methylation in
clinicopathological stages III and IV than the stages I and II
(227). According to this report, the demethylation of D-loop has
resulted in the higher mtDNA copy number and ND2 levels. In

Frontiers in Immunology

13

10.3389/fimmu.2025.1623117

addition, 5-AZA treatment increased mtDNA copy number as well
as ND2 expression in Caco-2 cells (227). Future reports should
describe the function of D-loop demethylation in CRC by exploring
how D-loop demethylation influences mtDNA replication and ND2
gene expression (227). It is crucial to assess the efficacy of targeting
D-loop methylation with demethylating agents or other epigenetic
modulators in chemoresistant CRC treatment. By advancing the
exploration of the epigenetic regulation of mtDNA in colorectal
cancer, these studies could explore the novel epigenetic-based
therapeutic strategies to ameliorate CRC or chemoresistant
CRC (227).

It is crucial to ascertain the impact of demethylation in D-loop
of mtDNA on mtDNA copy number and subsequent effect on the
CRC cell proliferation, cell cycle. A previous study by Huan Tong
et al. (212) described the higher mtDNA copy number in Colo-205
and Lovo cells upon 5-AZA treatment and the rate of cell cycle and
apoptosis is higher upon this treatment. In these cell lines, enhanced
methylation was evident at 4™ and 6"/7"™ CpG regions of D-loop
which was mitigated upon 5-AZA treatment. However, the cell
cycle and mtDNA copy number has not changed upon 5-AZA
treatment in the CRC cell lines include HCT116, SW480, LS-174T,
and HT-29 cells (212). Furthermore, authors have not observed any
alterations in demethylation at 4™ and 6"/7"™ CpG regions of D-
loop in these CRC cell lines upon 5-AZA treatment (212). Further
research should explore the molecular mechanisms by which D-
loop demethylation influences mtDNA replication and gene
expression, including the role of transcription factors like TFAM
in this process. It is crucial to explore the interplay between nuclear
and mitochondrial epigenetic regulation and its impact on cancer
metabolism, progression, and resistance to therapy in CRC (212).
For instance, TFAM can regulate both mtDNA transcription and
replication. Elevated TFAM expression has been observed in drug-
resistant hepatocellular carcinoma cells, and its inhibition has been
shown to restore the chemosensitivity of these resistant cells,
suggesting a potential therapeutic target for overcoming
chemoresistance (229, 230). In vivo model of Kras-driven lung
cancer, deletion of the TFAM gene results in compromised
mitochondrial function, leading to a reduced incidence of tumors
(231). In CRC cells, there is an increase in mitochondrial divalent
uptake that triggers the activation of phosphodiesterase 2, which in
turn inhibits mitochondrial protein kinase A. This inhibition
stabilizes the accumulation of TFAM within the mitochondria,
fostering cell proliferation (232). Similarly, enhanced
mitochondrial calcium uptake has been linked to upregulated
TFAM expression, which fostering mitochondrial biogenesis and
increases the production of mitochondrial ROS. This cascade
activates the NF-kB signaling, thereby accelerating the
progression of CRC (233).

Mutations in TFAM have been implicated in promoting
increased cell proliferation and enhanced tumorigenic potential in
xenograft models. Notably, silencing TFAM in CRC cells induces
metabolic reprogramming (229, 230). This silencing disrupts the
Wnt/B-catenin signaling pathway via an increase in o-ketoglutarate
levels, ultimately inhibiting tumor initiation and progression (234,
235). MTERFs (mitochondrial transcription termination factors)
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comprise a protein family that, despite sharing structural homology,
perform diverse functions crucial to mitochondrial homeostasis.
Disruption of MTERF activity has been shown to impair
mitochondrial function, leading to mitochondrial damage and
contributing to the pathogenesis of various mitochondrial-related
diseases (236-238). The precise relationship between MTERF
proteins and processes such as OXPHOS, cell proliferation, and
tumorigenesis remains incompletely demonstrated in proliferating
CRC cells. However, research has indicated that MTERF1 can
modulate mitochondrial gene expression and OXPHOS levels. In
HelLa cells, overexpression of MTERF1 has been shown to enhance
mitochondrial gene transcription, increase OXPHOS activity, and
elevate cyclin D1 levels, which promotes cell proliferation. In
contrast, MTERF1 knockdown leads to diminished ATP
generation, lower cyclin D1 expression, as well as cell cycle arrest
(239). Upregulated expression of MTERF1 in CRC cells could cause
higher cell division and enhance migration and invasion of cancer
cells to form tumors. Mechanistically, MTERF1 could control
AMPK/mTOR pathway, which influences mtDNA replication,
transcription, subsequently modulate protein synthesis (229).
Additionally, MTERF1 overexpression reduces ROS production,
further enhancing mitochondrial activity for OXPHOS and
contributing to cancer progression (229, 240) (Figure 2).
Moreover, the inhibition of TFAM expression facilitates the
release of mtDNA into cytoplasm, and activates signaling
pathways to modulate oncogenesis and it is crucial to develop
novel small-molecule compounds to target mitochondrial RNA
polymerase (POLRMT) to block mitochondrial transcription,
thereby selectively blocking OXPHOS and curbing tumor cell
proliferation in chemoresistant metastatic CRCs. These findings
prompt questions regarding the role of oncogenes in tumorigenesis
in terms of association with mtDNA mutations or SNPs and
whether the combined effects of mtDNA as well as nuclear DNA
quantitative trait loci might explain the variability in cancer
susceptibility and metastatic potential across different individuals.
mtDNA mutations exhibit variability in both frequency and
location among various cancers, with prostate, stomach, and
colorectal cancers showing the greater mutation rates. Given
this variability, it is crucial to investigate the potential of targeting
D-loop methylation through the use of demethylating agents or
other epigenetic modulators as a therapeutic strategy, particularly in
chemoresistant colorectal cancer. By deepening our understanding
of the epigenetic regulation of mtDNA in CRC, these studies pave
the way for the development of novel epigenetic-based therapies to
combat CRC, including its chemoresistant forms.

MTERF3 has been recognized as an oncogene across multiple
cancer types, with gene amplification and elevated expression of
MTEREFS3 levels strongly correlating with poor overall survival rates
in cancer patients (241). Its overexpression has been shown to
promote tumorigenesis both in vitro and in vivo, and enhancing
proportion of cells in S phase of the cell cycle, thereby accelerating
proliferation (242). In CRC specifically, MTERF3 has been
implicated in the upregulation of pro-inflammatory cytokines
such as IL-6 as well as IL-11, that not only modulate tumor
growth but also enhance resistance to radiotherapy (243). These
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findings described the oncogenic role of MTERF3 in promoting
both tumor progression and therapeutic resistance (229). However,
in-depth exploration is crucial to uncover the intricate molecular
signaling by which TFAM and MTERF family members regulate
mitochondrial function and influence metastasis and
chemoresistance. Specifically, studies should focus on
understanding how these proteins modulate mitochondrial
biogenesis, energy production, and ROS signaling in different
chemoresistant cancers including CRC (229). Given their pivotal
role in mitochondrial regulation and cancer progression, TFAM
and MTERFs hold promise as therapeutic targets. Preclinical
studies exploring inhibitors or modulators of these proteins may
yield novel treatment options for chemoresistant CRC (229).
Furthermore, combining mitochondrial-targeted therapies
with conventional cancer treatments like chemotherapy or
radiotherapy could improve efficacy and overcome resistance. For
example, TFAM or MTERF inhibitors could be used alongside
traditional treatments to synergistically halt tumor growth and
sensitize cells to therapeutic interventions. Future studies must
focus on deciphering how mtDNA single nucleotide
polymorphisms and interactions with nuclear DNA quantitative
trait loci influence cancer susceptibility and metastatic behavior.
Furthermore, targeting epigenetic modifications within the
mitochondrial genome especially through D-loop demethylation
or the application of epigenetic modulators represents a promising
therapeutic strategy to reprogram mitochondrial function and
overcome chemoresistance. Collectively, these insights reinforce
the emerging paradigm that mitochondrial epigenetic regulation
serves as a pivotal determinant of CRC progression and therapeutic
response, providing a conceptual framework for developing next-
generation mitochondrial-targeted and epigenetic-based therapies.

6 Integrative immunotherapeutic and
metabolic strategies to overcome
chemoresistance in metastatic
colorectal cancer

Immunotherapy has emerged as a transformative approach
in mCRC, vyet its clinical efficacy remains largely confined to a
limited subset of microsatellite instability-high (MSI-H) tumors.
The majority of microsatellite-stable (MSS) mCRC cases continue
to rely on combinations of chemotherapy with targeted
pharmacotherapies such as anti-VEGF (e.g., bevacizumab) and
anti-EGFR (e.g., cetuximab, panitumumab) drugs (33). Despite
their established therapeutic benefit, both modalities are
hampered by intrinsic and acquired resistance mechanisms that
arise from tumor heterogeneity, dynamic clonal evolution, and
metabolic adaptation.

Anti-VEGF therapy, a standard-of-care since 2004, effectively
suppresses angiogenesis but lacks well-defined molecular predictors
of responsiveness. Conversely, anti-EGFR therapy provides benefit
only in RAS and BRAF wild-type patients, excluding approximately
60% of CRC cases due to mutation-driven intrinsic resistance
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FIGURE 2

Impact of mitochondrial DNA mutations and transcriptional inhibition on oxidative phosphorylation, CRC tumor cell dynamics, and epigenetic
regulation. Mitochondrial DNA (mtDNA) mutations, alongside the impairment of mitochondrial transcription, lead to impaired OXPHOS, which
consequently elevates reactive oxygen species (ROS) production. This ROS surge modulates critical signaling pathways, including MAPK/mTOR,
other cell survival pathways like Akt thus influencing the proliferation of cancer cells. In this context, the silencing of mitochondrial transcription
factor A (TFAM) triggers metabolic reprogramming within tumor cells, resulting in the release of alpha-ketoglutarate (o-KG). This metabolic shift can
cause downregulation in B-catenin, thereby block stem cell signaling and attenuating oncogenic potential (229). Inhibition of TFAM expression
promotes mtDNA release into the cytoplasm, activating oncogenic signaling and highlighting the potential of targeting mitochondrial RNA
polymerase (POLRMT) to suppress OXPHOS and tumor proliferation in chemoresistant metastatic CRC. Furthermore, variability in mtDNA mutations
and D-loop methylation across cancers elucidates the need to explore epigenetic modulation of mtDNA as a therapeutic strategy to overcome

chemoresistance and improve colorectal cancer treatment outcomes.

(33, 244). Even in responsive subgroups, selective pressure
under anti-EGFR therapy rapidly fosters secondary mutations
within the EGFR extracellular domain and downstream MAPK
pathway components, conferring adaptive resistance (33, 244).
Longitudinal circulating tumor DNA (ctDNA) profiling now
enables noninvasive detection of these emergent mutations,
uncovering a dynamic interplay between drug exposure, clonal
selection, and treatment relapse. Moreover, 8q chromosomal
gains, frequently encompassing MYC amplification, have been
correlated with resistance to EGFR blockade, supporting the
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rationale for combined EGFR and pan-KRAS inhibition as a
next-generation therapeutic strategy (33, 244) (Table 5).
Expanding beyond receptor-targeted resistance, novel studies
have implicated TP53RK as a critical regulator of replication stress
tolerance. Its overexpression sensitizes CRC cells to CDC7
inhibition, suggesting a synthetic-lethal vulnerability exploitable
through replication checkpoint modulation (244). Similarly,
mitochondrial dynamics have been recognized as central to
therapeutic resistance, wherein the PINK1-Parkin-Drpl axis
preserves mitochondrial integrity under chemotherapeutic stress.
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TABLE 5

colorectal cancer (mCRC).

Protein/Gene

Modulation in signaling

pertinent to CRC

Metabolic strategy to
overcome chemoresistance

10.3389/fimmu.2025.1623117

Novel immunotherapeutic
strategy to overcome
metastatic chemoresistant
CRC

Integrated overview of molecular modulators, metabolic and immunotherapeutic strategies to overcome chemoresistance in metastatic
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Hyperactivation of Drpl-mediated fission promotes mitophagy and Recent preclinical and translational advances have further

survival, while its inhibition re-sensitizes CRC cells to apoptosis,  illuminated the therapeutic promise of integrating targeted
positioning mitochondrial quality control as a viable metabolic  inhibitors, metabolic modulators, and immunotherapies. The

checkpoint for combination therapy (244). MEK inhibitor trametinib, when combined with 5-fluorouracil,
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demonstrates synergistic suppression of MAPK signaling and
enhanced neoadjuvant chemoradiotherapy response. Dual
blockade strategies such as cabozantinib (anti-c-MET) plus
durvalumab (anti-PD-L1) have shown activity in MSS CRC by
concurrently suppressing angiogenesis and reprogramming the
tumor immune microenvironment. Moreover, nivolumab-
regorafenib co-administration augments T-cell infiltration,
particularly benefiting patients without hepatic metastases.

Emerging ferroptosis-based interventions are also redefining
metabolic-immune synergy. The SLC7A11 inhibitor erastin
enhances oxaliplatin efficacy through iron-dependent oxidative
stress, reversing chemoresistance in preclinical CRC models (27).
Complementary innovations in nanotechnology have enabled
mitochondrial-targeted nanoinducers (mitoNIDs) that disrupt
redox balance and potentiate the activity of CAR-T and CD8" T
cells, offering new hope for immunotherapy-refractory MSS
CRC (27).

At the epigenetic interface, SALL1 promoter methylation and
cgl3755795 site hypermethylation have been identified as
prognostic biomarkers distinguishing CRC from its metastatic
counterpart, highlighting the intertwined influence of
mitochondrial metabolism and epigenetic regulation in immune
modulation (245). Furthermore, RNF4-mediated ubiquitination of
PDHAL, a key enzyme bridging glycolysis and the TCA cycle, drives
metabolic reprogramming, proliferation, and metastasis linking
proteostasis to energy metabolism and chemoresistance
(246) (Table 5).

Additional molecular mediators, including GNG2, a tumor
suppressor limiting brain metastasis and FSTL3, which promotes
tumor progression via HIF1o-dependent pathways, have emerged
as actionable biomarkers for metastatic control (247, 248) (Table 5).
Pharmacological inhibition of HIFlo using KC7F2 effectively
suppresses FSTL3-driven metastasis, restoring tissue integrity in
xenograft and tail-vein models. Collectively, these discoveries
delineate an evolving paradigm in mCRC therapy as one that
integrates immunomodulation, metabolic disruption,
mitochondrial targeting, and epigenetic reprogramming. Such
multimodal strategies transcend traditional cytotoxic approaches
by simultaneously dismantling tumor survival networks, curbing
adaptive resistance, and reactivating antitumor immunity. The
convergence of multi-omic profiling, ctDNA-based precision
monitoring, and nanotechnology-driven delivery systems is thus
redefining the next frontier of precision immunoepigenetic therapy
for chemoresistant metastatic colorectal cancer.

6.1 Epigenetic regulation of immune
checkpoints and TME in colorectal cancer

Epigenetic mechanisms play a foundational role in shaping the
tumor immune microenvironment (TIME) in CRC, influencing
both tumor-intrinsic and immune-cell-specific transcriptional
programs (249). Aberrations in DNA methylation, histone
modifications, and chromatin remodeling affect antigen
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presentation, immune checkpoint expression, and interferon
signaling, thereby impacting tumour immunogenicity and
immune-evasion capacity (249). For example, hyper-methylation
or histone deacetylation of promoters linked to PD-L1, CTLA-4 or
T-cell exhaustion genes have been demonstrated in models of CRC,
facilitating immune escape (249). Moreover, microsatellite-stable
(MSS) CRCs, which typically show poor immunotherapy response,
frequently display epigenetic silencing of chemokine genes and
reduced effector T-cell infiltration helping to explain the “cold
tumour” microenvironment (249).

Recent advances reveal that epigenetic therapies can reprogram
the immune landscape of CRC, sensitizing tumors to
immunotherapy. DNA methyltransferase inhibitors (DNMTis)
and histone deacetylase inhibitors (HDACis) (250) have been
shown to restore expression of the antigen presentation
machinery, activate endogenous retroviruses, and evoke type I
interferon responses collectively converting “cold” MSS tumors
into more immunogenic phenotypes (250). In parallel, activation
of the cGAS-STING pathway, a key mediator of innate immune
sensing has been shown to be epigenetically suppressed in CRC, and
re-activation of this pathway through demethylating agents
enhances cytotoxic T-cell infiltration and limits metastasis.
Collectively, these data support a paradigm in which epigenetic
modulation of immune signaling can overcome intrinsic resistance
in CRC (250).

Emerging evidence further indicates that epigenetic
remodeling directly governs the expression and functional state
of immune checkpoint pathways in both tumour and immune
cells (251). For example, in CRC, tumour-infiltrating
lymphocytes (TILs) display altered DNA methylation and
histone-modification profiles at loci encoding PD-1, TIM-3 and
TOX2, thereby promoting T-cell exhaustion and reducing
checkpoint-blockade responsiveness (251). Moreover,
epigenetic reprogramming of cancer stem-like cells (CSCs)
enhances immune resistance through metabolic-epigenetic
crosstalk that stabilizes PD-L1 expression and suppresses
antigen presentation. Understanding how tumour epigenome
dynamics and immune exhaustion co-evolve is thus critical to
targeting CRC therapy resistance (251). From a translational
perspective, integrating epigenetic and immunologic paradigms
offers a compelling framework for developing next-generation
CRC therapies (251, 252). Combined use of epigenetic
modulators with immune-checkpoint inhibitors offers a rational
strategy to overcome immune resistance in MSS CRC, which
comprises the majority of clinical cases. Furthermore, epigenetic
biomarkers such as chemokine-gene methylation signatures or
histone-modification profiles hold promise as predictive
indicators of immunotherapy response (251, 252). Given that
current checkpoint-inhibitor therapies are principally effective in
MSI-high CRC, while MSS cases remain refractory, we propose
that epigenetic immune-priming strategies are urgently needed to
bridge this gap. Future clinical trials in CRC should integrate
multi-omic immune-epigenetic profiling to uncover actionable
pathways for personalized therapeutic development (251, 252).
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6.2 Epigenetic regulation of PD-1 blockade
response, TME reprogramming, and
immunotherapy biomarkers in MSS
colorectal cancer

6.2.1 PD-1 blockade in MSS CRC, current efficacy
and mechanisms of resistance

Single-agent PD-1/PD-L1 blockade has limited activity in
microsatellite-stable (MSS/pMMR) colorectal cancer because these
tumors are typically immune-cold, possess lower neoantigen
burdens and show active exclusion or suppression of effector T
cells (253-255). Recent meta-analyses and systematic reviews
confirm negligible objective response rates for ICI monotherapy
in MSS CRC, while combination regimens (e.g., PD-1 inhibitors
with chemotherapy, anti-angiogenics, or targeted agents) can
produce clinically meaningful responses in carefully selected
contexts such as neoadjuvant trials or when partnered with
immune-modulating partners (e.g., anti-VEGF, MEK inhibitors,
IDO1 inhibitors) (253-255). Mechanistically, resistance reflects low
baseline antigenicity, WNT/B-catenin and TGF-B-driven T-cell
exclusion, suppressive myeloid populations, and epigenetic
silencing of chemokine and antigen-presentation genes, all of
which blunt PD-1 blockade efficacy in MSS disease (253-255).

6.2.2 TME composition in chemoresistant MSS
CRC and epigenetic contributions

Chemoresistant MSS CRCs characteristically exhibit a
restructured TME dominated by suppressive myeloid cells
(tumour-associated macrophages and MDSCs), regulatory T cells,
dysfunctional dendritic cell subsets, and an activated stromal
compartment including carcinoma-associated fibroblasts that
reinforce immune exclusion (249, 250, 256). Single-cell and
spatial transcriptomic studies summarized that epigenetic
modifications within both tumour and immune compartments
(DNA methylation, histone marks) silence chemokine expression
(e.g., CCL5), downregulate antigen-presentation machinery and fix
T-cell exhaustion programs thereby stabilizing an immune-cold,
chemoresistant phenotype (249, 250, 256). Importantly, these
epigenetic programs are dynamic under therapy: chemotherapy
can transiently increase neoantigen release but simultaneously
select for subclones with epigenetic adaptations that sustain
immune evasion. These insights provide a mechanistic link
between chemoresistance, immune exclusion, and reversible

epigenetic states amenable to therapeutic targeting (249, 250, 256).

6.2.3 Biomarkers beyond MSI/dMMR and
harnessing novel immunotherapies via
epigenome and tumour heterogeneity

To move beyond MSI/dMMR as the dominant predictive marker,
multiparameter biomarker panels are needed that integrate tumour
mutational burden/neoantigen quality, spatial immune phenotypes
(T-cell inflamed vs immune-desert archetypes), WNT/TGE-f3
pathway activation, and epigenetic signatures (chemokine promoter
methylation, histone modification profiles and chromatin accessibility
in tumour and immune cells) (250, 255, 256). Early clinical strategies
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exploit this biology: epigenetic priming (DNMTi/HDACi or novel
chromatin modulators) can upregulate antigen presentation,
reactivate endogenous retroviral elements to induce a type-I
interferon response, and restore chemokine expression for T-cell
recruitment thereby converting MSS tumors into immunotherapy-
sensitive states (250, 255, 256). Rational combinations (epigenetic
drugs + PD-1 blockade; STING agonists or TGF-f pathway inhibitors
+ ICIs; oncolytic virotherapy or microbial modulation + ICI) are now
in early clinical testing and informed by spatial and single-cell
profiling to account for intratumor heterogeneity. Ultimately,
integrating epigenomic profiling into clinical trials will enable
adaptive selection of combinations tailored to tumour architecture
and evolutionary state, offering a clear path to harness novel
immunotherapies for MSS, chemoresistant CRC (250, 255, 256).

6.2.4 Mitochondrial signaling to immune
modulation and checkpoint therapy resistance
Mitochondrial signaling exerts a central influence on anti-
tumor immunity and can directly modulate resistance to immune
checkpoint blockade. Mitochondrial metabolism and dynamics
regulate T-cell activation, differentiation, and persistence, PD-1
signaling suppresses mitochondrial biogenesis and fission-fusion
programs (via PGC-lo. and DRP1 pathways), driving T-cell
exhaustion and reducing responsiveness to PD-1/PD-L1
inhibitors (257). Cancer-cell mitochondrial dysfunction (e.g.,
altered OXPHOS, elevated mtROS, mtDNA release, or
mitochondrial transfer to immune cells) reshapes the tumor
microenvironment toward immunosuppression by promoting
regulatory myeloid phenotypes, impairing antigen presentation,
and blunting CD8" effector functions include mechanisms that
have been linked to poorer immune checkpoint inhibitor (ICI)
outcomes (258). Emerging clinical and mechanistic studies even
associate host mitochondrial features (haplogroups, mtDNA
content) and tumor-derived mitochondrial signaling with
differential ICI efficacy, suggesting mitochondria-linked
biomarkers of resistance (259). Therapeutically, restoring
mitochondrial fitness in exhausted T cells (via metabolic
reprogramming, enhancing mitobiogenesis/PGC-10,, or reducing
deleterious mtROS) and targeting tumor mitochondrial adaptations
are promising strategies to overcome checkpoint resistance and
reinvigorate anti-tumor immunity (260). In CRC, mitochondrial
signaling profoundly shapes immune evasion and resistance to
checkpoint blockade therapy. CRC cells frequently display
dysregulated OXPHOS and elevated mitochondrial ROS, which
promote the secretion of immunosuppressive cytokines (e.g., TGF-
B, IL-10) and the polarization of tumor-associated macrophages
toward an M2-like phenotype, thereby weakening cytotoxic CD8"
T-cell infiltration and activity (27, 261, 262). Additionally, damaged
mitochondria in CRC cells can release mtDNA into the cytosol,
activating the ¢GAS-STING pathway in a context-dependent
manner either enhancing type I interferon mediated immune
surveillance or, when chronically activated, promoting immune
tolerance and checkpoint therapy resistance (27, 261, 262).
Moreover, mitochondrial metabolic reprogramming driven by
oncogenic KRAS or p53 mutations enhances OXPHOS reliance in
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microsatellite-stable (MSS) CRC, which correlates with diminished
response to PD-1/PD-L1 inhibitors and a “cold” tumor immune
microenvironment. Recent evidence suggests that therapeutic
restoration of mitochondrial homeostasis may sensitize CRC to
immune checkpoint inhibitors (27, 261, 262). Strategies such as
PGC-1a activation, mitochondrial-targeted antioxidants, or
OXPHOS inhibitors can recalibrate tumor metabolism and
reinvigorate anti-tumor immunity. By modulating mitochondrial
biogenesis and redox balance, these interventions reduce ROS-
induced immunosuppression, restore T-cell effector functions,
and enhance antigen presentation within the tumor
microenvironment. Integrating mitochondrial metabolic
modulators with immune checkpoint therapy may thus represent
a precision immuno-oncology approach for CRC, bridging
mitochondrial bioenergetics with durable immune responsiveness
(27, 261, 262).

7 Clinical epigenetics in metastatic
CRC therapies

Epigenetic modifications mediated by histone writer enzymes
orchestrate dynamic histone modifications crucial for establishing
and maintaining epigenetic landscape (263). These modifications
are controlled by a complex interplay among writer enzymes, reader
proteins, and erasers. Dysregulation of these processes can drive
pathogenesis, including in chemoresistant CRC (263) (Tables 6, 7).

Dynamic histone modifications and transcriptional regulation:
Histone acetylation, initially linked with transcriptional activation,
neutralizes the positive charge on histone tails, thereby modulating
DNA-histone interactions and facilitating transcription factor
binding and RNA polymerase activity (264). Notably, histone
acetylation at H3K27 (H3K27ac) could be considered as the main
process at active promoter and enhancer regions, regulating specific
gene expression (265). Targeting histone acetyltransferases (HATs)
like EP300 and CREBBP, which catalyze H3K27ac, has emerged as a
therapeutic strategy to modulate transcriptional programs
implicated in CRC progression (266, 267).

Therapeutic targeting of EP300/CBP: EP300 and CBP not only
catalyze H3K27ac but also acetylate other histone and non-histone
substrates, influencing proliferation and differentiation (268).
Small-molecule inhibitors like C646 and A485 selectively target
the catalytic activity or bromodomain function of EP300/CBP,
respectively, offering potential therapeutic approaches (267, 269).
Strategies that simultaneously target multiple domains of EP300/
CBP have shown promise in inhibiting CRC cell proliferation
synergistically (270, 271).

Exploring selective inhibition and functional roles: Despite
structural homology, EP300 and CBP exhibit distinct functional
roles in gene regulation and cancer pathogenesis, concluding the
need for the development of selective inhibitors (271). Ongoing
efforts focus on dissecting their specific contributions to CRC
biology using chemical and genetic tools (272).

Expanding Targets Beyond EP300/CBP: Beyond EP300 and
CBP, PCAF and GCN5 have emerged as context-dependent
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regulators in cancer, with inhibitors such as GSK4037 and L-
Moses revealing their potential as therapeutic targets (273, 274).
Therefore, development of PROTACs like GSK983/GSK699 for
PCAF underscores new strategies to modulate protein function
and understand their roles in cancer progression and
chemoresistance (263).

Histone methylation dynamics: Histone methylation,
traditionally considered irreversible, modulates gene expression
through diverse mechanisms, including recruitment of TFs and
chromatin remodeling complexes (263). Inhibition of histone lysine
methyltransferases (PKMTs) like DOT1L and EZH2 has shown
therapeutic promise in leukemia and solid tumors, respectively
(275, 276).

Targeting EZH2: EZH2, a core component of the PRC2
complex catalyzing H3K27me3, regulates gene silencing in cancer.
Inhibitors such as GSK126 and EPZ6438 have demonstrated
efficacy in various malignancies, including CRC and glioma (277,
278). Combination therapies involving EZH2 inhibitors with other
epigenetic or signaling pathway inhibitors offer synergistic effects
against chemoresistance (279) but their efficacy should be examined
against chemoresistant/radioresistant CRC.

PRMTs as emerging targets: Protein arginine
methyltransferases (PRMTs), implicated in cancer stemness and
DNA damage response, are promising targets for therapeutic
intervention with inhibitors like EPZ015666 and HLCL-61
showing efficacy in lymphomas and AML (263, 280). Future
directions in targeting epigenetic modifiers in chemoresistant
CRC include developing selective inhibitors against less explored
histone modifications (e.g., serotonylation, crotonylation) and
employing innovative strategies like PROTACs to degrade
oncogenic proteins (281, 282). Integrating genomic and
epigenomic data will identify critical vulnerabilities in CRC,
paving the way for personalized therapeutic strategies targeting
epigenetic dysregulation (Tables 6, 7).

Epigenetic co-activators CBP/p300 couple chromatin state to
mitochondrial biogenesis and stress signaling by directly regulating
transcriptional programs that control nuclear-encoded
mitochondrial genes (283). CBP/p300 acetylates and coactivates
PGC-10. and other transcription factors at enhancers/promoters of
mitochondrial genes, increasing mitochondrial biogenesis and
OXPHOS capacity; CBP/p300 is also required for the

TABLE 6 Selected small molecule inhibitors and PROTACs targeting
epigenetic writer proteins.

Eg);e;['é " Inhibitor/PROTAC Reference
EP300/CBP C646, A485, CBP30, I-CBP112, GNE-781 (267, 269)
PCAE gii(égfé;-Moses, GSK983/GSK699 @73, 274)
EZH2 GSK126, EPZ6438, Tazverik (FDA-approved) | (277, 278)
PRMT5 EPZ015666, HLCL-61, PRMT4 inhibitors (280, 286)
DOTIL EPZ5676 (Pinometostat) (275, 287)

This table summarizes key small-molecule inhibitors and PROTACs targeting epigenetic
writer proteins (263).
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TABLE 7 Overview of targeted therapies in the various phases of clinical trials (www.cancer.gov/research/participate/clinical-trials) for metastatic

colorectal cancer.

Indication

Combination

Key findings

therapy

Metastatic colorectal cancer

Encorafenib (Braftovi) with BRAF mutation

BRAF protein

Colorectal cancer with

Vemurafenib (Zelboraf) BRAF mutation

Mutant B-Raf

Vitamin D3 (SOLARIS) N/A Metastatic colorectal cancer

Advanced colorectal cancer

Tucatinib (Tukysa) HER?2 protein

with HER2 overexpression

mitochondrial unfolded protein response, linking mitochondrial
proteotoxic stress to adaptive nuclear transcriptional programs.
Loss or inhibition of CBP/p300 therefore impairs mitobiogenesis,
lowers OXPHOS capacity and weakens adaptive mito-nuclear
signaling (123, 283-285). PRMTs modulate mitochondrial
metabolism through dual routes: (1) direct substrate methylation
of metabolic enzymes (for example, PRMT-mediated methylation
of glycolytic or TCA cycle enzymes alters their activity or stability),
and (2) chromatin/histone arginine methylation that reprograms
transcriptional networks controlling mitochondrial function. By
changing the balance of glycolysis versus OXPHOS, PRMT
activity can shift cellular reliance on mitochondria and indirectly
influence ROS generation and mitochondrial quality control.
Several PRMTs have been linked to altered metabolic enzyme
function and tumor metabolic phenotypes in cancer models (123,
283-285). Histone methyltransferase EZH2 (PRC2 catalytic
subunit) influences mitochondrial biology largely via
transcriptional repression and chromatin remodeling: EZH2-
mediated H3K27me3 can silence nuclear genes encoding
mitochondrial regulators (including factors that modulate lipid
metabolism, mitochondrial dynamics, or antioxidant responses),
thereby reprogramming cellular metabolism toward or away from
oxidative phosphorylation (285). In addition, EZH2 perturbation
alters ER-mitochondrial contacts and organelle homeostasis in
tumor cells, changing Ca*" flux, bioenergetic coupling, and ROS
signaling that feedback on epigenetic enzyme activity. Thus, EZH2
inhibition may derepress mitochondrial programs (or destabilize
mitochondrial ER crosstalk), altering mitochondrial respiration,
redox balance and susceptibility to cell death (285). PGC-1o. and
mito-nuclear feedback: PGC-1o functions as a nodal integrator of
many of these epigenetic inputs (acetylation by CBP/p300,
deacetylation by SIRT1). Changes in CBP/p300, PRMTs or EZH2
activity converge on PGC-1lo.-driven transcriptional networks and
on downstream factors such as NRF1/TFAM that control mtDNA
transcription/replication; therefore, epigenetic modulation alters
mitochondrial mass, OXPHOS capacity, and ROS output, key
determinants of metastatic fitness and response to therapy (123,
284, 285).
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Cetuximab (Erbitux)

Cetuximab and Irinotecan
(Camptosar)

Chemotherapy and
Bevacizumab

Trastuzumab (Herceptin)

SlAgmﬁcant'efﬁcacy in combination NCI Clinical Trials
with cetuximab

Effective in trials with combination NCI Clinical Trials
therapy

i ial testing the effi f
Ong‘omg.trla . testing the efficacy o NCI Clinical Trials
adding vitamin D3

Tumors shrank or disappeared in over
one-third of participants; stable
disease in another third

FDA approval
documentation, NCI
Clinical Trials

In cancer (including CRC), these mechanistic axes predict that
CBP/p300 inhibition will reduce mitobiogenesis and sensitize
OXPHOS-addicted tumors, PRMT inhibition may shift metabolic
flux and affect mitochondrial enzyme activity, and EZH2 inhibition
can rewire mitochondrial gene expression and ER-mitochondrial
homeostasis, each producing distinct changes in mtDNA copy
number, oxygen consumption rate (OCR), mitochondrial
membrane potential, and mtROS (123, 283-285). Key
experiments to validate these links include: chromatin
immunoprecipitation at nuclear-encoded mitochondrial gene loci
(for CBP/p300 and EZH2), mass-spec methylome and proteome
profiling (to identify PRMT substrates), functional respirometry
(Seahorse OCR/ECAR), mtDNA quantification, and assays of ER-
mitochondrial contact (e.g., split-GFP or electron microscopy) and
future studies should explore these concepts using these significant
techniques (123, 283-285).

Other targeted therapies for metastatic colorectal cancer in
clinical trials: According to clinicaltrials.gov. (https://
clinicaltrials.gov/), the following targeted therapies that focus on
genetic mutations driving tumor growth represent a key area of
research for metastatic colorectal cancer (Tables 6, 7). The goal is to
develop agents that inhibit the activity of abnormal proteins
produced by these mutations. Encorafenib (Braftovi) targets the
BRAF protein and is approved for treating patients with metastatic
CRC harboring specific BRAF mutations. It is used in combination
with cetuximab (Erbitux) in adults who have undergone prior
treatment. Similarly, vemurafenib (Zelboraf) targets mutant B-Raf
proteins and has demonstrated effectiveness in NCI-supported
trials for CRC with BRAF mutations. It is administered in
combination with cetuximab and irinotecan (Camptosar). The
SOLARIS trial is investigating the addition of vitamin D3 to
chemotherapy and bevacizumab to enhance treatment efficacy in
metastatic CRC. Additionally, tucatinib (Tukysa) and trastuzumab
(Herceptin) target the HER2 protein and were approved in January
2023 for advanced CRC with HER2 overexpression. In the
MOUNTAINEER clinical trial, over one-third of participants
experienced tumor shrinkage or disappearance, while another
third achieved stable disease (Table 7).
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Exploring combination therapies: Future research should focus
on identifying optimal combinations of targeted therapies with
conventional treatments to enhance efficacy and reduce
resistance. Long-term efficacy and safety: Longitudinal studies are
needed to evaluate the long-term efficacy and safety of these
targeted therapies in diverse patient populations. Expansion to
other mutations: Investigating the potential of targeted therapies
against other genetic mutations in metastatic chemoresistant
colorectal cancer could broaden the scope of treatment options
available. By continuing to advance targeted therapy research, we
can develop more effective treatments for metastatic chemoresistant
colorectal cancer, ultimately improving patient outcomes.

8 Conclusions and future directions

The intricate relationship between mtDNA mutations and CRC
metastasis describes the pivotal role of mitochondria in tumor
progression. Specific mtDNA mutations can act as key drivers of
CRC metastasis, potentially serving as prognostic markers and
therapeutic targets for metastatic chemoresistant colorectal
cancer. Variations in mitochondrial DNA copy number are
closely linked to CRC progression, highlighting their potential
contribution to both cancer initiation and metastasis. The
exploration of mitochondrial CNVs offers insights into tumor
heterogeneity and resistance mechanisms. Involvement of
mitoepigenetic mechanisms, including DNA methylation and
histone modifications, plays a crucial role in modulating
mitochondrial gene expression in CRC. Dysregulation of these
pathways contributes to both tumor growth and chemoresistance,
suggesting that targeting epigenetic machinery holds promise for
reversing resistance and controlling tumor progression.

8.1 Targeting epigenetic writer proteins in
CRC

Epigenetic writer proteins, such as EZH2, EP300/CBP, and
PRMTs, describe significant therapeutic targets in CRC. These
enzymes alter histone methylation and acetylation, affecting gene
expression programs crucial for CRC proliferation and metastasis.
Selective inhibitors targeting these proteins provide new avenues for
therapeutic intervention. Future research should aim to delineate
the precise mechanisms by which mitochondrial DNA mutations
influence cancer metastasis and chemoresistance. Detailed
functional studies are required to explore how these mutations
drive oncogenic pathways and alter mitochondrial function in CRC.
Further investigation into the role of mitoepigenetics in tumor
heterogeneity is essential. Studying how epigenetic modifications
within mitochondria contribute to differential gene expression in
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various CRC subtypes could provide novel biomarkers for diagnosis
and targeted therapy.

8.2 Development of epigenetic-targeted
therapies

As research into epigenetic writer proteins continues to
advance, the development of highly specific inhibitors targeting
these proteins should be prioritized. New technologies, such as
PROTAC:, need to be further refined for clinical application in
CRC to enhance specificity, reduce off-target effects, and improve
therapeutic efficacy.

8.3 Integration of genomic and epigenomic
data in CRC therapy

The integration of genomic and epigenomic data will be crucial
in the development of personalized treatment strategies. By
combining insights from mtDNA mutations, epigenetic
modifications, and tumor genomics, researchers can identify key
vulnerabilities in chemoresistant CRC and devise combination
therapies tailored to individual tumor profiles.

8.4 Clinical trials and translational research

Moving forward, it is essential to translate preclinical findings
into clinical trials, testing the efficacy of mitochondrial and
epigenetic-targeted therapies. Collaboration between researchers,
clinicians, and pharmaceutical industries will be critical to ensure
the rapid development of these novel therapeutic approaches for
CRC patients.
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