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Background: Microchromosome maintenance protein-binding protein (MCMBP)
is aberrantly expressed in cancers and proposed as a diagnostic marker and
therapeutic target, but its role in pancreatic ductal adenocarcinoma (PAAD)
remains unclear.

Methods: We performed a comprehensive analysis of MCMBP in PAAD using
multi-omics data resources, including TCGA, GTEx, CPTAC, GEO, GDSC, TIDE,
HPA, MethSurv, DiseaseMeth, and LinkedOmicsKB. We examined its prognostic
characteristics, epigenetic alterations, immune infiltration, immunotherapy
response, and drug sensitivity. By integrating transcriptomic, proteomic, and
phosphoproteomic data, we explored the biological functions and pathways of
MCMBP. Sensitive drugs related to MCMBP were identified through the GDSC
and Connectivity Map (CMap) drug libraries, with further functional insights
obtained through GO and KEGG enrichment analyses. Potential mechanisms
were investigated via gene functional experiments, phos-phorylation site
predictions from LinkedOmicsKB, and protein expression validation.

Results: Pan-cancer analysis revealed that MCMBP overexpression correlates
with poor prognosis, including in PAAD. Cox regression identified MCMBP as an
independent prognostic factor for PAAD. Low DNA methylation and high m6A
modification of MCMBP may promote PAAD progression and correlate with
adverse prognosis. Ge-ne function and immune infiltration analyses indicated
that high MCMBP expression is closely associated with immune-related
pathways, tumor cell proliferation, survival, and immune cell differentiation,
and may promote Treg accumulation and immune ch-eckpoint upregulation.
PAAD patients with low MCMBP expression exhibited greate-r sensitivity to anti-
PD-L1 immunotherapy, suggesting a potential synergistic effect o-f MCMBP
expression with anti-PD-L1 treatment. High MCMBP expression was ass-
ociated with sensitivity to Gemcitabine combined with Paclitaxel, as well as
small mo-lecules such as Tozasertib and Motesanib. MCMBP knockdown
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inhibited PAAD cell proliferation, migration, invasion, and G1-S transition.
Immunohistochemical results s-howed that high MCMBP expression
correlated with elevated PD-L1 levels and redu-ced CD4+ T cell infiltration in
PAAD, which significantly associated with poor prog-nosis. MCMBP modulated
PD-L1 through activation of the JAK-STAT3 signaling pat-hway, thereby
promoting PAAD progression.

Conclusions: Overexpression of MCMBP may serve as a prognostic biomarker
and p-otential therapeutic target in PAAD. It drives PAAD progression by
activating the JAK-STAT3 pathway to upregulate PD-L1.

pancreatic ductal adenocarcinoma, MCMBP, immunotherapy, prognosis, JAK-

STAT3 pathway

Introduction

Pancreatic ductal adenocarcinoma is a highly lethal malignancy
characterized by a lack of early detection methods, resulting in most
patients being diagnosed at advanced stages and experiencing poor
surgical outcomes (1, 2). Neoadjuvant chemotherapy based on the
FOLFIRINOX regimen is frequently used, however, its efficacy is often
constrained by chemotherapy resistance, driven by genomic instability
and tumor micro-environment (TME) heterogeneity (3, 4). Anti-PD-
L1 therapy, which acts by modulating the immune microenvironment
and enhancing T-cell-mediated antitumor activity, represents a
promising strategy to overcome chemoresistance (5). Nevertheless, in
PAAD, widespread hypoxia exacerbates DNA replication stress,
triggers inflammatory factor release, and promotes the recruitment
and functional enhancement of regulatory T cells (Tregs), collectively
fostering a profoundly immunosuppressive TME (6-8). Consequently,
anti-PD-L1 monotherapy is often insufficient to counteract this
immunosuppression. Therefore, identifying TME-related prognostic
biomarkers for combination with anti-PD-L1 therapy presents a
potential approach to improve treatment outcomes.

MCMBP is a molecular chaperone that facilitates the assembly of
the minichromosome maintenance (MCM) complex through its
nuclear localization signal (NLS) and WalkerB-like motif, thereby
preventing its cytoplasmic degradation and ensuring accurate DNA
replication and cell cycle progression (9). It also interacts with MCM3
and MCMS5 subunits to establish backup replication origins,
contributing to genomic stability (10). Studies suggest that
MCMBP-mediated dysregulation of replication stress in malignant
cells may increase their susceptibility to certain therapies,
highlighting its potential as an anticancer target (9). In
hepatocellular carcinoma, MCMBP promotes tumor progression by
regulating DNA replication and the cell cycle (11). In breast cancer,
high MCMBP expression is associated with poor survival and
correlates with estrogen receptor (ER)-negative status, underscoring
its prognostic relevance (12). Similarly, in colorectal cancer, elevated
MCMBP expression is linked to increased recurrence risk, suggesting
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its utility as a diagnostic biomarker (12). Moreover, MCMBP is highly
expressed in proliferating B cells, implying a potential role in immune
regulation (12). Despite these insights, the role of MCMBP in PAAD
remains largely unexplored.

In this study, we employed bioinformatics approaches to
investigate the role of MCMBP in PAAD. Leveraging data from
TCGA, CPTAC, and other public databases, we evaluated the
prognostic significance, epigenetic regulation, immune infiltration
patterns, immunotherapy response, and potential therapeutic agents
associated with MCMBP. MCMBP expression was validated using
western blotting and IHC. Furthermore, by integrating
phosphorylation site predictions from the LinkedOmicsKB database
with experimental validation, we aimed to elucidate the molecular
mechanisms through which MCMBP may influence PAAD
progression. The flow chart of our study process is shown in Figure 1.

Materials and methods

Data acquisition and prognhostic model
construction

In this study, we obtained expression data and corresponding
clinical information for 33 cancer types from The Cancer Genome
Atlas (TCGA; https://portal.gdc.cancer.gov/) for pan-cancer
analysis. Normal tissue data were sourced from the Genotype-
Tissue Expression (GTEx) database (https://gtexportal.org/
home/). The RNA-Seq data from TCGA and GTEx (in FPKM
format) were unified by converting them to TPM format using a
Perl script and subsequently log2(TPM+1) transformed for cross-
tissue comparison. For a focused investigation into PAAD, we
integrated three independent cohort-s from TCGA, the Clinical
Proteomic Tumor Analysis Consortium (CPTAC; https://
pdc.cancer.gov/pdc/), and the Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/), which included datasets
GSE183795, GSE62452, GSE85916, and GSE79668.
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The microarray data from GEO were preprocessed using the R
package “limma” for background correction and quantile
normalization. Differential expression analysis was also performed
using the “limma” package with thresholds set at false discovery rate
(FDR) < 0.05 and |log2 fold change (FC)| > 1. MCMBP expression
data and clinical records from TCGA and CPTAC were used to
evaluate clinicopathological correlations and prognostic
significance. The proteomic data from CPTAC were used directly
with their provided normalized abundance values. Kaplan-Meier
(KM) survival curves were generated to visualize patient outcomes.
The significance of survival differences was assessed using the log-
rank test. Univariate and multivariate Cox proportional hazards
regression models were employed to identify independent
prognostic factors associated with MCMBP expression, with
results expressed as hazard ratios (HRs) and 95% confidence
intervals (CIs). For Cox regression, MCMBP expression was
included as a continuous variable (after log2 transformation).
Nomogram models were developed using the “SvyNom” and
“rms” packages in R. Model performance was assessed through
calibration curves, time-dependent receiver operating characteristic
(ROC) analysis and decision curve analysis (DCA). All statistical
tests were two-sided, and a P-value < 0.05 was considered
statistically significant. All statistical analyses were performed
using R version 4.3.3.

Gene function analysis

Samples were first divided into high- and low-MCMBP expression
groups based on the median expression level. Difterentially expressed
genes (DEGs) were identified using the R package “limma” (version
3.50.3), with an adjusted p-value (FDR) < 0.05 and an absolute log2
fold change > 1 set as the significance thresholds. Functional
enrichment analyses—including Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Gene Set
Enrichment Analysis (GSEA)—were carried out with the
clusterProfiler R package (v4.6.2). For GO and KEGG enrichment
analysis of DEGs, terms with an FDR < 0.05 were considered
significantly enriched. For GSEA, the c2.cp.v7.2.symbols.gmt
[Curated] gene set was obtained from the MSigDB database (https://
www.gsea-msigdb.org). The enrichment results were filtered using
the recommended significance thresholds of a nominal p-value <
0.05 and an FDR g-value < 0.25. Furthermore, the STRING
database (https://cn.string-db.org) was utilized to identify genes
that interact with MCMBP, and the resulting network was then
constructed using the top 10 associated genes (13).

DNA methylation and mRNA modification

DNA methylation levels within the MCMBP promoter were
analyzed in both normal and PAAD tissues using the DiseaseMeth
(http://diseasemeth.edbc.org/) and TCGA da-tabases. Expression
and survival data pertaining to specific DNA methylation sites of
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MCMBP were retrieved via the gene visualization tool in the
MethSurv database (14). For the investigation of MCMBP and
m6A modifications, STAR-counts data along with corresponding
clinical information for TCGA-PAAD were downloaded. TPM
values were log2-transformed after adding 1 to ensure normality.
The expression levels of 24 widely recognized m6A regulators
(including Writers, Erasers, and Readers) were extracted. The
correlation between MCMBP expression and these m6A
regulators was evaluated using Pearson correlation analysis. In
line with the approach described by Juan Xu et al. (15), who
conducted comprehensive molecular characterization and clinical
evaluation of m6A regulators across 33 cancer types, we performed
statistical analyses using R software (version 4.3.3). All correlation
analyses were two-sided, and a threshold of P < 0.05 was applied to
determine statisti-cal significance.

PAAD immune feature analysis and
treatment response prediction

To investigate the relationship between MCMBP and the TME
in PAAD, we applied the ESTIMATE algorithm to compute
ImmuneScore, StromalScore, ESTIMATEScore, and tumor purity
(16). We selected 25 immune cell types and performed single
sample gene set enrichment analysis (ssGSEA) to calculate
enrichment scores per sample. The “GSVA” R package (version
1.46.0) was used for ssGSEA implementation. Samples were ranked
by MCMBP expression levels, and heatmaps were generated based
on ssGSEA scores. The QUANTISEQ algorithm was used to
estimate the infiltration- levels of ten types of tumor-infiltrating
immune cells (TIICs) in each sample (17), and statistical
comparisons were made between MCMBP expression subgroups.
The Wilcoxon rank-sum test was applied to compare immune cell
infiltration and immune checkpoint expression between MCMBP-
high and MCMBP-low groups, with p < 0.05 considered statistically
significant. Based on studies by Auslander et al. (18, 19), we
compiled a list of 26 therapeutically relevant immune checkpoints
(ICPs) and evaluate-d their correlation with MCMBP expression.
Pearson correlation analysis was employed, and the correlation
coefficients (R) along with p-values were reported. To predict the
clinical response to immunotherapy, the TIDE web tool (http://
tide.dfci.harvard.edu/login/) was utilized to analyze TCGA-PAAD
expression profiles and compute TIDE scores related to MCMBP
(20). These predictions were further validated using the I-
Mvigor210 cohort (a cohort of patients with urothelial cancer
treated with anti-PD-L1 therapy) (21).

Drug sensitivity analysis

To identify potential therapeutic agents targeting MCMBP, we
integrated drug sensiti-vity data from the GDSC database (https://
www.cancerrxgene.org/) with MCMBP expression profiles from
PAAD patients in TCGA. Using the oncoPredict R package
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(version 0.2), drug sensitivity scores were computed and their
correlation with MCMBP expression levels was assessed using
Spearman’s rank correlation method. Drugs showing a significant
correlation (Spearman’s p < 0.05) were ranked by the magnitude of
their correlation coefficients and visualized using R version 4.3.3.
Additionally, we employed the Connectivity Map (CMap) database
(https://clue.io/) to explore connections among small molecules,
gene expression, and disease phenotypes. Based on clinical
treatment outcomes, PAAD patient samples were categorized into
progressive/stable disease (PD/SD) and partial/complete response
(PR/CR) groups. DEGs between these groups were identified using
the ‘limma’ R package, with p < 0.05 and |log2 fold change| > 1 set as
the significance thresholds, and the resulting DEG set was correlate-
d with MCMBP (p < 0.05). Using these gene sets and the CMap
platform, we screened for small molecule drugs potentially
targeting MCMBP in PAAD. Compounds with a negative
connectivity score (norm_cs < 0) in CMap were considered
potential MCMBP inhibitors.

Cell culture

Human pancreatic ductal epithelial cells (HPNE) and PAAD
cell lines (MIA PaCa-2, BxPC-3, PANC-1, Capan-2, AsPC-1,
Jurkat) were purchased from Wuhan ProCell Biotechnology Co.,
Ltd. Cells were cultured at 37 °C in a humidified atmosphere of 95%
air and 5% CO,, using modified Dulbecco’s Modified Eagle Medium
(DMEM), RPMI-1640, and McCoy’s 5A medium (all from Procell,
CN), supplemented with 10% fetal bovine serum (FBS, Procell, CN),
2.5% horse serum (HS, Procell, CN), and 100 U/mL penicillin and
streptomycin (Procell, CN).

Western blotting analysis

Total cellular proteins were extracted using RIPA lysis buffer
(Beyotime Biotechnolog-y, Shanghai, China) supplemented with
protease inhibitors. Equal amounts of protein samples (30ug) were
separated on a 12% SDS-PAGE gel and subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under
denaturing conditions (20-50ug). The proteins were then
transferred onto PVDF membranes. Primary antibodies were
applied following the manufacturer’s instructions (Supplementary
Table S1). Finally, GAPDH was used as a loading control, and
protein band intensities were quantified and normalized using
Image] software (version 1.48). The Western blot image shown is
representative of multiple independent experiments.

Lentiviral infection

The MCMBP overexpression lentivirus was purchased from
GeneChem (Beijing, Chi-na), and the shRNA primers were
designed on the Merck website (http://www.sigmaaldrich.com).
The pLKO.ITRC vector was digested with restriction enzymes,
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and the digestion products were ligated with the amplified
fragments. Following ligation, colony transformation, screening,
sequencing, and recombinant plasmid extraction were performed.
PEI was used for transfection, mixing PS, PM, and plasmid DNA in
serum-free DMEM. The mixture was transfected into 293T cells for
24 hours. Lentivirus at a concentration of 1x10” transducing units
(TU) was used to infect 1x10° target cells, with an empty vector
lentivirus as the negative control. After transfection, the cells
underwent 5 weeks of antibiotic selection, after which they were
collected for further analysis.

Cell cycle analysis

Following transfection, target cells were selected using
penicillin-streptomycin solution for 48 hours. The cells were fixed
with 75% ethanol and stained with propidium iodide solution
containing RNaseA at room temperature for 30 minutes. Cell
cycle analysis was performed using a cell cycle analysis kit
(Beyotime, Jiangsu, China). According to the kit instructions,
1x10° cells were stained and analyzed with a flow cytometer
(Agilent NovoCyte3110, California, USA). Data was processed
using the NovoExpress software version 1.5.0 (Agilent, California,
USA). The results are presented as the mean + SD from three

independent experiments.

Cell formation and Transwell assays

After transfection, cells were seeded into 6-well plates at a
density of 3x10° cells per well and incubated in a humidified 5%
CO, incubator at 37 °C for 2 weeks. The medium was replaced every
3 days, and cell conditions were regularly observed. In the Transwell
assay, 8x10° cells per well and 100 UL serum-free medium were
added to the upper chamber, while 600 UL 20% FBS medium was
placed in the lower chamber. The plate was incubated at 37 °C for
24 hours. For the Matrigel Transwell assay, a layer of Matrigel
matrix (Corning) was first applied to the upper chamber (diluted
8:1 with serum-free medium), and 100 pL serum-free medium was
added to both the upper and lower chambers. The system was
incubated at 37 °C for 36 hours. After incubation, the medium and
floating cells were removed, and the cells were washed twice with
PBS, fixed with 4% paraformaldehyde, and stained with 0.5% crystal
violet solution for 15 minutes. After staining, images were captured,
and the number of cells was counted. The results are presented as
the mean + SD from three independent experiments.

Tissue microarray and IHC

A PAAD tissue microarray (HPanA120Su02) was purchased
from Shanghai Outdo Biotech Co., Ltd. (Shanghai, China). MCMBP
(dilution 1:200) was used as the primary antibody. This study was
approved by the Ethics Committee of Shanghai Outdo Biotech
(Approval No. XSW-02-02). A total of 70 PAAD tissue
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Workflow of the study.

samples were collected from the tissue microarray, including 47
paired normal tissues, to assess MCMBP expression levels.
Immunohistochemistry (IHC) scoring was based on staining
intensity (no staining: 0, weak staining: 1, moderate staining: 2,
strong staining: 3) and the percentage of positive cells (<25%: 0, 25-
50%: 1, 50-75%: 3, >75%: 4), with a total score range of 0 to 12. The
expression levels of MCMBP were compared using a t-test. All
analyses were based on these independent tissue samples.

Cell co-culture and ELISA assays

Control, MCMBP-overexpressing, and MCMBP-
knockdownAsPC-1 and PANC-1 cells were seeded in 24-well
plates at a density of 1 x 10° cells per well. Cells were cultured
for 24 hours in their respective complete media RPMI-1640 for
AsPC-1 and DMEM for PANC-1, both supplemented with 10%
FBS and 1% P/S. Jurkat T cells were then added directly to the
tumor cells at a density of 4 x 10> cells per well. After a 2 hour
stabilization period, T-cell activation was induced by adding soluble
anti-CD3 antibody (2ug/mL, Elabscience, Wuhan, CN), soluble
anti-CD28 antibody (1ug/mL, Elabscience, Wuhan, CN), and Goat
Anti-Mouse IgG (5ug/mL, Elabscience, Wuhan, CN) to the culture
medium. Following 24 hours of activation, the cell culture
supernatant was collected, and the concentration of secreted
IFN-y was quantified using a Human IFN-y ELISA Kit
(Elabscience, Wuhan, CN) according to the manufacturer’s
instructions. Concurrently, Jurkat cells were harvested for
subsequent Western blotting analysis. Data are presented as the
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mean + SEM from three independent experiments. Statist-ical
significance was determined using two-way ANOVA with
multiple comparisons test.

Statistical analysis

Statistical analyses were conducted using R (version 4.3.3) and
GraphPad Prism 9.0 (GraphPad Software, La Jolla, CA, USA). For

in vitro experiments, continuous data are expressed as mean *

standard deviation (SD). Comparisons between two groups of
normally distributed data were performed using unpaired or
paired two-tailed Student’s t-tests, as appropriate. Comparisons
among multiple groups were analyzed by one-way or two-way
ANOVA, followed by Tukey’s post-hoc test for multiple
comparisons. A P-value < 0.05 was considered statistically
significant (*P < 0.05; **P < 0.01; ***P < 0.001). All statistical

tests were two-sided.
Results
Pan-cancer analysis of MCMBP and its
overexpression predicting poor prognosis
in PAAD

Analysis of the HPA dataset indicated that MCMBP expression

varies across normal tissues, with particularly high levels detected in
skeletal muscle, adipose tissue, endometrium, colon, and breast
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tissue (Figure 2A). Pan-cancer analysis using data from TCGA and
GTEx revealed widespread dysregulation of MCMBP expression in
multiple cancer types. Specifically, MCMBP was significantly
upregulated in BRCA, CHOL, COAD, ESCA, GBM, HNSC,
LAML, LGG, LIHC, LUSC, PAAD, READ, STAD, TGCT, and
THYM compared to normal tissues (P<0.05). In contrast,
significant downregulation was observed in KICH, SKCM, UCEC,
and UCS (P<0.05, Figure 2B). These findings were further
corroborated by the CPTAC database, which also showed
markedly elevated MCMBP expression in HNSC, LSCC, PDAC,

10.3389/fimmu.2025.1621927

and CCRCC (Figure 2C). Collectively, these results suggest that
aberrant MCMBP expression is closely associated with
cancer progression.

To explore the prognostic significance of MCMBP expression,
we performed univariate Cox regression analysis across 33 cancer
types to assess its correlation with overall survival (OS). In the
TCGA cohort, MCMBP overexpression was found to be
significantly associated with poorer OS in ACC (P<0.001) and
PAAD (P=0.0313, Figure 2D). Similarly, data from the CPTAC
cohort further corroborated this finding, demonstrating that
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Expression levels and prognostic significance of MCMBP. (A—C) Expression of MCMBP in tumor tissues versus normal tissues based on HPA, TCGA
+GTEx, and CPTAC datasets; (D, E) Univariate Cox regression analysis of MCMBP expression across various cancer types using TCGA and CPTAC
datasets; (F—=I) KM survival analysis of MCMBP expression based on TCGA and CPTAC datasets. *P<0.05, **P<0.01, ***P<0.001, ns not significant

(indicating no statistical significance)

Frontiers in Immunology

06

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1621927
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

elevated MCMBP expression was significantly associated with
worse OS in PDAC (P=0.0482) and CCRCC (P=0.003,
Figure 2E). Taken together, these findings indicate that high
MCMBP expression is correlated with poor prognosis in PAAD
and PDAC. To further evaluate the prognostic value of MCMBP in
PAAD, we stratified patients into high-expression and low-
expression subgroups and conducted KM survival analyses. In the
TCGA cohort, MCMBP overexpression was significantly associated
with shorter OS, disease-specific survival (DSS), and progression-
free interval (PFI) (Figures 2F-H). Consistently, in the CPTAC
cohort, the high-expression subgroup also exhibited significantly
poorer OS (Figure 2I).

To validate the association between MCMBP and unfavorable
prognosis in PAAD, we analyzed PAAD patient samples from the
GEO database. MCMBP expression was elevated in tumor tissues
compared to normal controls in both the GSE62452
(Supplementary Figure S1A) and GSE183795 (Supplementary
Figure S1B) cohorts. Additionally, in the GSE79668
(Supplementary Figure S1C) and GSE85916 (Supplementary
Figure S1D) cohorts, high MCMBP expression was significantly
correlated with worse OS. These multi-database, multi-cohort
analyses further reinforce the potential of MCMBP as a
prognostic biomarker for unfavorable outcomes in PAAD.

Clinical pathological analysis and
development of the prognostic model

In the TCGA cohort, MCMBP expression increased
significantly with higher tumor grade (Figures 3A-E). Similarly,
in the CPTAC cohort (Figures 3F-]), MCMBP expression levels
were significantly elevated with advancing tumor stage. Univariate
Cox regression analysis revealed that, in the TCGA cohort
(Figure 3K), MCMBP expression, T stage, N stage, and tumor
grade were all significantly associated with PAAD prognosis. In the
CPTAC cohort (Figure 3M), MCMBP expression and tumor stage
were significantly correlated with prognosis. Multivariate analysis
further confirmed that MCMBP expression and tumor grade were
independent prognostic factors in the TCGA cohort (Figure 3L).
Similarly, MCMBP expression and tumor stage were independent
predictors in the CPTAC cohort (Figure 3N). These results
underscore the independent prognostic value of MCMBP in
PAAD. To facilitate clinical translation, we integrated the
independent prognostic factors—age, tumor grade, tumor stage,
and MCMBP expression—into a nomogram for predicting OS in
both TCGA and CPTAC cohorts (Figure 30; Supplementary Figure
S2A). Calibration curves demonstrated high predictive accuracy for
1-, 2-, and 3-year OS in the TCGA training cohort (Figure 3P). In
the CPTAC validation cohort, the model showed moderate
accuracy (Supplementary Figures S2B, C). By comparison, the
nomogram achieved higher predictive performance in the TCGA
cohort, with AUCs of 0.700 and 0.724 for 2- and 3-year OS
(Figure 3Q). Decision curve analysis further indicated that
MCMBP expression provided substantial clinical net benefit in
the TCGA cohort (Figure 3R) and remained informative in the
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CPTAC cohort (Supplementary Figure S2D). In summary, these
findings support MCMBP as a prognostic biomarker in PAAD and
propose a clinically applicable nomogram for risk stratification. The
observed variations in model performance between cohorts
highlight the need for further validation and refinement.

Biological function analysis of MCMBP

Limma analysis identified 5,640 upregulated and 116
downregulated genes associated with MCMBP expression. The
heatmap (Figure 4A) displays the expression of the top 30 most
significantly up and down-regulated genes. GO enrichment analysis
(Figures 4B-D) showed that MCMBP may enhance tumor-stroma
interactions through the regulation of extracellular matrix structural
constituents and focal adhesion pathways. Furthermore, MCMBP
appears to promote cell proliferation and survival via receptor
binding, protein binding, and growth factor binding signaling
pathways, suggesting a potential role in facilitating tumor cell
migration and invasion. Enrichment of specific protein domain
binding also implies a role for MCMBP-mediated epigenetic
regulation in tumor progression. KEGG pathway analysis
(Figure 4E) revealed that MCMBP regulates the cell cycle through
activation of the PI3K-Akt signaling pathway, supporting its function
in promoting proliferation. Additionally, MCMBP may modulate
immune responses by influencing Th17 cell differentiation, Th1/Th2
cell balance, T-cell receptor signaling, and the PD-L1/PD-1
checkpoint pathway, potentially contributing to immune evasion.
These findings were corroborated by GSEA, which showed significant
enrichment of MCMBP-upregulated genes in pathways associated
with tumor immune escape, cell migration and invasion, cell cycle
progression, chromosomal instability, and transcriptional regulation
(Figures 4F-M). Protein-protein interaction (PPI) network analysis
identified interactions between MCMBP and MCM2-9 as well as
WDHDI1 (Figure 4N). Together, these results suggest that MCMBP
plays a multifaceted and critical role in promoting PAAD progression.

Epigenetics and prognostic analysis

Based on analyses using the DiseaseMeth and TCGA databases,
we found that MCMBP methylation levels are significantly higher in
normal tissues than in tumor tissues (Figure 5A). Further correlation
analysis demonstrated a significant negative association between the
methylation status of MCMBP and its expression levels (Figure 5B).
To evaluate the prognostic value of MCMBP methylation in PAAD,
KM survival analysis was performed. The results for OS and PFI
revealed that low methylation levels of MCMBP were associated with
poor prognosis (Figures 5C, D), suggesting that the methylation
status of MCMBP may serve as a potential prognostic biomarker for
PAAD. To further investigate the methylation characteristics of
MCMBP, we performed a comprehensive analysis of multiple CpG
methylation sites using the MethSurv database (Figure 5E). Heatmap
results indicated that sites cg06601266 and cg12002455 exhibited
high methylation levels, while sites cg01144764, cg02190253,
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€g2127225, cg11943330, and cg26134152 displayed low methylation ~ In addition, correlation analysis of 24 genes involved in m6A
levels. Further prognostic analysis demonstrated that the expression ~ modification revealed that MCMBP was significantly associated
of MCMBP at the cg12002455 site was significantly associated with ~ with these genes, with statistically significant differences observed
patient outcomes (Figure 5F). These findings suggest that higher  (Figure 5G). MCMBP expression was categorized into high and low
methylation levels of MCMBP are correlated with better prognosis.  groups, and both Log-rank P tests and univariate Cox regression
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analyses were performed (Figures 5H-K). Results indicated that in
the high MCMBP expression group, IGF2BP1, IGF2BP3, VIRMA,
and YTHDEF3 were significantly upregulated (HR>1). This co-
expression pattern suggests that MCMBP-high tumors are
associated with a state that favors m6A modification, which is
linked to poor patient survival. Conversely, low MCMBP
expression was associated with higher levels of m6A “erasers”
(ALKBHS, FTO) (HR<1), implying a potential tendency for m6A
removal in this context, which correlates with more favorable clinical
outcomes. In summary, our integrated analysis indicates that the low
DNA methylation of MCMBP and its associated pro-tumorigenic
m6A regulator profile may collectively constitute an epigenetic
signature linked to adverse prognosis in PAAD.
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The relationship between MCMBP and
immunity in PAAD

Previous KEGG/GO analyses indicated a potential role for MCMBP
in tumor immunity. ESTIMATE analysis showed that high MCMBP
expression was associated with higher ESTIMATE, Immune, and
Stromal scores, and lower Tumor Purity (Figures 6A-D), suggesting
its potential involvement in modulating the TME. To further explore
the link between MCMBP and immune infiltration, we performed
QUANTISEQ and ssGSEA analyses. QUANTISEQ revealed
significantly elevated infiltration of M2 macrophages, Tregs, and
neutrophils in the high MCMBP expression group (Figures 6E, F, all
p<0.05). ssGSEA indicated positive correlations between MCMBP
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expression and infiltration of B cells, T helper cells, Tregs, Th2 cells, and
T cells, and negative correlations with macrophages, mast cells,
neutrophils, and dendritic cells (Figure 6G, all p<0.05). These findings
suggest that MCMBP expression in PAAD might actively participate in
immunosuppressive cell infiltration. Further analysis using ImmuCellAI
combined mRNA expression showed significant positive correlations
between MCMBP expression and immunosuppressive Treg subsets,
including iTreg, nTreg, and Trl cells (Figure 6H; Supplementary
Figure S3B, all p<0.05), suggesting that MCMBP may enhance Treg
recruitment and function. GSVA integrated with ImmuCellAI also
revealed positive associations between MCMBP activity and iTreg,
nTreg, Trl, and dendritic cells, and negative correlations with gamma
delta T cells and neutrophils (Figure 61; Supplementary Figure S3A,
all p<0.05). These results imply that MCMBP may facilitate
immunosuppression through IL-6 signaling, FoxP3 expression, PD-
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1/PD-L1 checkpoint activation, and JAK-STAT or NF-kB pathways.
Among 26 immune checkpoints (ICPs) analyzed, most—including
PD-1 and PD-L1—were upregulated in the high MCMBP subgroup
(Figure 6]). Correlation analysis confirmed positive associations
between MCMBP expression and both PD-1 and PD-L1
(Figures 6K, L). In summary, MCMBP may contribute to immune
evasion in PAAD by enhancing immunosuppressive cell infiltration
and upregulating key immune checkpoints.

Immunotherapy prediction and drug
sensitivity analysis

The efficacy of anti-PD-L1 immunotherapy in PAAD is
influenced by factors such as tumor mutation burden (TMB),
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expression levels with ImmuCellAl analysis; () GSVA combined with ImmuCellAl analysis; (J) Differential expression analysis of ICPs between MCMBP
subgroups; (K, L) Correlation analysis between MCMBP expression and PD-1/PD-L1 levels. *P<0.05, **P<0.01, ***P<0.001.

PD-L1 expression, and Treg expression levels (21-24). Based on our
previous results (Figures 6]-L), we employed the TIDE algorithm to
evaluate the effect of MCMBP expression on response to immune
checkpoint blockade (ICB), including anti-PD-1 and anti-PD-L1
therapies. TIDE, Exclusion, and PD-LI scores were significantly
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higher in the high MCMBP expression group (Figure 7A, all P <
0.05). Further analysis of ICB response rates revealed that among
patients with high MCMBP expression, were predicted to respond
to treatment while 60% were predicted non-responders. In contrast,
the low MCMBP expression group showed a significantly higher
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predicted response rate of 43%, with non-responders reduced to
46% (Figure 7B, P < 0.05). These results suggest that high MCMBP
expression correlates with elevated TIDE and Exclusion scores and
reduced ICB efficacy, whereas low MCMBP expression is associated

with lower PD-L1 scores and improved ICB response.
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To validate these findings, we analyzed the IMvigor210 cohort
dataset. Both MCMBP and PD-L1 expression significantly
associated with OS, with a positive correlation between them
(Figure 7C). A greater proportion of patients with low MCMBP

expression were found in the partial response (PR) and complete
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response (CR) groups, further supporting that low MCMBP may
predict better immunotherapy sensitivity (Figure 7D). Upon
stratification by PD-L1 expression, Kaplan-Meier survival and
correlation analyses showed more pronounced survival differences
and stronger correlations in the high-PD-L1 group than in the low-
PD-L1 group, implying a potential synergy between MCMBP
expression and anti-PD-L1 treatment (Figures 7E, F).

Analysis of the GDSC database indicated that MCMBP expression
was negatively correlated with drug IC50 for Gemcitabine, Paclitaxel,
Bortezomib, and Cediranib (Figure 7G), suggesting that high
MCMBP expression may increase responsiveness to gemcitabine—
paclitaxel combination chemotherapy. To identify potential
MCMBP-targeting compounds, we analyzed differentially expressed
genes in PR/CR groups from TCGA-PAAD (Figure 7H;
Supplementary Figures S4A, B) and queried the Connectivity Map
(CMap) database. Compounds with negative connectivity scores
(norm_cs < 0) were considered potential MCMBP inhibitors,
including Tozasertib, Motesanib, AMG-232, Linifanib, Filgotinib,
BIBX-1382, and AT-7867 (Figure 7I). Using YAPC cells with high
MCMBP expression treated at 10 uM for 24 hours, we further screened
for sensitive agents and found that Tozasertib, Motesanib, AMG-232,
Linifanib, and Filgotinib showed therapeutic potential (FDR/p-value <
0.05, Figure 7]). To further validate the potential functions of these
candidate compounds, KEGG analysis was performed on the gene set
targeted by the CMap-identified drugs. The results revealed significant
enrichment of multiple cancer-related signaling pathways, including
the PI3K-Akt, MAPK, Ras, and JAK-STAT pathways, as well as the
PD-L1 expression and PD-1 checkpoint pathway in cancer (Figure 7K).
The concordance between the pathways targeted by these effective
MCMBP-inhibiting compounds and previously identified MCMBP-
associated functions collectively (Figure 4E) suggests that the tumor-
promoting role of MCMBP in PAAD is likely mediated through the
regulation of these specific signaling pathways.

Knockdown of MCMBP affects the
proliferation, migration, and invasion of
PAAD cells

To examine MCMBP expression in PAAD, we performed
Western blot analysis on five PAAD cell lines and a normal
pancreatic ductal epithelial cell line (HPNE). MCMBP protein
levels were low in HPNE cells but significantly elevated in ASPC-1
and PANC-1 cells (Figure 8E). To explore the functional role of
MCMBP, we knocked down its expression in ASPC-1 and PANC-1
cells using a lentiviral-based approach. Colony formation assays
revealed that MCMBP knockdown significantly suppressed
proliferation in both cell lines (Figures 8A, B), suggesting a
potential role for MCMBP in promoting tumor cell growth. Flow-
cytometric cell-cycle analysis showed that MCMBP depletion
impeded the G1-S phase transition and reduced the proportion of
cells in G2/M phase (Figures 8G, H), suggesting that MCMBP may
regulate cell cycle progression. Furthermore, migration and invasion
capabilities were significantly impaired upon MCMBP knockdown
(Figures 8C, D). Western blot analysis of epithelial-mesenchymal
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transition (EMT) markers indicated that MCMBP silencing increased
the expression of E-cadherin and decreased levels of Vimentin and
Snail (Figure 8F). These results suggest that MCMBP may facilitate
PAAD cell proliferation by promoting nuclear transport of the MCM
complex and enabling S-phase entry, while also enhancing migratory
and invasive capacities through activation of the EMT process.

IHC analysis of MCMBP expression in
pancreatic adenocarcinoma

To investigate MCMBP expression in PAAD, we performed
immunohistochemical (IHC) staining and scoring on tissue
samples from 117 PAAD patients, including 47 paired tumor and
adjacent non-tumor samples and 23 unpaired tumor samples
(Figures 9A2, B2). We also analyzed MCMBP expression in PAAD
and normal tissues from the Human Protein Atlas (HPA) database
(Figures 9A1, B1). The results showed that MCMBP expression was
significantly higher in PAAD tissues compared to normal tissues
(Figure 9C). Further survival analysis integrating ITHC scores with
clinical data revealed that higher MCMBP expression was associated
with shorter patient survival (Figure 9G). To assess whether MCMBP
may contribute to immune escape in PAAD, we compared PD-L1
and CD8+ T-cell infiltration based on IHC scores. Tumors with high
MCMBP expression exhibited significantly higher PD-L1 expression
(Figure 9D2) and lower CD8+ T-cell infiltration (Figure 9D3)
compared to those with low MCMBP expression (Figure 9E), and
all differences were statistically significant (Figure 9F). These findings
suggest that aberrant overexpression of MCMBP in PAAD may be
associated with poor prognosis and potential involvement in immune
escape mechanisms.

The downregulation of MCMBP inhibits
PD-L1 expression through the JAK/STAT3
signaling pathway

Analysis of the top 200 genes most correlated with MCMBP
protein abundance in the TCGA-CPTAC database revealed, by GO
enrichment, that these genes were primarily associated with tumor cell
proliferation, migration, and immune responses upon MCMBP
upregulation (Figure 10A). KEGG analysis further indicated
enrichment of the “PD-L1 expression and PD-1 checkpoint
pathway in cancer” under high MCMBP protein levels (Figure 10B),
suggesting that MCMBP may promote immune evasion by regulating
PD-L1 and correlate with poor prognosis. Western blot analysis
following MCMBP knockdown in ASPC-1 and PANC-1 cells
showed a decrease in PD-L1 expression (Figure 10C). Using the
LinkedOmicsKB database, we identified significant phosphorylation
changes on MCMBP at $298, S154, and S167 in PDAC, which were
statistically associated with JAK-STAT3 signaling activity
(Figures 10D-G). Subsequent Western blot experiments showed that
MCMBP knockdown reduced phosphorylation levels of JAKI and
STATS3 (Figure 10H), indicating that the phosphorylated JAK-STAT3
pathway participates in MCMBP-mediated upregulation of PD-LI.
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(C, D) Representative images and statistical analysis of migration and invasion assays in ASPC-1 and PANC-1 cells; (E) Expression levels of MCMBP
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cell lines; (G, H) Flow cytometry analysis in ASPC-1 and PANC-1 cells. *P < 0.05, **P < 0.01, ***P < 0.001, ns not significant (indicating no statistical

significance).

To further validate the impact of this regulation on T cell function, we
performed a direct co-culture of Jurkat T cells with control, MCMBP-
overexpressing, and MCMBP-knockdown AsPC-1 and PANC-1 cells
(Figures 101, L). After 24 hours of CD3/CD28 activation, we assessed
effector T-cell function by measuring IFN-v secretion from Jurkat cells
using ELISA. The results showed that Jurkat cells co-cultured with
MCMBP-knockdown AsPC-1 cells secreted higher levels of IFN-y than

Frontiers in Immunology

those co-cultured with control or overexpressing AsPC-1 cells
(Figure 10], p < 0.05). A similar trend was observed in PANC-1 cells
(Figure 10M, p < 0.05). Furthermore, Western blot analysis of Jurkat
cells harvested after co-culture showed that the phosphorylation level of
STAT5 was higher in the MCMBP-knockdown group than in the
control and overexpression groups in AsPC-1 cells (Figure 10K). A
comparable change was observed in PANC-1 cells (Figure 10N).
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These results demonstrate that MCMBP knockdown in tumor cells
may enhance T cell effector function. Therefore, our findings
collectively indicate that MCMBP may promote immune evasion in
PAAD by regulating PD-L1 expression through the JAK-STAT3
pathway and suppressing T-cell function.

Discussion

MCMBP is a key regulator of DNA replication and cell cycle
progression (9). Dysregulation of MCMBP may contribute to
chromosomal instability (CIN), a recognized hallmark of tumor
progression. Building on this, Quimbaya et al. demonstrated that
MCMBP promotes malignant behavior and tumorigenesis in
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colorectal cancer, highlighting its potential as a diagnostic biomarker
(12). In this study, we performed a comprehensive analysis of MCMBP
expression, prognostic relevance, clinicopathological associations,
epigenetic regulation, and immune interactions in PAAD using
multiple public databases, with subsequent experimental validation.

Univariate and multivariate Cox regression analyses confirmed
MCMBP expression to be an independent prognostic factor. To
quantify its prognostic utility, survival and clinicopathological
correlation analyses were conducted based on TCGA, CPTAC,
and GEO datasets, leading to the development of a nomogram
model for predicting patient survival probabilities.

Both DNA methylation and m6A modification play crucial
regulatory roles in tumor progression, and assessing their combined
effects may provide essential insights for prognostic prediction
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(25, 26). Our integrated analysis revealed that in PAAD, the
expression of MCMBP is regulated by DNA hypomethylation and
is concurrently associated with a specific m6A modification state.
Notably, while our analysis did not identify a significant correlation
between MCMBP expression and genetic alterations (CNV/SNV) in
PAAD, its correlation with promoter hypomethylation suggests that
it could be one of the key upstream factors driving MCMBP
overexpression. Furthermore, high MCMBP expression correlates
with elevated levels of m6A “readers” (IGF2BP1, IGF2BP3) and
“writers” (VIRMA, YTHDEF3), a state thought to promote tumor
progression by enhancing the stability and translation of oncogenic
mRNAs. Conversely, low MCMBP expression is associated with the
enrichment of regulators involved in m6A demethylation
(METTL16, ALKBH5, METTL14, FTO). These findings suggest
that the low DNA methylation of MCMBP and its associated pro-
tumorigenic m6A modification profile may synergistically
contribute to the progression of PAAD prognosis.

KEGG and GO enrichment analyses implicated MCMBP in
promoting PAAD cell proliferation, migration, and invasion.
Moreover, MCMBP expression was positively correlated with the
overall level of immune cell infiltration in the TME, specifically with
the abundance of Tregs and M2 macrophages. Evaluation of 26
immune checkpoint genes further revealed that high MCMBP
expression was associated with upregulation of PD-1 and PD-L1,
suggesting a potential mechanism for MCMBP-mediated
immune escape.

Using the TIDE algorithm, we observed that high MCMBP
expression was associated with elevated TIDE, Exclusion, and PD-
L1 scores, along with a lower proportion of patients responding to
immunotherapy. These findings imply that elevated MCMBP
expression may compromise the effectiveness of immune-based
treatments. Analysis of the IMvigor210 cohort corroborated the
prognostic impact of MCMBP and PD-L1 expression on patient OS,
revealing a significant positive correlation between these factors.
Consistently, patients with low MCMBP expression were more
frequently represented among those achieving a PR or CR.
Interrogation of GDSC database indicated a negative correlation
between MCMBP expression and sensitivity to chemotherapeutic
agents including Gemcitabine and Paclitaxel, suggesting that low
MCMBP expression may predict enhanced therapeutic efficacy.
Furthermore, we identified several small molecule compounds—
including Tozasertib, Motesanib, AMG-232, Linifanib, and
Filgotinib—that were negatively correlated with MCMBP
expression and demonstrated promising therapeutic potential.
Notably, pathway enrichment analysis revealed that these
candidate compounds target key oncogenic pathways, including
JAK-STAT and PD-L1 signaling, which are functionally aligned
with MCMBP-associated processes, thereby reinforcing the
potential of these drugs to counteract MCMBP-driven tumor
progression. In summary, low MCMBP expression may enhance
the efficacy of both immunotherapy and chemotherapy in PAAD.

In recent years, anti-PD-L1 immunotherapy has shown
promising results across multiple cancer types (27-29). However,
its efficacy in PAAD is often limited by an immunosuppressive TME,
variable PD-L1 expression, and overactivation of inflammatory
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signaling pathways (30-32). Notably, aberrant activation of the
JAK/STATS3 signaling pathway can upregulate PD-L1 expression
and suppress T cell activity, thereby undermining the response to
anti-PD-L1 therapy (33, 34). Our GSEA revealed that MCMBP-
upregulated genes were significantly enriched in the JAK/STAT3
signaling pathway. To further investigate this link, we analyzed the
LinkedOmicsKB database, which revealed an association between
multiple MCMBP phosphorylation sites and JAK/STAT3 pathway
activity. Subsequent Western blot experiments confirmed that
MCMBP knockdown reduced phosphorylation of JAK1 and
STAT3. Collectively, these findings suggest that These findings
suggest that MCMBP may regulate PD-L1 expression through the
JAK/STATS3 signaling pathway. Furthermore, our functional co-
culture assays demonstrated that MCMBP-overexpressing tumor
cells directly suppressed T-cell effector function, as evidenced by
diminished IFN-y secretion and reduced STAT5 phosphorylation in
T cells. This indicates that MCMBP fosters an immunosuppressive
microenvironment not only by upregulating PD-L1 on tumor cells
but also by directly impairing T cell activation, thereby providing a
more comprehensive preliminary exploration mechanistic basis for
its role in immune evasion.

This study has several limitations. Firstly, the analysis
predominantly relies on sample data from public databases;
although we observed low methylation and high m6A modification
states of MCMBP in PAAD, further experimental validation is
necessary to elucidate the precise mechanisms, such as how
promoter hypomethylation enhances MCMBP transcription and
how the associated m6A regulators affect its mRNA stability or
translation, in driving tumor progression. Secondly, due to the lack
of suitable public datasets for PAAD immunotherapy, the predictive
potential of MCMBP for immunotherapy response requires further
validation in additional patient cohorts or preclinical models. Thirdly,
the immune cell infiltration profiles, while supported by multiple
computational algorithms (QUANTISEQ, ssGSEA, ImmuCellAlI),
remain predictions that lack direct experimental confirmation using
clinical tissue samples to directly quantify differences in Tregs, CD8+
T cells, and other subsets between MCMBP high- and low-expression
groups. Additionally, while our multi-omics and experimental data
suggest MCMBP is an upstream regulator of the JAK-STAT3
pathway, the precise mechanism of action remains unelucidated.
Whether MCMBP, as a DNA replication-related protein, regulates
this signaling pathway through direct interaction or indirect means
(genomic instability) remains a central question for future
investigation. Lastly, the conclusions of this study are primarily
based on evidence from in vitro experiments. While the data
demonstrate the role of MCMBP in promoting malignant cell
behaviors in vitro, its specific functions in vivo require further
validation through animal models in future work in vitro in vivo.

Conclusions
In conclusion, this study demonstrates that MCMBP holds

significant prognostic value in PAAD, with its high expression
closely associated with immune suppression and poor prognosis. As
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a biomarker related to immunotherapy, MCMBP possesses the
potential to promote tumor growth and synergize with
immune therapies.
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