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T-cell receptors that
are k-binding have
defined sequence features
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Previous studies have revealed that individual T cell receptors (TCRs) can
recognize a diverse set of peptide targets displayed by Major Histocompatibility
Complexes (MHCs) to enable effective adaptive immune surveillance. However,
how TCR sequences encode their cross-reactivity remains poorly understood.
Here, we used an in vitro assay to characterize the k-binding of 19° (~47 million)
different TCRs in the context of a single TCR framework for binding to seven
related peptides displayed by HLA-A*02:01. We define k-binding to be the
number of peptide-MHC targets recognized by a TCR within a specific
universe of targets. We found a hierarchy of TCR complementarity-
determining region 3 (CDR3) alpha and beta chain residue importance that
determined k-binding for the seven targets. Our machine learning model that
embedded TCR sequences using BLOSUM-50 provided an overall F1 score of
0.698 and an AUPRC of 0.745 for predicting TCR-pMHC binding, which was
significantly superior to model results from VHSE-8 embedded or one hot
encoded sequences. When we used our model to predict observed k-binding,
we found that experimentally derived sequence motifs do not fully explain the
relative importance of different CDR3 residues. We determined CDR3 residue
importance by examining the reduction in machine learning model predictive
ability by masking individual CDR3 residues. We found that the resulting residue
importance ranking was significantly correlated to residue importance
determined with a computational alanine scan using Rosetta. Our findings
validate past theoretical predictions of TCR cross-reactivity and demonstrate
that TCRs used in therapeutics must be carefully evaluated for their specificity.
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1 Introduction

T cells play an important role in the adaptive immune system’s
defense against pathogens and cancer. T cell receptors (TCRs)
identify non-self-peptide epitopes that are presented by major
histocompatibility complex molecules (MHCs) on the cell surface.
Cells that display non-self-peptide epitopes on their MHCs are
candidates for elimination by T-cells. As the number of potential
peptide epitopes exceeds the number of TCR clonotypes contained
in an individual’s T cell repertoire, a single TCR must be able to
recognize a large number (~10°) of peptide epitopes to enable
effective T cell surveillance (1).

Sewell (2) refined upon Mason’s (1) perspective and argued that
TCR cross-reactivity should be understood through biophysical and
structural bases, not merely through simple sequence homology.
Sewell proposed multiple possible biophysical and structural
mechanisms through which TCR cross-reactivity might be
achieved, including altered peptide binding angle, altered peptide
binding register, complementarity-determining region (CDR) loop
flexibility, and residue-focused TCR engagement that tolerate
certain amino acid substitutions in target peptides.

Previously, interrogation of a single TCR against multiple
peptide targets or a single pMHC against multiple TCRs has been
possible. Birnbaum et al. (3) selected five different human and
mouse TCRs and profiled their binding of ~2 x 10® pMHCs distinct
PMHC:s via a yeast display library. Deep sequencing of the enriched
libraries after each round of iterative selection elucidated pMHCs
recognized by the TCRs of interest. Their work demonstrated the
structural conservation of the TCR interaction, agreeing with
Sewell’s insight. Meanwhile, NetTCR-2.0 (4), a convolutional
neural network (CNN)-based model trained on publicly available
bulk CDR3B-pMHC binding data, predicts the binding of a TCR
sequence against three target peptide epitopes (GILGFVFTL,
NLVPMVATYV, and GLCTLVAML), although the accuracy of
their model was hindered by the overall low quality of the
publicly available datasets.

To refine the frameworks by Mason (1) and Sewell (2), we
determined how individual CDR3 residues contribute to cross-
reactivity. We trained our ML models on densely sampled,

10.3389/fimmu.2025.1621201

randomized A6 TCR CDR3o. and CDR3f sequences (Table 1)
screened against seven target peptides (Table 2) presented by HLA-
A*02:01 (Figure 1; Methods). We first demonstrate that TCR
sequences exhibit a high level of cross-reactivity across the
selected peptide sequences. Second, we demonstrate that the ML
models provided with biologically informative embeddings -
BLOSUMS50 (5) and VHSE8 (6) - significantly improve TCR
binding prediction over the ML models endowed only with
sequence information, thereby computationally validating Sewell’s
(2) proposal that structural and biophysical properties influence
cross-reactivity (Figure 2). Finally, we establish a link between TCR
binding and change in interface energy following residue-level
substitutions, thereby computationally demonstrating how certain
TCR residues differentially influence pMHC recognition by TCRs,
confirming the structural and thermodynamic underpinnings of
TCR cross-reactivity (Figure 3).

In sum, we show that TCRs are highly cross-reactive, and ML
models can effectively predict their cross-reactivity. ML models can
achieve low computational cost when provided with relevant
biophysical information via a priori sequence embeddings, thus
enabling them to be applied to high-throughput deep sequencing
datasets of TCR-pMHC pairs even when high-resolution crystal
structures of individual TCR-pMHC pairs are not available.
Our work serves as the groundwork for the many-to-many
interrogation of TCR-pMHC interactions using a sequence-based
ML model, a step towards the mechanistic understanding of the
TCR cross-reactivity.

TABLE 1 Modified residues on CDR3 alpha and beta chains of A6 TCR.

CDR3 Alpha Beta Library

Randomized Positions Alpha 99-101, Beta 98-100

Native Sequence DSW/LAG

Estimated Diversity 19°

The amino acid coordinates for randomized positions follow the definitions provided by
Smith et al. (24).

TABLE 2 List of peptide sequences and their constituent amino acid sequences.

Assayed Peptides

Peptide Name

HTLV-1 Tax-1 peptide (Tax) L L F G Y P v Y v
ELAV-like protein 4 (HUD) L G Y G F \% N Y I
BENE L L Q G w \% M Y \%
Phosphofructokinase (F) T M G G Y C G Y L
Tyrosine Kinase (TY) S L H G Y K K Y L
Tax TM10 (TM) T L w G w \% K Y \%
Homeobox (HOM) N L Q G N P v Y v

A previous work indicated that these peptides activate the native (DSW/LAG) A6 TCR in an in vitro cell lysis study (19).
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A6 TCR is randomized and panned against HLA:A*0201 presenting seven peptide epitopes. Overview of experimental protocol for generating TCR-

pMHC binding data with yeast display selection via MACS (3, 22, 23).

2 Materials and methods

2.1 Creation of TCR yeast display libraries
and pMHC monomers

In this study, we generated a novel experimental dataset linking
TCR-pMHC binding pairs. We selected the A6 T cell receptor as
our model framework based on its well-characterized interaction
with the native ligand Tax-HLA*A:0201. This framework sequence
was expressed as a single-chain TCR (scTv) following the format
described by Aggen et al. (7), using the pCT302 expression vector
and the Aga2 leader peptide.

To diversify this framework, we targeted residues in the CDR3a
and CDR3 regions for randomization guided by their proximity to
the peptide in the previously solved TCR-pMHC crystal structure.
This analysis resulted in the creation of our TCR library with 3
positions in the CDR3a (residues 97-100) and CDR33 (residues 98-
100) being fully randomized in amino acid space generating a TCR
library with an estimated diversity of 4.7 x 107 unique variants.

The pMHC reagents were expressed in single-chain trimer
format as previously described by Hansen et al. (8), with
components linked by GS linkers in the following order: signal
peptide for excretion, peptide, human b2m, HLA:A*0201, AviTag
(for biotinylation) and 8x His (for purification). This construct was
cloned into the conventional pVL1393 insect cell expression
plasmid and transfected into SF9 insect cells for production. All
seven pMHC variants were expressed in this manner and used for
downstream MACS selections.
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2.2 Yeast display library selections and
sequencing

To identify TCR-pMHC binding pairs, we performed
independent selection campaigns against each of the seven pMHC
targets using the TCR library. Each selection consisted of three
consecutive rounds of magnetic-activated cell sorting (MACS) with
streptavidin (SAV) microbeads. For each round, yeast expressing
the scTv constructs were induced for surface expression, and an
input population representing 10x coverage of the library’s
theoretical diversity was prepared (e.g., for a 5 x 107 library, at
least 5 x 10° yeast cells were used).

MACS selections were performed using 250 pL of SAV
microbeads pre-loaded with pMHC at a concentration of 400
nM. The yeast and pMHC-coated beads were incubated together
for 2-3 hours at 4 °C with gentle rotation. The mixture was then
passed through magnetic capture columns, and bead-bound
yeast were retained and eluted. This enriched population was
expanded to full density and used as input for the next round of
selection. This iterative process was repeated three times for each
pMHC target, with biological replicates conducted for all
seven targets.

Following each round, 250 pL of the selected yeast population
was collected for DNA extraction. TCR-encoding regions were
PCR-amplified, during which Illumina sequencing adapters were
added. The resulting libraries were submitted to the MIT BioMicro
Center and sequenced on an Illumina NovaSeq 6000 using a high-
throughput, paired-end multiplexed format.
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BLOSUM50 embedding improves TCR binding classification. We trained MLP models that take TCR sequences embedded in different sequence
embeddings and output binding prediction against the seven peptide targets. As the weights are shared internally, the models implicitly learn to
predict cross-reactivity. We performed 10-fold cross-validation for the MLP models. The differences in predictive performances of the models
trained using different sequence embeddings were measured for different cross-reactivity strata and peptide targets. (A) Models trained with
BLOSUM50 embedding outperformed those with VHSES8, which in turn outperformed one-hot (Vmetrics, replicates p< 0.001; Kruskal-Wallis test
followed by Dunn'’s post-hoc test, FDR correction). Contrastingly, the performances of the models trained with the same embedding did not
differ significantly (p > 0.05). (B) The degrees of performance improvement were significantly varied for different cross-reactivity strata (p< 0.0001,
£ = 0.73). (C) Further, the degrees of improvement were significantly varied for different pMHC targets (p< 0.0001, £ = 0.85).

2.3 Creation of logos for TCR sequences
with different target specificities

We refer to the set of seven peptides listed in Figure 1C as the
Set U. We refer to a TCR to be “S-binding” for the set S of peptides if
the TCR binds to the peptides in S and does not bind to the peptides
in U-S. We call a TCR to be “k-binding” if the TCR is S-binding and
k is the size of the Set S. We defined the list of k-binding TCR
sequences from k = 1 to k = 7 and created the sequence logo for each
k (Figure 4B) using WebLogo (9).

To examine the diversity of 1- and 2-binding TCR sequence, we
defined the list of S-binding TCR sequences for k = 1 and k = 2 for
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all possible S. The resulting 28 logos, 7 for 1-binding (i.e., target-
specific) and 21 for 2-binding TCR sequences, were created using
WebLogo (Figure 4C).

2.4 Design and training of machine
learning models

We trained multi-layer perceptron (MLP) models to predict
binding against seven peptide targets listed in Table 2. The models
take TCR CDR30/B sequences encoded using three different
embeddings: BLOSUM50 (5), VHSES (6), and one-hot encoding.
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Sequence-masked training shows the hierarchical contribution of each amino acid position. We performed sequence-masked training in which
different residue positions are deleted to estimate the marginal contribution of each residue. (A) While masking any residue resulted in a significant
deterioration (p < 0.001, one-sample T-test), the degrees of deterioration were significantly varied for different positions being masked (p< 0.0001,
& = 0.21). The inferred hierarchy of marginal importance for different residue positions was: a99 > al01 > b98 > a100 > b100 > b99. Further, while
masking either of CDR3 chain caused significant performance deterioration, masking o. chain caused significantly greater deterioration than masking
B chain (p< 0.001, Wilcoxon signed-rank test). (B) We performed computational alanine substitution and used FlexPepDock (13, 14) to infer the
changes in interface energy (Al_sc, lower more stable) following alanine substitution. We found that Al_sc explains the ML performance
deterioration, as measured by AF1 score, following residue and chain masking.

Since the length of each input TCR sequence is 6, BLOSUMS50 and
one-hot encodings map each amino acid to 20-dimensional vector,
and VHSE8 encoding maps each amino acid to 8-dimensional
vector, the input dimensions were 120 (= 6*20) for BLOSUMS50 and
one-hot encodings and 48 (= 6*8) for VHSE8 embedding.

Each neural network contains two hidden linear layers with 500
neurons and rectified linear unit (ReLU) activation functions. The
output layer returns 7-dimensional vectors passed through a
sigmoid layer, each entry representing the binding probability of
the TCR against each of 7 peptide targets presented by HLA-
A*02:01 (Table 2). The cross-entropy loss was minimized via
Adam optimizer (10) with the learning rate parameter of 0.0001
and the weight decay parameter of 0.0005. All models are trained
for 10 epochs with a batch size of 1028.

Non-binding TCRs outnumber binding TCRs for all target
peptides. To overcome this intrinsic class-imbalance in our
datasets, we employed a weighted sampling strategy based on k-
binding. First, TCR sequences are stratified according to their k-
binding. Next, for each cross-reactivity stratum (value of k), we
computed a weight that is inversely proportional to the frequency of
the stratum. Consequently, the TCR sequences with higher k-
binding had greater weights. Formally,

Frontiers in Immunology 05

wy = sqrt(ny/ny.)

where 7. is the number of k-binding TCR sequences. Third, the
weights wy are used to sample TCR sequences with replacement
during training.

2.5 Validation and evaluation of machine
learning models

We used 10-fold cross-validation of the training and validation
sets (9:1 split) in two independent replicates with different random
seeds. We confirmed the model performances to be robust against
the random initialization via different random seeds (Figure 2A,
Supplementary Figure 4A).

All models are evaluated using Fl-score and Area Under the
Precision-Recall Curve (AUPRC) metrics; these metrics were chosen
over more commonly used metrics of accuracy and Area Under the
Receiver Operating Characteristic Curve (AUROC) due to their
robustness against class-imbalanced datasets. For the detailed
comparison of performances of models trained with different
sequencing embeddings, we (i) stratified the sequences according to
their k-binding and (ii) according to their bound target peptides and
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TCRs are highly cross-reactive. (A) CDR3 sequences binding to one or more of examined pMHC targets are more cross-reactive than expected by
chance (p = 0.0; one-sided binomial test). (B) Cross-reactive CDR3 sequences contain learnable sequence features enriched over target-specific
sequences. (C) The logos of 2-binding CDR3 sequences (off-diagonal) contain richer features than the logos of 1-binding sequences (target-specific;
diagonal), suggesting that the cross-reactivity cannot be predicted only from binding of individual peptides. The logos are generated using WebLogo (9).

computed Fl-scores and AUPRC for stratified sequence sets
(Figures 2B, C, Supplementary Figures 4B, C). The statistical
significance of model performance differences in different cross-
reactivity strata and target peptides was tested using Kruskal-Wallis
test, and €2 was computed to measure their effect size, defined as the
proportion of variance explained by group differences (11).

We benchmarked the performance of our MLP models against the
logistic regression classifiers trained independently per peptide target
and permuted MLP models where the relationships between TCR
sequences and peptide targets of the training datasets were broken by
random shuffling (Supplementary Figure 3). All models were trained
with BLOSUM50-encoded TCR sequences. The MLP models, which
could leverage shared internal weights to simultaneously predict
binding across multiple target peptides, significantly outperformed
logistic regression models (p = 6.0e-06, Mann-Whitney U-test). The
outperformance of the MLP models persisted across all cross-reactivity
strata (p = 0.0020, Wilcoxon signed-rank test) and all individual target
peptides (p = 0.0020). Note that the most pronounced performance
improvement occurred within the 7-binding stratum, demonstrating
the capability of the MLP model to implicitly learn the sequence
feature representation of cross-reactivity in a supervised manner.

Frontiers in Immunology

2.6 Masked training of machine learning
models

We created synthetic datasets for residue-masked training and
validation by deleting the residue(s) to be masked from the original
datasets with all six residues. The models were not provided with
information on which residue positions are deleted. Note that in the
residue-masked datasets the same sequence can be mapped to two
different sets of bound target peptides.

The total of eight synthetic datasets were created: masking of
residues 1 through 6, of o chain, and of B chain. The MLP model
architecture is edited appropriately for each synthetic dataset so that
the number of dimensions in input dataset elements accords with
the dimensionalities of synthetic datasets transformed with each
sequence embedding.

The 10-fold validations were performed, and the models were
evaluated using Fl-score and AUPRC metrics for different cross-
reactivity strata and target peptides as was the case for the models
endowed with all six residues. The differences in performances
between the models trained with masked synthetic datasets and
those trained with full datasets were measured using the differences
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(A) in Fl-scores and AUPRC metrics for different cross-reactivity
strata and target peptides (Figure 3A, Supplementary Figure 5A). The
statistical significance of performance differences of models trained
using synthetic datasets with different residue being masked was
tested using Kruskal-Wallis test, and e is computed to measure their
effect size, the proportion of variance explained by group differences
(11). The statistical significance of performance differences of models
trained using synthetic datasets with masked o vs. § chain was tested
using Wilcoxon signed-rank test (12).

2.7 Use of FlexPepDock to infer interface
binding energy

To infer interface binding energy, we used FlexPepDock (13, 14)
to infer interface binding energy between TCR and pMHC. To
generate input PDB files, we downloaded the PDB file of structure
1AQO7 (15) from RCSB Protein Data Bank (16). We standardized
the PDB file as recommended by PyRosetta (17) and reordered the
order of chains such that TCR chains appear before the peptide
chains in the PDB file. This is the wildtype (WT) PDB file.

To perform computational alanine scanning, the appropriate
amino acid in the wildtype (WT) PDB file is replaced by alanine.
This is achieved by updating the amino acid identity (e.g. from “D” to
“A”) as well as substituting the atoms pertaining to the original amino
acid to the atoms pertaining to alanine. The total of eight substituted
PDB files were created: alanine substitution of residues 1 through 6, of
all three o chain residues, and of all three [ chain residues. The short-
and long-form nomenclatures of corresponding PDB files are [al, a2,
a3,bl, b2, b3, A, B] and [a99, a100, a101, b98, b99, b100, alpha, beta]
(Figure 3B, Supplementary Figure 5B).

Nine FlexPepDock jobs - one for WT and eight for each
substituted PDB file — were undertaken. For each run, one hundred
high-resolution structures were generated with receptor backbone
minimization; no structure was generated with low resolution
preoptimization protocol. We computed the median interface scores
(I_sc) of one hundred FlexPepDock structures. We correlated the
difference between the median interface scores between WT and
alanine-substituted structures (A I_sc) with the ML performance
changes due to residue masking (AFI score and AAUPRC) as
measured above and computed its size and statistical significance via
Spearman’s rank correlation (Figure 3B, Supplementary Figure 5B).

3 Results

3.1 Screening of randomized CDR3 TCRs
against HLA-A*02:01 presenting seven
peptide epitopes

We focused on the A6 TCR, a well characterized model system
TCR originally derived from an HTLV-1-infected patient that
recognizes the Tax peptide derived from HTLV (LLEGYPVYV)
in the context of HLA-A*02:01 (18). Through years of study, this
TCR has multiple described peptide mimotopes with a range of
sequence divergence from the cognate Tax peptide. Using the X-ray
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crystal structure of A6 TCR binding to Tax presented by HLA-
A*02:01 (15), we selected six residues within A6 TCR
complementarity-determining regions 3 (CDR3) o and [ chains
that were the closest molecular contacts to the peptide (Figure 1).
We screened the resulting library against seven of the peptides
reported to be cross-reactive with A6 (19) presented by HLA-
A*02:01 through three yeast-display panning rounds (3). These
seven peptides set a suitable stage to systematically quantify
k-binding.

To understand if our selection campaign is in fact enriching for
high-fidelity binders against each target, we first quantified the
number of unique TCR sequences observed in each panning round
(Supplementary Figure 1A). We observed that the number of
unique TCR sequences decrease across all target peptides and
replicates with the progression of the panning rounds as the TCR
sequences with weak to no affinity against the given peptide target
are dropped out. Second, we quantified the percentages of reads
contributed by the top 100 TCR sequences (Supplementary
Figure 1B). We observed that the percentages of the top 100 TCR
sequences increase across all target peptides and replicates with the
progression of the panning rounds as these sequences with strong
affinity against the given peptide target are enriched. Finally, to
visually inspect the enrichment of amino acid preference at each
residue position and convergence of two replicates during panning
rounds, we performed weighted sampling (Methods) of the TCR
sequences in each round of panning against the Tax peptide and
created sequence logos (Supplementary Figure 1C). We confirmed
not only that certain amino acid preferences are enriched in
position-dependent manner, but also that these preferences in
two replicates are convergent.

To validate the yeast-display selection results we conducted a
titration assay on a subset of selected TCRs with varying predicted
cross-reactivities (Supplementary Figure 2). Eight TCR clones, both
containing and lacking the “DSW” motif identified during yeast
selections, were individually expressed on yeast and stained with
PMHC tetramers at concentrations ranging from 0.1 nM - 200 nM
(Supplementary Methods). The resulting titration curves provided
quantitative confirmation of TCR affinity predictions derived from
yeast panning (Methods).

We found that yeast-display selection enriched all binders
identified by the titration assay (Supplementary Figures 2C, D).
The few binders identified by yeast-display but not by titration assay
(such as for the HUD peptide), can be explained by the higher
effective avidity of yeast-display bead-based selections than titration
soluble staining reagents, which has been previously seen to identify
binders that may not be observed with pMHC-TCR interactions
measured via tetramers (3). Overall, our titration assay data
reinforces the reliability and biological relevance of our high-
throughput selection data.

3.2 TCRs exhibit extensive cross-reactivity

We characterized the binding profiles of 19° (approximately 47
million) randomized A6 TCR variants. The yeast panning revealed
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extensive cross-reactivity (Figure 4A). The TCR sequences present
in the MACS Round 3 in both replicates were defined as binding to
the given pMHC (Methods). Among the TCR sequences binding to
at least one peptide, 448,121 sequences specifically recognized a
single target peptide (1-binding), 40,359 sequences recognized two
target peptides (2-binding), and 530 sequences recognized all seven
peptides (7-binding). This observed cross-reactivity significantly
exceeded expectations based on the assumption of random binding
(p = 0.0; one-sided binomial test), agreeing with the previous
theoretical predictions of TCR cross-reactivity (1, 2).

Further analysis demonstrated that cross-reactive CDR30/[3
sequences contained distinct sequence features, specifically the “DSW”
motif in the three o chain positions, when compared to those specific to
single targets (Figure 4B). The logos of 2-binding sequences in off-
diagonal entries presented richer sequence information compared to
logos derived from target-specific sequences in diagonal entries
(Figure 4C), showing that TCR cross-reactivity could not be inferred
solely from individual peptide binding events.

3.3 Sequence embedding methods
enhance TCR binding prediction

We trained a multi-layer perceptron (MLP) model to predict
TCR binding to the seven peptide-major histocompatibility (pMHC)
complexes. The model inputs encoded TCR sequences, passes the
encoded TCR sequences through a first hidden layer with 500 ReLU-
activated neuron outputs, into a second hidden layer with 500 ReLU-
activated neuron outputs, followed by an output layer that transforms
its 500 neuron input into 7 outputs that are used to compute sigmoid-
activated binding probabilities for all seven peptide-MHC targets.
TCR sequences were encoded with three different embeddings:
BLOSUMS50 (5), VHSE8 (6), and one-hot encoding. Model
performance was assessed using 10-fold cross-validation (Methods).

The models trained with BLOSUMS50-embedded input sequences
consistently yielded superior predictive performance (as measured by
Fl-score and AUPRC metrics) compared to those trained with
VHSES8 or one-hot embeddings across all peptide targets and cross-
reactivity strata (Figure 2A, Supplementary Figure 4A; p < 0.001;
Kruskal-Wallis test (11) with Dunn’s post-hoc test (20), FDR
corrected). Notably, model performance gains varied significantly
according to cross-reactivity strata (Figure 2B, Supplementary
Figure 4B; p < 0.0001, €’ = 0.73) and target peptides (Figure 2C,
Supplementary Figure 4C; p < 0.0001, €* = 0.85), showing that the
evolutionary and biophysical information innate in biologically
informative sequence embeddings provide context-sensitive
information to the ML models in inferring TCR cross-reactivity.

To explicitly validate the advantages of the MLP architecture, we
benchmarked the performance of our MLP models against the logistic
regression classifiers trained independently for each peptide target
(Supplementary Figure 3). Both models were trained with BLOSUM-
50 encoded TCR sequences. In addition, we conducted permutation
test by shuffling the relationships between TCR sequences and peptide
targets of the training datasets for each cross-validation fold
(Figure 2A), whilst leaving the test sets intact, and re-training the
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MLP models. Both logistic regression and permuted models utilized
BLOSUM-50 encoded TCR sequences, ensuring a direct comparison.
The MLP models, which leverage shared internal weights to
simultaneously predict binding across multiple target peptides,
significantly outperformed logistic regression models (p = 6.0e-06,
Mann-Whitney U-test) and permuted models (p = 3.4e-08). The
superior performance of the MLP models persisted across all cross-
reactivity strata (p = 0.0020, Wilcoxon signed-rank test) and all
individual target peptides (p = 0.0020). Notably, the most
pronounced performance improvement occurred within the 7-
binding stratum, demonstrating the capability of the MLP model
to implicitly learn the sequence feature representation of cross-
reactivity in a supervised manner (Supplementary Figure 3B).

3.4 Contributions of individual CDR3
residues are hierarchical

We evaluated the marginal contribution of individual residues
in TCR CDR3 sequences by training MLP models on sequences
with specific residue positions deleted (Figure 3A, Supplementary
Figure 5A). Masking any residue significantly reduced predictive
performance (p< 0.001, one-sample T-test), but the magnitude of
performance deterioration differed significantly among different
residue positions being masked (p < 0.0001, € = 0.21). The
marginal importance of six residues ranked as 099 > 0101 > 398
> o100 > B100 > P99 regardless of sequence embeddings and
performance measures. Furthermore, masking three residues on the
o chain resulted in greater performance reductions compared to
masking the 3 chain residues (p< 0.001, Wilcoxon signed-rank test),
highlighting the dominant role of the o chain in mediating TCR
recognition specificity against the related peptide targets.

To validate our observations in the light of structural
information, we performed computational alanine substitutions at
each appropriate residue position of the A6 TCR/Tax-HLA-A*02:01
crystal structure ( (15), PDB entry 1A07) and used Rosetta-based
FlexPepDock (13, 14) to estimate changes in interface energy (AI_sc)
between the A6 TCR and Tax peptide (Figure 3B, Supplementary
Figure 5). Computational alanine scanning closely mirrored
experimental observations, with AI sc strongly correlating with
model performance deterioration measured as AFI score and
AAUPRC metrics. This result corroborates our sequence-based
machine learning analyses with physics-based structural modelling.

4 Discussion

We found a strict hierarchy of TCR complementarity-
determining region 3 (CDR3) o and B chain residue importance
that determined k-binding for the seven targets we considered by
systematically characterizing T-cell receptor (TCR) cross-reactivity
with in vitro and computational approaches. Building on Mason’s
(1) hypothesis that extensive TCR cross-reactivity is biophysically
necessary, and Sewell’s (2) proposals that TCR cross-reactivity is
not random but achieved via various structural and biophysical
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mechanisms, we confirmed experimentally and computationally
that TCR sequences are indeed highly cross-reactive.

Our datasets randomized both the TCR CDR3a. and  chain
residues simultaneously, while only the B chain is typically
randomized in most publicly available datasets (21). Furthermore,
our seven target peptides were immunologically dense, all known to
engage the A6 TCR. We were thus able to interrogate the intricate
relationship between CDR3 residues and peptide specificity,
uncovering the significance of the o chain residues - surpassing
that of the B chain residues - in determining the TCR binding
among the immunologically related target peptides.

Machine learning (ML) analyses revealed that biologically
informative embeddings (BLOSUM50 and VHSES), encoding
evolutionary and physicochemical features, substantially improved
binding predictions compared to one-hot encoded sequence
information alone. This supports Sewell’s (2) framework that structural
and biophysical constraints, not just sequence homology, govern TCR
recognition. Moreover, our residue-masked training demonstrated that
specific CDR3 residues contribute disproportionately to TCR binding,
corroborated by the interface binding energy computed from structures
generated by the Rosetta-based method FlexPepDock (13, 14). These
findings computationally demonstrate the structural and energetic basis
of TCR cross-reactivity.

Our study provides insights into TCR cross-reactivity within a
focused set of related peptides presented by HLA-A02:01. However,
generalizing our findings to estimate TCR cross-reactivity across the
entire HLA-A02:01-restricted peptide space remains speculative. The
observed strict hierarchy of CDR3 residue importance implies that
highly cross-reactive TCRs exhibit fewer degrees of freedom in
sequence composition compared to low cross-reactive TCRs. This
observation suggests a distribution in which a relatively small number
of TCR sequences recognize a very large number of peptides, whereas
a larger number of TCR sequences bind to fewer peptides.
Consequently, the relevant question may not be how many peptides
an individual TCR can recognize — a perennial question by Mason (1)
and Sewell (2) - but rather what the distribution of k-cross-reactivity
might look like across the TCR repertoire. Future studies, using
expanded peptide libraries and comprehensive modeling, should
seek to characterize this distribution more explicitly to better
understand the overall landscape of TCR recognition.
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