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T-cell receptors that
are k-binding have
defined sequence features
Hyunjin Park1†, Jonathan Krog2,3†, Brandon Carter1,
Pallavi A. Balivada2,3, Emily M. Pogue2,3, Samyuktha Anand3,
Michael E. Birnbaum2,3 and David K. Gifford1,2*

1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, United States, 2Department of Biological Engineering, Massachusetts Institute of
Technology, Cambridge, MA, United States, 3Koch Institute for Integrative Cancer Research,
Cambridge, MA, United States
Previous studies have revealed that individual T cell receptors (TCRs) can

recognize a diverse set of peptide targets displayed by Major Histocompatibility

Complexes (MHCs) to enable effective adaptive immune surveillance. However,

how TCR sequences encode their cross-reactivity remains poorly understood.

Here, we used an in vitro assay to characterize the k-binding of 196 (~47 million)

different TCRs in the context of a single TCR framework for binding to seven

related peptides displayed by HLA-A*02:01. We define k-binding to be the

number of peptide-MHC targets recognized by a TCR within a specific

universe of targets. We found a hierarchy of TCR complementarity-

determining region 3 (CDR3) alpha and beta chain residue importance that

determined k-binding for the seven targets. Our machine learning model that

embedded TCR sequences using BLOSUM-50 provided an overall F1 score of

0.698 and an AUPRC of 0.745 for predicting TCR-pMHC binding, which was

significantly superior to model results from VHSE-8 embedded or one hot

encoded sequences. When we used our model to predict observed k-binding,

we found that experimentally derived sequence motifs do not fully explain the

relative importance of different CDR3 residues. We determined CDR3 residue

importance by examining the reduction in machine learning model predictive

ability by masking individual CDR3 residues. We found that the resulting residue

importance ranking was significantly correlated to residue importance

determined with a computational alanine scan using Rosetta. Our findings

validate past theoretical predictions of TCR cross-reactivity and demonstrate

that TCRs used in therapeutics must be carefully evaluated for their specificity.
KEYWORDS

immunological specificity, TCR, T-cell receptor, TCR cross-reactivity, MHC class I,
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1 Introduction

T cells play an important role in the adaptive immune system’s

defense against pathogens and cancer. T cell receptors (TCRs)

identify non-self-peptide epitopes that are presented by major

histocompatibility complex molecules (MHCs) on the cell surface.

Cells that display non-self-peptide epitopes on their MHCs are

candidates for elimination by T-cells. As the number of potential

peptide epitopes exceeds the number of TCR clonotypes contained

in an individual’s T cell repertoire, a single TCR must be able to

recognize a large number (~106) of peptide epitopes to enable

effective T cell surveillance (1).

Sewell (2) refined upon Mason’s (1) perspective and argued that

TCR cross-reactivity should be understood through biophysical and

structural bases, not merely through simple sequence homology.

Sewell proposed multiple possible biophysical and structural

mechanisms through which TCR cross-reactivity might be

achieved, including altered peptide binding angle, altered peptide

binding register, complementarity-determining region (CDR) loop

flexibility, and residue-focused TCR engagement that tolerate

certain amino acid substitutions in target peptides.

Previously, interrogation of a single TCR against multiple

peptide targets or a single pMHC against multiple TCRs has been

possible. Birnbaum et al. (3) selected five different human and

mouse TCRs and profiled their binding of ~2 x 108 pMHCs distinct

pMHCs via a yeast display library. Deep sequencing of the enriched

libraries after each round of iterative selection elucidated pMHCs

recognized by the TCRs of interest. Their work demonstrated the

structural conservation of the TCR interaction, agreeing with

Sewell’s insight. Meanwhile, NetTCR-2.0 (4), a convolutional

neural network (CNN)-based model trained on publicly available

bulk CDR3b-pMHC binding data, predicts the binding of a TCR

sequence against three target peptide epitopes (GILGFVFTL,

NLVPMVATV, and GLCTLVAML), although the accuracy of

their model was hindered by the overall low quality of the

publicly available datasets.

To refine the frameworks by Mason (1) and Sewell (2), we

determined how individual CDR3 residues contribute to cross-

reactivity. We trained our ML models on densely sampled,
Frontiers in Immunology 02
randomized A6 TCR CDR3a and CDR3b sequences (Table 1)

screened against seven target peptides (Table 2) presented by HLA-

A*02:01 (Figure 1; Methods). We first demonstrate that TCR

sequences exhibit a high level of cross-reactivity across the

selected peptide sequences. Second, we demonstrate that the ML

models provided with biologically informative embeddings –

BLOSUM50 (5) and VHSE8 (6) – significantly improve TCR

binding prediction over the ML models endowed only with

sequence information, thereby computationally validating Sewell’s

(2) proposal that structural and biophysical properties influence

cross-reactivity (Figure 2). Finally, we establish a link between TCR

binding and change in interface energy following residue-level

substitutions, thereby computationally demonstrating how certain

TCR residues differentially influence pMHC recognition by TCRs,

confirming the structural and thermodynamic underpinnings of

TCR cross-reactivity (Figure 3).

In sum, we show that TCRs are highly cross-reactive, and ML

models can effectively predict their cross-reactivity. ML models can

achieve low computational cost when provided with relevant

biophysical information via a priori sequence embeddings, thus

enabling them to be applied to high-throughput deep sequencing

datasets of TCR-pMHC pairs even when high-resolution crystal

structures of individual TCR-pMHC pairs are not available.

Our work serves as the groundwork for the many-to-many

interrogation of TCR-pMHC interactions using a sequence-based

ML model, a step towards the mechanistic understanding of the

TCR cross-reactivity.
TABLE 1 Modified residues on CDR3 alpha and beta chains of A6 TCR.

CDR3 Alpha Beta Library

Randomized Positions Alpha 99-101, Beta 98-100

Native Sequence DSW/LAG

Estimated Diversity 196
The amino acid coordinates for randomized positions follow the definitions provided by
Smith et al. (24).
TABLE 2 List of peptide sequences and their constituent amino acid sequences.

Assayed Peptides

Peptide Name P1 P2 P3 P4 P5 P6 P7 P8 P9

HTLV-1 Tax-1 peptide (Tax) L L F G Y P V Y V

ELAV-like protein 4 (HUD) L G Y G F V N Y I

BENE L L Q G W V M Y V

Phosphofructokinase (F) T M G G Y C G Y L

Tyrosine Kinase (TY) S L H G Y K K Y L

Tax TM10 (TM) T L W G W V K Y V

Homeobox (HOM) N L Q G S P V Y V
fro
A previous work indicated that these peptides activate the native (DSW/LAG) A6 TCR in an in vitro cell lysis study (19).
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2 Materials and methods

2.1 Creation of TCR yeast display libraries
and pMHC monomers

In this study, we generated a novel experimental dataset linking

TCR-pMHC binding pairs. We selected the A6 T cell receptor as

our model framework based on its well-characterized interaction

with the native ligand Tax-HLA*A:0201. This framework sequence

was expressed as a single-chain TCR (scTv) following the format

described by Aggen et al. (7), using the pCT302 expression vector

and the Aga2 leader peptide.

To diversify this framework, we targeted residues in the CDR3ɑ
and CDR3b regions for randomization guided by their proximity to

the peptide in the previously solved TCR-pMHC crystal structure.

This analysis resulted in the creation of our TCR library with 3

positions in the CDR3ɑ (residues 97-100) and CDR3b (residues 98-

100) being fully randomized in amino acid space generating a TCR

library with an estimated diversity of 4.7 x 107 unique variants.

The pMHC reagents were expressed in single-chain trimer

format as previously described by Hansen et al. (8), with

components linked by GS linkers in the following order: signal

peptide for excretion, peptide, human b2m, HLA:A*0201, AviTag

(for biotinylation) and 8x His (for purification). This construct was

cloned into the conventional pVL1393 insect cell expression

plasmid and transfected into SF9 insect cells for production. All

seven pMHC variants were expressed in this manner and used for

downstream MACS selections.
Frontiers in Immunology 03
2.2 Yeast display library selections and
sequencing

To identify TCR-pMHC binding pairs, we performed

independent selection campaigns against each of the seven pMHC

targets using the TCR library. Each selection consisted of three

consecutive rounds of magnetic-activated cell sorting (MACS) with

streptavidin (SAV) microbeads. For each round, yeast expressing

the scTv constructs were induced for surface expression, and an

input population representing 10× coverage of the library’s

theoretical diversity was prepared (e.g., for a 5 × 10⁷ library, at

least 5 × 108 yeast cells were used).

MACS selections were performed using 250 μL of SAV

microbeads pre-loaded with pMHC at a concentration of 400

nM. The yeast and pMHC-coated beads were incubated together

for 2–3 hours at 4 °C with gentle rotation. The mixture was then

passed through magnetic capture columns, and bead-bound

yeast were retained and eluted. This enriched population was

expanded to full density and used as input for the next round of

selection. This iterative process was repeated three times for each

pMHC target, with biological replicates conducted for all

seven targets.

Following each round, 250 μL of the selected yeast population

was collected for DNA extraction. TCR-encoding regions were

PCR-amplified, during which Illumina sequencing adapters were

added. The resulting libraries were submitted to the MIT BioMicro

Center and sequenced on an Illumina NovaSeq 6000 using a high-

throughput, paired-end multiplexed format.
FIGURE 1

A6 TCR is randomized and panned against HLA:A*0201 presenting seven peptide epitopes. Overview of experimental protocol for generating TCR-
pMHC binding data with yeast display selection via MACS (3, 22, 23).
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2.3 Creation of logos for TCR sequences
with different target specificities

We refer to the set of seven peptides listed in Figure 1C as the

Set U.We refer to a TCR to be “S-binding” for the set S of peptides if

the TCR binds to the peptides in S and does not bind to the peptides

in U-S. We call a TCR to be “k-binding” if the TCR is S-binding and

k is the size of the Set S. We defined the list of k-binding TCR

sequences from k = 1 to k = 7 and created the sequence logo for each

k (Figure 4B) using WebLogo (9).

To examine the diversity of 1- and 2-binding TCR sequence, we

defined the list of S-binding TCR sequences for k = 1 and k = 2 for
Frontiers in Immunology 04
all possible S. The resulting 28 logos, 7 for 1-binding (i.e., target-

specific) and 21 for 2-binding TCR sequences, were created using

WebLogo (Figure 4C).
2.4 Design and training of machine
learning models

We trained multi-layer perceptron (MLP) models to predict

binding against seven peptide targets listed in Table 2. The models

take TCR CDR3a/b sequences encoded using three different

embeddings: BLOSUM50 (5), VHSE8 (6), and one-hot encoding.
FIGURE 2

BLOSUM50 embedding improves TCR binding classification. We trained MLP models that take TCR sequences embedded in different sequence
embeddings and output binding prediction against the seven peptide targets. As the weights are shared internally, the models implicitly learn to
predict cross-reactivity. We performed 10-fold cross-validation for the MLP models. The differences in predictive performances of the models
trained using different sequence embeddings were measured for different cross-reactivity strata and peptide targets. (A) Models trained with
BLOSUM50 embedding outperformed those with VHSE8, which in turn outperformed one-hot (∀metrics, replicates p< 0.001; Kruskal-Wallis test
followed by Dunn’s post-hoc test, FDR correction). Contrastingly, the performances of the models trained with the same embedding did not
differ significantly (p > 0.05). (B) The degrees of performance improvement were significantly varied for different cross-reactivity strata (p< 0.0001,
e2 = 0.73). (C) Further, the degrees of improvement were significantly varied for different pMHC targets (p< 0.0001, e2 = 0.85).
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Since the length of each input TCR sequence is 6, BLOSUM50 and

one-hot encodings map each amino acid to 20-dimensional vector,

and VHSE8 encoding maps each amino acid to 8-dimensional

vector, the input dimensions were 120 (= 6*20) for BLOSUM50 and

one-hot encodings and 48 (= 6*8) for VHSE8 embedding.

Each neural network contains two hidden linear layers with 500

neurons and rectified linear unit (ReLU) activation functions. The

output layer returns 7-dimensional vectors passed through a

sigmoid layer, each entry representing the binding probability of

the TCR against each of 7 peptide targets presented by HLA-

A*02:01 (Table 2). The cross-entropy loss was minimized via

Adam optimizer (10) with the learning rate parameter of 0.0001

and the weight decay parameter of 0.0005. All models are trained

for 10 epochs with a batch size of 1028.

Non-binding TCRs outnumber binding TCRs for all target

peptides. To overcome this intrinsic class-imbalance in our

datasets, we employed a weighted sampling strategy based on k-

binding. First, TCR sequences are stratified according to their k-

binding. Next, for each cross-reactivity stratum (value of k), we

computed a weight that is inversely proportional to the frequency of

the stratum. Consequently, the TCR sequences with higher k-

binding had greater weights. Formally,
Frontiers in Immunology 05
wk = sqrt(n0=nk)

where nk is the number of k-binding TCR sequences. Third, the

weights wk are used to sample TCR sequences with replacement

during training.
2.5 Validation and evaluation of machine
learning models

We used 10-fold cross-validation of the training and validation

sets (9:1 split) in two independent replicates with different random

seeds. We confirmed the model performances to be robust against

the random initialization via different random seeds (Figure 2A,

Supplementary Figure 4A).

All models are evaluated using F1-score and Area Under the

Precision-Recall Curve (AUPRC) metrics; these metrics were chosen

over more commonly used metrics of accuracy and Area Under the

Receiver Operating Characteristic Curve (AUROC) due to their

robustness against class-imbalanced datasets. For the detailed

comparison of performances of models trained with different

sequencing embeddings, we (i) stratified the sequences according to

their k-binding and (ii) according to their bound target peptides and
FIGURE 3

Sequence-masked training shows the hierarchical contribution of each amino acid position. We performed sequence-masked training in which
different residue positions are deleted to estimate the marginal contribution of each residue. (A) While masking any residue resulted in a significant
deterioration (p < 0.001, one-sample T-test), the degrees of deterioration were significantly varied for different positions being masked (p< 0.0001,
e2 = 0.21). The inferred hierarchy of marginal importance for different residue positions was: a99 > a101 > b98 > a100 > b100 > b99. Further, while
masking either of CDR3 chain caused significant performance deterioration, masking a chain caused significantly greater deterioration than masking
b chain (p< 0.001, Wilcoxon signed-rank test). (B) We performed computational alanine substitution and used FlexPepDock (13, 14) to infer the
changes in interface energy (DI_sc, lower more stable) following alanine substitution. We found that DI_sc explains the ML performance
deterioration, as measured by DF1 score, following residue and chain masking.
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computed F1-scores and AUPRC for stratified sequence sets

(Figures 2B, C, Supplementary Figures 4B, C). The statistical

significance of model performance differences in different cross-

reactivity strata and target peptides was tested using Kruskal-Wallis

test, and e2 was computed to measure their effect size, defined as the

proportion of variance explained by group differences (11).

We benchmarked the performance of our MLPmodels against the

logistic regression classifiers trained independently per peptide target

and permuted MLP models where the relationships between TCR

sequences and peptide targets of the training datasets were broken by

random shuffling (Supplementary Figure 3). All models were trained

with BLOSUM50-encoded TCR sequences. The MLP models, which

could leverage shared internal weights to simultaneously predict

binding across multiple target peptides, significantly outperformed

logistic regression models (p = 6.0e-06, Mann-Whitney U-test). The

outperformance of theMLPmodels persisted across all cross-reactivity

strata (p = 0.0020, Wilcoxon signed-rank test) and all individual target

peptides (p = 0.0020). Note that the most pronounced performance

improvement occurred within the 7-binding stratum, demonstrating

the capability of the MLP model to implicitly learn the sequence

feature representation of cross-reactivity in a supervised manner.
Frontiers in Immunology 06
2.6 Masked training of machine learning
models

We created synthetic datasets for residue-masked training and

validation by deleting the residue(s) to be masked from the original

datasets with all six residues. The models were not provided with

information on which residue positions are deleted. Note that in the

residue-masked datasets the same sequence can be mapped to two

different sets of bound target peptides.

The total of eight synthetic datasets were created: masking of

residues 1 through 6, of a chain, and of b chain. The MLP model

architecture is edited appropriately for each synthetic dataset so that

the number of dimensions in input dataset elements accords with

the dimensionalities of synthetic datasets transformed with each

sequence embedding.

The 10-fold validations were performed, and the models were

evaluated using F1-score and AUPRC metrics for different cross-

reactivity strata and target peptides as was the case for the models

endowed with all six residues. The differences in performances

between the models trained with masked synthetic datasets and

those trained with full datasets were measured using the differences
FIGURE 4

TCRs are highly cross-reactive. (A) CDR3 sequences binding to one or more of examined pMHC targets are more cross-reactive than expected by
chance (p ≈ 0.0; one-sided binomial test). (B) Cross-reactive CDR3 sequences contain learnable sequence features enriched over target-specific
sequences. (C) The logos of 2-binding CDR3 sequences (off-diagonal) contain richer features than the logos of 1-binding sequences (target-specific;
diagonal), suggesting that the cross-reactivity cannot be predicted only from binding of individual peptides. The logos are generated using WebLogo (9).
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(D) in F1-scores and AUPRC metrics for different cross-reactivity

strata and target peptides (Figure 3A, Supplementary Figure 5A). The

statistical significance of performance differences of models trained

using synthetic datasets with different residue being masked was

tested using Kruskal-Wallis test, and e2 is computed to measure their

effect size, the proportion of variance explained by group differences

(11). The statistical significance of performance differences of models

trained using synthetic datasets with masked a vs. b chain was tested

using Wilcoxon signed-rank test (12).
2.7 Use of FlexPepDock to infer interface
binding energy

To infer interface binding energy, we used FlexPepDock (13, 14)

to infer interface binding energy between TCR and pMHC. To

generate input PDB files, we downloaded the PDB file of structure

1AO7 (15) from RCSB Protein Data Bank (16). We standardized

the PDB file as recommended by PyRosetta (17) and reordered the

order of chains such that TCR chains appear before the peptide

chains in the PDB file. This is the wildtype (WT) PDB file.

To perform computational alanine scanning, the appropriate

amino acid in the wildtype (WT) PDB file is replaced by alanine.

This is achieved by updating the amino acid identity (e.g. from “D” to

“A”) as well as substituting the atoms pertaining to the original amino

acid to the atoms pertaining to alanine. The total of eight substituted

PDB files were created: alanine substitution of residues 1 through 6, of

all three a chain residues, and of all three b chain residues. The short-
and long-form nomenclatures of corresponding PDB files are [a1, a2,

a3, b1, b2, b3, A, B] and [a99, a100, a101, b98, b99, b100, alpha, beta]

(Figure 3B, Supplementary Figure 5B).

Nine FlexPepDock jobs – one for WT and eight for each

substituted PDB file – were undertaken. For each run, one hundred

high-resolution structures were generated with receptor backbone

minimization; no structure was generated with low resolution

preoptimization protocol. We computed the median interface scores

(I_sc) of one hundred FlexPepDock structures. We correlated the

difference between the median interface scores between WT and

alanine-substituted structures (D I_sc) with the ML performance

changes due to residue masking (DF1 score and DAUPRC) as

measured above and computed its size and statistical significance via

Spearman’s rank correlation (Figure 3B, Supplementary Figure 5B).
3 Results

3.1 Screening of randomized CDR3 TCRs
against HLA-A*02:01 presenting seven
peptide epitopes

We focused on the A6 TCR, a well characterized model system

TCR originally derived from an HTLV-1-infected patient that

recognizes the Tax peptide derived from HTLV (LLFGYPVYV)

in the context of HLA-A*02:01 (18). Through years of study, this

TCR has multiple described peptide mimotopes with a range of

sequence divergence from the cognate Tax peptide. Using the X-ray
Frontiers in Immunology 07
crystal structure of A6 TCR binding to Tax presented by HLA-

A*02:01 (15), we selected six residues within A6 TCR

complementarity-determining regions 3 (CDR3) a and b chains

that were the closest molecular contacts to the peptide (Figure 1).

We screened the resulting library against seven of the peptides

reported to be cross-reactive with A6 (19) presented by HLA-

A*02:01 through three yeast-display panning rounds (3). These

seven peptides set a suitable stage to systematically quantify

k-binding.

To understand if our selection campaign is in fact enriching for

high-fidelity binders against each target, we first quantified the

number of unique TCR sequences observed in each panning round

(Supplementary Figure 1A). We observed that the number of

unique TCR sequences decrease across all target peptides and

replicates with the progression of the panning rounds as the TCR

sequences with weak to no affinity against the given peptide target

are dropped out. Second, we quantified the percentages of reads

contributed by the top 100 TCR sequences (Supplementary

Figure 1B). We observed that the percentages of the top 100 TCR

sequences increase across all target peptides and replicates with the

progression of the panning rounds as these sequences with strong

affinity against the given peptide target are enriched. Finally, to

visually inspect the enrichment of amino acid preference at each

residue position and convergence of two replicates during panning

rounds, we performed weighted sampling (Methods) of the TCR

sequences in each round of panning against the Tax peptide and

created sequence logos (Supplementary Figure 1C). We confirmed

not only that certain amino acid preferences are enriched in

position-dependent manner, but also that these preferences in

two replicates are convergent.

To validate the yeast-display selection results we conducted a

titration assay on a subset of selected TCRs with varying predicted

cross-reactivities (Supplementary Figure 2). Eight TCR clones, both

containing and lacking the “DSW” motif identified during yeast

selections, were individually expressed on yeast and stained with

pMHC tetramers at concentrations ranging from 0.1 nM - 200 nM

(Supplementary Methods). The resulting titration curves provided

quantitative confirmation of TCR affinity predictions derived from

yeast panning (Methods).

We found that yeast-display selection enriched all binders

identified by the titration assay (Supplementary Figures 2C, D).

The few binders identified by yeast-display but not by titration assay

(such as for the HUD peptide), can be explained by the higher

effective avidity of yeast-display bead-based selections than titration

soluble staining reagents, which has been previously seen to identify

binders that may not be observed with pMHC-TCR interactions

measured via tetramers (3). Overall, our titration assay data

reinforces the reliability and biological relevance of our high-

throughput selection data.
3.2 TCRs exhibit extensive cross-reactivity

We characterized the binding profiles of 196 (approximately 47

million) randomized A6 TCR variants. The yeast panning revealed
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1621201
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Park et al. 10.3389/fimmu.2025.1621201
extensive cross-reactivity (Figure 4A). The TCR sequences present

in the MACS Round 3 in both replicates were defined as binding to

the given pMHC (Methods). Among the TCR sequences binding to

at least one peptide, 448,121 sequences specifically recognized a

single target peptide (1-binding), 40,359 sequences recognized two

target peptides (2-binding), and 530 sequences recognized all seven

peptides (7-binding). This observed cross-reactivity significantly

exceeded expectations based on the assumption of random binding

(p ≈ 0.0; one-sided binomial test), agreeing with the previous

theoretical predictions of TCR cross-reactivity (1, 2).

Further analysis demonstrated that cross-reactive CDR3a/b
sequences contained distinct sequence features, specifically the “DSW”

motif in the three a chain positions, when compared to those specific to

single targets (Figure 4B). The logos of 2-binding sequences in off-

diagonal entries presented richer sequence information compared to

logos derived from target-specific sequences in diagonal entries

(Figure 4C), showing that TCR cross-reactivity could not be inferred

solely from individual peptide binding events.
3.3 Sequence embedding methods
enhance TCR binding prediction

We trained a multi-layer perceptron (MLP) model to predict

TCR binding to the seven peptide-major histocompatibility (pMHC)

complexes. The model inputs encoded TCR sequences, passes the

encoded TCR sequences through a first hidden layer with 500 ReLU-

activated neuron outputs, into a second hidden layer with 500 ReLU-

activated neuron outputs, followed by an output layer that transforms

its 500 neuron input into 7 outputs that are used to compute sigmoid-

activated binding probabilities for all seven peptide-MHC targets.

TCR sequences were encoded with three different embeddings:

BLOSUM50 (5), VHSE8 (6), and one-hot encoding. Model

performance was assessed using 10-fold cross-validation (Methods).

The models trained with BLOSUM50-embedded input sequences

consistently yielded superior predictive performance (as measured by

F1-score and AUPRC metrics) compared to those trained with

VHSE8 or one-hot embeddings across all peptide targets and cross-

reactivity strata (Figure 2A, Supplementary Figure 4A; p < 0.001;

Kruskal-Wallis test (11) with Dunn’s post-hoc test (20), FDR

corrected). Notably, model performance gains varied significantly

according to cross-reactivity strata (Figure 2B, Supplementary

Figure 4B; p < 0.0001, e² = 0.73) and target peptides (Figure 2C,

Supplementary Figure 4C; p < 0.0001, e² = 0.85), showing that the

evolutionary and biophysical information innate in biologically

informative sequence embeddings provide context-sensitive

information to the ML models in inferring TCR cross-reactivity.

To explicitly validate the advantages of the MLP architecture, we

benchmarked the performance of our MLP models against the logistic

regression classifiers trained independently for each peptide target

(Supplementary Figure 3). Both models were trained with BLOSUM-

50 encoded TCR sequences. In addition, we conducted permutation

test by shuffling the relationships between TCR sequences and peptide

targets of the training datasets for each cross-validation fold

(Figure 2A), whilst leaving the test sets intact, and re-training the
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MLP models. Both logistic regression and permuted models utilized

BLOSUM-50 encoded TCR sequences, ensuring a direct comparison.

The MLP models, which leverage shared internal weights to

simultaneously predict binding across multiple target peptides,

significantly outperformed logistic regression models (p = 6.0e-06,

Mann-Whitney U-test) and permuted models (p = 3.4e-08). The

superior performance of the MLP models persisted across all cross-

reactivity strata (p = 0.0020, Wilcoxon signed-rank test) and all

individual target peptides (p = 0.0020). Notably, the most

pronounced performance improvement occurred within the 7-

binding stratum, demonstrating the capability of the MLP model

to implicitly learn the sequence feature representation of cross-

reactivity in a supervised manner (Supplementary Figure 3B).
3.4 Contributions of individual CDR3
residues are hierarchical

We evaluated the marginal contribution of individual residues

in TCR CDR3 sequences by training MLP models on sequences

with specific residue positions deleted (Figure 3A, Supplementary

Figure 5A). Masking any residue significantly reduced predictive

performance (p< 0.001, one-sample T-test), but the magnitude of

performance deterioration differed significantly among different

residue positions being masked (p < 0.0001, e² = 0.21). The

marginal importance of six residues ranked as a99 > a101 > b98
> a100 > b100 > b99 regardless of sequence embeddings and

performance measures. Furthermore, masking three residues on the

a chain resulted in greater performance reductions compared to

masking the b chain residues (p< 0.001, Wilcoxon signed-rank test),

highlighting the dominant role of the a chain in mediating TCR

recognition specificity against the related peptide targets.

To validate our observations in the light of structural

information, we performed computational alanine substitutions at

each appropriate residue position of the A6 TCR/Tax-HLA-A*02:01

crystal structure ( (15), PDB entry 1AO7) and used Rosetta-based

FlexPepDock (13, 14) to estimate changes in interface energy (DI_sc)
between the A6 TCR and Tax peptide (Figure 3B, Supplementary

Figure 5). Computational alanine scanning closely mirrored

experimental observations, with DI_sc strongly correlating with

model performance deterioration measured as DF1 score and

DAUPRC metrics. This result corroborates our sequence-based

machine learning analyses with physics-based structural modelling.
4 Discussion

We found a strict hierarchy of TCR complementarity-

determining region 3 (CDR3) a and b chain residue importance

that determined k-binding for the seven targets we considered by

systematically characterizing T-cell receptor (TCR) cross-reactivity

with in vitro and computational approaches. Building on Mason’s

(1) hypothesis that extensive TCR cross-reactivity is biophysically

necessary, and Sewell’s (2) proposals that TCR cross-reactivity is

not random but achieved via various structural and biophysical
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mechanisms, we confirmed experimentally and computationally

that TCR sequences are indeed highly cross-reactive.

Our datasets randomized both the TCR CDR3a and b chain

residues simultaneously, while only the b chain is typically

randomized in most publicly available datasets (21). Furthermore,

our seven target peptides were immunologically dense, all known to

engage the A6 TCR. We were thus able to interrogate the intricate

relationship between CDR3 residues and peptide specificity,

uncovering the significance of the a chain residues – surpassing

that of the b chain residues – in determining the TCR binding

among the immunologically related target peptides.

Machine learning (ML) analyses revealed that biologically

informative embeddings (BLOSUM50 and VHSE8), encoding

evolutionary and physicochemical features, substantially improved

binding predictions compared to one-hot encoded sequence

information alone. This supports Sewell’s (2) framework that structural

and biophysical constraints, not just sequence homology, govern TCR

recognition. Moreover, our residue-masked training demonstrated that

specific CDR3 residues contribute disproportionately to TCR binding,

corroborated by the interface binding energy computed from structures

generated by the Rosetta-based method FlexPepDock (13, 14). These

findings computationally demonstrate the structural and energetic basis

of TCR cross-reactivity.

Our study provides insights into TCR cross-reactivity within a

focused set of related peptides presented by HLA-A02:01. However,

generalizing our findings to estimate TCR cross-reactivity across the

entire HLA-A02:01-restricted peptide space remains speculative. The

observed strict hierarchy of CDR3 residue importance implies that

highly cross-reactive TCRs exhibit fewer degrees of freedom in

sequence composition compared to low cross-reactive TCRs. This

observation suggests a distribution in which a relatively small number

of TCR sequences recognize a very large number of peptides, whereas

a larger number of TCR sequences bind to fewer peptides.

Consequently, the relevant question may not be how many peptides

an individual TCR can recognize – a perennial question by Mason (1)

and Sewell (2) – but rather what the distribution of k-cross-reactivity

might look like across the TCR repertoire. Future studies, using

expanded peptide libraries and comprehensive modeling, should

seek to characterize this distribution more explicitly to better

understand the overall landscape of TCR recognition.
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