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Background: Pediatric inflammatory bowel disease (PIBD) is increasingly
common, and early diagnosis remains challenging due to unclear etiology.
Ferroptosis, an iron-dependent form of cell death, may be involved in intestinal
inflammation, but its expression and role in PIBD are poorly understood.
Objective: To identify ferroptosis-related genes as candidate biomarkers for
early diagnosis of PIBD and validate their role in ferroptosis.

Methods: RNA-seq data of PIBD from GEO datasets were analyzed using
DESeq2, WGCNA, and functional enrichment analysis. Ferroptosis-related
diagnostic genes were screened through LASSO, Random Forest, and mSVM-
RFE algorithms, and validated in GSE57945 and GSE117993 datasets. In vitro
experiments using NCM460 cells were performed to validate the roles of PML
and CHACI in LPS-induced ferroptosis, including siRNA-mediated gene
knockdown, western blotting of ferroptosis-related proteins (ACSL4, SLC7A11,
GPX4, FTH), and measurement of lipid peroxidation (MDA levels). CIBERSORT
was used to assess immune cell infiltration, and DGIdb was used to predict
potential targeted drugs. A ceRNA network was further constructed to explore
mMiRNA-IncRNA interactions regulating these genes.

Results: PML and CHAC1 were identified as potential biomarkers for early
diagnosis of PIBD, showing high diagnostic performance (AUC > 0.7) in
training, validation, and external datasets. In vitro experiments confirmed that
knockdown of PML or CHAC1 significantly alleviated LPS-induced ferroptosis in
NCM460 cells, as evidenced by restored ferroptosis-related protein expression
and reduced MDA accumulation. Consistent with immune infiltration results,
both genes were associated with immune-related pathways, and a ceRNA
network revealed their potential involvement in complex regulatory
mechanisms. DGIdb predicted several candidate drugs targeting these genes.
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Conclusion: PML and CHAC1 are promising biomarkers for early PIBD diagnosis.
These findings, supported by both bioinformatic analyses and experimental
validation, may improve diagnostic accuracy and provide insights into the
immune microenvironment and therapeutic strategies.

PML, CHAC1, pediatric inflammatory bowel disease, ferroptosis, biomarkers, immune
microenvironment, diagnostic model, machine learning

1 Introduction

Inflammatory bowel disease (IBD), including Crohn’s disease
(CD) and ulcerative colitis (UC), is a group of chronic inflammatory
disorders affecting the intestines. Pediatric IBD (PIBD) accounts for
approximately 10% of all IBD cases and is characterized by a more
acute disease course and higher risk of severe complications compared
with adults (1). Early and accurate diagnosis is critical for effective
treatment and improved prognosis, yet remains challenging due to
overlapping symptoms with other gastrointestinal disorders and age-
dependent variability in disease presentation (2-4).

Ferroptosis, a form of regulated cell death driven by iron-
dependent lipid peroxidation, has emerged as a key mechanism in
intestinal inflammation and IBD pathogenesis (5-7). However, its
role in PIBD remains largely unexplored. Given the immature
immune system of pediatric patients, understanding ferroptosis in
this context may provide novel insights into disease mechanisms
and therapeutic strategies.

In this study, we applied machine learning-based screening and
external validation to identify ferroptosis-related genes (FRGs)
associated with PIBD, highlighting PML and CHACI as
promising candidates for early diagnostic biomarkers. Our
findings aim to provide a theoretical basis for the development of
novel molecular tools to improve early detection and clinical
management of PIBD (Figure 1).

2 Materials and methods
2.1 Data collection and processing

The RNA sequencing (RNA-seq) data of PIBD were obtained
from the GEO database (https://www.ncbinlm.nih.gov/geo/) (8).
Specifically, GSE101794 contains 304 samples, including 49 healthy
controls (HC) and 255 CD samples; while GSE93624 includes 245
samples, with 35 HC samples and 210 CD samples. The validation
datasets for key genes include GSE57945 (322 samples, 43 HC and 217
CD samples), which contains 322 samples, and GSE117993 (190
samples, 55 HC and 122 CD samples). Detailed information
regarding the datasets is provided in Supplementary Table 1. Raw
sequencing files in SRA format were processed using a standardized
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Snakemake-based RNA-seq pipeline. Briefly, FASTQ files were
extracted using parallel-fastq-dump, followed by quality control with
fastp, alignment to the human genome (GRCh38) using HISAT?2, and
gene-level quantification using featureCounts. Gene annotation files
(GTF) and genome indices were obtained from Ensembl. We used bar
plots to display the distribution of sequencing reads across all samples.
The results indicate a relatively balanced number of reads among
samples, demonstrating consistent sequencing depth and high data
quality, which are suitable for subsequent analyses (Supplementary
Figures 1A, B). Additionally, publicly available FRGs were searched in
the FerrDb database (http://www.zhounan.org/ferrdb) to identify genes
promoting, inhibiting or marking ferroptosis. A total of 247 FRGs were
obtained for subsequent analysis after the removal of duplicates.

2.2 ldentification of differentially expressed
genes and functional enrichment analysis

DEGs between CD and HC groups were identified using the
“DESeq2” (9) package in R software. DESeq2 applies the Benjamini-
Hochberg (BH) method for multiple testing correction to control
the false discovery rate (FDR). DEGs with a corrected p-value
(FDR) of < 0.05 and |Log2fold change (FC)| = 0 were considered
statistically significant. The “Venn Diagram” package in R software
was used to intersect DEGs from the two datasets. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were conducted on common DEGs using the
“clusterProfiler” (10) package for both, with a screening criterion of
adjusted p-value (P.adj) < 0.05.

2.3 Weighted gene co-expression network
analysis

WGCNA constructed co-expression modules associated with
CD based on gene expression profiles. By selecting an appropriate
soft-thresholding power, a scale-free network was established, and a
topological overlap matrix (TOM) was calculated for hierarchical
clustering to detect gene modules. The module eigengenes (MEs)
were then correlated with clinical traits to identify key modules
associated with PIBD, from which hub genes were extracted for

frontiersin.org


https://www.ncbi.nlm.nih.gov/geo/
http://www.zhounan.org/ferrdb
https://doi.org/10.3389/fimmu.2025.1619944
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xu et al.

10.3389/fimmu.2025.1619944

Stepl: Identification of DEGs in GSE101794 and GSE93624 Datasets, then Identification of hub genes using WGCNA

GEO dataset
GSE93624 GSE101794

35HC 49 HC
\& VS
210 CD 255CD

Step2:

Identification of 8 DE-FRGs as Diagnostic Genes for PIBD, By using three machine learning methods

sEsas24 Random forest

300855

¢ 5 f 5 2 B B o &
Number of Features,

mSVW-RFE RF

LASSO

HSPAS
. ABHD12
SLC11A2
CHAC1
B ISCU
SLC40A1
PML
FZD7

Step3: The association of 8 DE-FRGs with multiple PIBD-related pathways and their diagnostic potential value in PIBD

80— T —

Training set: ) W PIBD (UC) o

2 Hy ¥ ¢? " Validation set: Vallda.tlon by
GSE93624 ¥ AL VN i

I { RS experiments

GsE101794 b T : Gkl
Validation set: I @ - 7‘ IBD Validation set: I %
GSE57945 T | 92 #y 4! GSE36807 GSE59071 | i
GSE117993 ‘ ) GSE75214 GSE87466 !*

Immune Landscape Analysis and its correlation with key
immune-related genes

Prediction of Targeted Drugs

TAMIBAROTENE"

TAZAROTENE

\ /mszm

_—— PML

/

TRETINOIN

ARSENIC TRIOXIDE

FIGURE 1

Flowchart. Overview of the workflow for identifying potential PIBD biomarkers, including DEG analysis, WGCNA, machine learning-based selection

of key DE-FRGs, pathway analysis, and validation using external datasets.

further analysis. To identify DE-FRGs, the “VennDiagram” package
was used to intersect DEGs from the two datasets with genes from
the key modules identified in WGCNA.

2.4 |dentification of potential diagnostic
biomarkers

To identify potential diagnostic biomarkers associated with
ferroptosis in pediatric inflammatory bowel disease (PIBD), three
machine learning algorithms were employed: Least Absolute
Shrinkage and Selection Operator (LASSO) regression, Random
Forest (RF), and multi-Support Vector Machine Recursive Feature
Elimination (mSVM-RFE) (11). LASSO regression was performed
with 10-fold cross-validation to select the optimal regularization
parameter A, minimizing the mean cross-validation error and thus
preventing overfitting while selecting informative genes. The Random
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Forest model was constructed using 100 decision trees, and the out-of-
bag (OOB) error was used to internally evaluate model performance
and stability. The number of trees (ntree) was optimized based on the
minimum OOB error. Feature importance was ranked using the Mean
Decrease Gini criterion, and the top-ranked genes were selected as
candidate biomarkers. mSVM-RFE combined recursive feature
elimination with 10-fold cross-validation, iteratively removing less
informative features and tuning hyperparameters (cost and gamma)
within each fold to identify the optimal feature subset. The expression
differences of the selected candidate genes were visualized using violin
plots, providing a clear comparison between PIBD patients and
healthy controls. Additionally, the diagnostic performance of these
genes was evaluated using Receiver Operating Characteristic (ROC)
curves, and key metrics including area under the curve (AUC),
accuracy, sensitivity, and specificity were calculated. In general,
higher AUC values indicate stronger predictive performance of the
constructed model.
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2.5 Single-gene gene set enrichment
analysis

To further explore the related pathways of the 8 genes identified
single-cell GSEA (12) was performed on target genes using the
“gseKEGG” function. First, this study calculated the correlations of
the target genes with other genes after the retrieval and extraction of
their expression data. The genes were then sorted based on their
correlation values (from positive to negative). GSEA analysis was
conducted using the sorted gene list, and KEGG pathways were
selected for enrichment analysis. Finally, result visualization was
conducted via bar charts and lollipop plots to reveal the associated
biological pathways.

2.6 Immune cell infiltration analysis

“CIBERSORT” (13) was further employed to analyze immune
cell infiltration to further investigate PIBD-associated immune
responses. “CIBERSORT” is a computational tool used for
immune cell composition analysis, which estimates the relative
proportions of different immune cell types in a sample based on
gene expression data. In our study, this algorithm was utilized to
investigate the differences in immune cell infiltration between CD
and HC groups. Additionally, Spearman correlation analysis was
adopted to explore the association of PML and CHACI expression
with immune cell infiltration.

2.7 Prediction of targeted drugs for
diagnostic genes

The DGIdb database was used to further explore potential drugs
targeting the screened diagnostic genes, analyzing their interactions
with default parameter settings. After that, multiple targeted drugs
identified for each diagnostic gene were visualized using
Cytoscape software.

2.8 Construction of the ceRNA network

To predict mRNA-miRNA interaction pairs based on the eight
identified marker genes, miRanda, TargetScan, and miRDB databases
were searched. After the identification of results common to all three
databases, we searched for the predicted miRNAs in the Spongescan
database and filtered for miRNA-IncRNA pairs, to construct a
ceRNA network comprising mRNA-miRNA-IncRNA interactions.

2.9 gRT-PCR

A total of 20 blood samples were collected in this study,
including 10 PIBD patients (aged 13-17 years, with equal
numbers of males and females, involvement of colon/ileum, most
with active disease and receiving biologic therapy) and 10 healthy
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controls matched for age and sex, their clinical characteristics are
summarized in Supplementary Table 2. Total RNA was extracted
using the Trizol method, and its concentration was measured before
reverse transcription. Next, cDNA was used as a template for qRT-
PCR. Finally, the expression data of the target genes was normalized
with GAPDH as an internal reference gene. The relative expression
of the target genes was determined using the 2"**“" method. The
following primer sequences were used in this experiment:

CHACI-FORWARD CAGGCACCATGAAGCAGGAGTC
CHACI-REVERSE CTTGAGGGTCGCCGTCGTTTC PML-
FORWARD CATCTTCTGCTCCAACCCCAACC PML-
REVERSE CTCACTGTGGCTGCTGTCAAGG

2.10 Induction of colitis in mice

Three-week-old male C57BL/6 mice were purchased from
Shanghai SLAC Laboratory Animal Co., Ltd. (Shanghai, China).
A total of ten mice were randomly divided into two groups and
acclimatized for one week. Subsequently, five mice were
administered 3% (w/v) dextran sulfate sodium (DSS, Macklin,
China) in their drinking water continuously for 7 days to induce
colitis, while the remaining. Five mice received regular drinking
water without DSS and served as controls. Body weight was
monitored daily for each mouse. On day 8, all mice were
sacrificed for further analyses. All animal experiments were
approved by the Ethics Committee of the Affiliated Hospital of
Nantong University.

2.11 Histopathology and
immunohistochemistry

Samples were collected and immediately fixed in 10% neutral-
buffered formalin. Paraffin-embedded biopsy sections were
prepared for immunohistochemical staining. The primary
antibodies used for staining included anti-PML (FNab06574,
FineTest) and anti-CHAC1 (FNab11027, FineTest).

2.12 Gene knockdown, ferroptosis
induction, and related indicator detection

2.12.1 siRNA transfection and knockdown
validation

Specific small interfering RNAs (siRNAs) targeting human
PML and CHACI genes (siPML, siCHAC1) and a non-targeting
scrambled negative control siRNA (siNC) were designed and
synthesized by GenePharma (Shanghai, China). The human colon
epithelial cell line NCM460 was cultured in DMEM medium
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin in a 37 °C, 5% CO, incubator. When cells
reached 60-70% confluence, transfection was performed using
LipofectamineTM RNAIMAX (Invitrogen, USA) according to the
manufacturer’s instructions, with a final siRNA concentration of
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50 nM. Knockdown efficiency was assessed by Western blot 48
hours post-transfection. Knockdown experiments for PML and
CHACI were performed independently, using specific antibodies
against PML and CHAC1 (Youpin Biotechnology Company) for
detection, with GAPDH (Wuhan Sanying) serving as the
loading control.

2.12.2 Ferroptosis induction and indicator
detection

To investigate the respective roles of PML and CHACI in
ferroptosis, we performed independent interventions and
detections for each gene. The cell experiment groups were as
follows: Control group (transfected with siNC, no LPS treatment);
LPS group (transfected with siNC, treated with 1 ug/mL LPS for 24
hours); siPML + LPS group (transfected with siPML, treated with 1
pg/mL LPS for 24 hours); siPML group (transfected with siPML, no
LPS treatment). Experiments for CHACI used an identical group
design (i.e., siCHACI + LPS group and siCHACI group). To detect
ferroptosis-related indicators, total protein was extracted using
RIPA lysis buffer containing protease inhibitors. 20-30 ug of
protein was separated by SDS-PAGE electrophoresis and
transferred to a PVDF membrane. After blocking with 5% skim
milk, the membrane was incubated overnight at 4 °C with the
following primary antibodies: ACSL4 (Abclonal), SLC7A1l
(Wuhan Sanying), FTH (Abcam), GPX4 (Abcam), and GAPDH
(Wuhan Sanying). Subsequently, the membrane was incubated with
HRP-conjugated secondary antibodies and developed using ECL
chemiluminescence. Simultaneously, the lipid peroxidation end
product malondialdehyde (MDA) was quantified using the
Beyotime (China) TBARS/MDA detection kit. Cell lysates were
reacted with thiobarbituric acid, and absorbance was measured at
532 nm. MDA content was normalized to protein concentration
and expressed as nmol MDA per mg protein.

3 Results

3.1 Identification of DEGs in GSE101794
and GSE93624 datasets

A total of 9,329 and 11,599 differentially expressed genes
(DEGs) were identified from the GSE93624 and GSE101794
datasets, respectively (Supplementary Figures 1C, D). GO and
KEGG enrichment analyses revealed that these DEGs are
mainly involved in immune regulation, cell signaling, tissue
repair, oxidative stress responses, inflammation, and metabolism
(Supplementary Figures 1E, F).

3.2 ldentification of hub genes using
WGCNA

WGCNA analysis identified 12,786 genes in GSE93624 and
11,695 genes in GSE101794 (Figures 2A-D). After intersecting the
DEGs from both datasets with the genes in the significant modules

Frontiers in Immunology

10.3389/fimmu.2025.1619944

identified by WGCNA, 4,662 common genes were obtained. A total of
75 DE-FRGs were further identified after intersecting these genes with
247 FRGs (Figure 2E). GO and KEGG enrichment analyses were
conducted to elucidate the biological functions and pathways
associated with these DE-FRGs. According to GO enrichments
(Figure 2F). In terms of biological processes (BP), DE-FRGs were
mainly involved in cellular responses to chemical stress, oxygen levels,
oxidative stress, and regulation of apoptosis signaling pathways. In
molecular functions (MF), DE-FRGs exhibited activities related to
transcription regulation, protein modification, and stress response. In
cellular components (CC), DE-FRGs were predominantly localized to
peroxisomal membranes, microbody membranes, lipid droplets, and
cell membranes. Furthermore, as for KEGG pathway enrichment
results in Figure 2G, DE-FRGs were mainly enriched in pathways
related to cell death and survival (e.g., ferroptosis, autophagy, and
cellular senescence), metabolic regulation (e.g., glutathione (GSH)
metabolism, fatty acid metabolism, and PPAR signaling pathway),
and signaling pathways (e.g, HIF-1 signaling pathway, and FoxO
signaling pathway). Interestingly, DE-FRGs were also significantly
enriched in various immune-related pathways, including Th17 cell
differentiation, IBD, and AGE-RAGE signaling pathway, highlighting
the broad roles of DE-FRGs in cell metabolism, immune regulation,
disease progression, and stress responses.

3.3 ldentification of 8 DE-FRGs as
diagnostic genes for PIBD

Given the differences between PIBD patients and healthy controls,
we evaluated the diagnostic potential of DE-FRGs. GSE93624 and
GSE101794 were analyzed using LASSO, mSVM-RFE, and RF
algorithms to identify key genes distinguishing PIBD from healthy
samples. LASSO was performed with 10-fold cross-validation to select
the optimal regularization parameter (A), RF was constructed with 100
decision trees and out-of-bag (OOB) error estimation to ensure model
stability, and mSVM-RFE employed 10-fold cross-validation to
determine the best-performing feature subset (Figures 3A-]).

Cross-analysis of the selected genes from all three models
identified HSPA5, ABHD12, SLC11A2, CHACI, ISCU, SLC40A1,
PML, and FZD7 as the main diagnostic candidates for further
investigation (Figures 3K-M). The expression patterns of these
eight genes in PIBD patients and healthy controls were visualized
using violin plots (Figures 4A, B). In both datasets, all eight genes
were significantly different between groups, and consistent results
were observed in the validation datasets (Supplementary
Figures 1G, H). Statistical comparisons were performed using the
Wilcoxon test, with significance levels indicated as: *** for p < 0.001,
** for 0.001 < p < 0.01, * for 0.01 < p < 0.05, and ns for p > 0.05.

3.4 Diagnostic potential of candidate
biomarkers in patients with PIBD

Based on the eight identified diagnostic genes, we assessed their
classification performance using the pROC package by calculating
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Identification of DEGs and hub genes: (A—D) WGCNA analysis identified 16 modules for GSE93624 and 23 modules for GSE101794, with 12,786 and
11,695 genes, respectively. (E) Intersection of DEGs from DESeq2 and important module genes from WGCNA resulted in 4,662 genes, which were
further intersected with 247 FRGs, yielding 75 DE-FRGs. (F, G) GO and KEGG enrichment analyses of the 75 DE-FRGs were performed to explore
biological functions and pathways.

ROC curves, AUC values, 95% confidence intervals, and metrics at  (Figure 4D). Notably, PML and CHACI consistently showed strong
optimal thresholds (e.g., sensitivity and specificity; Supplementary  diagnostic potential in both training and validation datasets, with AUC
Table 3). All genes exhibited AUC values >0.65 in the training  values exceeding 0.7. Comparison with the established IBD biomarker
datasets (Figure 4C). External validation in GSE57945 and  NOD2 revealed that PML and CHACI achieved comparable (14) (15),
GSE117993 confirmed the diagnostic performance of these genes  or even superior, diagnostic accuracy in certain datasets (Figure 4E).
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To examine whether combining PML and CHACI enhances
diagnostic accuracy, we constructed a logistic regression model
incorporating both genes. Across all four datasets, the combined
model consistently achieved AUC values equal to or higher than
those of either gene alone (Figure 4F). DeLong’s test indicated that
the combined model significantly outperformed PML alone in three
datasets, while the improvement over CHACI alone was not
statistically significant. These findings suggest that PML and
CHACI may function synergistically as diagnostic biomarkers, with
statistical support particularly for PML. The relevant information for
the DeLong’s test is provided in Supplementary Table 5.

To experimentally validate these bioinformatic findings, we
quantified PML and CHAC1 mRNA levels in serum samples from
PIBD patients and healthy controls using qRT-PCR. Both genes were
significantly upregulated in PIBD patient sera (p < 0.001; Figure 5A).
In a 4-week DSS-induced colitis mouse model, DSS-treated mice
displayed shortened colon length (Figures 5B, D; p < 0.0001), weight
loss (p < 0.0001; Figure 5C), and elevated disease activity index (DAI)
scores (p < 0.0001; Figure 5E). Colonic tissues of DSS-treated mice
showed significantly increased mRNA levels of pro-inflammatory
cytokines (IL-6, IL-1B3, TNF-0; p < 0.001; Figure 5F) as well as PML
and CHACI (p < 0.01; Figure 5G). Immunohistochemistry
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confirmed elevated protein expression of PML and CHACI in the
colonic mucosa (Figures 5H, I; p < 0.05).

We further evaluated the expression and diagnostic performance
of PML and CHACI in two independent pediatric IBD datasets
(GSE109142 and GSE117993) alongside multiple adult IBD cohorts
(Supplementary Table 4). Both genes were significantly upregulated
in pediatric IBD patients compared to healthy controls (p < 0.001),
with ROC analyses yielding AUC values above 0.7. Although these
genes were also dysregulated in adult IBD (p < 0.001), their diagnostic
performance was more variable, with AUC values ranging from
approximately 0.5 to over 0.8 across different adult datasets
(Supplementary Table 4). We presented the favorable results using
violin plots and ROC curves in Supplementary Figure 5.

Collectively, these results suggest that while PML and CHACI1
hold diagnostic potential for IBD broadly, their relevance may be
particularly heightened in the pediatric context. This can be
attributed to the unique vulnerability of the developing intestinal
epithelium in children. The maturation of the intestinal mucosal
barrier is incomplete, and the antioxidant defense system is
relatively underdeveloped, collectively rendering the tissue more
susceptible to the very processes—ferroptosis, oxidative stress, and
inflammatory injury—in which PML and CHACI are functionally
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FIGURE 4

Expression and diagnostic evaluation of key DE-FRGs. (A, B) Expression of 8 genes in CD and control groups (***p < 0.001; **p < 0.01; *p < 0.05; ns
= not significant). (C, D) ROC curves and AUC values for diagnostic performance. (E) Comparative AUC of PML, CHAC1, and NOD2. (F) Logistic

regression models showing superior performance of the PML+CHAC1 combined model.

implicated. Consequently, the dysregulation of these genes is likely
to have a more pronounced pathogenic and diagnostic impact in
children, providing a compelling mechanistic rationale for their
prioritization as pediatric-specific biomarkers.

3.5 Association of diagnostic genes with
multiple PIBD-related pathways

GSEA-KEGG pathway analysis was conducted to further
examine the functional roles of these diagnostic genes in
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distinguishing PIBD samples from normal samples. As shown in
Figures 6A-H, the top-10 enriched pathways for each diagnostic gene
were involved in various BP, including metabolic regulation and
energy balance, immune and inflammatory responses, cancer and cell
proliferation, cell death and survival regulation, as well as pathogen
interaction. Additionally, the HIF-1 signaling pathway (hypoxia
adaptation and cancer metabolism), NF-kB signaling pathway
(inflammation and survival), JAK-STAT signaling pathway
(immune response and proliferation), and Wnt/FoxO signaling
pathway (development and metabolism) integrated multi-domain
regulation, linking metabolism, immunity, and disease progression.
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3.6 Immune landscape analysis and its indicated a strong connection between the immune
correlation with key immune-related genes  microenvironment and PIBD. The CIBERSORT algorithm to
investigate the differences in the immune microenvironment

The above results revealed a close relationship between  between PIBD patients and HC. As shown in Figures 7A, B, the
diagnostic genes and immune responses, and a wealth of evidence ~ immune cell landscape of PIBD rectal mucosa differed from that of
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FIGURE 6

Pathways enriched after ranking the correlated genes of the 8 genes in GSE93624. (A—H) Pathways enriched after ranking the correlated genes of

the 8 genes in GSE93624.

HC. Compared to the HC group, the CD group exhibited increased
infiltration of plasma cells, MO macrophages, M1 macrophages,
activated mast cells, neutrophils, monocytes, activated dendritic
cells, and activated CD4+ memory T cells. Conversely, decreased
infiltration was observed in M2 macrophages, eosinophils, resting
mast cells, CD8+ T cells, naive CD4+ T cells, naive B cells, and
resting NK cells (p < 0.05). Furthermore, Spearman’s correlation
analysis inferred the abundance of infiltrating immune cells
(Figures 7C-J), with emphasis on PML and CHACI. The
expression of PML was positively correlated with the abundance
of M0 macrophages (r = 0.69, P = 2.2 x 10"'°) and M1 macrophages
(r=0.50,P=2.2x 10’16), but negatively correlated with that of M2
macrophages (r = -0.61, P = 2.2 x 10™'°) in the GSE93624 PIBD
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cohort (p < 0.001). Meanwhile, the expression of CHACI
was positively correlated with the abundance of M0 and Ml
macrophages, and negatively correlated with that of M2
macrophages (p < 0.001). In contrast to PML, CHACI expression
showed a strong positive correlation with the abundance of
neutrophils (r = 0.6, P = 2.2 x 10'16), but a negative correlation
with that of CD8+ T cells (r = -0.54, P = 2.2 x 10’16). Furthermore,
these correlations between PML and CHACI with the inferred
macrophage Further confirmation in another PIBD cohort
(Figures 7K-N) revealed overall association of the expression of
CHACI and PML with pro-inflammatory immune cells (e.g., MO
and M1 macrophages, neutrophils, etc.), suggesting important roles
in immune responses and inflammation, with CHACI being
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FIGURE 7

Immune landscape and correlation analysis. (A, B) Differences in immune cell infiltration between CD and control groups (***p < 0.001; **p < 0.01;
*p < 0.05). (C-J) Correlation of immune cell abundance. (K=N) Correlation of PML and CHAC1 expression with macrophage subpopulations.

particularly involved in acute immune challenges. In addition, the
negative correlation with M2 macrophages and CD8+ T cells might
support their role in modulating the balance of immune responses,
potentially exerting an inhibitory effect.

3.7 PML and CHAC1 knockdown
significantly alleviates LPS-induced
ferroptosis

To investigate the roles of PML and CHACI in inflammation-

associated ferroptosis, we performed independent knockdown
experiments in NCM460 cells. Western blot analysis confirmed
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that transfection with specific siRNAs effectively reduced PML and
CHACI1 protein levels (Figure 8A), indicating successful knockdown.

Subsequently, cells were treated with LPS to induce ferroptosis.
As shown in Figure X B, LPS treatment markedly upregulated the
ferroptosis-promoting protein ACSL4, downregulated the system
Xc— core subunit SLC7A11 and the key antioxidant enzyme GPX4,
and depleted the iron storage protein FTH, collectively indicating
the occurrence of ferroptosis. Notably, knockdown of PML or
CHACI prior to LPS stimulation significantly reversed these
protein alterations (Figures 8B, C).

To further validate the inhibitory effect of gene knockdown on
ferroptosis, we measured the levels of the lipid peroxidation end
product malondialdehyde (MDA), MDA levels were determined
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Ferroptosis-related validation of PML and CHACL. (A) Western blot validation of PML and CHAC1 knockdown in NCM460 cells. (B, C) Western blot
analysis of ferroptosis-related proteins following knockdown of PML and CHAC1 in NCM460 cells. (D) Standard curve of malondialdehyde (MDA)
measured at 532 nm. (E) Quantification of MDA levels after PML and CHAC1 knockdown, indicating increased lipid peroxidation (***P < 0.001,

****P < 0.0001).

using a standard curve method (Figure 8D, MDA standard curve).
LPS treatment significantly increased MDA accumulation, whereas
knockdown of PML or CHACI substantially reduced LPS-induced
MDA levels (Figure 8E).

Taken together, these results indicate that PML and CHACIL
positively regulate LPS-induced ferroptosis. Their knockdown can
reshape the expression profile of ferroptosis-related proteins and
effectively suppress lipid peroxidation, thereby enhancing cellular
resistance to ferroptotic stress.

3.8 Prediction of targeted drugs for
diagnostic genes
DGIdb database was visited to further explore potential drugs

targeting the diagnostic genes, with their interactions analyzed.
Supplementary Figure 4A shows the targeted drugs for each

Frontiers in Immunology

12

diagnostic gene visualized by Cytoscape. This study identified 26
drugs targeting diagnostic genes (Supplementary Table 6). Among
them, 16 drugs targeted HSPA5, 5 targeted PML, 4 targeted FZD?7,
and 1 targeted SLC40A1. Unfortunately, no drugs were found to
target ABHD12, SLC11A2, CHACI, or ISCU.

3.9 ceRNA network based on diagnostic
genes

Based on predictions from the miRanda, TargetScan, miRDB,
and SpongeScan databases, we constructed a ceRNA regulatory
network centered on eight diagnostic genes. This network includes
445 nodes (8 diagnostic genes, 241 miRNAs, and 196 IncRNAs) and
549 regulatory interactions (Supplementary Figure 4B), providing
valuable data resources for future mechanistic studies. Detailed
information is provided in Supplementary Table 7.
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Notably, the analysis revealed that miRNAs such as hsa-miR-
1207-5p, hsa-miR-1291, and hsa-miR-765 may potentially exert
cross-regulatory effects on both CHAC1 and PML (Supplementary
Figures 4B-E). In addition, IncRNA H19 was predicted to act as a
common upstream regulator of both PML and CHACI, suggesting
it may function as a hub in the regulation of these two genes.

Literature reports indicate that IncRNA H19 is significantly
upregulated in inflammatory bowel disease and is closely associated
with impaired intestinal barrier function, potentially serving as a
diagnostic biomarker for IBD (16-18). CHACI may participate in
the pathogenesis of ulcerative colitis via the miR-214-3p-STAT6
axis (19), while PML may be regulated by miRNAs with
immunomodulatory functions, such as miR-146b-3p (20, 21).
These literature findings provide supporting evidence for our
network predictions.

In summary, the ceRNA network constructed in this study
highlights potential regulatory relationships among diagnostic
genes, particularly through the coordinated regulation of key
nodes such as H19. These predictive results offer new clues and
research directions for further exploration of the molecular
mechanisms underlying IBD.

4 Discussion

4.1 PML and CHACI: potential biomarkers
for pibd diagnosis

Pediatric Inflammatory Bowel Disease (PIBD) presents
significant diagnostic challenges due to its heterogeneity. Despite
advances, many patients still experience poor outcomes,
highlighting the need for improved early diagnostic methods.
Bioinformatics combined with machine learning offers an effective
and cost-efficient approach to identify disease mechanisms
and biomarkers. This study investigates the role of ferroptosis in
PIBD, identifying key signaling pathways such as Th17 cell
differentiation, HIF-1, and FoxO signaling that impact the
immune microenvironment. The immune environment in PIBD
is dominated by pro-inflammatory responses, with a decrease in
anti-inflammatory responses.

PML and CHACI were identified as potential diagnostic
biomarkers, exhibiting AUC values greater than 0.7 in ROC
analysis. They were closely associated with the infiltration of pro-
inflammatory immune cells, particularly MO and M1 macrophages,
and neutrophils. These findings suggest that PML and CHACI1
contribute to PIBD pathogenesis by regulating immune responses.

Single-cell RNA sequencing revealed that CHACI is primarily
expressed in epithelial cells, suggesting its role in epithelial stress and
death, while PML is expressed more broadly in epithelial cells,
endothelial cells, fibroblasts, and immune cells such as macrophages.
This supports PML’s involvement in immune regulation.

Functional studies demonstrated that knockdown of PML and
CHACI in NCM460 cells alleviated LPS-induced ferroptosis.
Knockdown of these genes reversed ferroptosis-related protein
changes and reduced lipid peroxidation, indicating they
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positively regulate ferroptosis and influence cellular resistance to
oxidative stress.

In summary, PML and CHAC1 show strong potential as
biomarkers for PIBD diagnosis and offer insights into the
immune pathogenesis of the disease. Further research into their
roles in early diagnosis and treatment response is needed.

4.2 PML and CHAC1 are upregulated in
PIBD and involved in multiple mechanisms

In recent years, the incidence of PIBD has been steadily
increasing, with a pronounced early-onset trend particularly
observed in Asian populations. Epidemiological data indicate that
PIBD incidence is higher in regions with a high socio-demographic
index (SDI), whereas the disease burden is more severe in low SDI
areas (22). Regarding pathogenesis, immune dysregulation, genetic
abnormalities, and gut microbiota imbalance are widely recognized
as key contributing factors. Studies from Chinese researchers
utilizing single-cell sequencing and genome-wide association
analyses have revealed that cCAMP signaling deficiency leads to
immune dysfunction, and that PDE4B inhibition by dipyridamole
demonstrates therapeutic potential in animal models (23). For
diagnosis, fecal calprotectin, a non-invasive biomarker with 3.3.
Identification of 8 DE-FRGs as Diagnostic Genes for PIBD high
sensitivity, has been extensively employed for monitoring PIBD
(24). Treatment strategies are increasingly shifting toward precision
medicine, with novel agents including anti-integrins, biologics, and
JAK inhibitors gradually entering pediatric clinical trials (25).
Furthermore, an elevated long-term risk of malignancy in PIBD
patients underscores the importance of rigorous follow-up (26).
Future research should focus on elucidating immune regulatory
mechanisms and developing individualized therapeutic approaches
to improve prognosis and quality of life in affected children.

Ferroptosis is an iron-dependent form of programmed cell
death characterized primarily by lipid peroxidation and depletion
of glutathione (GSH). In recent years, the pivotal role of ferroptosis
in the pathogenesis of IBD has gained increasing attention.
Numerous studies have demonstrated that hallmark features of
ferroptosis—including iron overload, inactivation of glutathione
peroxidase 4 (GPX4), and oxidative stress—are prevalent in tissues
from IBD patients as well as in experimental colitis models (27)
(28). Administration of ferroptosis inhibitors such as ferrostatin-1
and liproxstatin-1 has been shown to effectively alleviate dextran
sulfate sodium (DSS)-induced colitis, ameliorate intestinal
inflammation, and preserve mucosal barrier integrity (29).
Moreover, complex interactions exist between ferroptosis and the
intestinal immune microenvironment. Recent findings indicate that
ferroptosis-related gene signatures closely correlate with mucosal
immune cell infiltration, including macrophages and CD8" T cells
(30). Additionally, gut microbial metabolites, such as short-chain
fatty acids and tryptophan derivatives, modulate ferroptotic
signaling in intestinal epithelial cells, suggesting that dysbiosis
may contribute to mucosal injury via ferroptosis pathways (31).
Although direct studies on ferroptosis in PIBD remain limited, the
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conserved mechanisms elucidated in adult IBD imply that
ferroptosis likely plays an important role in PIBD as well.

PML gene functions as a universal sensor of cellular stress,
including viral infection, oxidative stress, and DNA damage,
capable of initiating diverse protective cellular responses.
Mechanistically, PML participates in the regulation and execution
of protein complexes through the assembly of PML nuclear bodies,
playing critical roles in cell cycle regulation, senescence, and
metabolic homeostasis (32). Extensive research has demonstrated
that PML exhibits significant tumor suppressor functions across
various solid tumors such as breast, lung, and colorectal cancers,
with overexpression inducing cell cycle arrest, senescence, and
programmed cell death (33-37). In PIBD, the regulatory role of
PML is equally crucial. As a key modulator of ferroptosis, alterations
in PML expression markedly influence the redox state and survival
fate of intestinal epithelial cells, PML overexpression can actively
promote ferroptosis by repressing anti-ferroptotic molecules such
as SLC7A11 and GPX4 (38). These mechanisms are particularly
relevant in PIBD pathology, where the immature immune system
and compromised mucosal barrier in children render them more
susceptible to epithelial injury and barrier dysfunction triggered by
aberrant ferroptosis activation. Furthermore, PML’s involvement in
inflammation signaling amplifies its pathological significance in
PIBD. Pro-inflammatory cytokines such as TNF-o. and IFN-o
upregulate PML expression in intestinal tissues of IBD patients,
especially in Crohn’s disease (39, 40). PML exacerbates local
immune responses and oxidative damage by activating the
NLRP3 inflammasome, promoting IL-1f and IL-18 secretion, and
increasing ROS production (41). Given PIBD’s heavy reliance on
immune response balance, these functions of PML may further
drive the vicious cycle of inflammation. Notably, PML also
participates in immunometabolic regulation. Its localization at
mitochondria-associated membranes (MAMs) influences
macrophage polarization and energy metabolism, thereby
modulating immune cell functions and the intestinal
inflammatory milieu (42). Additionally, PML regulates
endothelial cell migration and angiogenesis, processes closely
linked to the aberrant vascular remodeling and barrier
dysfunction commonly observed in PIBD (42, 43).In summary,
PML likely plays a pivotal role in PIBD pathogenesis through
multifaceted mechanisms involving ferroptosis regulation,
oxidative stress and inflammatory signaling, immunometabolism,
and angiogenesis. These immune-metabolic-death network effects
are particularly pronounced in pediatric patients. The multilayered
regulatory functions of PML not only reveal potential key nodes in
PIBD pathophysiology but also provide a theoretical foundation
and promising direction for developing PML-targeted biomarkers
and precision therapies in early diagnosis and intervention.

CHACI, a member of the y-glutamylcyclotransferase family
(44), plays a critical role in glutathione (GSH) metabolism and
cellular redox homeostasis, primarily by degrading GSH to regulate
the intracellular antioxidant system. Studies have shown that
CHACI overexpression leads to intracellular GSH depletion,
significantly inducing oxidative stress and promoting reactive
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oxygen species (ROS) accumulation, thereby triggering lipid
peroxidation and ferroptosis (45-47). By inhibiting the activity of
GPX4, CHACI further amplifies lipid ROS accumulation, serving as
a crucial node in the activation of ferroptotic signaling (48). In adult
disease models, CHACI has been implicated in the pathogenesis of
various chronic pathological conditions, including tumors,
inflammation, and organ fibrosis, with its roles in regulating cell
death and inflammatory responses gaining increasing attention
(49-54). Recent studies demonstrate that silencing CHACI in a
murine intestinal ischemia-reperfusion injury model significantly
inhibits ferroptosis and alleviates oxidative stress-induced tissue
damage (55), further suggesting its involvement in modulating
intestinal inflammation through ferroptosis regulation.

Although direct research on CHACI in PIBD remains limited,
mechanistic evidence indicates that CHAC1 may mediate intestinal
epithelial dysfunction and mucosal barrier disruption via ferroptosis
pathways. In PIBD, where intestinal development is incomplete and
antioxidant defenses and iron homeostasis are relatively fragile,
ferroptosis is more readily activated, exacerbating inflammatory
responses. Given CHACI’s key role as a rate-limiting factor in GSH
metabolism, its expression regulation is likely central to the oxidative
stress imbalance and cell death observed in PIBD. Therefore, CHAC1
not only represents a pivotal molecule in ferroptosis regulation but
also emerges as a potential novel pathogenic node and therapeutic
target in PIBD. Future investigations into CHACI’s role in intestinal
immune homeostasis, barrier integrity, and redox balance will be
instrumental in advancing our understanding of PIBD pathogenesis
and guiding the development of targeted intervention strategies.

In this study, both PML and CHACI were found to be
upregulated in PIBD patients. Notably, the combined PML
+CHACI model demonstrated an improved diagnostic
performance compared with PML alone in several datasets,
suggesting that PML may serve as a promising indicator
associated with PIBD. Although the addition of CHACI did not
result in a statistically significant improvement, its inclusion
appeared to provide complementary information, implying a
potential cooperative role between the two genes. Mechanistically,
PML and CHACI play distinct yet complementary regulatory roles
at different levels in ferroptosis and oxidative stress responses. PML
primarily acts as an upstream regulator, modulating the ferroptotic
microenvironment by controlling reactive oxygen species (ROS)
levels, influencing the SLC7A11/GPX4 axis, and activating the
NLRP3 inflammasome. Its dual role in promoting inflammation
and cell death is particularly pronounced under sustained
stimulation of intestinal epithelial cells, where PML activation
amplifies oxidative stress and exacerbates inflammatory responses
(34, 40, 41). In contrast, CHACI functions mainly as a downstream
executioner of cellular stress. Induced by ATF4 in the context of
endoplasmic reticulum stress and the integrated stress response
(ISR), CHACT’s core function is to degrade glutathione (GSH),
thereby impairing the cellular antioxidant defense and directly
promoting ferroptosis. CHACI activation is considered an
irreversible signal for the initiation of programmed cell death.
Although PML and CHACI act at different initiation points
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within ferroptosis regulation, they converge on the same
pathological endpoint—epithelial cell injury and mucosal barrier
disruption.In PIBD, such injury triggers excessive immune
responses, leading to gut microbiota dysbiosis and chronic
inflammation. This cumulative effect may be exponentially
magnified in the susceptible environment of PIBD, resulting in
earlier onset and more severe clinical manifestations. This
synergistic interaction is especially critical in pediatric patients,
whose intestinal barriers are not fully developed and whose immune
tolerance mechanisms are relatively weak, making their cells more
sensitive to oxidative stress and ferroptosis. Therefore, elevated
expression of PML and CHACI is not merely a consequence of
disease but may represent key drivers of early PIBD pathogenesis. In
summary, PML and CHACI synergistically activate the ferroptosis
pathway from oxidative stress sensing to antioxidant disruption,
forming a complementary and amplifying pathogenic network in
PIBD development. This mechanistic complementarity provides a
theoretical basis for their combined use in early PIBD diagnosis.
Future research should further elucidate the regulatory
mechanisms of the PML-CHACI axis in PIBD and explore joint
targeting strategies to offer more precise therapeutic options in
clinical practice.

4.3 Innovation of this study

This study presents several innovative aspects that distinguish it
from previous research. First, unlike most bioinformatics studies that
primarily focus on adult IBD, our work specifically investigated
pediatric IBD, a population in which molecular-level studies
remain scarce despite its rising incidence and clinical importance.
Second, we systematically integrated and validated four independent
GEO cohorts, thereby enhancing the robustness and reproducibility
of our findings. Third, to the best of our knowledge, this is the first
study to identify PML and CHACI as potential diagnostic
biomarkers for PIBD, with consistent diagnostic performance
across multiple datasets (AUC > 0.7). Finally, beyond
bioinformatics predictions, our findings are further supported by
experimental validation in animal and cellular models, including
ferroptosis-related experiments, providing translational evidence for
their diagnostic relevance. Together, these innovations highlight the
novelty of this study and reinforce its clinical significance.

4.4 Limitations and future directions

This study identified and validated ferroptosis-related genes
(FRGs) in pediatric inflammatory bowel disease (PIBD), but several
limitations remain. The relatively small sample size may limit the
generalizability of our findings, and the inherent heterogeneity of
PIBD could affect the reproducibility of results across different
patient populations. Although our bioinformatics analyses were
supported by experimental validation, only two genes (PML and
CHACI1) were prioritized for experimental confirmation due to
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their consistently highest diagnostic performance across datasets
(AUC > 0.7). Comprehensive functional studies for the remaining
candidate genes in larger cohorts and diverse models are still needed
to fully assess their biological roles and clinical relevance.

Moreover, the clinical significance of FRGs across different
PIBD subtypes has not been fully explored, and their upstream
and downstream signaling pathways remain unclear, limiting our
understanding of their roles in immune dysregulation and
inflammation. Future studies should expand sample sizes,
integrate multi-omics data, and utilize advanced experimental
models to investigate the mechanisms of PML and CHACI in
ferroptosis and immune regulation. Validation in larger clinical
cohorts and across PIBD subtypes will help confirm their diagnostic
and therapeutic potential. Additionally, targeting PML and CHAC1
through gene editing or small-molecule inhibitors may provide new
therapeutic strategies, and integrating their expression levels into
clinical decision-making could guide personalized treatment
approaches to optimize outcomes for PIBD patients.

5 Conclusions

PML and CHACI are two potential biomarkers for PIBD, both
of which are involved in key biological processes such as apoptosis,
oxidative stress, and immune regulation that are critical to PIBD
pathogenesis. Both genes are closely associated with immune
microenvironment changes, particularly in pro-inflammatory
immune responses. Furthermore, PML and CHACI1 demonstrate
robust diagnostic potential, with high specificity and sensitivity in
distinguishing PIBD from healthy samples. Our results indicate that
these genes may provide useful insights into the molecular
mechanisms underlying PIBD and have potential applications in
early diagnosis and disease monitoring. However, further studies
are needed to validate their clinical utility and to clarify their
functional roles in PIBD progression.
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