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Background: Hypoxic-ischemic encephalopathy (HIE) is a leading cause of
neonatal brain injury and neurodevelopmental disorders. Pyroptosis, an
inflammatory programmed cell death, may offer new therapeutic targets for
HIE by modulating cytokine expression and related pathways. This study aims to
identify HIE-associated pyroptosis genes and explore potential drugs and
molecular mechanisms.

Methods: The gene microarray data of hypoxic-ischemic brain damage (HIBD)
were obtained from the Gene Expression Omnibus (GEO) database. The Limma
package was used to identify differentially expressed genes (DEGs). Weighted
gene co-expression network analysis (WGCNA) was performed to find significant
expression modules. GO and KEGG analyses were carried out for the pathway
enrichment of DEGs, as well as protein—protein interaction (PPI) network analysis
were subsequently conducted. Cytohubba software was employed to identify
hub genes among DEGs. A random forest (RF) model assessed the pyroptosis-
related genes, examining their diagnostic performance. Potential therapeutic
drugs or compounds targeting the hub genes were screened through DSigDB,
and their binding scores and affinities were evaluated by molecular docking.
Results: 96 DEGs with HIBD were identified in our result, including 89 up-regulated
genes and 7 down-regulated genes. GO and KEGG results indicated that these DEGs
were mostly enriched in Cytokine-cytokine receptor interaction, IL-17 signaling
pathway and TNF signaling pathway. Using Cytoscape software and WGCNA-related
modules, we identified three hub genes—Tnf, IL1B, and Tlr2—which were further
validated in other transcriptomic datasets, all showing significant differential
expression. Random forest analysis demonstrated that these three hub genes had
AUC values > 0.75, indicating strong diagnostic performance. Immune infiltration
analysis revealed that, compared to the control group, the HIBD group exhibited
higher levels of innate immune cells (e.g., macrophages, MO cells, and dendritic cells)
and adaptive immune cells (e.g., CD8 naive T cells, CD4 follicular helper T cells, and
Thi cells). The ssGSEA algorithm results indicated differences in 25 types of immune
cells and 10 immune functions. The hub genes were also validated finally.
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Conclusion: Tnf, ll1b and TIr2 may be potential hub pyroptosis-related genes for
HIBD. The results of this study could improve the understanding of the
mechanisms underlying pyroptosis in HIBD.

hypoxic-ischemic brain damage, pyroptosis, immune infiltration, bioinformatics,

machine learning

1 Introduction

Neonatal hypoxic-ischemic encephalopathy (HIE), resulting
from perinatal asphyxia, represents a significant cause of neonatal
morbidity and mortality worldwide (1). The global incidence of HIE
is approximately 2 per 1,000 live births, with even higher rates
observed in developing country (2-4). Despite remarkable progress
in perinatal medical technology in recent years, HIE continues to be a
prevalent critical condition in neonatal intensive care units (NICUs).
Its high mortality and disability rates impose a significant burden on
affected families and society as a whole. Therapeutic hypothermia
(TH) currently stands as the sole approved therapeutic intervention
for hypoxic-ischemic brain damage (HIBD) (5). However, about 40%
of HIE children receiving TH therapy still have audio-visual and
motor behavioral impairments, such as total developmental delay and
cerebral palsy (6, 7). Consequently, there is an urgent need to explore
novel and effective neuroprotective strategies to improve outcomes
for HIE patients.

The pathogenesis of HIBD is complex and involves the
interplay of multiple pathophysiological processes (8, 9).
Hypoxic-ischemic events lead to insufficient oxygen and energy
supply to brain tissues, triggering a cascade of reactions, including
energy metabolism failure, excitotoxicity, oxidative stress,
inflammatory responses, and cell apoptosis. These processes
collectively result in damage or even death of neurons and glial
cells, ultimately leading to brain dysfunction. Pyroptosis is a
recently identified form of programmed cell death characterized
by its pronounced inflammatory features (10, 11). It is primarily
triggered by the activation of inflammasomes and mediated by
caspase-1 or caspase-4/5/11. Unlike apoptosis, pyroptosis involves
the rupture of the cell membrane and the release of large quantities
of pro-inflammatory cytokines, such as IL-1b and IL-18, thereby
eliciting a robust inflammatory response. IL-1b (also known as
IL1B) is a pro-inflammatory cytokine that plays a critical role in
immune responses and inflammatory processes. The TNF
superfamily (TNFSF) has 19 ligands and 29 receptors, serving as
crucial mediators and regulators in human immuned inflammatory
responses. A growing body of evidence indicates that tumor
necrosis factor (TNF) is a potent proinflammatory cytokine
implicated in the pathogenesis of various brain injury-related
disorders. In addition, TIr2 is a member of the Toll-like receptor
(TLR) family, which plays a pivotal role in the innate immune
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system. Currently, research on the role of TIr2 in the HIBD model
remains limited.

A growing body of research has reported that pyroptosis is
associated with the pathophysiological processes of various
neurological diseases, including ischemia-reperfusion injury post-
stroke (12), Alzheimer’s disease (13), multiple sclerosis (14, 15)
neonatal HIE (16) and other disease (17). Zheng et al. (18)
demonstrated that diallyl disulfide can reduce hypoxic-ischemic (HI)
injury by inhibiting the NLRP3-mediated pyroptosis signaling pathway.
Overexpression of NLRP3 was shown to reverse this protective effect.
Similarly, Tao et al. (19)reported that echinatin alleviates pyroptosis and
inflammation in HIBD model by using TLR4/NF-kB pathway. The role
and signaling pathways of pyroptosis in the pathogenesis of HIBD
remain unclear. Although transcriptomic and genomic data have
elucidated various aspects of cellular dynamics during pyroptosis,
information on how pyroptosis operates in HIBD remains limited.
Therefore, investigating the genomic changes that support pyroptosis
and its involvement in HIBD can provide new insights for developing
effective therapeutic strategies.

With the advancements in genomic microarray and high-
throughput sequencing technologies, bioinformatics analysis has
become an increasingly popular and powerful tool for exploring
brain-related mechanisms and disorders. Currently, there is a lack
of bioinformatics-based research on the mechanistic roles of
pyroptosis-related genes (PRGs) in hypoxic-ischemic brain
damage (HIBD). Therefore, this study aims to explore the
molecular mechanisms of pyroptosis in HIBD through
bioinformatics analysis. We identified core PRGs and investigated
their relationship with immune cell infiltration. Additionally, we
validated the expression patterns of these core immune-related
genes using transcriptome sequencing and animal experiments
(Figure 1). Collectively, these findings provide valuable insights
for developing more effective therapeutic strategies.

2 Materials and methods
2.1 Data acquisition and processing
As illustrated in Supplementary Table 1, gene expression profiling

dataset (GSE144456) related to hypoxic-ischemic brain injury
(HIBD), was retrieved from the Gene Expression Omnibus (GEO)
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Flowchart in this study.

database (https://www.ncbi.nlm.nih.gov/geo/). A comprehensive list
of 176 pyroptosis-related genes, which were identified from
previous studies, is provided in Supplementary Table 2.

2.2 Differential expression analysis of genes
and functional enrichment analysis

Differentially expressed genes (DEGs) in the GSE144456 dataset
were identified using the limma package in R software (version 4.0.5,
Auckland, New Zealand), with the significance thresholds set at a p-
value < 0.05 and an absolute log2 fold change (|log2FC|) = 0.5. We
mapped the differentially expressed genes (DEGs) to each term in the

Frontiers in Immunology 03

Gene Ontology (GO) database (http://www.geneontology.org/) and
calculated the number of DEGs associated with each term to obtain
statistical data on the distribution of DEGs within specific GO
functional categories. Subsequently, GO terms significantly
enriched in the DEGs compared to the background gene set were
identified using a hypergeometric test. Genes in organisms interact
and coordinate to perform specific biological functions, and
pathway-based analysis provides a systematic approach to
elucidating the functional roles of individual genes in biological
processes. In this study, the enrichment levels of DEGs in KEGG
pathways (http://www.genome.jp/kegg/) were determined using the
KOBAS (version 3.0) software. Pathways with a p-value < 0.05 were
considered significantly enriched.
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2.3 Protein—protein interaction network
analysis

The PPI network was constructed by importing genes into the
STRING database (www.STRING-db.org), a tool for retrieving
protein-protein interactions, with interactions having a combined
score > 0.5 being used for network construction. The network was
visualized using Cytoscape (version 3.7.2), and genes within the
network were ranked based on their degree centrality using the
cytoHubba plugin.

2.4 Weight gene co-expression network
analysis

To further investigate the potential roles of differentially
expressed genes (DEGs) in hypoxic-ischemic brain damage
(HIBD), we employed the R package “WGCNA” [10] to identify
co-expression gene modules with high biological significance and to
explore the relationship between gene networks and disease
pathogenesis. All genes in the GSE144456 dataset were analyzed
using WGCNA after removing missing values and duplicates. The
optimal soft threshold was determined by setting R*=0.85, which
enabled the identification of co-expression modules and key genes
associated with HIBD. Subsequently, the adjacency matrix was
converted into a topological overlap matrix (TOM), and modules
were detected through hierarchical clustering with a minimum
module size of 30 (minModuleSize=30). Specifically, module
eigengenes (MEs) and modules were calculated independently
and subjected to hierarchical clustering. The module eigengenes
(MEs) and module membership (MM) values were used to identify
fundamental modules related to HIBD. Finally, key modules were
determined by analyzing the correlation between the expression
data and module eigengenes. For further refinement, module genes
exhibiting the highest gene significance values were intersected with
pyroptosis-related hub genes.

2.5 Immune cell infiltration analysis

Immune cell infiltration analysis is a method used to quantify the
abundance and spatial distribution of different immune cell types in
pathological tissues, aiming to reveal the characteristics of the immune
microenvironment and its relationship with disease progression.
CIBERSORT is a widely used deconvolution algorithm based on
gene expression data. In this study, mRNA expression profiles of
cortical tissues from the HIBD group and the control group were
analyzed, and the relative proportions of 22 immune cell types in both
groups were evaluated using the CIBERSORT algorithm. A histogram
illustrating the proportion of immune cells, a box plot depicting
immune cell expression levels, and a box plot showing the results of
differential immune cell analysis were generated. Subsequent analyses
retained only statistically significant data, with a CIBERSORT p-value <
0.05. Additionally, this study performed correlation analyses to evaluate
the relationship between hub pyroptosis-related genes and immune
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infiltration in HIBD. Single-sample gene set enrichment analysis
(ssGSEA), an extension of Gene Set Enrichment Analysis (GSEA),
has been widely employed in immune infiltration-related
bioinformatics studies (20). Enrichment scores for 28 immune cell
subsets and 13 immune functional pathways were computed in both
normal and hypoxic-ischemic brain damage (HIBD) samples using the
GSVA R package, with results visualized via the Vioplot R package.
Subsequently, Spearman’s rank correlation analysis was performed to
assess associations between hub pyroptosis-related genes sand immune
cell infiltration/functional profiles.

2.6 Machine learning

To better evaluate the diagnostic efficacy of hub pyroptosis-
related genes and provide a robust computational biology
foundation for subsequent targeted therapy, we further employed
the random forest approach. A Random Forest classification model
was constructed, and its performance was assessed using a
confusion matrix, accuracy, sensitivity, specificity, and ROC-
AUC values.

2.7 Animals and the hypoxic-ischemic brain
damage model

In this study, all experimental procedures were approved by the
Institutional Animal Care and Use Committee of The Third
Affiliated Hospital of Zhengzhou University. Male and female
C57BL/6 mice were obtained from the Laboratory Animal Center
[Henan, China]. The pups, along with their mothers, were housed
under controlled environmental conditions, including an ambient
temperature of 22 + 2°C, relative humidity of 56 + 5%, and a 12-
hour light/dark cycle. As previously described, on postnatal day 9,
C57BL/6 mice (average body weight: 5 £ 0.3g) were anesthetized
with isoflurane (3.5% for induction and 1.5% to 2% for
maintenance). A midline incision (approximately lcm in length)
was made in the neck to expose the right common carotid artery
(CCA). The CCA was double-ligated using 6-0 surgical silk sutures,
and a specialized micro-clamp was used to create an incision
between the two ligation points. The surgical procedure for each
pup was completed within approximately 5 minutes. After the
procedure, the pups were allowed to recover until they resumed
normal breathing and were then returned to their mothers.
Following a 1-hour recovery period, the mice were placed in a
hypoxic chamber maintained at 37°C with a gas mixture of 10%
oxygen and 90% nitrogen. The sham group underwent the same
procedures except for arterial ligation and hypoxia exposure.

2.8 TTC and H&E staining

In order to ensure the efficient construction of HIBD model,
TTC and HE staining techniques were used. TTC staining is a
classical method for assessing cerebral infarction volume.
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According to previous literature reports (4, 21), TTC staining
clearly demarcates the infarct core as pale unstained regions,
while viable tissue stains deep red. The infarct volume ratio is
calculated using the formula: Infarct volume percentage=
(Contralateral hemisphere volume-Ipsilateral non-infarcted
volume)/Contralateral hemisphere volume x 100%. H&E staining
is one of the most commonly used histopathological staining
methods for observing morphological changes in brain tissue after
ischemic injury, including neuronal necrosis, inflammatory
infiltration, and other pathological features. Based on previous
studies (22-24), H&E staining was performed on mice 3 days
after HIBD surgery. This method allows qualitative assessment of
ischemic injury by distinguishing normal neurons from hypoxic-
ischemic damaged neurons, as well as localization of the
infarct core.

2.9 Quantitative real-time polymerase
chain reaction

Total RNA was extracted from the brain tissues of the ipsilateral
HIBD or sham group using TRIzol reagent from Life Technologies,
and then the optical density of the extracted RNA was measured. If
the optical density was between 1.8 and 2.2, the sample was
considered usable. 1 pg of the usable RNA was reverse-
transcribed into 20 UL of ¢cDNA. Then, 2 uL of the cDNA was
amplified with specific primers and SYBR PCR Master. The reverse-
transcription amplification kit was provided by Vazyme. GAPDH
was used as an internal reference. The values of the target genes
were normalized to the fold-change determined using the 274"
method. The primer sequences used in this study are listed
in Table 1.

2.10 Immunofluorescence

Tissue samples were collected at 24 hours post-HIBD for
histological examination. Tissues were embedded in Optimal Cutting
Temperature Compound (OCT, Fisher Scientific) and then sectioned
into 15 um slices. Sections were stained with TIr2 (1:200, Abcam), Il1b
(1:200, Abcam) and Tnf (1:200, Abcam) at 4°C overnight. Appropriate
fluorescence conjugated secondary antibodies (Proteintech, China)
were incubated for 1 h at room temperature. Nuclei were
counterstained with DAPI. Immunofluorescence images were
acquired on an Olympus IX83 microscope equipped with a 40x
objective (NA 0.95).

TABLE 1 Primers used for qRT-PCR.

Gene Forward primer

B-actin ACGGCCAGGTCATCACTATTG
Tnf TATGGCTCAGGGTCCAACTC
11b TGCCACCTTTGACAGTGATG
Tir2 CTCTTCAGCAAACGCTGTTCT
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2.11 Construction of pyroptosis -related
MRNA-miRNA regulatory network

To explore the regulatory mechanisms of the optimal hub
pyroptosis -related genes, an mRNA-miRNA regulatory network
was constructed. The miRWalk3.0 online tool, a comprehensive
database of miRNA target genes, was used to predict miRNAs
potentially. This database includes miRNA target gene information
for multiple species, such as mouse and rats. MiRWalk was used to
predict miRNAs targeting the optimal hub pyroptosis -related
genes. A miRNA-hub pyroptosis -related genes interaction
network was visualized using Cytoscape software.

2.12 Molecular docking

Schrodinger2021 was employed to dock the Top5 drugs or small
molecules screened from DSigDB to investigate the binding
interactions between target proteins and ligand molecules (25, 26).
Briefly, the crystal structures of target proteins were obtained from the
Protein Data Bank (PDB) (2Z81, 2tnf, 8RYS). Before docking, protein
structures were processed using the Protein Preparation Wizard in
Schrodinger software. This involved steps such as removing all water
molecules, adding hydrogen atoms, further optimizing the structure
with the OPLS3 force field, and minimizing protein energy. The
Sitemap module was used to generate docking boxes. Small
molecules were obtained from Pubchem with SDF structures and
underwent conformation minimization and energy minimization
processing through the LigPrep module. Docking was carried out
using the Glide module, and the Maestro module was used for result
analysis and processing.

3 Results
3.1 Data acquisition and processing

We obtained hypoxic-ischemic brain damage (HIBD) related
datasets from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). Datasets were selected according to the
following criteria (1): the profile information should encompass
both disease and control groups and (2) the datasets need to provide
raw data for further analysis. Therefore, GEO dataset GSE144456
was selected for subsequent investigation. GSE144456 contained 24
HIBD samples and 8 control samples. For these datasets,
GeneSymbol mapping was carried out based on their respective

Reverse primer
AGAGGTCTTTACGGATGTCAACGT
GGAAAGCCCATTTGAGTCCT
TGATGTGCTGCTGCGAGATT

GGCGTCTCCCTCTATTGTATTG
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platforms. In instances of multiple matches, the average value was
adopted. The final expression matrix was derived by normalizing
using the log2(X + 1) method. During preprocessing, after the initial
quality control assessment, the “normalizeBetweenArrays” function
in the “limma” package was utilized to perform quantile
normalization. This method adjusted the expression values such
that each sample had an identical empirical distribution of
expression values, thereby effectively minimizing technical
variations between samples.

3.2 ldentification of common DEGs and
enrichment analysis

Following quality control, normalization, and background
adjustment of the GSE144456 dataset, we identified 96

10.3389/fimmu.2025.1616312

significantly altered genes using thresholds of adjusted p-value <
0.05 and [log2 fold change| > 0.5. As illustrated in the volcano plot
(Figure 2A), 89 genes were up-regulated and 7 genes were down-
regulated under the experimental conditions. The heatmap
illustrated the top 20 most differentially expressed genes (DEGs)
(Figure 2B). Notably, in the GSE144456 dataset, all top 20 altered
genes were up-regulated, implying that their high expression
promotes HIBD development. To functionally characterize the 96
DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed to
elucidate the biological functions. The GO results showed the top
five biological processes (BP), cellular components (CC), and
molecular functions (MF). These genes were mainly involved in
biological processes like granulocyte migration, myeloid, leukocyte
migration, granulocyte migration and neutrophil chemotaxis
(Figure 2C). Regarding cellular components (CC), proteins
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Identification of common DEGs in GSE144456. (A) Volcano plot of all DEGs in GSE144456, red indicates upregulated DEGs, and blue indicates
downregulated DEGs. (B) A heatmap of the top 20 DEGs in GSE144456. (C, D) The enrichment analysis results of GO and KEGG pathway.

Frontiers in Immunology

06

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1616312
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Qin et al.

encoded by these genes were mainly located on the tertiary granule,
external side of plasma membrane. Secretory granule membrane,
collagen-containing extracellular matrix and secretory granule
lumen. And the molecular functions also displayed. The KEGG
results indicated that these 96 genes were mainly distributed in
signaling pathways like Cytokine-cytokine receptor interaction, IL-
17 signaling pathway and TNF signaling pathway (Figure 2D). In
addition, to further screen for significant genes, we input the 96
candidate DEGs into the String database and removed independent
genes (Figure 3A). Then, Cytoscape software was used to display
proteins interacting with each other according to their degrees. To
further screen out hub genes, the MCC algorithm in the Cytohubba
plugin was used to determine the top ten genes in the above-
mentioned PPI network (Figure 3B). Eventually, Tlr2, Tnf, Cxcl2,
Cxcl10, Jun, Cxcll, Ccl6, 116, 111b and Ccl7 were identified as
candidate hub genes for HIBD.

3.3 Weighted gene co-expression network
analysis

In this study, to further explore the key genes in HIBD, the gene
co-expression network of the mRNA dataset was constructed by
utilizing the R package of WGCNA. Based on the evaluation of
scale-free topology fit (scale independence) and mean network
connectivity, an optimal soft-thresholding power (B) of 7 was
selected (Figure 4A) to ensure biologically meaningful network
construction while preserving moderate connection density. In
total, 12 modules were obtained (Figure 4B). The clustering of
module eigengenes showed in Supplementary Figure. Moreover, 8

(A)

10.3389/fimmu.2025.1616312

modules were investigated through module-trait analysis, revealing
statistically significant correlations (p < 0.05) as shown in Figure 4C.
These data showed that the purple (142 genes, r=0.66, p=3e-05),
green (265 genes, r=0.73, p=2e-06) and yellow (290 genes, r=0.85,
p=6e-10) exploring the most positive correlation between HIBD
and gene modules. Furthermore, we investigated a strong
association between module membership and gene significance in
the green (r=0.76, p =2.5e-51), purple (r=0. 65, p =1.6e—18) and
yellow (r=0.88, p =1.9e-95), respectively (Figure 4D). Pyroptosis-
related DEGs among HIBD-associated genes including Tnf, TIr2,
Neatl, Cebpa, Il1rl, Lgals3, S100a9 and Il1b. All these genes are
upregulated genes. Venn diagram analysis revealed seven
overlapping genes among the co-expression modules identified by
WGCNA, HIBD-associated DEGs, and pyroptosis-related gene sets,
suggesting potential mechanistic links between these molecular
networks. These three optimal hub pyroptosis-related DEGs
(PRDEGsS) were selected for further analysis (Figure 4E).

3.4 Immune cell infiltration and its
correlation with optimal hub PRDEGs

Based on previous enrichment results, the optimum pyroptosis-
related genes in HIBD were found to be primarily associated with
immune-related pathways. Using the CIBERSORT algorithm, the
proportions and infiltration abundance of 22 immune cell types
detected in each sample were visualized as a histogram (Figure 5A)
and boxplot (Figure 5B), respectively. Significant differences in
immune cell profiles were observed between the HIBD group and
the control group. Compared to the control group, HIBD group

(B)

FIGURE 3

PPI network analysis of DEGs. (A) The PPl network of 30 DEGs was constructed by using String database. (B) First ten genes with the highest degree

identified by Cytoscape software and CytoHubba.
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showed higher levels of CD8+ T naive cell, Macrophage MO cell, CD4  Gene-immune cell correlation analysis revealed strong positive
+ T cell follicular, Thl cells and DC activated cell. In addition, the  correlations between the expression of Tnf, Tlr2 and Il1b (Figure 5E).
levels of plasma cells, CD8+ T activated cells, CD8+ T memory cell To further explore the correlation between samples and immune
and CD4+ T naive cells were lower in HIBD group (Figure 5C). The  status, we evaluated the enrichment scores of 28 immune cell types
results of immune cell variation analysis are presented in Figure 5D.  using ssGSEA. The results showed that there were significant
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differences in the levels of immune infiltration between the control and
HIBD groups (Figures 6A, C). For example, CD56bright natural killer
cell, Central memory CD4 T cell, MDSC, natural killer T cell,
plasmacytoid dendritic cell, regulatory T cell, and type 1 T helper cell
were significantly increased in HIBD groups. There is a significant
correlation among most immune cells (Figure 6B). In addition, Il1b,
TIr2 and Tnf correlated well with 25 types of immune cells and ten
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types of immune functions (Figures 6D, E). For example, Il1b was
positively correlated with Effector memory CD4 T cell. TIr2 was
positively correlated with Regulatory T cell, Natural killer T cell,
Natural killer cell, MDSC, Mast cell, Effector memory CD8 T cell,
Central memory CD4 T cell and Activated CD4 T cell. Tnf was
positively correlated with T follicular helper cell, Natural killer T cell,
Monocyte, MDSC and Central memory CD4 T cell.
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3.5 Evaluation of diagnostic effectiveness
using machine learning

To further evaluate the diagnostic effectiveness of hub pyroptosis-
related genes, we applied the random forest machine learning algorithm.

10.3389/fimmu.2025.1616312

The constructed model revealed these three genes demonstrated
significant diagnostic potential, with variable importance measure
scores exceeding the critical threshold of 1 (Figures 7A, C).

The Confusion Matrix is an important tool for evaluating the
performance of classification models, as shown in Figure 7B. And the
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Fl-score was 0.9231 (demonstrating strong precision-recall balance),
the accuracy was 0.8889 (indicating robust overall classification
performance). And the AUCs of these three genes all > 0.75
(Figure 7D). This machine learning approach effectively prioritized
these candidate genes based on their relative contributions to

distinguishing between experimental groups, suggesting their
potential utility as molecular biomarkers for HIBD detection.
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3.6 Validation of hub pyroptosis-related
genes

To validate the reliability of the GSE144456 dataset analysis, we
performed qRT-PCR and immunofluorescence assays. Firstly, in
order to validate the efficacy of the neonatal mouse HIBD model, we
initially performed TTC and HE staining analyses (Figures 8A, B).

B
®) Confusion Matrix
2 Positive 0
= Count
= 6
= ! 5
9
- 4
-g i3
= 2
E 1
- Negative 2 1 .
Negative Positive
True label
Tnf
D >
D) 1.00 4 —
0.75 R z
z i
z . AUC=0.797
.‘5 0.50 4 —F
é s Sensitivity= 0.708
i Specificity= 1
0.25 4 .
0004+
1.00 0.75 0.50 0.25 0.00
Specificity
11b
1.00 -
0.75 0

_’AUC = 0.755
+" Sensitivity = 0.708
Specificity = 0.875

Sensitivity
=
E

0.25 4

0.00 4

0.50 0.25 0.00
Specificity
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number of trees and the error rate in the HIBD dataset. (B) The Confusion Matrix diagram. (C) The ranking of gene relative importance scores.
(D) ROC curves of the Tnf, Il1b and Tlr2.
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The results demonstrated significant infarct foci in the HIBD group
compared with the sham group. Furthermore, HE staining provided
qualitative assessment of the cerebral damage in HIBD mice.
Subsequently, we verified the expression levels of hub pyroptosis-
related genes using qRT-PCR, which revealed statistically
significant differences (p < 0.05, Figure 8C). Moreover,
immunofluorescence staining was employed to evaluate the
spatial expression patterns of these hub genes in peri-infarct
regions (Figure 8D). Finally, external validation using
independent transcriptomic datasets yielded consistent results
with our findings.

miRNA prediction

miRNAs are a class of endogenously expressed small non-
coding RNAs that post-transcriptionally regulate gene expression
through targeted messenger RNA (mRNA) degradation or
translational repression. Previous studies indicated that miRNAs
play crucial regulatory roles in multiple pathophysiological
processes relevant to neonatal hypoxic-ischemic encephalopathy
(27, 28). Therefore, in this study, we also conducted predictions of
miRNA target genes. The miRNAs associated with the hub
PRDEGs were identified using the miRNA prediction platform.
The prediction results were filtered based on the following stringent
criteria: accessibility probability (p) < 0.05, binding score > 0.95,
and targeting of the 3> UTR region. As shown in Figure 8, we
constructed a comprehensive gene-miRNA regulatory network
comprising 15 miRNAs. These miRNAs were selected based on
their network degree (Degree > 4, Figure 9), suggesting their pivotal
regulatory roles in modulating multiple hub PRDEGs and
underscoring their central position in the regulatory network.

3.7 Candidate drug screening based on
hub genes

Through systematic screening of the DSigDB database in Enrichr,
we identified 1,130 potential drugs or small molecules targeting the
three hub genes (TNF-o,, IL1B, and TLR2) based on stringent criteria
(P < 0.05 and favorable binding scores with core hub genes; Table 2).
Among these candidates, muramyl dipeptide emerged as the top-
scoring molecule and was subsequently selected for molecular docking
studies with the identified hub genes. The docking analysis revealed a
robust interaction between muramyl dipeptide and TLR2, with a
docking score of -4.48 (Figure 10A). Structural examination
demonstrated that muramyl dipeptide binds specifically to the
ligand-binding pocket of TLR2, which is formed by key residues
(Asn296, Pro297, Ser298, Glu299, Val302, Phe322, Tyr323, Phe325,
Tyr326, Asp327, Leu328, Ser329, Thr330, and Tyr332). The binding
mechanism involves multiple hydrogen bond interactions (1): The
hydroxyl and carbonyl groups of muramyl dipeptide form hydrogen
bonds with the side chain of Asp327 (2). The amino and imino groups
of MDP engage in hydrogen bonding with the side chain of Glu299
and the backbone imino groups of Pro297 and Phe325, respectively.
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The results showed that the docking score between TNF-o. and
muramyl dipeptide was -6.47 (Figure 10B). Muramyl dipeptide
selectively binds to the ligand-binding pocket of tumor necrosis
factor-o. (TNF-ot), which is collectively constituted by the amino acid
residues Lys112, Proll3, Gly68, Tyr72, Prol02, Thrl05, Trpll4,
Cys101, Pro106, Cys69, Ser99, Glul10, Pro100, Asp104, Tyr115, and
Lys103 (note: Lys112 is listed twice in the original sequence, retained
here as provided). The binding mechanism involves multiple hydrogen
bond interactions: the hydroxyl group forms hydrogen bonds with the
side chains of Asp104 and Glu110; the amino and imino groups engage
in hydrogen bonding with the side chain of Cys101; and the carboxyl
group interacts via hydrogen bonds with the side chain of Lys112. The
results showed that the docking score between IL1b and muramyl
dipeptide was -6.40 (Figure 10C). Muramyl dipeptide selectively binds
to the ligand-binding pocket of interleukin-1B (IL-1B), which is
collectively formed by the amino acid residues Trpl120, Prol3l,
Vall32, Leul34, Lys77, Glu25, Pro78, Thr79, Leu80, Lys74, GIn8l,
Tyr24, Leu82, Glu83, and Phel33. The binding interaction involves
specific hydrogen bond formations: the hydroxyl group forms
hydrogen bonds with the side chains of Lys77 and Leul34; the
carbonyl group engages in hydrogen bonding with the side chains of
Glu25 and GIn81; and the amino group interacts via hydrogen bonds
with the side chain of Glu25. These results indicate that muramyl
dipeptide have the potential to become therapeutic drugs targeting the
three hub genes TNF-o, IL1b, and TLR2, thereby synergistically
controlling the occurrence and development of HIBD.

4 Discussion

Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe
brain injury resulting from perinatal hypoxia and/or inadequate
cerebral perfusion. This condition can trigger neuronal death and
neurological dysfunction, making it one of the most prevalent forms
of neonatal brain injury and a leading cause of infant mortality and
long-term neurological sequelae. In recent years, numerous
preclinical studies have demonstrated that mitigating pyroptosis
confers neuroprotective effects in rodent models of hypoxic-
ischemic brain damage (HIBD) (18, 29, 30). However, the precise
role of pyroptosis-related genes in HIBD remains incompletely
understood. Therefore, our study aims to elucidate the underlying
molecular mechanisms of pyroptosis in HIBD.

In this study, we first screened brain tissue samples from HIBD
and control groups in mice using the GEO database. Differential
gene expression analysis identified 96 significantly differentially
expressed genes (DEGs), followed by functional enrichment
analysis. GO and KEGG enrichment analyses revealed that these
genes were primarily enriched in receptor complex components and
involved in immune cell activation, and cytokine-cytokine receptor
interaction. Preliminary studies suggest that axonal injury is a
significant pathological process in HIBD and may be associated
with long-term neurological dysfunction in surviving children with
HIBD (31, 32). Recent research have also reported that the use of
various drugs to promote axonal repair exerts neuroprotective
effects against brain injury in HIBD (33, 34). Reimer et al.
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reported (35) that myelinated axonal injury is associated with mild
cerebral hypoperfusion, and further microarray analysis
demonstrated that the key biological pathways involved were
cytokine-cytokine receptor interactions and inflammatory
responses. This finding is consistent with our experimental

10.3389/fimmu.2025.1616312

observations. These results indicate that cytokine-cytokine
interaction plays an important role in HIBD model.

PPI network analysis is an integrative research methodology
that combines transcriptome data with established protein
interaction information, aiming to elucidate gene functional
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The regulatory network of the hub PRDEGs-miRNA.

regulatory mechanisms. WGCNA is widely employed to construct
gene co-expression networks, identify functionally related gene
modules with similar expression patterns. In this study, we
employed PPI network analysis to identify key regulatory genes.
The results demonstrated that a total of 10 genes-TIr2, Tnf, Cxcl2,
Cxcl10, Jun, Cxcll, Ccl6, 116, Il1b, and Ccl7 were identified as
statistically significant candidates. Utilizing WGCNA, we selected
the green, purple and yellow modules, which exhibited the highest
correlations, and obtained 700 genes. Subsequently, we intersected
the above acquired genes with pyroptosis-related DEGs, and finally
obtained three key hub genes- TIr2, Tnf, and Il1b. Zheng et al. (18)
reported that diallyl disulfide could attenuate pyroptosis in HIBD
neonatal rats via I11b signaling pathway. Previous studies have also
reported that tnf, a potent pro-inflammatory cytokine, is associated
with the pathogenesis of various brain injury-related diseases (36—
38). Wang et al. (39) investigated the therapeutic potential of
certolizumab pegol (CZP), a monoclonal antibody targeting TNF-
o, in a mouse model of middle cerebral artery occlusion (MCAO).
The study demonstrated that early-stage administration of CZP
significantly attenuated microglial activation and reduced the
release of proinflammatory mediators, thereby effectively
inhibiting microglial pyroptosis following ischemic stroke.
Furthermore, regarding TIr2, Zhang et al. (40) demonstrated a
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significant upregulation of TIr2 in the hippocampal structure of
neonatal rats following HIBD. In our study, the GEO dataset was
based on unilateral brain tissue, revealing a marked increase in Tlr2
expression. These results indicate that TIr2 plays a significant role
in HIBD.

TABLE 2 The top 10 significant P-values for DsigDB.

Term p-value | Overlap_genes

Muramyl Dipeptide CTD 00005307 1.15490e-09 IL1B, TNF, TLR2

Peptidoglycan CTD 00006490 3.371144e-09 = IL1B, TNF, TLR2

Uric acid BOSS 6.32687e-09 IL1B, TNF, TLR2

N-NITROSODIETHYLAMINE BOSS 1.967625e-08 = IL1B, TNF, TLR2

Sodium sulfate BOSS 3.276027e-08 = IL1B, TNF, TLR2

Sodium dodecyl sulfate CTD 00006753 | 4.473060e-08 = IL1B, TNF, TLR2

Hydrocortisone CTD 00006117 1.105831e-07 | IL1B, TNF, TLR2

ACMC 20mvek CTD 00002629 1.212785e-07 | IL1B, TNF, TLR2

D Sorbitol BOSS 1.212785e-07 | IL1B, TNF, TLR2

Titanium BOSS 1.212785e-07 = IL1B, TNF, TLR2
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Screening of potential candidate drugs for treating HIBD base on TLR2, TNF-o and IL1B. (A—C) 3D and 2D structures of the highest score molecule

muramyl dipeptide for TLR2, TNF-oand IL1B.

This study demonstrates significant remodeling of the immune
microenvironment in HIBD. Our findings reveal distinct alterations
in immune cell composition, aligning with prior studies that
implicate immune dysregulation in neonatal HIBD pathogenesis
(41). Compared to controls, the HIBD group exhibited pronounced
inflammatory features involving both innate and adaptive immune
responses. Specifically, we observed elevated levels of CD8+ naive T
cells, MO macrophages, follicular CD4+ T cells, Thl cells, and
activated dendritic cells (DCs) in HIBD samples.

The enrichment of MO macrophages suggests the initiation of
nonspecific inflammatory responses during early injury, whereas the
increase in Thl cells-along with their secretion of pro-inflammatory
mediators (e.g., IFN-y and TNF-o)-likely exacerbates the
neuroinflammatory milieu. Marina Seitz et al. (42) reported that the
HIBD model induces an increase in peripheral macrophages, and
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hypothermia modulates myeloid cell polarization in HIBD.
Furthermore, the infiltration of activated DCs underscores aberrant
immune activation in HIBD, which may promote secondary neuronal
injury via TLR receptor overexpression driven by damage-associated
molecular patterns (DAMPs). Dendritic Cells (DCs) are the most
powerful professional antigen-presenting cells (APCs) in the immune
system. Previous studies have found that various central nervous
system diseases are related to the activation of dendritic cells (43,
44). Notably, Li et al. (45) evaluated the association between
ferroptosis-related genes and immune cells, similarly observing
significant alterations in CD4+ T cells. However, notable
discrepancies exist between their findings and our current results.
These differences may be attributed to the distinct regulatory
relationships between genes and immune cells across different
programmed cell death pathways.
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Additionally, the diagnostic utility of the identified hub genes
associated with focal cell death in HIBD was validated using a
random forest machine learning model. The model demonstrated
that these genes possess significant discriminatory power, with
variable importance measures (VIM) all surpassing the critical
threshold of 1. Notably, the three genes exhibited high AUC
values (> 0.75) in ROC analysis, further confirming their robust
association with HIBD pathogenesis and reinforcing their reliability
as potential molecular biomarkers. These findings suggest that the
selected genes involved in PRDEGs may serve as key diagnostic
indicators for HIBD, highlighting both their mechanistic
significance and clinical translational value.

The biological significance of miRNA prediction mainly lies in
revealing the fine regulatory mechanism of gene expression and its key
role in neural development, and disease occurrence. Previous study has
shown that TLR4 was proved to be the miR-326-3p directly target gene
(46). Liping Chen (47) et al. reported that Aloesin ameliorates HIBD in
neonatal mice by suppressing TLR4-mediated neuroinflammation. A
previous study has reported that the downstream target gene of miR-
7031-5P is Wnt7a (48). In neonatal mice with hypoxic injury,
oligodendrocyte-endothelial cell interactions regulate white matter
vascular development in a Wnt-dependent manner. The loss of
Wnt7a function may attenuate the angiogenic response to hypoxia,
leading to severe white matter damage (49). The latest study indicates
that Mapk10 is the target gene of miR-1894-3P (50). Treg cell-derived
exosome miR-709 can alleviate pyroptosis of microglia after spinal cord
injury (51). In addition, IncRNA Mtssl promotes inflammatory
response after intracerebral hemorrhage in mice by targeting miR-
709 (52). Based on the current literature and our analytical findings,
targeted miRNA modulation represents a promising therapeutic
strategy for regulating pyroptosis in neonatal HIBD. Given the
important role of Tlr2, Tnf, and Il1b in HIBD, we screened 136
potential drugs that target these three genes. By combining scoring
methods and molecular docking techniques, muramyl dipeptide was
selected. The current existing research on the role of MDP mainly
focuses on inflammatory responses. Sanami Takada et al (53) reported
that MDP is the ligand of nucleotide-binding oligomerization domain
2 (NOD2). In Blau Syndrome, the combination of the two leads to the
upregulation of pro-inflammatory cytokines. However, Adham Fani
Maleki (54) et al. reported that MDP treatment exerted various
therapeutic effects in experimental autoimmune encephalomyelitis
(EAE) mouse models of multiple sclerosis (MS). To date, the precise
mechanistic role of muramyl dipeptide MDP HIBD pathogenesis
remains unexplored. Through integrated bioinformatics analysis and
molecular docking simulations, our preliminary findings suggest that
MDP may participate in HIBD pathophysiology.

The major strength of this study lies in our innovative integration
of bioinformatics and machine learning approaches, which
systematically reveals for the first time the potential association
between pyroptosis and HIBD. More importantly, through
comprehensive analyses including miRNA target prediction and
molecular docking, we have not only identified key regulatory genes
but also provided verifiable molecular hypotheses and potential
therapeutic targets for subsequent experimental investigations. his
study has several limitations. First, although we conducted in vivo
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experiments to validate the association between pyroptosis-related
genes and histopathological features of HIBD, further experimental
evaluation is needed to elucidate the specific upstream/downstream
regulatory factors of these hub genes and their spatial distribution
across different brain regions. Second, the precise mechanisms
underlying the interaction between pyroptosis-related genes and
immune cell infiltration require more detailed investigation.
Nevertheless, our findings provide a foundation for further
exploration of the pathogenesis of HIBD.

5 Conclusion

In summary, our comprehensive transcriptomic analysis
elucidated the transcriptional landscape underlying hypoxic-
ischemic pathogenesis and systematically investigated potential
molecular targets for therapeutic intervention. Through
integrative bioinformatics analysis and rigorous diagnostic efficacy
evaluation, we have delineated specific pathological mechanisms
and identified promising molecular targets in HIBD, particularly
those implicated in cytokine-cytokine receptor interactions and
immune response pathways, which require further experimental
validation. These findings provide valuable insights that advance
our understanding of HIBD pathophysiology and contribute to the
development of precision therapeutic approaches, thereby
facilitating more targeted and effective clinical interventions for
this debilitating condition.
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