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Background: The transformation of smooth muscle cells (SMCs) into alternative

phenotypes is a key process in atherosclerosis pathogenesis. Recent studies have

revealed oncological parallels between atherosclerosis and cancer, such as DNA

damage and oncogenic pathway activation in SMCs, but the precise molecular

mechanisms remain poorly understood. This study integrates cancer gene sets

using bioinformatics to identify key hub genes associated with atherosclerosis

and explores their immune molecular mechanisms.

Methods: Datasets from the Gene Expression Omnibus (GEO) were analyzed to

identify differentially expressed genes (DEGs) and module genes using Limma

and WGCNA. Machine learning algorithms (SVM-RFE, LASSO regression, and

random forest) were employed to identify cancer-related hub genes for early

atherosclerosis diagnosis. A diagnostic model was constructed and validated.

UMAP plots from single-cell RNA sequencing data were used to analyze the

expression patterns of hub genes, particularly focusing on macrophage-like

SMCs in SMC lineage-traced mouse models. Biomarker expression was

validated in both human and mouse experiments.

Results: Four cancer-related hub genes (CRGs) were identified: Interferon

Regulatory Factor 7 (IRF7), Formin Homology 2 Domain Containing 1 (FHOD1),

Tumor Necrosis Factor (TNF), and Zinc Finger SWIM Domain Containing 3

(ZSWIM3). A diagnostic nomogram using IRF7, FHOD1, and TNF demonstrated

high accuracy and reliability in both training and validation datasets. Immune

microenvironment analysis revealed significant differences between

atherosclerosis and control groups. Spearman correlation analysis highlighted

associations between hub genes and immune cell infiltration. Single-cell RNA

sequencing identified distinct SMC-derived cell clusters and phenotypic

transitions, with increased expression of IRF7 and FHOD1 in macrophages

potentially derived from SMCs in both human carotid plaques and

mouse models.
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Conclusion: This study integrates cancer gene sets to identify key hub genes in

atherosclerosis, emphasizing its parallels with cancer. The diagnostic nomogram

based on IRF7, FHOD1, and TNF provides a reliable tool for early diagnosis, while

insights into SMC phenotypic switching and immune microenvironment

modulation offer potential therapeutic targets.
KEYWORDS

atherosclerosis, immune infiltration, smooth muscle cells, macrophage, cancer gene,
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1 Introduction

Atherosclerosis (AS) is a leading cause of morbidity and

mortality worldwide, contributing significantly to the global

burden of cardiovascular diseases (CVD) (1–3). It is characterized

by arterial narrowing and thrombotic events triggered by unstable

plaque rupture or erosion, leading to severe outcomes such as

myocardial infarction or stroke. The progression of AS is driven by

complex genetic and cellular mechanisms, emphasizing the need for

ongoing research to identify key therapeutic targets and biomarkers

for early diagnosis and intervention.

A concept that has recently emerged to understand the

molecular mechanisms of AS is “athero-oncology.” (4). This term

refers to the parallels between atherosclerosis and cancer, drawing

attention to shared biological processes that contribute to the

development of both diseases. In the context of AS, “athero-

oncology” highlights the role of cancer-related pathways in AS

pathogenesis, particularly the processes of inflammation, cellular

proliferation, and metabolic reprogramming. These pathways,

commonly associated with cancer progression, also drive the

progression of atherosclerosis, making this concept an important

framework for exploring shared molecular mechanisms.

Chronic inflammation is a hallmark of both cancer and

atherosclerosis. In cancer, inflammation plays a pivotal role in

tumor initiation, progression, and metastasis. Similarly, in AS,

inflammatory processes are critical in driving plaque formation,

with immune cells infiltrating the arterial walls and producing

cytokines that exacerbate the disease (5, 6). Furthermore,

proliferation is another key mechanism shared between cancer

and atherosclerosis. In cancer, uncontrolled cell division drives

tumor growth, whereas in AS, the clonal proliferation of smooth

muscle cells (SMCs) contributes to plaque buildup and vascular

remodeling (7, 8). Additionally, metabolic reprogramming, a

hallmark of cancer cells, is also implicated in atherosclerosis. In

both diseases, alterations in lipid metabolism, including the

dysregulation of bioactive lipids like S1P, PGE2, and LPA,

promote cellular proliferation and inflammation, thereby driving

disease progression (9, 10).

The molecular mechanisms linking AS and cancer are not

yet fully understood. However, DNA damage, a hallmark of
02
cancer, has been observed in SMCs within atherosclerotic lesions.

Recent research has shown that these SMCs display tumor-

like characteristics, including genomic instability, excessive

proliferation, and activation of oncogenic pathways (11, 12). For

example, the expression of the KrasG12D oncogene in SMCs has

been found to accelerate the progression of AS, while the anticancer

drug niraparib has demonstrated potential therapeutic effects in AS

mouse models (4). These findings have led to the emergence of

“athero-oncology” as a framework for studying the shared

mechanisms between AS and cancer, offering insights into both

basic and translational research.

Given the critical role of SMCs in AS pathogenesis, the advent

of high-throughput genomics has enabled the identification of

differentially expressed genes (DEGs) involved in this process.

Combining bioinformatics and machine learning, we analyzed

microarray and single-cell RNA-sequencing datasets from the

GEO database to investigate the involvement of cancer-related

genes (CRGs) in AS. Additionally, we explored the association

between CRGs and immune infiltration to provide insights into the

immunometabolic interplay underlying AS progression.
2 Materials and methods

2.1 Data collection

The data analysis methods for this study are detailed in

Figure 1. Original datasets from GEO series GSE100927,

GSE43292, GSE159677, GSE28829and GSE155514 were obtained

from the NCBI Gene Expression Omnibus database (http://

www.ncbi.nlm.nih.gov/geo), an essential resource for genomic

data. Detailed descriptive information of datasets was shown

in Table 1.
2.2 Identification of DEGs

Data from the GEO database were systematically retrieved and

analyzed using the “GEOquery” package (version 2.70.0), designed

specifically for managing GEO datasets (13). Differential expression
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gene (DEG) analysis utilized the “limma” package (version 3.58.1), a

commonly used method for gene expression analysis (14).

Visualization tools such as “ggplot2” (version 3.5.0) for volcano

plots and “ pheatmap” (version 1.0.12) for heatmaps were employed

to enhance the intuitive interpretation of the data.
2.3 Functional enrichment analysis

Gene set enrichment analysis (GSEA) was conducted using two

approaches: KEGG pathway analysis via the gseKEGG function

from the clusterProfiler package(version 4.10.0) and MSigDB

Hallmark Pathways analysis using the same package’s GSEA

function (15). Both methods utilized gene identifiers converted

for respective databases. Enrichment significance was determined

using a p-value threshold of <0.05, allowing for a focused

exploration of biological pathways implicated in our data.

Comprehensive functional enrichment analyses were carried out

to explore the potential functions of identified targets. This involved

Gene Ontology (GO) analysis, which categorized genes by

molecular functions (MF), biological pathways (BP), and cellular
Frontiers in Immunology 03
components (CC). Furthermore, a Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analysis was conducted to

correlate gene functions with extensive genomic data, thereby

deepening the understanding of the roles of AS-related target

genes. These analyses utilized the “clusterProfiler” and “GOplot”

packages (version 1.0.2), renowned for their effectiveness in

functional analysis.
2.4 Weighted gene coexpression network
analysis

To dissect complex gene interactions and identify modules of

correlated genes, this study applied Weighted Gene Co-expression

Network Analysis (WGCNA). This method provides a systematic

approach to studying the correlation patterns among genes and

their relationship to phenotypic traits, offering potential insights

into underlying biological processes (16).

The initial phase of the analysis focused on pre-processing the

gene expression data to normalize the values and exclude statistical

outliers, ensuring the integrity of the network analysis. The selection
FIGURE 1

Flow chart of the study.
TABLE 1 Descriptive statistics of the GEO datasets.

GEO accession Platform
Experiment
type

Sample
Species

Control AS

GSE100927 GPL17077 array 35 69 Homo sapiens

GSE28829 GPL570 array 13 16 Homo sapiens

GSE43292 GPL6244 array 32 32 Homo sapiens

GSE159677 GPL18573 single-cell RNA-seq 3 3 Homo sapiens

GSE155514 GPL24247 single-cell RNA-seq 1 3 Mus musculus
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of the soft-thresholding power was critical and was determined

based on the criterion of achieving a scale-free topology fit index

close to 0.9, thus optimizing the network for both sensitivity and

robustness. The minModuleSize parameter was set to 30 to ensure

that modules with fewer than 30 genes were excluded from the

analysis. The mergeCutHeight was set to 0.25, indicating that

modules with a dissimilarity (1- correlation) greater than 0.25

were merged. The deepSplit parameter was kept at the default

value, which did not significantly alter the module formation.

Following the establishment of a suitable threshold, genes were

clustered using an unsupervised hierarchical clustering approach.

The dynamic branch cutting method was then employed to define

modules, each represented by a distinct color for straightforward

identification and analysis. For each module, calculations of module

membership (MM) and gene significance (GS) scores were

conducted. MM evaluated the correlation of individual genes with

the overall module, whereas GS assessed the correlation of genes

with specific external traits being studied. Modules showing high

MM and substantial GS scores were selected for further

investigation. The study focused on hub genes within these

modules, identified due to their significant intramodular

connectivity. These genes are hypothesized to play pivotal roles in

gene regulatory networks and were therefore subjected to further

analysis to elucidate their functional contributions to the phenotype

in question.
2.5 Machine learning-based identification
of central hub genes

Advanced machine learning techniques were utilized to identify

critical hub genes in AS. The process began with the application of

the support vector machine (SVM) algorithm, a robust supervised

learning method, for modeling using a select set of feature genes.

This technique is advantageous for managing high-dimensional

data by focusing on maximizing the margin between different

classes. Following this, SVM-recursive feature elimination (SVM-

RFE) was applied to iteratively refine the feature set, removing the

least significant features to boost the model’s predictive accuracy,

essential for isolating the most informative genes for AS diagnosis.

Further refinement was achieved using Least Absolute Shrinkage

and Selection Operator (LASSO) regression via the “glmnet”

package (version 4.1.8). LASSO is celebrated for its capability in

variable selection and regularization, aiding in the prevention of

model overfitting. The selection within the LASSO model adhered

to the 1-SE criterion, maintaining a balance between model

complexity and performance. For cross-validation, 10-fold cross-

validation was applied to assess model stability and avoid

overfitting. The random forest algorithm was then used to rank

genes based on their importance. Random forest is an ensemble

learning method, and in this study, we used 500 trees to enhance the

stability and robustness of the model. This method is particularly

effective for managing unbalanced data and estimating feature

importance, which is crucial for pinpointing key genes. Genes
Frontiers in Immunology 04
with a relative importance score exceeding 0.25 were deemed

significant. The final selection of hub genes was based on an

intersection analysis of the outcomes from LASSO logistic

regression, SVM-RFE, and random forest methods, ensuring a

thorough and robust selection process.
2.6 Development of nomograms and
evaluation via ROC curves

A nomogram incorporating hub genes was developed using the

“rms” package (version 6.7.1) to enhance the diagnostic accuracy of

AS. Each gene in the nomogram was assigned specific points based

on its contribution to AS diagnosis, with the total points aggregating

the scores of all genes. This graphical tool simplifies complex

genetic data, providing clinicians with an intuitive method to

assess patient risk. Diagnostic efficacy was evaluated using

Receiver Operating Characteristic (ROC) curves and Precision-

Recall (PR) curves. The area under the curve (AUC) and its 95%

confidence intervals (CIs) were calculated using the “pROC”

package (version 1.18.5), employing a nonparametric approach

suitable for various datasets. The DeLong method, used for AUC

calculation, assesses the model’s ability to discriminate between AS

and control groups, where values closer to 1 indicate higher

accuracy. The Precision-Recall (PR) curve was used to evaluate

the model’s performance, particularly in datasets with class

imbalance, with the PR-AUC providing insight into the model’s

predictive power for identifying the positive class.

External validation was performed using the GSE43292 and

GSE28829 datasets, ensuring the model’s robustness and

applicability across different cohorts. Additionally, Decision Curve

Analysis (DCA) was employed to assess the clinical utility of the

nomogram, comparing its net benefit across different

threshold probabilities.
2.7 Single-sample gene set enrichment
analysis methodology

The study utilized the “Gene Set Variation Analysis” (GSVA)

package in R to conduct single-sample gene set enrichment analysis

(ssGSEA), assessing pathway variations and biological processes in

individual samples (17). This approach highlighted the diversity of

immune responses in AS patients by measuring the infiltration of 28

immune cell types and pinpointing gene set differences between AS

and control groups. For data comparison, nonparametric tests were

applied. The Wilcoxon rank-sum test was used to compare

outcomes between groups without presuming a normal

distribution of the data. Additionally, Spearman correlation

analysis was conducted to explore the relationships between

immune cells, enhancing the understanding of their interactions

in AS.

To address potential concerns regarding algorithm selection

and to validate the robustness of our immune infiltration findings,
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we performed a complementary analysis using the CIBERSORT

algorithm. CIBERSORT employs a linear support vector regression

approach to deconvolve the expression matrix and estimate the

relative proportions of 22 immune cell types based on the LM22

signature matrix. We compared these results with those obtained

from our primary ssGSEA analysis to assess the consistency and

concordance between the two widely used methods.
2.8 Single-Cell RNA-sequencing data
analysis

In our research, we analyzed single-cell transcriptome data from

two datasets, GSE155514 and GSE159677, both sourced from the

GEO database. Dataset GSE159677 includes samples from calcified

atherosclerotic core (AC) plaques and corresponding proximal

adjacent (PA) sections of the carotid artery, obtained from three

patients undergoing carotid endarterectomy. Conversely, dataset

GSE155514 encompasses samples from atherosclerotic plaques and

associated vessels in mice, offering a comparative animal model

perspective. The dataset GSE155514 was derived from a SMC-

lineage tracing murine model developed by crossing

ROSA26ZsGreen1/+ mice with Myh11-CreERT2mice. In this model,

after tamoxifen induction, SMCs and their progeny permanently

expressed the fluorescent protein ZsGreen1, facilitating the

identification of these cells in vivo. ZsGreen1 expression showed

high concordance with the SMC marker ACTA2 in normal sections

of the brachiocephalic artery. To explore SMC dynamics during

atherogenesis, ROSA26ZsGreen1/+; Myh11-CreERT2 mice were bred

onto an Ldlr−/− background, enhancing our ability to trace SMC

behavior under atherosclerotic conditions. Analysis was conducted

using single-cell RNA sequencing. Data preprocessing was

performed with the Seurat R package (version 5.0.1), renowned

for its efficacy in single-cell genomic analysis, to ensure the accuracy

and reliability of the results. Essential metrics such as the number of

molecules per cell (nCount RNA) and the number of genes detected

per cell (nFeature RNA) were evaluated alongside sequencing read

counts to verify data integrity. Mitochondrial genomic

contamination, indicative of low-quality or dead cells, was

assessed by calculating the percentage of reads mapping to the

mitochondrial genome, utilizing the percentage feature set function

in Seurat. Cell clustering involved using the dimensionality

reduction method of unified manifold approximation and

projection (UMAP) after filtering principal components,

facilitating clear visual identification of cell clusters. Cell marker

genes with statistically significant adjusted p-values (<0.05) were

identified and utilized to categorize the clustered cells.
2.9 Human atherosclerotic samples

To validate the expression of the critical biomarker in human

atherosclerotic samples, carotid atherosclerotic plaques were

obtained from patients undergoing carotid endarterectomy due to

carotid artery stenosis. The plaques were designated as the model
Frontiers in Immunology 05
group, while the adjacent vascular endothelium within 0.5 cm of the

plaque margin was used as the control group. Each group included

four samples. The study was conducted at the People’s Hospital of

Ningxia Hui Autonomous Region, with approval from the

hospital’s Ethics Committee. Written informed consent was

obtained from all participants prior to enrollment.
2.10 Mice atherosclerotic samples

For the animal experiments, 10 male ApoE-/-mice, aged 6 weeks,

were obtained from Beijing HFK Bioscience Co.,Ltd. (Beijing,

China). Prior to the experiment, all mice were adaptively fed for 2

weeks. To induce atherosclerosis, five mice were transitioned from a

normal chow diet (NCD) to a high-fat diet (HFD) at 8 weeks of age.

The HFD consisted of 77.5% standard chow, 20% lard, 2%

cholesterol, and 0.5% sodium cholate. These mice were fed the

HFD for 12 weeks. The remaining five mice continued on the NCD

for 12 weeks and served as the control group. At the end of the

study, all mice were anesthetized by intraperitoneal injection of

pentobarbital sodium (60 mg/kg) and subsequently euthanized for

the collection of aortic tissue samples. All animal experimental

protocols were reviewed and approved by the Ethics Committee of

Hunan University of Chinese Medicine (Hunan, China).
2.11 Immunofluorescence staining

Paraffin-embedded tissue sections of human and mouse arterial

tissues were prepared for immunofluorescence staining. The

sections were deparaffinized, rehydrated, and subjected to antigen

retrieval before staining. Samples were incubated overnight at 4°C

with primary antibodies, including IRF7 (1:50; Cat# 22392-1-AP;

Proteintech) and FHOD1 (1:50; Cat# PC13158s; Abmart). Primary

antibody binding was detected using a CoraLite®488-conjugated

goat anti-rabbit IgG secondary antibody (1:1000; Cat# ab150081;

Abcam). For colocalization studies, sections were costained with a

CD68 primary antibody (1:50; Cat# E-AB-22013; Elabscience),

followed by detection with an Alexa Fluor® 594-conjugated goat

anti-mouse IgG secondary antibody (1:1000; Cat# ab150120;

Abcam).Nuclei were counterstained with Fluoroshield containing

4′, 6-diamidino-2-phenylindole (DAPI; Cat# F6057; Sigma,

USA). Fluorescent images were captured using the Nikon A1R

HD25 confocal microscope system (Nikon, Japan). Image

processing and fluorescence quantification were performed using

Fiji (ImageJ).
2.12 Statistical analyses

The human and mouse immunofluorescence data are presented

as mean ± standard deviation. Comparisons were made using an

unpaired t-test, with a two-tailed P-value < 0.05 considered

statistically significant. All statistical analyses and graph

generation were conducted using GraphPad Prism V8.4.3 software.
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3 Results

3.1 Identification of DEGs between
atherosclerotic lesions and control arteries

The study’s flowchart is depicted in Figure 1. P-values were

adjusted using the Benjamini-Hochberg’s false discovery rate (FDR)

method, and genes with an adjusted P-value < 0.05 and |log2 fold-

change (log2FC)| > 0.5 were considered differentially expressed. A

total of 2318 differentially expressed genes (DEGs) were identified

in the GSE100927 dataset, including 907 downregulated and 1411

upregulated genes, as summarized in Supplementary Table S1. The

volcano plot in Figure 2A and the heatmap in Figure 2B effectively

demonstrate the differences in gene expression between

atherosclerotic lesions (AS group) and control arteries (control

group), with the heatmap highlighting the top 20 upregulated and

downregulated genes. The evaluation of pathway enrichment was

performed by comparing the pathways between the AS and control

groups using GSEA. In the AS group, the allograft rejection, graft-

versus-host disease, lysosome, phagosome and rheumatoid arthritis
Frontiers in Immunology 06
were significantly enriched (Figure 2C). Conversely, cardiac muscle

contraction; cytoskeleton in muscle cells; dilated cardiomyopathy;

hypertrophic cardiomyopathy and vascular smooth muscle

contraction were significantly downregulated (Figure 2D). For

these top pathways identified in the GSEA analysis, Normalized

Enrichment Scores (NES) and FDR q-values were provided, with a

q-value cutoff of < 0.05. Detailed results are presented in

Supplementary Table S2. These pathways reveal that in AS, the

activity of lysosomes and phagosomes, alterations in the

cytoskeleton of muscle cells, and the abnormal contraction of

vascular smooth muscle cells collectively trigger inflammatory

responses, promote structural remodeling of the vascular wall,

and ultimately drive plaque formation.
3.2 Weighted gene coexpression network
construction

The GSE100927 dataset, sourced from the GEO data repository,

consisted initially of 69 atherosclerotic lesions and 35 normal samples.
FIGURE 2

Analysis of Differentially Expressed Genes (DEGs). (A) Volcano plot showing up/down-regulated DEGs of the AS vs. control groups in the GSE100927
dataset. (B) Heatmap depicting DEGs expression patterns in the GSE100927 dataset. (C, D) Gene set enrichment analysis (GSEA) reveals the principal
upregulated and downregulated pathways from the KEGG database in the GSE100927 dataset.
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After discarding two low-quality atherosclerotic lesions, 67

atherosclerotic lesions alongside the normal samples underwent

clustering as depicted in Figure 3B. A soft thresholding power of 14,

applied when R2 exceeded 0.9 and average connectivity was high, is

detailed in Figure 3A. This process identified 10 distinct modules for

deeper analysis. The relationship between these modules and clinical

symptoms was explored through frontal correlations between module

eigengene (ME) values and clinical features, with the turquoise and

brown modules showing the strongest positive correlations with both

control and AS groups, as illustrated in Figure 3D. The two significant

modules identified were considered clinically relevant, and all the

genes contained within these modules were selected for further

investigation, as detailed in Supplementary Table S3.
3.3 Identification and functional analysis of
CRGs in the context of AS

Cancer genes were obtained from the NCG 7.1 database, which

includes 591 canonical cancer drivers and 2756 candidate cancer

drivers, totaling 3347 genes. Utilizing the WGCNA method, key

module genes positively correlated with AS trait expression were

identified and analyzed alongside upregulated DEGs in AS derived

from the limma method. This analysis pinpointed 1240 overlapping

genes, from which 214 were recognized as cancer-related genes

(CRGs), overlapping with cancer driver genes (Figure 3E,

Supplementary Table S4). Further functional analysis was

conducted on these CRGs. The GO enrichment analysis delineates

the pivotal roles in regulating cell differentiation, modulating immune

responses, and orchestrating the complex intracellular processes of

substance uptake, transport, and processing (Supplementary Figure

S1A). KEGG pathway analysis links these CRGs to essential processes

such as immune responses, lipid metabolism, and cell differentiation,

underscoring their pivotal roles in the progression of atherosclerosis

(Supplementary Figures S1B, C).
3.4 Identification of key hub genes through
machine learning techniques

Three machine-learning algorithms were used to screen feature

genes among the set of 214 CRGs. Specifically, SVM-RFE identified

88 genes with the highest accuracy of 0.981 and the lowest error of

0.019 (Figures 4A, B; Supplementary Table S5); LASSO regression

analysis predicted 12 genes among the statistically significant

univariate variables (Figures 4C, D; Supplementary Table S6);

random forest and feature selection were employed to determine

the relationship between error rate, classification tree numbers, and

25 genes with relative importance (Figure 4E; Supplementary Table

S7). To obtain a robust gene signature for AS, genes that overlapped

among the three aforementioned methods were obtained using a

Venn diagram. Four hub genes, namely FHOD1, IRF7, TNF and

ZSWIM3 were obtained as shown in Figure 4F. The correlation

analysis depicted in Figure 4G shows that FHOD1, IRF7, and TNF

have positive correlations with each other, as indicated by the blue
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sections in the circular plots. FHOD1, IRF7, TNF, and ZSWIM3

showed a significant increase in the AS group compared to the

controls, as illustrated in Figures 4H–K.

The nomogrammodel developed in this study was trained using

plaque tissue samples, making it a crucial “tissue-based research

classifier” for diagnosing atherosclerosis. To assess its clinical

translational potential, we plan to validate its diagnostic signature

using RNA from blood samples, PBMCs, or extracellular vesicles in

future research. This additional validation will help determine its

applicability for non-invasive clinical testing, enhancing its

translational relevance for future clinical use.
3.5 Modeling and testing a diagnostic
nomogram model for AS

Due to significant multicollinearity between ZSWIM3 and other

variables, model fitting was unsuccessful, leading to the exclusion of

ZSWIM3 from the model fitting process. A diagnostic nomogram

incorporating three key genes—TNF, IRF7, and FHOD1—was

developed (Figure 5A). The model’s performance was first

evaluated using ROC curves, with AUC values and 95%

confidence intervals (CIs) calculated for each gene in the

GSE100927 training set (Figures 5B–D). The AUC values for

TNF (AUC = 0.957, 95% CI: 0.922–0.992), IRF7 (AUC = 0.958,

95% CI: 0.925–0.991) and FHOD1 (AUC = 0.966, 95% CI: 0.934–

0.998), indicated excellent performance in the training set.

The nomogram demonstrated outstanding diagnostic accuracy

in the GSE100927 training set with an AUC of 0.995 (95%CI: 0.989–

1.000), suggesting a near-perfect model fit (Figure 5E). The AUC

values for the nomogram in the GSE43292 and GSE28829 validation

datasets were 0.819 (95% CI: 0.717–0.922) and 0.889 (95% CI:

0.775–1.000), respectively (Figures 5I, M), further confirming the

nomogram’s robustness across independent datasets.

For the GSE43292 validation set, the AUC values for the

individual genes were as follows: TNF (AUC = 0.780, 95% CI:

0.665–0.896), IRF7 (AUC = 0.595, 95% CI: 0.453–0.736), and

FHOD1 (AUC = 0.721, 95% CI: 0.596–0.845) (Figures 5F–H). In

the GSE28829 validation set, the AUC values for TNF (AUC =

0.639, 95% CI: 0.419–0.860), IRF7 (AUC = 0.793, 95% CI: 0.618–

0.969), and FHOD1 (AUC = 0.750, 95% CI: 0.567–0.933) were also

promising (Figures 5J–L).

The Precision-Recall (PR) curve for the training set showed a

PR-AUC of 0.991, reflecting excellent performance. For the

validation sets, the PR-AUCs were 0.802 (GSE43292) and 0.871

(GSE28829), indicating solid but slightly reduced performance in

external datasets (Supplementary Figures S2A, D, G). The

calibration curve demonstrated excellent agreement between

predicted probabilities and observed outcomes across all datasets.

In the training set (GSE100927), the calibration slope was 0.90, with

a negligible intercept of 0.09, indicating minimal overestimation

and high accuracy (mean absolute error = 0.021) (Supplementary

Figure S2B). In the validation sets, the calibration slopes were 0.95

(GSE43292) and 0.86 (GSE28829), with corresponding intercepts of

0.04 and 0.10, showing good calibration and acceptable accuracy
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1616096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2025.1616096
(mean absolute errors of 0.049 and 0.083, respectively)

(Supplementary Figure S2E, H). Decision Curve Analysis (DCA)

demonstrated strong clinical utility for the nomogram. In all

datasets, the model outperformed “all” and “none” strategies,

indicating its robust ability to identify high-risk AS patients
Frontiers in Immunology 08
(Supplementary Figures S2C, F, I). In summary, the nomogram

showed robust diagnostic performance across training and

validation datasets, with high AUC, strong PR-AUC, and

favorable DCA, confirming its reliability and clinical utility for

AS diagnosis.
FIGURE 3

Enrichment levels in the weighted gene coexpression network analysis (WGCNA) of the genome. (A) Soft threshold b = 14 and scale-free topological
fit index (R2). (B) Each leaf represents a unique sample, and the red line indicates the height threshold for outlier detection. (C) the hierarchical
clustering of gene modules. (D) Heat map of module-trait correlations. (E) Venn Diagram of cancer drivers, AS differentially expressed genes (DEGs),
versus genes identified in AS WGCNA.
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3.6 Enrichment analysis of the hub genes

An in-depth investigation into the biological functions of the

four central genes—FHOD1, IRF7, TNF, and ZSWIM3—was

conducted in the AS group. Using GSEA, we explored the
Frontiers in Immunology 09
Hallmark Pathways in mSigDB, focusing on the differential

expression between high and low levels of these genes. The results

(Supplementary Figures S3A–D) revealed significant enrichment in

pathways such as TNFa signaling via NF-kB, inflammatory

response, interferon-gamma response, allograft rejection, KRAS
FIGURE 4

Feature gene selection. (A, B) Signature gene expression was screened based on the support vector machine recursive feature elimination (SVM-RFE)
algorithm. (C, D) Adjusting feature selection using the least absolute shrinkage and selection operator (LASSO) algorithm. (E) Random forest error
rate versus the number of classified trees. (F) Venn diagram of the four hub genes obtained from the intersection of results from SVM-RFE, RF, and
LASSO algorithms (G) Correlation between hub genes. (H-K) Expression of four hub genes in AS and control groups.
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signaling, and IL6-JAK-STAT3 signaling. These pathways are

canonical drivers in cancer, where they contribute to tumor

progression, immune evasion, and metastasis. Notably, these

same pathways are involved in the progression of AS, with

dysregulation potentially contributing to SMC phenotypic

switching and plaque formation.

Further analysis using ssGSEA highlighted biological differences

between AS and control groups. The correlation between signature

gene expression and ssGSEA scores, analyzed using the “corrplot”

package (Supplementary Figure S3E), revealed strong associations with

hallmark gene sets, including apoptosis, coagulation, complement, IL2-

STAT5 signaling, interferon-gamma response, interferon-alpha

response, and IL6-JAK-STAT3 signaling. These findings suggest that
Frontiers in Immunology 10
the dysregulation of cancer-related pathways, such as KRAS and IL6-

JAK-STAT3, plays a critical role not only in tumor microenvironment

remodeling but also in the pathological processes of AS, such as SMC

transdifferentiation and plaque progression.
3.7 Immune cell infiltration in AS

Current experimental and clinical research supports the role

of immune mechanisms in hastening the progression of AS

(18). In both various cancers and atherosclerotic plaques, elevated

levels of inflammatory molecules not only promote cell

proliferation by providing growth signals but also facilitate cell
FIGURE 5

Development and validation of a diagnostic nomogram for atherosclerosis based on hub genes identified by machine learning. (A) Nomogram
constructed using the GSE100927 training dataset, incorporating three hub genes (TNF, IRF7, FHOD1) for atherosclerosis diagnosis. Points are
assigned for each gene expression level and summed to calculate the total points and corresponding disease probability. (B-E) ROC curves for each
hub gene (TNF, IRF7, and FHOD1), as well as the combined nomogram, demonstrating their significant diagnostic value in the GSE100927 training
set. (F-I) ROC curves for each hub gene (TNF, IRF7, and FHOD1), as well as the combined nomogram, demonstrating their significant diagnostic
value in the GSE43292 validation set. (J-M) ROC curves for each hub gene (TNF, IRF7, and FHOD1), as well as the combined nomogram,
demonstrating their significant diagnostic value in the GSE28829 validation set.
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transdifferentiation (19, 20). This encourages the investigation of

the relationship between key signatures and immune infiltration in

AS. To ensure the robustness of our immune infiltration

assessment, we compared the results from our primary ssGSEA

analysis with those generated by the CIBERSORT algorithm. We

observed a strong positive correlation between the two methods for

the majority of immune cell types (Supplementary Figure S4),

particularly for macrophages. This high concordance reinforces

the validity of our findings regarding the differential immune

infiltration patterns between AS and control groups. While both

methods yielded consistent results, we opted to present ssGSEA as

our primary approach due to its versatility and fewer data

requirements. Specifically, ssGSEA does not rely on cell-type

specific gene signatures, making it applicable to a broader range

of datasets, including those with limited immune cell gene signature

data. Moreover, ssGSEA is less dependent on reference datasets,

which allows it to be more adaptable and reproducible across

different study contexts, making it a more suitable method for

our analysis of immune infiltration in atherosclerosis.

The ssGSEA algorithm assessed the infiltration of 28 immune

cell types in the AS and control groups from the GSE100927 dataset
Frontiers in Immunology 11
to explore variations in their immune profiles. Significant

differences in the infiltration of various immune cells were noted

within atherosclerotic plaques. Of the 28 immune cell types

analyzed, only five—memory CD8 T cells, CD56dim natural killer

cells, plasmacytoid dendritic cells, eosinophils, and neutrophils—

did not display significant differences (P < 0.05) between the AS and

control groups, as depicted in Figure 6A. Further investigation, as

shown in Figure 6B, highlighted notable correlations among these

cells, quantified by specific scores. The analysis revealed strong

synergistic interactions between memory activated CD4 T cell and

activated dendritic cell (0.81), regulatory T cell and T follicular

helper cell (0.89), myeloid-derived suppressor cell and regulatory T

cell (0.90), natural killer T cell and CD56 bright natural killer cell

(0.81), and type 2 T helper cell and effector memory CD4 T cell

(0.81). The correlation analysis between the four upregulated hub

genes (IRF7, TNF, FHOD1, and ZSWIM3) and immune cell

infiltration in AS showed a predominantly relationship

(Figure 6C). Specifically, the upregulated expression of these

genes was strongly correlated with increased infiltration of

immune cells, including Macrophages, Gamma delta T cells, T

follicular helper cells, and several others. This suggests that these
FIGURE 6

Comparison of immune cell type infiltration between AS and controls (GSE100927 dataset) assessed by ssGSEA. (A) Boxplot illustrating the
proportions of immune cells. (B) Correlation matrix of immune cell proportions. *p < 0.05, **p < 0.01, ***p < 0.001. (C) Correlation analysis between
hub genes and immune cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1616096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2025.1616096
hub genes in AS may be associated with the modulation of immune

cell activity, potentially contributing to the progression of AS

through immune regulation.
3.8 Single−cell RNA−seq analysis

We utilized scRNA-seq to analysis the expression level and

location of four hub genes. The data are sourced from the dataset

GSE159677. Cells with gene detection counts per cell exceeding 5000

or falling below 200, as well as cells with mitochondrial percentages

exceeding 5%, were excluded to ensure data quality. UMAP revealed

the presence of 11 distinct cell clusters, each labeled with a distinct

color (Supplementary Figure S5A). Considering the expression

patterns of marker genes, the clustering results obtained through

UMAP were further refined and annotated using single R and Cell-

Marker (Supplementary Figure S5A). Compared to the control

group, there was a reduction in contractile smooth muscle cells

(VSMCs-a), an increase in synthetic smooth muscle cells (VSMCs-

b), a decrease in endothelial cells, and an increase in immune cells

(Supplementary Figure S5B). The expression pattern of four hub

genes was depicted in the UMAP plots. In the AS group, there was an

increase in the number of macrophages compared to the control

group, accompanied by a significant upregulation of IRF7 and

FHOD1 in these cells (Supplementary Figures S5C, D). TNF is

primarily expressed in T cells, while ZSWIM3 is expressed at low

levels across all cell types (Supplementary Figures S5C, D). Foam cell

formation is a hallmark of the early phase of AS. Growing evidence

has demonstrated that most foam cells in AS lesions are

formed from VSMCs that have transdifferentiated into

macrophages and subsequently taken up lipids (21, 22).

However, it remains unclear whether IRF7 and FHOD1 are

upregulated in foam cells derived from VSMCs. Therefore, we

analyzed single-cell transcriptome data (GSE155514) from

atherosclerotic plaques and vessels in mice to further investigate

whether IRF7 and FHOD1 are upregulated in these VSMC-

derived macrophages.
3.9 Integrating single-cell genomics with
SMC-lineage tracing to uncover diverse
SMC-derived cell states in AS

The single-cell transcriptome data from GSE155514 were

obtained from a SMC-lineage tracing murine model developed by

crossing ROSA26ZsGreen1/+ mice with Myh11-CreERT2mice. Cells

with gene detection counts per cell exceeding 4000 or falling below

200, as well as cells with mitochondrial percentages exceeding 5%,

were excluded to ensure data quality. UMAP revealed the presence

of 5 distinct cell clusters, each labeled with a distinct color

(Figure 7A). Cell clusters based on ZsGreen1+ status at all time

points (0, 8, 16, 26 weeks) indicated that multiple SMC-derived cell

types and states emerged over time during AS. These include the

original contractile SMCs, SMC-derived ICS, an intermediate cell
Frontiers in Immunology 12
state later termed “SEM” cells, fibrochondrocytes, and macrophage-

like cells (MACs) (Figure 7B).

To discern phenotypic disparities among VSMC subtypes, we

performed KEGG analysis on DEGs identified in each cell type,

revealing cell-type-specific activated signaling pathways (Figure 7C).

This result was also in consistent with characteristic gene profiles,

defining 4 VSMC subtypes by functional annotation: SMC

represented the original, biological type of VSMC for enriched

vascular smooth muscle contractile function and genes.

Fibrochondrocytes were enriched in ECM-receptor interaction.

SEM, an intermediate cell state, demonstrated both SMC and

fibroblast characteristics, with synthetic genes as indicated by

molecular traits. MACs displayed a proinflammatory signature,

characterized by phagosome involvement and inflammation-

related signaling pathways (Figure 7C). UMAP analysis at different

time points revealed that with the progression of AS, the number of

contractile SMCs gradually decreased, while SMC-derived SEM cells,

fibrochondrocytes, and MACs increased (Figure 7B). These findings

highlight the plasticity of SMCs and their critical contribution to the

cellular heterogeneity observed in AS lesions. Interestingly, as the

proportion of MACs increased, the expression levels of IRF7 and

FHOD1 were also upregulated in these cells over time (Figures 7D,

E). In contrast, both IRF7 and FHOD1 exhibited minimal expression

in contractile SMCs at week 0, suggesting that these genes are not

actively expressed in SMCs under homeostatic conditions. However,

with the progression of AS, and as SMCs transitioned into MAC-like

cells, the expression of IRF7 and FHOD1 becamemarkedly increased

in the MAC population.
3.10 Expression of IRF7 and FHOD1 in
atherosclerotic patients and mice

To further investigate the role of IRF7 and FHOD1 in

atherosclerosis, we measured their expression in both human and

mouse atherosclerotic tissues. Immunostaining analysis revealed

that IRF7 and FHOD1 were colocalized with CD68-positive

macrophages in both human and mouse atherosclerotic plaques

(Figure 8). In the atherosclerotic plaques of mice, we observed that

the expression of IRF7 and FHOD1 colocalized with CD68-positive

macrophages was significantly increased in the model group

compared to the control group. Similarly, in human

atherosclerotic plaques and adjacent vascular tissues, elevated

expression of IRF7 and FHOD1 colocalized with CD68-positive

macrophages was also observed. Taken together, these findings

suggest that IRF7 and FHOD1, as potential diagnostic markers, are

specifically localized in macrophages within atherosclerotic lesions.
4 Discussion

AS is a chronic inflammatory disorder characterized by

interactions among lipid-driven processes, immune responses,

and vascular remodeling. Traditional approaches to identifying
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causative genes in AS often overlook the parallels between cancer

biology and plaque progression. In this study, we leveraged the

concept of “athero-oncology” by integrating oncogene datasets into

our bioinformatics analysis of AS-related genes, aiming to uncover

novel molecular targets and diagnostic tools for the disease.

First, by performing differential gene expression analysis on

public GEO datasets, we identified a broad pool of candidate genes
Frontiers in Immunology 13
implicated in AS. These genes were then refined using WGCNA,

which allowed us to pinpoint modules highly correlated with

disease traits. By intersecting this set of genes with established

oncogenes, we isolated 214 common genes with potential oncogenic

and atherogenic roles. This “hybrid” filtering step is particularly

noteworthy, as it illuminates how aberrant phenotypes in AS may

mirror tumor-like behaviors such as excessive proliferation, evasion
FIGURE 7

Single-cell genomics with SMC-Lineage Tracing: Normalized Data Comparison. (A) Unified manifold approximation and projection (UMAP) clustering
into 5 clusters, and Cells were annotated using CellMarker and singleR. (B) UMAP visualization illustrating the dynamic changes in cellular
populations over a 26-week period. (C) KEGG pathway enrichment in different VSMC subtypes. (D) Feature Plots showing the expression pattern of
FHOD1 and IRF7 over a 26-week period. (E) Dot plot shows the expression levels of FHOD1 and IRF7 in each cell cluster.
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of regulatory checkpoints, and heightened metabolic demands.

Moreover, the identified genes are closely linked to immune

responses, cell differentiation, and lipid metabolism, reinforcing

the proposition that AS is significantly driven by immune and

inflammatory pathways, in alignment with contemporary

perspectives (23).

To further refine these 214 genes, we employed complementary

machine-learning algorithms—random forest, SVM-RFE, and

LASSO—each possessing distinct strengths in feature selection.

Through this ensemble-based approach, we narrowed down the

gene set and arrived at three key genes—IRF7, FHOD1, and TNF—

that not only display robust diagnostic potential but also may function

as central regulators of plaque development. The subsequent

construction of a nomogram model, validated in a separate dataset,

underscores the diagnostic utility of these three genes.
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Numerous innate immune cells, including macrophages,

dendritic cells (DCs), monocytes, mast cells, and neutrophils, are

critically involved in the progression of AS (24, 25). In our study, we

identified that DEGs in AS samples were primarily enriched in

immune regulatory pathways, accompanied by a notable increase

in activated immune cells compared to normal controls. Recognizing

the pivotal role of immunity in AS, we aimed to explore the

relationship between specific gene signatures and immune cell

interactions. Our analysis revealed that the genes FHOD1, IRF7,

and TNF exhibited variable correlations with distinct immune cells,

including macrophages, B cells, and T cells. By integrating single-cell

RNA sequencing data, we identified that FHOD1 and IRF7 are

predominantly expressed in macrophages within atherosclerotic

lesions. In atherosclerotic mouse models with single-cell genomics

and SMC lineage tracing, the expression of FHOD1 and IRF7 was
FIGURE 8

Expression of FHOD1 and IRF7 in human and mouse atherosclerotic tissues. (A) Immunofluorescence staining of FHOD1 (left) and IRF7 (right) with
the macrophage marker CD68 in human atherosclerotic tissues, including carotid atherosclerotic plaques and the proximal vascular tissue of
plaques, and in aortic arch tissues from WD-fed ApoE–/– mice. (B, C) Quantification of the percentage of FHOD1-positive macrophages (CD68+

cells) in human (B) and mouse (C) tissues. (D, E) Quantification of the percentage of IRF7-positive macrophages (CD68+ cells) in human (D) and
mouse (E) tissues. Data are presented as mean ± SD (n = 4 per group). Statistical analysis was performed using paired two-tailed Student’s t-test for
human tissues and unpaired two-tailed Student’s t-test for mouse tissues.
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significantly upregulated in macrophages derived from SMCs as the

disease progressed, while their expression was minimal in

homeostatic SMCs. This suggests a close link between the

upregulation of these genes and the phenotypic transition of SMCs

into MACs. To further validate these findings, we examined the

expression of FHOD1 and IRF7 in macrophages within human

atherosclerotic plaques and murine atherosclerotic models.

Immunofluorescence staining of both human and murine plaques

revealed significant co-localization of FHOD1 and IRF7 with CD68+

macrophages. Notably, the expression levels of FHOD1 and IRF7

were substantially higher in atherosclerotic plaques compared to

controls. These findings suggest that FHOD1 and IRF7 are

predominantly expressed in macrophages that may originate from

SMCs undergoing phenotypic switching in AS. The phenotypic

transition of SMCs into MACs likely plays a critical role in the

functional reprogramming of SMCs, contributing to the

inflammatory and remodeling processes characteristic of advanced

atherosclerotic lesions. The upregulation of FHOD1 and IRF7 in

MACs suggests their involvement in mediating these pathological

processes. Further investigation is warranted to elucidate the precise

molecular roles of FHOD1 and IRF7 in SMC phenotypic modulation

and their contribution to the progression of AS. Understanding how

these genes regulate SMC-to-MAC transitions may reveal new

mechanisms of SMC plasticity and vascular inflammation,

highlighting FHOD1 and IRF7 as potential therapeutic targets to

mitigate vascular remodeling and atherosclerosis progression.

As the primary vascular cell type, SMCs are crucial for

providing mechanical support and facilitating vasoactive

responses that maintain vascular homeostasis (26). Dysfunction

in these cells can lead to various vasculopathies. However, most

current treatments for AS focus on lowering low-density

lipoprotein cholesterol (LDL-C) but have minimal direct effects

on SMCs. Directly targeting SMCs offers a promising therapeutic

approach, particularly for patients with coronary artery disease

(CAD) who maintain normal cholesterol levels or experience

recurrent CAD despite lipid-lowering therapy.

In the realm of vascular biology, while contractile SMCs

provide a stable cellular basis, remodeled SMCs demonstrate

reduced intrinsic properties and changes in behavior such as

proliferation, migration, and differentiation (27). A key factor in

AS progression is the phenotypic switching of specific SMCs within

the arterial wall. These cells undergo proliferation, migration,

and transdifferentiation, which impacts the stability of lesions and

influences the clinical outcomes of the disease (28). Studies using

human genetics, single-cell profiling, and SMC lineage tracing

reveal that SMCs and their SDCs predominate in AS. While

certain SDC subtypes may influence disease outcomes positively

or negatively, the precise roles of SMCs and SDCs in AS progression

and related clinical complications remain unclear.

Research indicates that the phenotypic transformation of SMCs

during AS closely resembles tumor biology, characterized by genomic

instability, tumor-like traits, activation of oncogenic pathways, and

sensitivity to therapies targeting DNA damage repair (4). These

findings, along with insights into clonal hematopoiesis in

atherogenesis, have led to the proposal of ‘athero-oncology’ as a
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framework to unify research in CVD related to AS (4). FHOD1

belongs to the formin family, a group of evolutionarily conserved

actin nucleating proteins present in all eukaryotic cells (29). The

function of formins is regulated by Rho GTPases, molecular switches

that modify the cytoskeleton across various cellular contexts. FHOD1

plays a critical role in cancer progression, enhancing epithelial-

mesenchymal transition (EMT), cell migration, and ECM

degradation (30). It is notably upregulated in cancers such as oral

squamous cell carcinoma and basal-like breast cancer, facilitating

EMT-related transformations and increased tumor aggressiveness,

especially in triple-negative breast cancer where it influences

cytoskeletal dynamics (31, 32). Furthermore, FHOD1 ’s

overexpression in glioblastoma and melanoma underscores its role

in promoting tumor invasion andmetastasis, marking it as a potential

target for therapeutic interventions and a marker of advanced disease

stages in cancers like gastric cancer (33, 34). However, despite its

established significance in cancer biology, the role of FHOD1 in AS

remains poorly understood. To date, only one in vitro study has

implicated FHOD1 in regulating SMC phenotypes, and no research

has explored its involvement in the transformation of SMCs into

foam cells or its potential contribution to atherogenesis.

IRF7, a multifunctional transcription factor, regulates cell

differentiation, proliferation, and apoptosis, and also participates in

immune regulation. Similar to the role of FHOD1 in cancer

progression, IRF7 is critical in the development and metastasis of

tumors (35). Research on IRF7 shows its diverse roles in cancer.

Overexpression of IRF7 boosts IFN-b production and NK cell

activity, reducing prostate cancer metastasis (36). It also suppresses

survival and invasiveness in gastric cancer (37). However, miR-762

downregulates IRF7, enhancing breast cancer proliferation and

invasion (38). Similarly, miR-1587 promotes M2 polarization of

macrophages, aiding breast cancer progression (39). Additionally,

IRF7 inhibits granulocytic suppressor cells, decreasing lung cancer

metastasis (40). However, no studies have yet reported on the role of

IRF7 in the transformation of SMCs into foam cells during the

process of AS. The formation of foam cells derived from VSMCs is

the result of multiple factors acting together, including inflammatory

responses (41), lipid metabolism disorders (42), and oxidative stress

(43, 44). Based on these studies, we hypothesize that FHOD1 and

IRF7 may be involved in lipid-driven inflammatory responses, which

are increasingly considered a key pathogenic mechanism in AS.

Therefore, our research findings have a certain level of rationality.

The innovation of our approach lies in merging oncogenic

signatures with AS datasets to expose potentially critical genes

overlooked by traditional AS-focused analyses. The resulting

identification of FHOD1 and IRF7—two genes previously

recognized for their roles in cancer pathogenesis—points to shared

molecular pathways between oncogenesis and advanced atherogenesis.

This perspective could foster new therapeutic directions, such as

repurposing oncological interventions to moderate proliferative and

inflammatory aspects of AS. For instance, the PARP inhibitor

niraparib, an approved anti-cancer drug, has been shown to

attenuate AS in mouse models (4). This is highly plausible based on

the shared mechanism of genomic instability and DNA damage

response between cancer and the phenotypic switching of SMCs, a
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process our study and others have linked to the activation of oncogenic

pathways. The efficacy of niraparib in AS demonstrates that by

targeting this common vulnerability, this class of drugs can inhibit

the aberrant proliferation and survival of SMC-derived cells within

atherosclerotic plaques, thereby stabilizing lesions and mitigating

disease progression. This example powerfully demonstrates and

concretely illustrates the translational potential of the “athero-

oncology” framework.

Nevertheless, several limitations warrant attention. First, although

we verified pivotal findings in mouse models, extending these

observations to human samples is essential to establish clinical

relevance. Human validation is particularly critical for the broader

application of our findings. To enhance the specificity of the study, it

may be beneficial to consider spatial transcriptomics or multiple ion

beam imaging (MIBI) as possible next steps. These advanced

techniques could allow for the simultaneous resolution of the spatial

localization and cell-type-specific markers of IRF7 and FHOD1

expression in human plaques, thus bridging the gap between

bioinformatics analyses and in vivo validation. Second, our study

relied on publicly available data without patient-level clinical

information, limiting our capacity for prognostic analysis. Finally, in

this study, we identified key hub genes, such as FHOD1 and IRF7, and

found a significant correlation between these genes and SMC-derived

macrophages in AS progression. While these genes are associated with

SMC phenotypic switching and immune modulation, their exact roles

remain unclear and need further functional andmechanistic validation.

Follow-up in vivo and in vitro studies are required to confirm the roles

of FHOD1, IRF7, and related targets in AS development. As AS is a

multifactorial disease, dissecting how these genes regulate foam-cell

formation, lesion progression, and plaque stability in the context of

both lipid and immune dysregulation will be pivotal for translating our

discoveries into actionable therapeutic strategies.
5 Conclusions

In conclusion, our integrative bioinformatics pipeline, enriched

with oncological insights, offers a novel perspective to understand AS

pathogenesis. By identifying and validating the association of hub

genes, such as FHOD1 and IRF7, with SMC-derived macrophages,

we provide a new conceptual framework that parallels oncogenic

processes in atherosclerosis. However, it is important to emphasize

that the relationships observed in this study are correlational, and

future studies should focus on functional validation to clarify the

exact roles of these genes in the progression of AS. We anticipate that

this “athero-oncology” approach will stimulate further research into

targeted interventions, ranging from early diagnostics to novel

therapeutic strategies, to reduce the burden of AS.
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SUPPLEMENTARY FIGURE 1

Functional analysis of cancer-related genes (CRGs) in AS. (A) GO analysis.
(B, C) KEGG analysis.

SUPPLEMENTARY FIGURE 2

Performance evaluation of the machine learning-based atherosclerosis diagnostic

prediction model across independent validation datasets. (A–C) Results from the
training dataset GSE100927: (A) Precision-Recall curve (PR-AUC = 0.991). (B)
Calibration curve (slope = 0.90, intercept = 0.09). (C) Decision curve analysis
comparing themodel with “All” and “None” strategies. (D–F) Validation results from

dataset GSE43292: (D) Precision-Recall curve (PR-AUC = 0.802). (E) Calibration
curve (slope = 0.95, intercept = 0.04). (F) Decision curve analysis. (G–I) Validation
results from dataset GSE28829: (G) Precision-Recall curve (PR-AUC = 0.871). (H)
Calibration curve (slope = 0.86, intercept = 0.10). I Decision curve analysis. All
calibration curves were generated using bootstrapping with 1000 repetitions.

SUPPLEMENTARY FIGURE 3

Relationship between hallmark pathways and hub genes. (A-D) GSEA analysis
of the hub genes, highlighting the top 6 enriched pathways for (A) TNF, (B)
IRF7, (C) FHOD1, and (D) ZSWIM3. (E) Correlation analysis between the hub

genes and hallmark pathways.

SUPPLEMENTARY FIGURE 4

Comparison of immune cell type infiltration between AS and controls (GSE100927

dataset) assessed by CIBERSORT. (A) Boxplot illustrating the proportions of
immune cells. (B) Correlation matrix of immune cell proportions. *p < 0.05, **p

< 0.01, ***p < 0.001. (C)Correlation analysis between hub genes and immune cells.

SUPPLEMENTARY FIGURE 5

Single-Cell analysis after normalization in the GSE159677 dataset. (A) Unified
manifold approximation and projection clustering into 22 clusters, and Cells

were annotated using CellMarker and singleR. (B) UMAP Visualization: The
plot distinctly represents cellular populations in both AS and controls. (C)
Feature Plots showing the expression pattern of FHOD1, IRF7, TNF, and

ZSWIM3 in calcified atherosclerotic plaque from AS and control groups. (D)
Dot plot shows the expression levels of hub genes in each cell cluster.
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