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Background: The transformation of smooth muscle cells (SMCs) into alternative
phenotypes is a key process in atherosclerosis pathogenesis. Recent studies have
revealed oncological parallels between atherosclerosis and cancer, such as DNA
damage and oncogenic pathway activation in SMCs, but the precise molecular
mechanisms remain poorly understood. This study integrates cancer gene sets
using bioinformatics to identify key hub genes associated with atherosclerosis
and explores their immune molecular mechanisms.

Methods: Datasets from the Gene Expression Omnibus (GEO) were analyzed to
identify differentially expressed genes (DEGs) and module genes using Limma
and WGCNA. Machine learning algorithms (SVM-RFE, LASSO regression, and
random forest) were employed to identify cancer-related hub genes for early
atherosclerosis diagnosis. A diagnostic model was constructed and validated.
UMAP plots from single-cell RNA sequencing data were used to analyze the
expression patterns of hub genes, particularly focusing on macrophage-like
SMCs in SMC lineage-traced mouse models. Biomarker expression was
validated in both human and mouse experiments.

Results: Four cancer-related hub genes (CRGs) were identified: Interferon
Regulatory Factor 7 (IRF7), Formin Homology 2 Domain Containing 1 (FHODZ),
Tumor Necrosis Factor (TNF), and Zinc Finger SWIM Domain Containing 3
(ZSWIM3). A diagnostic nomogram using IRF7, FHOD1, and TNF demonstrated
high accuracy and reliability in both training and validation datasets. Immune
microenvironment analysis revealed significant differences between
atherosclerosis and control groups. Spearman correlation analysis highlighted
associations between hub genes and immune cell infiltration. Single-cell RNA
sequencing identified distinct SMC-derived cell clusters and phenotypic
transitions, with increased expression of IRF7 and FHOD1 in macrophages
potentially derived from SMCs in both human carotid plaques and
mouse models.
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Conclusion: This study integrates cancer gene sets to identify key hub genes in
atherosclerosis, emphasizing its parallels with cancer. The diagnostic nomogram
based on IRF7, FHOD1, and TNF provides a reliable tool for early diagnosis, while
insights into SMC phenotypic switching and immune microenvironment
modulation offer potential therapeutic targets.

atherosclerosis, immune infiltration, smooth muscle cells, macrophage, cancer gene,

diagnostic biomarker

1 Introduction

Atherosclerosis (AS) is a leading cause of morbidity and
mortality worldwide, contributing significantly to the global
burden of cardiovascular diseases (CVD) (1-3). It is characterized
by arterial narrowing and thrombotic events triggered by unstable
plaque rupture or erosion, leading to severe outcomes such as
myocardial infarction or stroke. The progression of AS is driven by
complex genetic and cellular mechanisms, emphasizing the need for
ongoing research to identify key therapeutic targets and biomarkers
for early diagnosis and intervention.

A concept that has recently emerged to understand the
molecular mechanisms of AS is “athero-oncology.” (4). This term
refers to the parallels between atherosclerosis and cancer, drawing
attention to shared biological processes that contribute to the
development of both diseases. In the context of AS, “athero-
oncology” highlights the role of cancer-related pathways in AS
pathogenesis, particularly the processes of inflammation, cellular
proliferation, and metabolic reprogramming. These pathways,
commonly associated with cancer progression, also drive the
progression of atherosclerosis, making this concept an important
framework for exploring shared molecular mechanisms.

Chronic inflammation is a hallmark of both cancer and
atherosclerosis. In cancer, inflammation plays a pivotal role in
tumor initiation, progression, and metastasis. Similarly, in AS,
inflammatory processes are critical in driving plaque formation,
with immune cells infiltrating the arterial walls and producing
cytokines that exacerbate the disease (5, 6). Furthermore,
proliferation is another key mechanism shared between cancer
and atherosclerosis. In cancer, uncontrolled cell division drives
tumor growth, whereas in AS, the clonal proliferation of smooth
muscle cells (SMCs) contributes to plaque buildup and vascular
remodeling (7, 8). Additionally, metabolic reprogramming, a
hallmark of cancer cells, is also implicated in atherosclerosis. In
both diseases, alterations in lipid metabolism, including the
dysregulation of bioactive lipids like S1P, PGE2, and LPA,
promote cellular proliferation and inflammation, thereby driving
disease progression (9, 10).

The molecular mechanisms linking AS and cancer are not
yet fully understood. However, DNA damage, a hallmark of
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cancer, has been observed in SMCs within atherosclerotic lesions.
Recent research has shown that these SMCs display tumor-
like characteristics, including genomic instability, excessive
proliferation, and activation of oncogenic pathways (11, 12). For
example, the expression of the KrasG12D oncogene in SMCs has
been found to accelerate the progression of AS, while the anticancer
drug niraparib has demonstrated potential therapeutic effects in AS
mouse models (4). These findings have led to the emergence of
“athero-oncology” as a framework for studying the shared
mechanisms between AS and cancer, offering insights into both
basic and translational research.

Given the critical role of SMCs in AS pathogenesis, the advent
of high-throughput genomics has enabled the identification of
differentially expressed genes (DEGs) involved in this process.
Combining bioinformatics and machine learning, we analyzed
microarray and single-cell RNA-sequencing datasets from the
GEO database to investigate the involvement of cancer-related
genes (CRGs) in AS. Additionally, we explored the association
between CRGs and immune infiltration to provide insights into the
immunometabolic interplay underlying AS progression.

2 Materials and methods
2.1 Data collection

The data analysis methods for this study are detailed in
Figure 1. Original datasets from GEO series GSE100927,
GSE43292, GSE159677, GSE28829and GSE155514 were obtained
from the NCBI Gene Expression Omnibus database (http://
www.ncbi.nlm.nih.gov/geo), an essential resource for genomic
data. Detailed descriptive information of datasets was shown
in Table 1.

2.2 ldentification of DEGs

Data from the GEO database were systematically retrieved and
analyzed using the “GEOquery” package (version 2.70.0), designed
specifically for managing GEO datasets (13). Differential expression
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FIGURE 1
Flow chart of the study.

TABLE 1 Descriptive statistics of the GEO datasets.
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GEO accession Platform 2P Species
type

GSE100927 GPL17077 array 35 69 Homo sapiens

GSE28829 GPL570 array 13 16 Homo sapiens

GSE43292 GPL6244 array 32 32 Homo sapiens

GSE159677 GPL18573 single-cell RNA-seq 3 3 Homo sapiens

GSE155514 GPL24247 single-cell RNA-seq 1 3 Mus musculus

gene (DEG) analysis utilized the “limma” package (version 3.58.1), a
commonly used method for gene expression analysis (14).
Visualization tools such as “ggplot2” (version 3.5.0) for volcano
plots and “ pheatmap” (version 1.0.12) for heatmaps were employed
to enhance the intuitive interpretation of the data.

2.3 Functional enrichment analysis

Gene set enrichment analysis (GSEA) was conducted using two
approaches: KEGG pathway analysis via the gseKEGG function
from the clusterProfiler package(version 4.10.0) and MSigDB
Hallmark Pathways analysis using the same package’s GSEA
function (15). Both methods utilized gene identifiers converted
for respective databases. Enrichment significance was determined
using a p-value threshold of <0.05, allowing for a focused
exploration of biological pathways implicated in our data.
Comprehensive functional enrichment analyses were carried out
to explore the potential functions of identified targets. This involved
Gene Ontology (GO) analysis, which categorized genes by
molecular functions (MF), biological pathways (BP), and cellular
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components (CC). Furthermore, a Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis was conducted to
correlate gene functions with extensive genomic data, thereby
deepening the understanding of the roles of AS-related target
genes. These analyses utilized the “clusterProfiler” and “GOplot”
packages (version 1.0.2), renowned for their effectiveness in
functional analysis.

2.4 Weighted gene coexpression network
analysis

To dissect complex gene interactions and identify modules of
correlated genes, this study applied Weighted Gene Co-expression
Network Analysis (WGCNA). This method provides a systematic
approach to studying the correlation patterns among genes and
their relationship to phenotypic traits, offering potential insights
into underlying biological processes (16).

The initial phase of the analysis focused on pre-processing the
gene expression data to normalize the values and exclude statistical
outliers, ensuring the integrity of the network analysis. The selection
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of the soft-thresholding power was critical and was determined
based on the criterion of achieving a scale-free topology fit index
close to 0.9, thus optimizing the network for both sensitivity and
robustness. The minModuleSize parameter was set to 30 to ensure
that modules with fewer than 30 genes were excluded from the
analysis. The mergeCutHeight was set to 0.25, indicating that
modules with a dissimilarity (1- correlation) greater than 0.25
were merged. The deepSplit parameter was kept at the default
value, which did not significantly alter the module formation.

Following the establishment of a suitable threshold, genes were
clustered using an unsupervised hierarchical clustering approach.
The dynamic branch cutting method was then employed to define
modules, each represented by a distinct color for straightforward
identification and analysis. For each module, calculations of module
membership (MM) and gene significance (GS) scores were
conducted. MM evaluated the correlation of individual genes with
the overall module, whereas GS assessed the correlation of genes
with specific external traits being studied. Modules showing high
MM and substantial GS scores were selected for further
investigation. The study focused on hub genes within these
modules, identified due to their significant intramodular
connectivity. These genes are hypothesized to play pivotal roles in
gene regulatory networks and were therefore subjected to further
analysis to elucidate their functional contributions to the phenotype
in question.

2.5 Machine learning-based identification
of central hub genes

Advanced machine learning techniques were utilized to identify
critical hub genes in AS. The process began with the application of
the support vector machine (SVM) algorithm, a robust supervised
learning method, for modeling using a select set of feature genes.
This technique is advantageous for managing high-dimensional
data by focusing on maximizing the margin between different
classes. Following this, SVM-recursive feature elimination (SVM-
RFE) was applied to iteratively refine the feature set, removing the
least significant features to boost the model’s predictive accuracy,
essential for isolating the most informative genes for AS diagnosis.
Further refinement was achieved using Least Absolute Shrinkage
and Selection Operator (LASSO) regression via the “glmnet”
package (version 4.1.8). LASSO is celebrated for its capability in
variable selection and regularization, aiding in the prevention of
model overfitting. The selection within the LASSO model adhered
to the 1-SE criterion, maintaining a balance between model
complexity and performance. For cross-validation, 10-fold cross-
validation was applied to assess model stability and avoid
overfitting. The random forest algorithm was then used to rank
genes based on their importance. Random forest is an ensemble
learning method, and in this study, we used 500 trees to enhance the
stability and robustness of the model. This method is particularly
effective for managing unbalanced data and estimating feature
importance, which is crucial for pinpointing key genes. Genes

Frontiers in Immunology

10.3389/fimmu.2025.1616096

with a relative importance score exceeding 0.25 were deemed
significant. The final selection of hub genes was based on an
intersection analysis of the outcomes from LASSO logistic
regression, SVM-RFE, and random forest methods, ensuring a
thorough and robust selection process.

2.6 Development of nomograms and
evaluation via ROC curves

A nomogram incorporating hub genes was developed using the
“rms” package (version 6.7.1) to enhance the diagnostic accuracy of
AS. Each gene in the nomogram was assigned specific points based
on its contribution to AS diagnosis, with the total points aggregating
the scores of all genes. This graphical tool simplifies complex
genetic data, providing clinicians with an intuitive method to
assess patient risk. Diagnostic efficacy was evaluated using
Receiver Operating Characteristic (ROC) curves and Precision-
Recall (PR) curves. The area under the curve (AUC) and its 95%
confidence intervals (CIs) were calculated using the “pROC”
package (version 1.18.5), employing a nonparametric approach
suitable for various datasets. The DeLong method, used for AUC
calculation, assesses the model’s ability to discriminate between AS
and control groups, where values closer to 1 indicate higher
accuracy. The Precision-Recall (PR) curve was used to evaluate
the model’s performance, particularly in datasets with class
imbalance, with the PR-AUC providing insight into the model’s
predictive power for identifying the positive class.

External validation was performed using the GSE43292 and
GSE28829 datasets, ensuring the model’s robustness and
applicability across different cohorts. Additionally, Decision Curve
Analysis (DCA) was employed to assess the clinical utility of the
nomogram, comparing its net benefit across different
threshold probabilities.

2.7 Single-sample gene set enrichment
analysis methodology

The study utilized the “Gene Set Variation Analysis” (GSVA)
package in R to conduct single-sample gene set enrichment analysis
(ssGSEA), assessing pathway variations and biological processes in
individual samples (17). This approach highlighted the diversity of
immune responses in AS patients by measuring the infiltration of 28
immune cell types and pinpointing gene set differences between AS
and control groups. For data comparison, nonparametric tests were
applied. The Wilcoxon rank-sum test was used to compare
outcomes between groups without presuming a normal
distribution of the data. Additionally, Spearman correlation
analysis was conducted to explore the relationships between
immune cells, enhancing the understanding of their interactions
in AS.

To address potential concerns regarding algorithm selection
and to validate the robustness of our immune infiltration findings,
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we performed a complementary analysis using the CIBERSORT
algorithm. CIBERSORT employs a linear support vector regression
approach to deconvolve the expression matrix and estimate the
relative proportions of 22 immune cell types based on the LM22
signature matrix. We compared these results with those obtained
from our primary ssGSEA analysis to assess the consistency and
concordance between the two widely used methods.

2.8 Single-Cell RNA-sequencing data
analysis

In our research, we analyzed single-cell transcriptome data from
two datasets, GSE155514 and GSE159677, both sourced from the
GEO database. Dataset GSE159677 includes samples from calcified
atherosclerotic core (AC) plaques and corresponding proximal
adjacent (PA) sections of the carotid artery, obtained from three
patients undergoing carotid endarterectomy. Conversely, dataset
GSE155514 encompasses samples from atherosclerotic plaques and
associated vessels in mice, offering a comparative animal model
perspective. The dataset GSE155514 was derived from a SMC-
lineage tracing murine model developed by crossing
ROSA26”C™™/* mice with Myhl1-CreER *mice. In this model,
after tamoxifen induction, SMCs and their progeny permanently
expressed the fluorescent protein ZsGreenl, facilitating the
identification of these cells in vivo. ZsGreenl expression showed
high concordance with the SMC marker ACTA?2 in normal sections
of the brachiocephalic artery. To explore SMC dynamics during
atherogenesis, ROSA26%5Creent/+, Myhll—CreERT2 mice were bred
onto an Ldlr™'"~ background, enhancing our ability to trace SMC
behavior under atherosclerotic conditions. Analysis was conducted
using single-cell RNA sequencing. Data preprocessing was
performed with the Seurat R package (version 5.0.1), renowned
for its efficacy in single-cell genomic analysis, to ensure the accuracy
and reliability of the results. Essential metrics such as the number of
molecules per cell (nCount RNA) and the number of genes detected
per cell (nFeature RNA) were evaluated alongside sequencing read
counts to verify data integrity. Mitochondrial genomic
contamination, indicative of low-quality or dead cells, was
assessed by calculating the percentage of reads mapping to the
mitochondrial genome, utilizing the percentage feature set function
in Seurat. Cell clustering involved using the dimensionality
reduction method of unified manifold approximation and
projection (UMAP) after filtering principal components,
facilitating clear visual identification of cell clusters. Cell marker
genes with statistically significant adjusted p-values (<0.05) were
identified and utilized to categorize the clustered cells.

2.9 Human atherosclerotic samples

To validate the expression of the critical biomarker in human
atherosclerotic samples, carotid atherosclerotic plaques were
obtained from patients undergoing carotid endarterectomy due to
carotid artery stenosis. The plaques were designated as the model
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group, while the adjacent vascular endothelium within 0.5 cm of the
plaque margin was used as the control group. Each group included
four samples. The study was conducted at the People’s Hospital of
Ningxia Hui Autonomous Region, with approval from the
hospital’s Ethics Committee. Written informed consent was
obtained from all participants prior to enrollment.

2.10 Mice atherosclerotic samples

For the animal experiments, 10 male ApoE'/'mice, aged 6 weeks,
were obtained from Beijing HFK Bioscience Co.,Ltd. (Beijing,
China). Prior to the experiment, all mice were adaptively fed for 2
weeks. To induce atherosclerosis, five mice were transitioned from a
normal chow diet (NCD) to a high-fat diet (HFD) at 8 weeks of age.
The HFD consisted of 77.5% standard chow, 20% lard, 2%
cholesterol, and 0.5% sodium cholate. These mice were fed the
HFD for 12 weeks. The remaining five mice continued on the NCD
for 12 weeks and served as the control group. At the end of the
study, all mice were anesthetized by intraperitoneal injection of
pentobarbital sodium (60 mg/kg) and subsequently euthanized for
the collection of aortic tissue samples. All animal experimental
protocols were reviewed and approved by the Ethics Committee of
Hunan University of Chinese Medicine (Hunan, China).

2.11 Immunofluorescence staining

Paraffin-embedded tissue sections of human and mouse arterial
tissues were prepared for immunofluorescence staining. The
sections were deparaffinized, rehydrated, and subjected to antigen
retrieval before staining. Samples were incubated overnight at 4°C
with primary antibodies, including IRF7 (1:50; Cat# 22392-1-AP;
Proteintech) and FHOD1 (1:50; Cat# PC13158s; Abmart). Primary
antibody binding was detected using a CoraLite®488—c0njugated
goat anti-rabbit IgG secondary antibody (1:1000; Cat# ab150081;
Abcam). For colocalization studies, sections were costained with a
CD68 primary antibody (1:50; Cat# E-AB-22013; Elabscience),
followed by detection with an Alexa Fluor® 594-conjugated goat
anti-mouse IgG secondary antibody (1:1000; Cat# ab150120;
Abcam).Nuclei were counterstained with Fluoroshield containing
4', 6-diamidino-2-phenylindole (DAPI; Cat# F6057; Sigma,
USA). Fluorescent images were captured using the Nikon AIR
HD25 confocal microscope system (Nikon, Japan). Image
processing and fluorescence quantification were performed using
Fiji (Image]).

2.12 Statistical analyses

The human and mouse immunofluorescence data are presented
as mean + standard deviation. Comparisons were made using an
unpaired t-test, with a two-tailed P-value < 0.05 considered
statistically significant. All statistical analyses and graph
generation were conducted using GraphPad Prism V8.4.3 software.
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3 Results

3.1 Identification of DEGs between
atherosclerotic lesions and control arteries

The study’s flowchart is depicted in Figure 1. P-values were
adjusted using the Benjamini-Hochberg’s false discovery rate (FDR)
method, and genes with an adjusted P-value < 0.05 and [log2 fold-
change (log2FC)| > 0.5 were considered differentially expressed. A
total of 2318 differentially expressed genes (DEGs) were identified
in the GSE100927 dataset, including 907 downregulated and 1411
upregulated genes, as summarized in Supplementary Table S1. The
volcano plot in Figure 2A and the heatmap in Figure 2B effectively
demonstrate the differences in gene expression between
atherosclerotic lesions (AS group) and control arteries (control
group), with the heatmap highlighting the top 20 upregulated and
downregulated genes. The evaluation of pathway enrichment was
performed by comparing the pathways between the AS and control
groups using GSEA. In the AS group, the allograft rejection, graft-
versus-host disease, lysosome, phagosome and rheumatoid arthritis

i
TMEM79

qzc
ﬁNFEQ‘C1§orf54

30 i

20

change
©® down

up

—log10(Pvalue)

-2

~— Autoimmune thyroid disease
— Graft-versus-host disease
— Lysosome

— Phagosome

~— Rheumatoid arthritis

025

|

Running Enrichment Score

o
o
S

(AR ‘
[WRLAL
‘HH\’\ ‘

I H‘\ M\ HHI \“\

IHIHH

Yit

H\H"

Ranked List Metric

4000 8000 12000

Rank in Ordered Dataset

16000

FIGURE 2

stable

D

[ RALIRII

10.3389/fimmu.2025.1616096

were significantly enriched (Figure 2C). Conversely, cardiac muscle
contraction; cytoskeleton in muscle cells; dilated cardiomyopathy;
hypertrophic cardiomyopathy and vascular smooth muscle
contraction were significantly downregulated (Figure 2D). For
these top pathways identified in the GSEA analysis, Normalized
Enrichment Scores (NES) and FDR q-values were provided, with a
g-value cutoff of < 0.05. Detailed results are presented in
Supplementary Table S2. These pathways reveal that in AS, the
activity of lysosomes and phagosomes, alterations in the
cytoskeleton of muscle cells, and the abnormal contraction of
vascular smooth muscle cells collectively trigger inflammatory
responses, promote structural remodeling of the vascular wall,
and ultimately drive plaque formation.

3.2 Weighted gene coexpression network
construction

The GSE100927 dataset, sourced from the GEO data repository,
consisted initially of 69 atherosclerotic lesions and 35 normal samples.
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Analysis of Differentially Expressed Genes (DEGs). (A) Volcano plot showing up/down-regulated DEGs of the AS vs. control groups in the GSE100927
dataset. (B) Heatmap depicting DEGs expression patterns in the GSE100927 dataset. (C, D) Gene set enrichment analysis (GSEA) reveals the principal
upregulated and downregulated pathways from the KEGG database in the GSE100927 dataset.
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After discarding two low-quality atherosclerotic lesions, 67
atherosclerotic lesions alongside the normal samples underwent
clustering as depicted in Figure 3B. A soft thresholding power of 14,
applied when R? exceeded 0.9 and average connectivity was high, is
detailed in Figure 3A. This process identified 10 distinct modules for
deeper analysis. The relationship between these modules and clinical
symptoms was explored through frontal correlations between module
eigengene (ME) values and clinical features, with the turquoise and
brown modules showing the strongest positive correlations with both
control and AS groups, as illustrated in Figure 3D. The two significant
modules identified were considered clinically relevant, and all the
genes contained within these modules were selected for further
investigation, as detailed in Supplementary Table S3.

3.3 Identification and functional analysis of
CRGs in the context of AS

Cancer genes were obtained from the NCG 7.1 database, which
includes 591 canonical cancer drivers and 2756 candidate cancer
drivers, totaling 3347 genes. Utilizing the WGCNA method, key
module genes positively correlated with AS trait expression were
identified and analyzed alongside upregulated DEGs in AS derived
from the limma method. This analysis pinpointed 1240 overlapping
genes, from which 214 were recognized as cancer-related genes
(CRGs), overlapping with cancer driver genes (Figure 3E,
Supplementary Table S4). Further functional analysis was
conducted on these CRGs. The GO enrichment analysis delineates
the pivotal roles in regulating cell differentiation, modulating immune
responses, and orchestrating the complex intracellular processes of
substance uptake, transport, and processing (Supplementary Figure
S1A). KEGG pathway analysis links these CRGs to essential processes
such as immune responses, lipid metabolism, and cell differentiation,
underscoring their pivotal roles in the progression of atherosclerosis
(Supplementary Figures S1B, C).

3.4 |dentification of key hub genes through
machine learning techniques

Three machine-learning algorithms were used to screen feature
genes among the set of 214 CRGs. Specifically, SVM-RFE identified
88 genes with the highest accuracy of 0.981 and the lowest error of
0.019 (Figures 4A, B; Supplementary Table S5); LASSO regression
analysis predicted 12 genes among the statistically significant
univariate variables (Figures 4C, D; Supplementary Table S6);
random forest and feature selection were employed to determine
the relationship between error rate, classification tree numbers, and
25 genes with relative importance (Figure 4E; Supplementary Table
S7). To obtain a robust gene signature for AS, genes that overlapped
among the three aforementioned methods were obtained using a
Venn diagram. Four hub genes, namely FHOD1, IRF7, TNF and
ZSWIM3 were obtained as shown in Figure 4F. The correlation
analysis depicted in Figure 4G shows that FHODI, IRF7, and TNF
have positive correlations with each other, as indicated by the blue
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sections in the circular plots. FHODI, IRF7, TNF, and ZSWIM3
showed a significant increase in the AS group compared to the
controls, as illustrated in Figures 4H-K.

The nomogram model developed in this study was trained using
plaque tissue samples, making it a crucial “tissue-based research
classifier” for diagnosing atherosclerosis. To assess its clinical
translational potential, we plan to validate its diagnostic signature
using RNA from blood samples, PBMCs, or extracellular vesicles in
future research. This additional validation will help determine its
applicability for non-invasive clinical testing, enhancing its
translational relevance for future clinical use.

3.5 Modeling and testing a diagnostic
nomogram model for AS

Due to significant multicollinearity between ZSWIM3 and other
variables, model fitting was unsuccessful, leading to the exclusion of
ZSWIM3 from the model fitting process. A diagnostic nomogram
incorporating three key genes—TNF, IRF7, and FHOD1—was
developed (Figure 5A). The model’s performance was first
evaluated using ROC curves, with AUC values and 95%
confidence intervals (CIs) calculated for each gene in the
GSE100927 training set (Figures 5B-D). The AUC values for
TNF (AUC = 0.957, 95% CI: 0.922-0.992), IRF7 (AUC = 0.958,
95% CI: 0.925-0.991) and FHOD1 (AUC = 0.966, 95% CI: 0.934-
0.998), indicated excellent performance in the training set.

The nomogram demonstrated outstanding diagnostic accuracy
in the GSE100927 training set with an AUC of 0.995 (95% CI: 0.989-
1.000), suggesting a near-perfect model fit (Figure 5E). The AUC
values for the nomogram in the GSE43292 and GSE28829 validation
datasets were 0.819 (95% CI: 0.717-0.922) and 0.889 (95% CI:
0.775-1.000), respectively (Figures 5I, M), further confirming the
nomogram’s robustness across independent datasets.

For the GSE43292 validation set, the AUC values for the
individual genes were as follows: TNF (AUC = 0.780, 95% CI:
0.665-0.896), IRF7 (AUC = 0.595, 95% CI: 0.453-0.736), and
FHOD1 (AUC = 0.721, 95% CI: 0.596-0.845) (Figures 5F-H). In
the GSE28829 validation set, the AUC values for TNF (AUC =
0.639, 95% CI: 0.419-0.860), IRF7 (AUC = 0.793, 95% CI: 0.618-
0.969), and FHOD1 (AUC = 0.750, 95% CI: 0.567-0.933) were also
promising (Figures 5J-L).

The Precision-Recall (PR) curve for the training set showed a
PR-AUC of 0.991, reflecting excellent performance. For the
validation sets, the PR-AUCs were 0.802 (GSE43292) and 0.871
(GSE28829), indicating solid but slightly reduced performance in
external datasets (Supplementary Figures S2A, D, G). The
calibration curve demonstrated excellent agreement between
predicted probabilities and observed outcomes across all datasets.
In the training set (GSE100927), the calibration slope was 0.90, with
a negligible intercept of 0.09, indicating minimal overestimation
and high accuracy (mean absolute error = 0.021) (Supplementary
Figure S2B). In the validation sets, the calibration slopes were 0.95
(GSE43292) and 0.86 (GSE28829), with corresponding intercepts of
0.04 and 0.10, showing good calibration and acceptable accuracy
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(mean absolute errors of 0.049 and 0.083, respectively)  (Supplementary Figures S2C, F, I). In summary, the nomogram
(Supplementary Figure S2E, H). Decision Curve Analysis (DCA)  showed robust diagnostic performance across training and
demonstrated strong clinical utility for the nomogram. In all  validation datasets, with high AUC, strong PR-AUC, and
datasets, the model outperformed “all” and “none” strategies, favorable DCA, confirming its reliability and clinical utility for
indicating its robust ability to identify high-risk AS patients  AS diagnosis.
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3.6 Enrichment ana[ysis of the hub genes Hallmark Pathways in mSigDB, focusing on the differential
expression between high and low levels of these genes. The results

An in-depth investigation into the biological functions of the ~ (Supplementary Figures S3A-D) revealed significant enrichment in
four central genes—FHODI1, IRF7, TNF, and ZSWIM3—was pathways such as TNFa signaling via NF-xB, inflammatory
conducted in the AS group. Using GSEA, we explored the  response, interferon-gamma response, allograft rejection, KRAS
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signaling, and IL6-JAK-STAT3 signaling. These pathways are
canonical drivers in cancer, where they contribute to tumor
progression, immune evasion, and metastasis. Notably, these
same pathways are involved in the progression of AS, with
dysregulation potentially contributing to SMC phenotypic
switching and plaque formation.

Further analysis using ssGSEA highlighted biological differences
between AS and control groups. The correlation between signature
gene expression and ssGSEA scores, analyzed using the “corrplot”
package (Supplementary Figure S3E), revealed strong associations with
hallmark gene sets, including apoptosis, coagulation, complement, IL2-
STATS5 signaling, interferon-gamma response, interferon-alpha
response, and IL6-JAK-STAT3 signaling. These findings suggest that
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the dysregulation of cancer-related pathways, such as KRAS and IL6-
JAK-STATS3, plays a critical role not only in tumor microenvironment
remodeling but also in the pathological processes of AS, such as SMC
transdifferentiation and plaque progression.

3.7 Immune cell infiltration in AS

Current experimental and clinical research supports the role
of immune mechanisms in hastening the progression of AS
(18). In both various cancers and atherosclerotic plaques, elevated
levels of inflammatory molecules not only promote cell
proliferation by providing growth signals but also facilitate cell
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transdifferentiation (19, 20). This encourages the investigation of
the relationship between key signatures and immune infiltration in
AS. To ensure the robustness of our immune infiltration
assessment, we compared the results from our primary ssGSEA
analysis with those generated by the CIBERSORT algorithm. We
observed a strong positive correlation between the two methods for
the majority of immune cell types (Supplementary Figure S4),
particularly for macrophages. This high concordance reinforces
the validity of our findings regarding the differential immune
infiltration patterns between AS and control groups. While both
methods yielded consistent results, we opted to present ssGSEA as
our primary approach due to its versatility and fewer data
requirements. Specifically, ssGSEA does not rely on cell-type
specific gene signatures, making it applicable to a broader range
of datasets, including those with limited immune cell gene signature
data. Moreover, ssGSEA is less dependent on reference datasets,
which allows it to be more adaptable and reproducible across
different study contexts, making it a more suitable method for
our analysis of immune infiltration in atherosclerosis.

The ssGSEA algorithm assessed the infiltration of 28 immune
cell types in the AS and control groups from the GSE100927 dataset

10.3389/fimmu.2025.1616096

to explore variations in their immune profiles. Significant
differences in the infiltration of various immune cells were noted
within atherosclerotic plaques. Of the 28 immune cell types
analyzed, only five—memory CD8 T cells, CD56dim natural killer
cells, plasmacytoid dendritic cells, eosinophils, and neutrophils—
did not display significant differences (P < 0.05) between the AS and
control groups, as depicted in Figure 6A. Further investigation, as
shown in Figure 6B, highlighted notable correlations among these
cells, quantified by specific scores. The analysis revealed strong
synergistic interactions between memory activated CD4 T cell and
activated dendritic cell (0.81), regulatory T cell and T follicular
helper cell (0.89), myeloid-derived suppressor cell and regulatory T
cell (0.90), natural killer T cell and CD56 bright natural killer cell
(0.81), and type 2 T helper cell and effector memory CD4 T cell
(0.81). The correlation analysis between the four upregulated hub
genes (IRF7, TNF, FHODI1, and ZSWIM3) and immune cell
infiltration in AS showed a predominantly relationship
(Figure 6C). Specifically, the upregulated expression of these
genes was strongly correlated with increased infiltration of
immune cells, including Macrophages, Gamma delta T cells, T
follicular helper cells, and several others. This suggests that these
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hub genes in AS may be associated with the modulation of immune
cell activity, potentially contributing to the progression of AS
through immune regulation.

3.8 Single—cell RNA-seq analysis

We utilized scRNA-seq to analysis the expression level and
location of four hub genes. The data are sourced from the dataset
GSE159677. Cells with gene detection counts per cell exceeding 5000
or falling below 200, as well as cells with mitochondrial percentages
exceeding 5%, were excluded to ensure data quality. UMAP revealed
the presence of 11 distinct cell clusters, each labeled with a distinct
color (Supplementary Figure S5A). Considering the expression
patterns of marker genes, the clustering results obtained through
UMAP were further refined and annotated using single R and Cell-
Marker (Supplementary Figure S5A). Compared to the control
group, there was a reduction in contractile smooth muscle cells
(VSMCs-a), an increase in synthetic smooth muscle cells (VSMCs-
b), a decrease in endothelial cells, and an increase in immune cells
(Supplementary Figure S5B). The expression pattern of four hub
genes was depicted in the UMAP plots. In the AS group, there was an
increase in the number of macrophages compared to the control
group, accompanied by a significant upregulation of IRF7 and
FHODLI in these cells (Supplementary Figures S5C, D). TNF is
primarily expressed in T cells, while ZSWIM3 is expressed at low
levels across all cell types (Supplementary Figures S5C, D). Foam cell
formation is a hallmark of the early phase of AS. Growing evidence
has demonstrated that most foam cells in AS lesions are
formed from VSMCs that have transdifferentiated into
macrophages and subsequently taken up lipids (21, 22).
However, it remains unclear whether IRF7 and FHODI1 are
upregulated in foam cells derived from VSMCs. Therefore, we
analyzed single-cell transcriptome data (GSE155514) from
atherosclerotic plaques and vessels in mice to further investigate
whether IRF7 and FHODI are upregulated in these VSMC-
derived macrophages.

3.9 Integrating single-cell genomics with
SMC-lineage tracing to uncover diverse
SMC-derived cell states in AS

The single-cell transcriptome data from GSE155514 were
obtained from a SMC-lineage tracing murine model developed by
crossing ROSA26-S™™/* mice with MyhlI-CreER™mice. Cells
with gene detection counts per cell exceeding 4000 or falling below
200, as well as cells with mitochondrial percentages exceeding 5%,
were excluded to ensure data quality. UMAP revealed the presence
of 5 distinct cell clusters, each labeled with a distinct color
(Figure 7A). Cell clusters based on ZsGreenl™ status at all time
points (0, 8, 16, 26 weeks) indicated that multiple SMC-derived cell
types and states emerged over time during AS. These include the
original contractile SMCs, SMC-derived ICS, an intermediate cell
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state later termed “SEM” cells, fibrochondrocytes, and macrophage-
like cells (MACs) (Figure 7B).

To discern phenotypic disparities among VSMC subtypes, we
performed KEGG analysis on DEGs identified in each cell type,
revealing cell-type-specific activated signaling pathways (Figure 7C).
This result was also in consistent with characteristic gene profiles,
defining 4 VSMC subtypes by functional annotation: SMC
represented the original, biological type of VSMC for enriched
vascular smooth muscle contractile function and genes.
Fibrochondrocytes were enriched in ECM-receptor interaction.
SEM, an intermediate cell state, demonstrated both SMC and
fibroblast characteristics, with synthetic genes as indicated by
molecular traits. MACs displayed a proinflammatory signature,
characterized by phagosome involvement and inflammation-
related signaling pathways (Figure 7C). UMAP analysis at different
time points revealed that with the progression of AS, the number of
contractile SMCs gradually decreased, while SMC-derived SEM cells,
fibrochondrocytes, and MACs increased (Figure 7B). These findings
highlight the plasticity of SMCs and their critical contribution to the
cellular heterogeneity observed in AS lesions. Interestingly, as the
proportion of MACs increased, the expression levels of IRF7 and
FHODI1 were also upregulated in these cells over time (Figures 7D,
E). In contrast, both IRF7 and FHOD1 exhibited minimal expression
in contractile SMCs at week 0, suggesting that these genes are not
actively expressed in SMCs under homeostatic conditions. However,
with the progression of AS, and as SMCs transitioned into MAC-like
cells, the expression of IRF7 and FHOD1 became markedly increased
in the MAC population.

3.10 Expression of IRF7 and FHOD1 in
atherosclerotic patients and mice

To further investigate the role of IRF7 and FHODI in
atherosclerosis, we measured their expression in both human and
mouse atherosclerotic tissues. Immunostaining analysis revealed
that IRF7 and FHODI1 were colocalized with CD68-positive
macrophages in both human and mouse atherosclerotic plaques
(Figure 8). In the atherosclerotic plaques of mice, we observed that
the expression of IRF7 and FHOD1 colocalized with CD68-positive
macrophages was significantly increased in the model group
compared to the control group. Similarly, in human
atherosclerotic plaques and adjacent vascular tissues, elevated
expression of IRF7 and FHOD1 colocalized with CD68-positive
macrophages was also observed. Taken together, these findings
suggest that IRF7 and FHODI, as potential diagnostic markers, are
specifically localized in macrophages within atherosclerotic lesions.

4 Discussion

AS is a chronic inflammatory disorder characterized by
interactions among lipid-driven processes, immune responses,
and vascular remodeling. Traditional approaches to identifying
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Single-cell genomics with SMC-Lineage Tracing: Normalized Data Comparison. (A) Unified manifold approximation and projection (UMAP) clustering
into 5 clusters, and Cells were annotated using CellMarker and singleR. (B) UMAP visualization illustrating the dynamic changes in cellular
populations over a 26-week period. (C) KEGG pathway enrichment in different VSMC subtypes. (D) Feature Plots showing the expression pattern of
FHOD1 and IRF7 over a 26-week period. (E) Dot plot shows the expression levels of FHOD1 and IRF7 in each cell cluster.

causative genes in AS often overlook the parallels between cancer
biology and plaque progression. In this study, we leveraged the
concept of “athero-oncology” by integrating oncogene datasets into
our bioinformatics analysis of AS-related genes, aiming to uncover
novel molecular targets and diagnostic tools for the disease.

First, by performing differential gene expression analysis on
public GEO datasets, we identified a broad pool of candidate genes
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implicated in AS. These genes were then refined using WGCNA,
which allowed us to pinpoint modules highly correlated with
disease traits. By intersecting this set of genes with established
oncogenes, we isolated 214 common genes with potential oncogenic
and atherogenic roles. This “hybrid” filtering step is particularly
noteworthy, as it illuminates how aberrant phenotypes in AS may
mirror tumor-like behaviors such as excessive proliferation, evasion
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Expression of FHOD1 and IRF7 in human and mouse atherosclerotic tissues. (A) Immunofluorescence staining of FHOD1 (left) and IRF7 (right) with
the macrophage marker CD68 in human atherosclerotic tissues, including carotid atherosclerotic plaques and the proximal vascular tissue of

plaques, and in aortic arch tissues from WD-fed ApoE

mice. (B, C) Quantification of the percentage of FHOD1-positive macrophages (CD68*

cells) in human (B) and mouse (C) tissues. (D, E) Quantification of the percentage of IRF7-positive macrophages (CD68+ cells) in human (D) and
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of regulatory checkpoints, and heightened metabolic demands.
Moreover, the identified genes are closely linked to immune
responses, cell differentiation, and lipid metabolism, reinforcing
the proposition that AS is significantly driven by immune and
inflammatory pathways, in alignment with contemporary
perspectives (23).

To further refine these 214 genes, we employed complementary
machine-learning algorithms—random forest, SVM-RFE, and
LASSO—each possessing distinct strengths in feature selection.
Through this ensemble-based approach, we narrowed down the
gene set and arrived at three key genes—IRF7, FHODI1, and TNF—
that not only display robust diagnostic potential but also may function
as central regulators of plaque development. The subsequent
construction of a nomogram model, validated in a separate dataset,
underscores the diagnostic utility of these three genes.
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Numerous innate immune cells, including macrophages,
dendritic cells (DCs), monocytes, mast cells, and neutrophils, are
critically involved in the progression of AS (24, 25). In our study, we
identified that DEGs in AS samples were primarily enriched in
immune regulatory pathways, accompanied by a notable increase
in activated immune cells compared to normal controls. Recognizing
the pivotal role of immunity in AS, we aimed to explore the
relationship between specific gene signatures and immune cell
interactions. Our analysis revealed that the genes FHODI1, IRF7,
and TNF exhibited variable correlations with distinct immune cells,
including macrophages, B cells, and T cells. By integrating single-cell
RNA sequencing data, we identified that FHODI and IRF7 are
predominantly expressed in macrophages within atherosclerotic
lesions. In atherosclerotic mouse models with single-cell genomics
and SMC lineage tracing, the expression of FHOD1 and IRF7 was
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significantly upregulated in macrophages derived from SMCs as the
disease progressed, while their expression was minimal in
homeostatic SMCs. This suggests a close link between the
upregulation of these genes and the phenotypic transition of SMCs
into MAGCs. To further validate these findings, we examined the
expression of FHODI and IRF7 in macrophages within human
atherosclerotic plaques and murine atherosclerotic models.
Immunofluorescence staining of both human and murine plaques
revealed significant co-localization of FHODI and IRF7 with CD68"
macrophages. Notably, the expression levels of FHODI1 and IRF7
were substantially higher in atherosclerotic plaques compared to
controls. These findings suggest that FHOD1 and IRF7 are
predominantly expressed in macrophages that may originate from
SMCs undergoing phenotypic switching in AS. The phenotypic
transition of SMCs into MACs likely plays a critical role in the
functional reprogramming of SMCs, contributing to the
inflammatory and remodeling processes characteristic of advanced
atherosclerotic lesions. The upregulation of FHODI1 and IRF7 in
MACs suggests their involvement in mediating these pathological
processes. Further investigation is warranted to elucidate the precise
molecular roles of FHOD1 and IRF7 in SMC phenotypic modulation
and their contribution to the progression of AS. Understanding how
these genes regulate SMC-to-MAC transitions may reveal new
mechanisms of SMC plasticity and vascular inflammation,
highlighting FHOD1 and IRF7 as potential therapeutic targets to
mitigate vascular remodeling and atherosclerosis progression.

As the primary vascular cell type, SMCs are crucial for
providing mechanical support and facilitating vasoactive
responses that maintain vascular homeostasis (26). Dysfunction
in these cells can lead to various vasculopathies. However, most
current treatments for AS focus on lowering low-density
lipoprotein cholesterol (LDL-C) but have minimal direct effects
on SMCs. Directly targeting SMCs offers a promising therapeutic
approach, particularly for patients with coronary artery disease
(CAD) who maintain normal cholesterol levels or experience
recurrent CAD despite lipid-lowering therapy.

In the realm of vascular biology, while contractile SMCs
provide a stable cellular basis, remodeled SMCs demonstrate
reduced intrinsic properties and changes in behavior such as
proliferation, migration, and differentiation (27). A key factor in
AS progression is the phenotypic switching of specific SMCs within
the arterial wall. These cells undergo proliferation, migration,
and transdifferentiation, which impacts the stability of lesions and
influences the clinical outcomes of the disease (28). Studies using
human genetics, single-cell profiling, and SMC lineage tracing
reveal that SMCs and their SDCs predominate in AS. While
certain SDC subtypes may influence disease outcomes positively
or negatively, the precise roles of SMCs and SDCs in AS progression
and related clinical complications remain unclear.

Research indicates that the phenotypic transformation of SMCs
during AS closely resembles tumor biology, characterized by genomic
instability, tumor-like traits, activation of oncogenic pathways, and
sensitivity to therapies targeting DNA damage repair (4). These
findings, along with insights into clonal hematopoiesis in
atherogenesis, have led to the proposal of ‘athero-oncology’ as a
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framework to unify research in CVD related to AS (4). FHODI
belongs to the formin family, a group of evolutionarily conserved
actin nucleating proteins present in all eukaryotic cells (29). The
function of formins is regulated by Rho GTPases, molecular switches
that modify the cytoskeleton across various cellular contexts. FHOD1
plays a critical role in cancer progression, enhancing epithelial-
mesenchymal transition (EMT), cell migration, and ECM
degradation (30). It is notably upregulated in cancers such as oral
squamous cell carcinoma and basal-like breast cancer, facilitating
EMT-related transformations and increased tumor aggressiveness,
especially in triple-negative breast cancer where it influences
cytoskeletal dynamics (31, 32). Furthermore, FHODI’s
overexpression in glioblastoma and melanoma underscores its role
in promoting tumor invasion and metastasis, marking it as a potential
target for therapeutic interventions and a marker of advanced disease
stages in cancers like gastric cancer (33, 34). However, despite its
established significance in cancer biology, the role of FHODI in AS
remains poorly understood. To date, only one in vitro study has
implicated FHODI1 in regulating SMC phenotypes, and no research
has explored its involvement in the transformation of SMCs into
foam cells or its potential contribution to atherogenesis.

IRF7, a multifunctional transcription factor, regulates cell
differentiation, proliferation, and apoptosis, and also participates in
immune regulation. Similar to the role of FHODI1 in cancer
progression, IRF7 is critical in the development and metastasis of
tumors (35). Research on IRF7 shows its diverse roles in cancer.
Overexpression of IRF7 boosts IFN-b production and NK cell
activity, reducing prostate cancer metastasis (36). It also suppresses
survival and invasiveness in gastric cancer (37). However, miR-762
downregulates IRF7, enhancing breast cancer proliferation and
invasion (38). Similarly, miR-1587 promotes M2 polarization of
macrophages, aiding breast cancer progression (39). Additionally,
IRF7 inhibits granulocytic suppressor cells, decreasing lung cancer
metastasis (40). However, no studies have yet reported on the role of
IRF7 in the transformation of SMCs into foam cells during the
process of AS. The formation of foam cells derived from VSMCs is
the result of multiple factors acting together, including inflammatory
responses (41), lipid metabolism disorders (42), and oxidative stress
(43, 44). Based on these studies, we hypothesize that FHODI and
IRF7 may be involved in lipid-driven inflammatory responses, which
are increasingly considered a key pathogenic mechanism in AS.
Therefore, our research findings have a certain level of rationality.

The innovation of our approach lies in merging oncogenic
signatures with AS datasets to expose potentially critical genes
overlooked by traditional AS-focused analyses. The resulting
identification of FHODI1 and IRF7—two genes previously
recognized for their roles in cancer pathogenesis—points to shared
molecular pathways between oncogenesis and advanced atherogenesis.
This perspective could foster new therapeutic directions, such as
repurposing oncological interventions to moderate proliferative and
inflammatory aspects of AS. For instance, the PARP inhibitor
niraparib, an approved anti-cancer drug, has been shown to
attenuate AS in mouse models (4). This is highly plausible based on
the shared mechanism of genomic instability and DNA damage
response between cancer and the phenotypic switching of SMCs, a
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process our study and others have linked to the activation of oncogenic
pathways. The efficacy of niraparib in AS demonstrates that by
targeting this common vulnerability, this class of drugs can inhibit
the aberrant proliferation and survival of SMC-derived cells within
atherosclerotic plaques, thereby stabilizing lesions and mitigating
disease progression. This example powerfully demonstrates and
concretely illustrates the translational potential of the “athero-
oncology” framework.

Nevertheless, several limitations warrant attention. First, although
we verified pivotal findings in mouse models, extending these
observations to human samples is essential to establish clinical
relevance. Human validation is particularly critical for the broader
application of our findings. To enhance the specificity of the study, it
may be beneficial to consider spatial transcriptomics or multiple ion
beam imaging (MIBI) as possible next steps. These advanced
techniques could allow for the simultaneous resolution of the spatial
localization and cell-type-specific markers of IRF7 and FHODI1
expression in human plaques, thus bridging the gap between
bioinformatics analyses and in vivo validation. Second, our study
relied on publicly available data without patient-level clinical
information, limiting our capacity for prognostic analysis. Finally, in
this study, we identified key hub genes, such as FHOD1 and IRF7, and
found a significant correlation between these genes and SMC-derived
macrophages in AS progression. While these genes are associated with
SMC phenotypic switching and immune modulation, their exact roles
remain unclear and need further functional and mechanistic validation.
Follow-up in vivo and in vitro studies are required to confirm the roles
of FHODI, IRF7, and related targets in AS development. As AS is a
multifactorial disease, dissecting how these genes regulate foam-cell
formation, lesion progression, and plaque stability in the context of
both lipid and immune dysregulation will be pivotal for translating our
discoveries into actionable therapeutic strategies.

5 Conclusions

In conclusion, our integrative bioinformatics pipeline, enriched
with oncological insights, offers a novel perspective to understand AS
pathogenesis. By identifying and validating the association of hub
genes, such as FHOD1 and IRF7, with SMC-derived macrophages,
we provide a new conceptual framework that parallels oncogenic
processes in atherosclerosis. However, it is important to emphasize
that the relationships observed in this study are correlational, and
future studies should focus on functional validation to clarify the
exact roles of these genes in the progression of AS. We anticipate that
this “athero-oncology” approach will stimulate further research into
targeted interventions, ranging from early diagnostics to novel
therapeutic strategies, to reduce the burden of AS.
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