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Introduction: Individuals diagnosed with colorectal cancer (CRC) frequently
confront a grave prognosis and exhibit poor responses to conventional
treatment regimens. Immunotherapy, notably modalities centered on natural
killer (NK) cells, represents a burgeoning frontier in the management of CRC. This
study developed a validated prognostic model using NK-associated long non-
coding RNAs (IncRNAs) to predict CRC outcomes.

Methods: Integrating single-cell RNA-seq (GSE146771_Smartseq?2) and TCGA-
COAD/READ bulk transcriptomic data, we identified NK-specific genes and
correlated IncRNAs. A multi-step analytical approach—including univariate Cox
regression for preliminary screening, LASSO regression to minimize overfitting,
and multivariate Cox regression for final model optimization—yielded a robust
16-IncRNA prognostic signature with high predictive accuracy.

Results: This model demonstrated robust predictive performance across the
training set, validation set, and 76 independent clinical samples. Mechanistic
investigations revealed that AC010319.3 is highly expressed in NK cells, where it
attenuates NK cell cytotoxicity by suppressing the expression of IFN-y and
granzyme B, thereby promoting the proliferation and invasion of CRC cells.
Discussion: This study systematically delineates the regulatory role of NK-
associated IncRNAs within the CRC immune microenvironment, offering novel
molecular targets and stratification strategies for CRC immunotherapy.

KEYWORDS

tumor immune single-cell hub 2, colorectal cancer, NK cell-related IncRNAs, tumor
immune microenvironment, molecular subtyping

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1615942/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1615942/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1615942/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1615942/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1615942/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1615942&domain=pdf&date_stamp=2025-11-13
mailto:daomingliangkm@163.com
mailto:shuyixiongkm@163.com
mailto:luqiyu@kmmu.edu.cn
https://doi.org/10.3389/fimmu.2025.1615942
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1615942
https://www.frontiersin.org/journals/immunology

Li et al.

1 Introduction

Globally in 2022, colorectal cancer was responsible for nearly
1.93 million new diagnoses, making it the third most frequent
cancer, and for approximately 904,000 fatalities, ranking it as the
second leading cause of cancer mortality, only after lung cancer (1).
CRC constitutes nearly 10% of both newly diagnosed malignancies
and cancer-associated fatalities globally (2). While surgical
resection, radiotherapy, and chemotherapy remain therapeutic
cornerstones, their clinical utility is constrained by significant
limitations. Surgery is exclusively applicable to localized lesions
and fails to address micrometastases, whereas conventional
chemoradiotherapy indiscriminately inhibits tumor proliferation,
often inducing severe off-target complications such as
myelosuppression, radiation-induced enteritis, and other related
disorders. Furthermore, these traditional modalities demonstrate
limited efficacy against microsatellite stable (MSS) CRC
(representing 85% of cases) and metastatic disease, with 5-year
survival rates remaining below 15%. In contrast, Chimeric Antigen
Receptor (CAR) technology, as a core strategy of emerging
immunotherapy, achieves precise recognition and killing by
expressing CAR structures targeting tumor-specific antigens and
utilizing host immune activation, while overcoming immune
suppression mediated by the tumor microenvironment (TME)
(such as TGF-B and PD-L1 signaling), thereby significantly
enhancing cytotoxicity against MSS-CRC (3).As a potent anti-
tumor modality, immunotherapy may represent a breakthrough
in CRC prognosis optimization and potential cure, positioning itself
as an alternative therapeutic strategy for CRC patients.

While T cell-centric immunotherapies, particularly PD-1/
PD-L1 inhibitors, have achieved remarkable progress in
microsatellite instability-high (MSI-H) CRC, their clinical efficacy
remains limited in microsatellite stable (MSS) subtypes that account
for 85% of CRC cases (4). This unmet therapeutic challenge has
prompted a redirection of scientific focus toward other immune
cells, with NK cells—central cytotoxic effectors of the innate
immune system—being one of them, demonstrating unique anti-
tumor potential in MSS-CRC. Clinical evidence indicates that MSS-
CRC patients exhibit suboptimal response rates (<15%) to T cell-
based therapies, attributable to low tumor mutational burden and
impaired antigen-presenting capacity (5). In stark contrast, NK cells
employ the ‘missing-self’ recognition paradigm, enabling MHC-I-
independent targeting of MSS tumor cells. As a crucial effector cell
of the innate immune system, NK cells possess a unique recognition
mechanism distinct from adaptive immune cells (B and T
lymphocytes) (6). CAR-T therapy is relatively mature in the
treatment of hematological tumors; however, in solid tumors such
as CRC, it faces challenges including toxicity, difficulty in tumor
microenvironment (TME) penetration, antigen escape, and limited
anti-tumor activity. CAR-NK therapy leverages the properties of
NK cells, such as the lack of requirement for HLA matching, innate
cytotoxicity, and multi-pathway killing mechanisms, thereby
reducing the risks of cytokine release syndrome (CRS) and graft-
versus-host disease (GVHD), enhancing TME infiltration and
persistence, and mitigating antigen escape, thus providing a safer,
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off-the-shelf therapeutic option for CRC (7, 8).Positioned as an
underexplored ‘missing puzzle piece’ in CRC immunotherapy, NK
cells may pioneer novel therapeutic avenues (9). With deepening
insights into NK cell biology, these innate lymphocytes are poised to
become a therapeutic pillar in CRC management.

Long non-coding RNA(IncRNAs) constitute a class of non-
coding RNA molecules exceeding 200 nucleotides in length (10).
Despite lacking open reading frames (ORFs) and consequent
protein-coding capacity, they critically regulate gene expression,
orchestrate epigenetic modifications, and dictate cellular fate across
physiological and pathological processes. These molecules execute
their functions through chromatin remodeling, transcriptional
interference, or RNA-protein complex formation, thereby
participating in sophisticated regulatory networks governing
development, metabolism, immune responses, and tumorigenesis
(11). Clinically, immune-related IncRNA-based prognostic models
demonstrate robust predictive accuracy in renal cell carcinoma;
similarly, in prostate cancer, TYMSOS, as a specific IncRNA
associated with immune microenvironment regulation, has been
confirmed as a novel biomarker with significant prognostic value
(12, 13). Nevertheless, despite growing recognition of IncRNAs’
immunomodulatory roles in oncology, the functional landscape of
NK cell-associated IncRNAs in CRC immunotherapy
remains unexplored.

In this study, we recognized IncRNAs associated with NK cell
function through the TISCH2 and TCGA databases (14). Afterwards,
a predictive model for CRC was constructed from a stepwise
regression analysis, which incorporated 16 IncRNAs. This model,
when combined with age, TNM stage, and risk score, demonstrated
superior performance compared with traditional clinical indicators. A
risk prognostic model was constructed based on Cox regression, and
the model’s validity was verified using the TCGA dataset and 76 CRC
samples. To further elucidate the biological mechanisms underlying
the model, we focused on AC010319.3. Through in vitro and in vivo
functional experiments, we confirmed that AC010319.3 is specifically
highly expressed in NK cells and inhibits the cytotoxic function of NK
cells by negatively regulating key cytokines such as IFN-y and
granzyme B, thereby promoting the proliferation and invasion of
colorectal cancer cells. This reveals AC010319.3 as a potential
therapeutic target for regulating NK cell function, providing new
insights for CRC immunotherapy.

2 Results

2.1 Single-cell transcriptomic Atlas reveals
NK cell immune system and differentially
regulated gene signatures in colorectal
cancer

The progress of the current work is comprehensively depicted as
flow diagram (Figure 1). Conducted on the TISCH2 platform,
dimensionality diminution and clustering analysis of the single-cell
RNA sequencing (scRNA-seq) data from the GSE146771_Smartseq2
dataset unveiled a notable enrichment of NK cells in Cluster 0 and
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FIGURE 1

A detailed flowchart illustrates the construction, validation, and molecular subtyping of the NK cell-related IncRNA model in CRC. CRC: Colorectal
Cancer; TISCH2: Tumor Immune Single-Cell Hub 2; TCGA: The Cancer Genome Atlas; TF: Transcription factor; LASSO: Least absolute shrinkage and

selection operator; NK: Natural Killer cells.

Cluster 4 (Figures 2A, B). The results showed that NK cells were
significantly enriched in CRC patients and formed independent
clusters, indicating that NK cells might be the dominant immune cell
population in CRC patients and have similar gene expression patterns.
A pie chart quantified the abundance and relative frequency of NK
cells, demonstrating that NK cells constituted 23.3% of immune cells in
CRC patients—significantly higher than in healthy individuals—
highlighting their aberrant enrichment and biological relevance in
CRC (Figure 2C). Cell-cell interactions within the CRC tumor
immune microenvironment critically regulate cellular functions,
immune states, and disease progression (15). Using the CellChat
calculation on the TISCH2 Database, we predicted intercellular
communication networks. The analysis identified powerful
connection between NK cells and macrophages, CD8+ and CD4+ T
cells (Figure 2D). To identify NK cell-associated genes (NKGs), we
performed Wilcoxon rank-sum tests on the TISCH2 platform (|fold
change| > 1.5; FDR < 0.05). we detected 167 elevated and 262 reduced
NKGs (Figure 2E).

2.2 NK cell functional traits in CRC

Leveraging the CellChat technique within TISCH2 system, we
quantified intercelllular correlations and identified robust
communication among NK cells and CD8+ T cells, fibroblasts,
endothelial cells, as well as malignant cells (Figure 2D). In CRC,
multiple transcription factors (TFs) play pivotal roles. Using the
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spatial association algorithm on TISCH2, we inferred key TFs
regulating gene expression within each cell cluster. Using heat
maps, we presented the expression patterns of key transcription
factors in all cell clusters within the dataset. (Supplementary Figure
S1A). Notably, in the NK_C4 and NK_CO0 subgroups, KDM4c and
ZNF274, respectively, emerged as the most significantly enriched
TFs, indicating their core roles in this regulatory network
(Supplementary Figure S2A, B). These TFs may modulate NK cell
functionality and thereby influence the CRC TME, offering novel
perspectives for investigating CRC immunology. We leveraged the
advanced enrichment capabilities of the TISCH2 platform to
further investigate NK cell mechanisms in CRC. Through KEGG
pathway analysis, we identified significant upregulation of natural
killer cell-mediated cytotoxicity, ribosome, spliceosome, and
neuroactive ligand-receptor interactions, alongside
downregulation of hematopoietic cell lineage, primary
immunodeficiency, and intestinal immune network for IgA
production (Supplementary Figures S3, S4). In Gene Ontology
(GO) analysis, we observed upregulated nuclear-transcribed
mRNA catabolic processes in biological processes, proteasome
core complexes and T-cell receptor complexes in cellular
components, and antigen binding in molecular functions.
Conversely, JNK kinase activity (biological processes),
endoplasmic reticulum, phagocytic vesicle membranes, and
secretory granule membranes (cellular components), as well as
cytokine receptor activity and endopeptidase activity (molecular
functions), were downregulated (Supplementary Figures S5-S7).
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FIGURE 2

Communication networks of NK cells in CRC. (A, B) UMAP plots show the distribution and abundance of different cell subpopulations in CRC.
(C) A pie chart shows the percentage of NK cells. (D) Visualization of interaction probabilities between NK cells and other cells using CellChat.
(E) A volcano plot shows differentially expressed genes within NK cells. Red indicates fold change > 1.5, FDR < 0.05; green indicates fold change
<15, FDR < 0.05.
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FIGURE 3

Prognosis-associated NK cell-related IncRNAs. (A) A volcano plot shows 1,133 differentially expressed NK cell-related IncRNAs identified in CRC (red:
logFC > 0.585, FDR-adjusted p < 0.05; green: logFC < 0.585, FDR-adjusted p < 0.05). (B) A heatmap visually displays the top 50 most significantly
differentially expressed NK cell-related IncRNAs. (C) A forest plot shows the results of univariate Cox regression analysis, identifying 42 IncRNAs
associated with CRC prognosis (green indicates hazard ratio < 1; red indicates hazard ratio > 1).

We observed correlations between NK cells and multiple T cell-
related immunogenomes (Supplementary Figure S8).

2.3 Construction and multi-center
validation of a prognostic model based on
NK cell signature genes

We extracted expression profiles of previously discovered NKGs

from TCGA colorectal adenocarcinoma read cohort (16). Utilizing
Pearson correlation assay (correlation coefficient exceeding 0.4, p-value
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below 0.001), we detected NK cell-associated IncRNAs. Subsequent
differential expression analysis revealed 1,133 dissimilarly expressed
NK cell- attached IncRNAs within CRC (Figure 3A). We utilized
heatmap visually displays the top 50 most differentially expressed genes
in CRC cases (Figure 3B). Univariate Cox regression analysis of the
training cohort identified 42 prognosis-associated IncRNAs
(Figure 3C). A heatmap illustrates their expression differences
between CRC tumors and normal tissues (Figure 4A). To preclude
overfitting, LASSO regression analysis was implemented (Figures 4B,
C). Multivariable Cox regression further refined the model to 16
independent NK cell-related IncRNAs with prognostic significance.
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Prognosis-associated NK cell-related IncRNAs. (A) A heatmap shows the expression differences of identified IncRNAs between CRC and normal
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expression. The training cohorts were divided into low - high risk
(1:1 ratio). The expression analysis of 16 IncRNAs demonstrated
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expression in low-risk counterparts (Figure 5A). In addition to
illustrating the distribution and survival outcomes of CRC patients in
the training cohort (Figure 5B), the study revealed a significant
correlation between high-risk scores and elevated mortality rates
(Figure 5C). The model demonstrated strong predictive functioning,
with 1,3 and 5-year AUC values of 0.918, 0.899, and 0.892, respectively,
in the training set (Figure 5D). Internal verification using the test group
and the entire group (Figures 5E-L) consistently replicated findings in
IncRNA expression patterns, survival analysis, and different expression,
confirming the soundness of the prognostic model. To verify the
validity of the model, we obtained IncRNA expression profiles and
survival data from 76 CRC clinical samples from the sample bank of
Tongji Hospital Affiliated to Tongji Medical College of Huazhong
University of Science and Technology, to further assess the robustness
of the risk scoring model. The analysis results showed that aspects such
as the expression patterns of the 16 IncRNAs (Figure 5M), the
distribution of CRC patients in risk stratification groups and their
survival status (Figure 5N), the significant correlation between high-
risk scores and higher mortality (Figure 50), and the area under the
ROC curve (Figure 5P) were similar to those of the TCGA training set
and internal validation set, thereby further confirming the reliability of
this risk scoring model.

2.4 Clinical application value exploration of
the NK cell-related IncRNA signature

We evaluated the clinical utility of the NK cell-related IncRNA
signature by incorporating the score of risk as a prognostic parameter
alongside other clinical parameters in univariate COX regression
analysis (Figure 6A). Age, TMN stage, and risk score were recognized
as influential prognostic parameters (HR> 1, p < 0.05). Subsequent
multivariable COX regression analysis confirmed age, TNM stage,
and risk score as independent prognostic indicators (Figure 6B). ROC
analysis demonstrated that the risk score outperformed all else
clinical parameters in predictive accuracy (Figure 6C). A
nomogram uniting age, TNM stage, and risk score used to enhance
clinical risk stratification (Figure 6D). The calibration curves for 1-, 2-
, and 3-year survival closely aligned with ideal predictions, and a
concordance index (C-index) of 0.801 further validated the
nomogram’s reliability (Figure 6E). Stratified analyses across sex,
TNM stage, and age subgroups (<65 vs. >65 years) consistently
affirmed the robust predictive power of the risk score (Figures 6F-Q).

2.5 Integrated multi-omics enrichment
analysis of dissimilarly expressed genes
reveals immune microenvironment
dysregulation in high-risk subgroups

To investigate the mechanisms underlying poor prognosis in
high-risk patients, we identified 124 dissimilarly expressed genes
(DEGs) (Jlog2FC| > 1, FDR-adjusted p < 0.05) between high and low
risk groups (Figure 7A). A heatmap highlights the top 30 most
important DEGs (Figure 7B). GO enrichment assay unveiled that
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the high-risk crowd exhibited marked alterations in endoplasmic
reticullum lumen and RNA polymerase II-specific DNA-binding
transcription activator activity (Figures 7C, D). KEGG pathway
assay demonstrated enrichment of cell signaling pathways in the
high-risk group, including neuroactive ligand-receptor interactions,
Wnt signaling, pluripotency regulation, Hippo signaling, AGE-
RAGE signaling, and apelin signaling (Figure 7E). Gene Set
Enrichment Analysis (GSEA) further uncovered important
beneficiation of keratinization and extracellular matrix (ECM)
structural organization in the high-risk group, suggesting
epithelial-mesenchymal dysregulation and invasive tumor
pathology. In contrast, the low-risk group showed prominent
enrichment of nucleosome assembly and chromatin structural
components, potentially linked to enhanced genomic stability and
stringent transcriptional control (Figures 7F, G).

2.6 Risk stratification of colorectal cancer
by NK cell-related IncRNA model reveals
immune microenvironment regulation
mechanisms and new strategies for
targeted therapy

In the analysis of the immune microenvironment, CRC cases in
the high-risk crowd, as determined by the NK cell-related IncRNA
signature, exhibited major discrepancies in stromal score, immune
score, and estimate score (Figures 8A-C). The combined evaluation
of these scores can systematically reveal the variation of TME in
CRC and holds important prognostic value for patients. Our study
investigated the correlation among the NK cell-related IncRNA
signature score and immune percolation within CRC. Using
numerous software tools to judge the immune cell infiltration
degree in CRC crowds, we observed that the infiltration level of
NK cells in TME of CRC crowds was significantly positively
connected with the risk score formulated on the NK cell-related
IncRNA model (Figure 8D). An elevated level of NK cell infiltration
is typically associated with enhanced tumor cell killing efficiency,
representing a proactive engagement of the immune system to curb
tumor progression. Further analysis revealed that patients in the
high-risk group displayed enhanced antigen-presenting co-
stimulation, significant upregulation of immune checkpoint
transcription levels, activation of the HLA pathway, as well as
abnormal activation of the parainflammatory response and type I
interferon (IFN) signaling pathway (Figure 8E). These phenomena
suggest a synergistic interplay between immune activation signals
and inhibitory regulatory networks within TME: on one hand,
overexpression of immune checkpoints suppresses the anti-tumor
functions of effector cells; on the other hand, chronic inflammatory
responses and activation of the type I IFN pathway may further
exacerbate immune evasion through immune exhaustion mediated
by pro-inflammatory cytokines or the recruitment of
immunosuppressive cells. Thus, the immune profile of the high-
risk sort reflects the complexity of tumor immune evasion through
multiple regulatory mechanisms. Immune checkpoint analysis
showed that, except for HHLA2, which was significantly
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Association between the prognostic model and clinical factors. (A) Univariate Cox regression shows factors affecting CRC prognosis. (B) Multivariate
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overexpressed in the low-risk group, the remaining 21 immune
checkpoint genes (ICGs) were significantly upregulated in the high-
risk population, indicating a more severe state of tumor
immunosuppression. Since these genes serve as the targets of
immune checkpoint inhibitors (ICIs), the high-risk population
may exhibit greater sensitivity to ICI therapy (Figure 8F). We
conducted a drug sensitivity assessment, which revealed that the
high-risk crowd exhibited higher sensitivity to drugs including
AZ960, AZD1332, AZD2014, AZD8186, IGF1R_3801,
Luminespib, and XAV939, indicating that these patients may
benefit more from these therapies, while Dihydrorotenone and
TAF1_5496 were proved to be further suitable for patients in the
low-risk group (Figure 8J).

Frontiers in Immunology

2.7 Characterization of CRC molecular
subtypes based on NK cell-related IncRNA

In this way, we classified CRC tumor samples using the NK cell-
related IncRNA model. Among the tested values, K = 3 exhibited a
flatter and closer-to-maximum CDF distribution (Figures 9A-C).
Therefore, we set ¥ = 3 and divided the CRC tumor samples into
three subtypes: Cluster 1-3 (Cl, C2, C3) (Figures 9D, E). The
relationship between high and low-risk score groups and tumor
subtypes was visualized using a Sankey diagram. C1 and C2 were
predominantly found in the high-risk group, while C3 was mainly
distributed in the low-risk group (Figure 9F). Survival examination
showed that subtype C1 had the worst prognosis (Figure 9G). These
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results demonstrate that the NK cell-related IncRNA model is
capable of classifying CRC patient samples into molecular subtypes.

2.8 Molecular subtyping of colorectal
cancer formulated on NK cell-related
INcRNA reveals heterogeneity in
immunotherapy and new strategies for
personalized treatment

To evaluate the potential of molecular subtyping based on NK
cell-related IncRNA in immunotherapy for CRC subtypes, we
conducted an in-depth analysis of the tumor immune
microenvironment. Using various algorithms, we observed the most
plentiful immune cell infiltration in subtype C1 CRC, while subtypes
C2 and C3 exhibited weaker immune cell infiltration (Figure 10A).
We further analyzed the StromalScore, ImmuneScore, and
ESTIMATEScore for different subtypes (Figure 10B). The scores for
subtype C1 were uniformly high, the estimates for subtype C3 were
low, and subtype C2 was in the middle. This further revealed the
heterogeneity of the CRC tumor microenvironment: the high-
infiltration and functional inhibition features of subtype CI, the
partial activation state of subtype C2, and the immune-cold
phenotype of subtype C3, each corresponding to different
therapeutic targets and clinical strategies. Additionally, we
performed immune checkpoint analysis (Figure 10C). For CRC
subtypes with high levels of expression of immune checkpoint
genes, the use of immune checkpoint inhibitors targeting the
corresponding genes would be more appropriate. It was found that,
except for CD40LG, TNFRSF14, and TNFRSF25, which were
extremely expressed in subtype C2, the remaining immune
checkpoint genes were highly expressed in subtype Cl1. Subtype C3
had the lowest expression in most immune checkpoints, indicating
less immunosuppression and a better prognosis. Our analysis of drug
sensitivity based on the three molecular subtypes showed that patients
in subtype C1 had the highest sensitivity to BPD-00008900, JQ1, and
WIKI4; those in subtype C2 had the highest sensitivity to Navitoclax;
and those in subtype C3 had the highest sensitivity to Afuresertib,
MK-2206, PF-4708671, and Selumetinib (Figure 10D, Supplementary
Figure S9). Molecular subtypes based on NK cell-related IncRNAs aid
in assessing the immune microenvironment and immunotherapy,
offering fresh thinking for precise CRC treatment, with in-depth
analysis of each subtype enhancing personalized treatment strategies
and improving therapeutic outcomes.

2.9 AC010319.3 inhibits NK cell function to
promote CRC progression

To verify the regulatory role of IncRNA on NK cells, we
employed flow cytometry to sort tumor tissues from CRC
patients (Supplementary Figure S1I0A). Through qPCR detection
of IncRNA expression levels in NK cells and CRC tumor tissues, we
found that AC010319.3 exhibited the most significant upregulation
relative to tumor tissues (Figure 11A). Subsequently, qPCR was
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used to detect IncRNA expression in the NK cell line NK92 and
CRC cell lines (HCT-116, HT-29, and SW-480), revealing that
AC010319.3 expression was higher in NK92 cells than in the three
CRC cell lines (Figure 11B, Supplementary Figure S10B). Therefore,
this study focused on the function of AC010319.3 in NK cells and its
mechanism by which it regulates NK cell killing capacity to
influence CRC progression. TCGA database analysis revealed that
high expression of AC010319.3 was significantly associated with
poor patient prognosis (Supplementary Figure S10C), and our 76
independent clinical samples also showed that high expression of
AC010319.3 was significantly associated with poor patient
prognosis (Supplementary Figure S10D). To clarify the function
of AC010319.3 in NK cells, we successfully constructed NK92 cell
models with overexpression and knockdown of AC010319.3
(Supplementary Figures S10E, F). Flow cytometry detection
showed that, compared to the Vector group, overexpression of
AC010319.3 significantly reduced the expression of IFN-y and
GZMB in NK92 cells; whereas, compared to the si-NC group,
knockdown of AC010319.3 markedly increased the expression of
IFN-y and GZMB in NK92 cells, indicating that AC010319.3 can
effectively inhibit the expression of key effector molecules in NK92
cells (Figure 11C). Subsequently, NK92 cells with overexpression
and knockdown of AC010319.3 were co-cultured with HCT116
cells, respectively. Transwell assays showed that the invasion ability
of HCT116 cells was enhanced in the AC010319.3 overexpression
group, while it was weakened in the knockdown group
(Figure 11D). CCK-8 and plate colony formation assays showed
that the proliferation vitality of HCT116 cells was significantly
enhanced in the AC010319.3 overexpression group, while it was
significantly inhibited in the knockdown group (Figures 11E, F).
These results consistently indicate that AC010319.3 promotes CRC
progression by inhibiting NK cell function, thereby attenuating
their suppressive effect on colorectal cancer cells.

3 Discussion

In this study, we constructed and validated a CRC prognostic
signature based on 16 IncRNAs. Analysis of the TCGA database and
76 independent clinical samples demonstrated that the model
exhibited robust stability and predictive performance in terms of
expression patterns, risk stratification, survival distribution, and
ROC curves, further supporting its clinical application potential. To
investigate the impact of IncRNAs on NK cell function, we selected
AC010319.3—the IncRNA with the most significant upregulation in
NK cells from colorectal cancer tissues—for subsequent validation.
We found that it was highly expressed in tumor-infiltrating NK cells
and the NK92 cell line, and it was significantly associated with poor
patient prognosis. Functional experiments revealed that
AC010319.3 inhibits the expression of IFN-y and GZMB in NK
cells, thereby promoting the proliferation and invasion of CRC cells.
This discovery unveils a novel mechanism by which AC010319.3
promotes CRC progression through suppression of NK cell
function, providing a potential molecular target for CRC
therapeutic strategies targeting NK cell function.
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Immune and drug sensitivity analysis of the new CRC molecular subtyping. (A) Quantitative analysis of immune infiltration in the new CRC molecular
subtyping using various algorithms. (B) ESTIMATE Score, ImmuneScore, and StromalScore for different CRC subtypes. (C) Immune checkpoint

analysis for different CRC subtypes. (D) Drug sensitivity analysis for differe

Using the risk score, we isolated patients into high- and low-risk
crowds and found significant differences in pathway enrichment
between the two groups. KEGG enrichment analysis showed that
the cell signaling pathways enriched in the high-risk group included
neural active ligand-receptor interaction, Wnt signaling, stem cell
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nt CRC subtypes. *P < 0.05, **P < 0.01, ***P < 0.001.

pluripotency regulation, Hippo signaling, AGE-RAGE signaling
and Apelin signaling pathways. Studies have shown that Wnt
signaling and Hippo signaling can affect the development of CRC,
suggesting that the synergistic dysregulation of Wnt and Hippo
signaling pathways in CRC patients may drive the enormous
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AC010319.3 Promotes Colorectal Cancer Progression by Suppressing NK Cell-Related Functions. (A) Relative expression of IncRNA in NK cells within
tumor tissues. (B) Comparison of IncRNA expression between NK cell lines and colorectal cancer cell lines. (C) Detection of intrinsic functions of NK
cells through overexpression and knockdown of AC010319.3. (D) Transwell assay to validate invasive ability after overexpression and knockdown of
AC010319.3. (E) Colony formation assay to validate proliferative ability after overexpression and knockdown of AC010319.3. (F) CCK-8 assay to
validate proliferative ability after overexpression and knockdown of AC010319.3. *P < 0.05, **P < 0.01, ***P < 0.001.

movement of tumors through the formation of YAP/B-catenin
complex (17, 18). NK cell-related IncRNA may promote
proliferation by regulating PB-catenin target genes, and induce
YAP/TAZ nuclear translocation by inhibiting Hippo pathway to

Frontiers in Immunology 15

enhance the characteristics of cancer stem cells (19). In addition,
GSEA showed that keratinization and extracellular matrix
structural mechanisms were considerably enriched in the high-
risk group, possibly reflecting epithelial-mesenchymal interactions
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and the pathological mechanisms of aggressive tumors. In contrast,
the low-risk group showed more pronounced enrichment of
nucleosome assembly and chromatin structural components,
which may be related to enhanced genomic stability, tight
transcriptional regulation, and precise cell cycle control. These
findings indicate that NK cell-associated IncRNAs may influence
the malignant progression of CRC by regulating key signaling
networks and molecular mechanisms.

Our study elucidates the dynamic interplay mechanisms between
NK cell-related IncRNAs and TME in CRC. While the high-risk group
exhibits increased NK cell infiltration and enhanced immune co-
stimulation, the abnormal activation of immune checkpoints and
chronic inflammatory responses mediated by type I interferon
collectively shape the dynamic imbalance of the microenvironment.
This finding offers an academic basis for precision treatment strategies
targeting immune checkpoints in combination with inflammatory
pathway regulation. Currently, researchers are enhancing the talent
of NK cells to discern and kill tumors through genetic modification, ex
vivo expansion, and combined drug stimulation. Immune checkpoint
analysis revealed that, except for HHLA2, which was significantly
overexpressed in the low-risk group, the remaining 21 ICGs were
significantly upregulated in the high-risk group. This further highlights
the complexity of tumor immune evasion through multiple
immunosuppressive mechanisms. CTLA-4 has a chief part in
regulating immune responses and inducing self-tolerance (20).
HHLA2 is a B7 family checkpoint molecule with unique dual
immune regulatory functions, exhibiting a negative correlation with
PD-L1 expression (21). Targeting its inhibitory signaling pathway or
developing bispecific antibodies that simultaneously block PD-L1 and
activate HHLA2 may be applicable to tumors that do not respond well
to existing checkpoint inhibitors. Else ICGs molecules also hold
potential value in the progress of immunotherapeutic drugs for
colorectal cancer, which requires further validation through
multicenter, large-sample clinical studies.

The prognostic model for CRC developed in this study has
revealed distinct treatment sensitivities among different patient
cohorts through the molecular stratification into subtypes C1-C3.
Specifically, the C1 subtype exhibits the highest sensitivity to BPD-
00008900, an experimental small-molecule inhibitor targeting the
DNA damage repair pathway, as well as to JQ1 (a BET inhibitor)
and WIKI4 (a Wnt pathway inhibitor). In contrast, the C2 subtype
demonstrates sensitivity to Navitoclax, a BCL-2/BCL-xL inhibitor.
The C3 subtype shows significant responses to Afuresertib and MK-
2206, both AKT inhibitors, and to Selumetinib, a MEK inhibitor.
The study findings indicate that AKT inhibitors such as MK-2206,
MEK inhibitors like Selumetinib, and BET inhibitors including JQ1
all exert significant effects on CRC treatment (22-24). It is
important to note that drugs such as BPD-00008900 and
Navitoclax are currently in preclinical research stages, and their
safety and efficacy require validation through multicenter trials.

This study has certain limitations that warrant further
validation in future research. Although we have verified the
model’s performance using 76 clinical samples, its generalizability
still requires further confirmation through future multi-center,
large-sample prospective studies. Additionally, we fully recognize
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the importance of employing a longitudinal sampling design to
further validate the prognostic value of the aforementioned
IncRNAs. As such validation requires prospective study design,
dynamic sample collection at multiple time points, and control for
treatment-related confounding factors, it has not been included in
the current study. We plan to specifically design longitudinal cohort
studies in follow-up work to further evaluate the clinical potential of
these IncRNAs in prognostic assessment of colorectal cancer. At the
mechanistic level, the molecular mechanisms through which
AC010319.3 regulates NK cell function and the immune
microenvironment—particularly its specific downstream targets
and signaling networks—remain unclear. Therefore, future studies
will prioritize expanding the scope of external validation and
further investigating the targets and signaling networks of
AC010319.3 to facilitate its translation into clinical
precision immunotherapy.

4 Conclusion

For the research, we integrated single-cell and multi-omics data
to construct a prognostic model for CRC built on 16 NK cell-related
IncRNAs, which operates independently of traditional parameters.
We focused on exploring how AC010319.3 promotes tumor
progression by inhibiting NK cell function, thereby providing
potential targets and directions for precision immunotherapy
in CRC.

5 Materials and methods

5.1 Single-cell transcriptomic data
integration and NK cell population
annotation

Single-cell transcriptomic data encompassing 10,468 cells from
CRC were obtained from the GSE146771_Smartseq2 dataset in the
GEO database. The data were analyzed using the TISCH2 platform
(25). Dimensionality reduction was performed via Principal
Component Analysis, and cell populations were identified and
classified using the K-nearest neighbors (KNN) algorithm and the
Louvain algorithm. Cell types were noted according to cell type-
specific marker genes. Subsequently, the Wilcoxon rank-sum test
was employed to identify genes with substantially differential
expression in NK cell populations compared to all other cell
populations. The selection criteria were an absolute fold change (|
fold change|) >1.5 and a false discovery rate (FDR) <0.05 (26).

5.2 Cell-cell communication network
analysis
We employed the CellChat tool (version 1.0.0) on the TISCH2

platform, based on the mass action model with a default interaction
score threshold of 0.01, to analyze the expression models of detected
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L-R pairs across distinct cell populations and evaluate intercellular
interactions. Using CellChat’s netVisual_circle, we mapped and
visualized significant L-R interactions across cell subtypes. For each
cell population, significant L-R pairs were identified and annotated
as either “source” or “target” cells, with a statistical significance
threshold of P < 0.05.

5.3 Functional enrichment of multicellular
clusters

To gain deeper insights into the gene enrichment characteristics
of distinct cell type populations, we performed GSEA on the
TISCH2, ranking genes based on their logarithmic fold changes
derived from differential analysis. Through an integrated approach
combining KEGG pathway analysis, GO enrichment analysis, and
GSEA, we identified and visualized substantially enriched biological
pathways across each cell cluster (FDR = 0.05). This comprehensive
methodology provided a robust foundation for elucidating
functional enrichment patterns among heterogeneous
cell populations.

5.4 TCGA data integration and NK cell-
related IncRNA screening

We first retrieved gene expression profiles, clinical data, and
somatic mutation information from 566 tumor samples and 44
normal colorectal tissue samples in TCGA database (27).
Differential expression analysis was conducted to compare mRNA
expression levels between tumor and non-tumor tissues. Building
on this, we integrated the previously identified NK cell-associated
differentially expressed genes and applied a correlation coefficient
threshold of 0.4, thereby screening 3,837 NK cell-related IncRNAs.
Finally, utilizing the “R.limma” gene expression analysis package,
we identified 1,133 NK cell-related IncRNAs that showed
substantial different manifestation between tumor and non-
tumor tissues.

5.5 Construction of the NK-IncRNA
prognostic model

CRC patients in this study were randomly divided into two cohorts
at a 1:1 ratio (28), designated as the training and validation sets.
Univariate COX regression analysis identified 42 NK cell-related
IncRNAs associated with CRC prognosis in the training set.
Subsequently, a multivariable Cox regression analysis was performed
to set up a prognostic prediction model for CRC in the training set.
Based on the coefficients assigned to each NK cell-related IncRNA by
the model, Risk Score = 1.66835172119723 x LINC01354 expression +
0.382958718659199 x LINC02257 expression + 1.05788009854083 x
AC010319.3 expression + 0.954271934790829 x AC009133.3
expression — 2.0577555829965 x THOC7-AS1 expression —
0.915211633569471 x LINC02100 expression — 1.06232138758457 x
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AL390719.3 expression + 0.876450507692965 x PLS3-AS1
expression + 0.66491751956799 x AC145423.2 expression +
0.689453742016689 x ALMS1-IT1 expression + 3.25571273528702 x
ZFHX2-AS1 expression + 0.489382404521168 x AP003555.1
expression — 1.04327479032394 x AC103739.1 expression +
1.06508271262886 x NSMCE1-DT expression — 2.316681672941 x
AL596214.1 expression — 3.18945858556773 x AC244100.2
expression. Patients were stratified into high- and low-risk groups
based on this risk score. Kaplan-Meier analysis demonstrated
significant survival differences between the risk groups. The model’s
performance was evaluated using receiver operating characteristic
(ROC) curves and further validated in both the validation dataset
and the entire cohort. In addition, we have included an extra 76
independent clinical samples as an external validation dataset to further
verify the reliability of the model.

5.6 Molecular characterization of high- and
low-risk groups

We first employed the limma package in R to identify DEGs
between risk groups using predefined thresholds ([log2(FC)| > 1,
[FDR] < 0.05). The outcomes were projected via volcano plots and
heatmaps to illustrate the distribution and magnitude of DEGs.
Subsequently, GO enrichment analysis, encompassing biological
processes, cellular components, and molecular functions, was
performed using the clusterProfiler package in R. KEGG pathway
enrichment analysis was also conducted, with significantly enriched
pathways displayed as bubble plots. Furthermore, GSEA was used
to assess biological function disparities between risk groups (29-
31). (NES > 1, FDR < 0.05).

5.7 Immune microenvironment
quantification

To investigate immune heterogeneity between risk groups, we
integrated multiple bioinformatics approaches. Differential
expression analysis of immune checkpoint-related genes was
performed using the limma package in R. Data integration and
reshaping were facilitated by the reshape2 package to ensure
compatibility with downstream analyses. Immune-related
functional states were evaluated via single-sample GSEA
implemented in the GSVA package, enabling comprehensive
quantification of immune activity. This multi-tool framework
provided robust insights into the immune landscape, supporting
translational research and clinical applications (32).

5.8 Consensus clustering-based molecular
subtyping framework for CRC

Unsupervised consensus clustering was performed using the

ConsensusClusterPlus package in R to delineate molecular subtypes
of CRC (33). The optimal cluster number was decided by
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systematically evaluating three algorithmic outputs: CDF plots:
Stability of clustering solutions was assessed by comparing slope
changes in cumulative distribution curves across candidate cluster
numbers. Consensus matrices (CM): These numerical matrices
quantified the frequency with which sample pairs were assigned
to the same cluster across iterative subsampling. Consensus
heatmaps: Visual representations of consensus matrices
highlighted clustering patterns, facilitating intuitive interpretation.
The integration of these metrics established the optimal molecular
classification, forming a theoretical foundation for prognostic
model development.

5.9 Clinical sample collection

Pathological specimens from 76 CRC patients were obtained
from Tongji Hospital, Tongji Medical College, Huazhong
University of Science and Technology, China. Informed consent
was provided by all patients, and the diagnosis of CRC was
confirmed by two pathologists. This study was conducted in
accordance with the ethical principles of the Declaration of
Helsinki regarding ethical considerations and patient safety
(Approval No.TJ-IRB20230934).

5.10 Flow cytometry cell sorting

Fresh tumor tissues were obtained from surgical resections of
CRC patients. Fresh tissue samples were rinsed with pre-chilled PBS
to remove blood and debris, then minced into 1-2 mm?® fragments.
The tissue fragments were digested in an enzyme solution
containing collagenase and DNase at 37°C in a constant-
temperature shaker for 30-60 minutes, with gentle pipetting every
15 minutes. After digestion, the mixture was filtered through a
70 um cell strainer. The filtrate was centrifuged at 1500 rpm for
5 minutes, and the supernatant was discarded to obtain a single-cell
suspension. Cells were counted using trypan blue dye to exclude
dead cells and assess suspension viability. The cell concentration
was adjusted to 1x10°-5x10° cells/ml. Subsequently, 100 pl of the
cell suspension was transferred to a flow cytometry tube, and
fluorescently labeled antibodies against CD45, CD3, and CD56
were added (at concentrations recommended by the
manufacturer). The mixture was gently mixed and incubated at
4°C in the dark for 30 minutes. After incubation, 2 ml of pre-chilled
PBS was added, followed by centrifugation at 1500 rpm for 5
minutes. The supernatant was discarded, and the washing step
was repeated twice. Finally, cells were resuspended in 300-500 pl of
pre-chilled PBS to prepare samples for analysis. Flow cytometry was
used to sort tumor-infiltrating NK cells from fresh CRC tumor
tissues. Single-cell suspensions were prepared from tumor tissues,
and NK cells were identified and isolated as CD56+CD3- cells. The
purity of CD56+CD3— NK cells in all samples exceeded >95%.
Immediately after sorting, a portion of the NK cells (approximately
5% 10*to 1 x 10° cells per sample) was used for RNA extraction and
subsequent qPCR analysis of IncRNA expression levels, while the
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remaining cells were cryopreserved in liquid nitrogen for future
experiments. QPCR detection of IncRNA expression in NK cells and
CRC tumor tissues was performed using samples from 10
independent CRC patients. Cell sorting was conducted on a
CytoFLEX SRT flow cytometer. Controls included FMO controls,
with approximately 1 x 10° events acquired per sample. During flow
cytometry, appropriate gates were set to acquire 10*~10° cells, and
data were analyzed using FlowJo software. The gating strategy
included: (1) FSC-H/SSC-H for lymphocytes, (2) FSC-H/FSC-A
for singlets, (3) LDPB450/FSC-A to exclude dead cells, (4)
CD45FITC-H/FSC-A to identify and isolate leukocytes, (5) CD3—
to exclude T cells, and CD56+ to select NK cells (see Supplementary
Figure S10A for details).

5.11 Cell culture

Human CRC cell lines (HCT-116, HT-29, SW480) were purchased
from the Cell Bank of the Chinese Academy of Sciences (Shanghai,
China) and cultured in Dulbecco’s Modified Eagle Medium (DMEM;
EallBio, Beijing, China) supplemented with 10% fetal bovine serum
(FBS; Gibco, California, USA) and 1% penicillin-streptomycin—
amphotericin solution (NCM Biotech, Suzhou, China).

The human NK cell line NK92 was obtained from the Cell Bank
of the Chinese Academy of Sciences (Shanghai, China). The cells
were cultured in RPMI1640 medium (GIBCO) supplemented with
10% fetal bovine serum (FBS, GIBCO), 4 mM L-glutamine
(GIBCO), 100 U/mL penicillin and 100 pg/mL streptomycin
(Sigma-Aldrich), 10 mM HEPES (Sigma-Aldrich), and 100 U/mL
recombinant human interleukin-2 (IL-2, Novartis).

5.12 Real-time quantitative PCR

Total RNA was extracted using the Trizol method (T9108,
Takara, Dalian, China), and reverse transcription was performed
using an enzyme kit. Subsequently, QRT-PCR was conducted using2
x ChamQ Universal SYBR qPCR Master Mix (Q711-02, Vazyme,
Nanjing, China). The primer sequences used are listed in
Supplementary Table S1.

5.13 Transfection

The pcDNA3.1 plasmid for AC010319.3 overexpression and the
siRNA plasmid for AC010319.3 knockdown were obtained from
Qingke Biological Company in Wuhan, China. Cells were seeded

into 6-well plates at the correct density. Transfection was performed
using lipofectamine 3000 following the provided instructions after 24 h.

5.14 Flow cytometry analysis

The NK92 cell line was used, and adherent cells were collected
via trypsin digestion to prepare a single-cell suspension. To detect
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induced IFN-y expression, cells were stimulated in complete
medium containing PMA (50 ng/mL), ionomycin (1 ug/mL), and
a protein transport inhibitor (e.g., monensin) at 37°C with 5% CO,
for 4-6 hours; all cells were uniformly subjected to stimulation
conditions. After stimulation, cells were washed with pre-chilled
PBS (centrifuged at 1500 rpm for 5 minutes, repeated twice). Then,
100 pl of cell suspension (adjusted to 1x10°-5%10° cells/ml, with
viable cell count confirmed by trypan blue staining) was transferred
to a flow cytometry tube. Fluorescently labeled anti-CD56 antibody
was added (at the manufacturer-recommended concentration),
gently mixed, and incubated at 4°C in the dark for 30 minutes.
After incubation, 2 ml of pre-chilled PBS was added, followed by
centrifugation at 1500 rpm for 5 minutes; the supernatant was
discarded, and the wash was repeated twice. Cells then underwent
fixation and permeabilization (fixed with 4% paraformaldehyde for
20 minutes, followed by permeabilization with permeabilization
buffer for 15-20 minutes). Subsequently, fluorescently labeled anti-
IFN-y and anti-GZMB antibodies were added simultaneously (at
manufacturer-recommended concentrations) and incubated at 4°C
in the dark for 30 minutes. After incubation, 2 ml of pre-chilled PBS
was added, cells were centrifuged at 1500 rpm for 5 minutes, the
supernatant was discarded, and the wash was repeated twice.
Finally, cells were resuspended in 300-500 pl of pre-chilled PBS
to prepare samples for acquisition. Flow cytometry analysis was
performed on a CytoFLEX SRT flow cytometer, with FMO controls
included. Appropriate channels were set during acquisition to
collect 10*-10° events per sample, and data were analyzed using
FlowJo software. The gating strategy included: (1) FSC-H/SSC-H
for lymphocytes, (2) FSC-H/FSC-A for singlets, and (3) CD56+ for
NK cell identification (see Supplementary Figure S10G for details).

5.15 Co-culture assay

NKO92 cells transfected with Vector and AC010319.3-OE were co-
cultured with HCT116 cells (E:T = 1:1) for 48 hours. The cell
suspension obtained after digestion was used for functional assays.
To maintain cell viability, the mixed medium (RPMI-1640:DMEM =
1:1) containing 200 U/mL IL-2 was gently replaced every 12 hours

without disturbing the adherent cells. Functional assays were
repeated using NK92 cells transfected with si-NC and si-
AC010319.3 co-cultured with HCT116.

5.16 Transwell invasion assay

After co-culture treatment, HCT116 cells were seeded into the
upper chamber of a Matrigel-coated Transwell insert and
resuspended in serum-free medium. The lower chambers were
filled with medium supplemented with serum. After incubation,
non-invaded cells on the upper surface of the membrane were
removed, and invaded cells on the lower surface were fixed and
stained. Finally, invaded cells were visualized under a microscope
and quantified.
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5.17 Cell proliferation assay

Cell proliferation was assessed using the Cell Counting Kit-8
(CCK-8; NCM Biotech). For the colony formation assay, 500 cells
were seeded and incubated for two weeks. Colonies were fixed with
paraformaldehyde for 0.5 hours, stained with crystal violet for 1
hour, counted, and photographed.

5.18 Analysis of statistics

All studies were conducted in R 4.4.3 and GraphPad Prism 8.0.
Key methods included: Kruskal-Wallis tests for comparing ICGs
expression, immune scores, and drug sensitivity across risk groups.
Kaplan-Meier survival curves with log-rank tests (via the survival
package) to assess survival disparities. Multivariable Cox proportional
hazards models to evaluate joint effects of covariates. All tests were
two-tailed, with statistical significance defined as P < 0.05.
Significance levels were annotated as: *P < 0.001, P < 0.01, P < 0.05.
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The primary data supporting this study were obtained from the
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corresponding author upon reasonable request.
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