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Introduction: Individuals diagnosed with colorectal cancer (CRC) frequently

confront a grave prognosis and exhibit poor responses to conventional

treatment regimens. Immunotherapy, notably modalities centered on natural

killer (NK) cells, represents a burgeoning frontier in the management of CRC. This

study developed a validated prognostic model using NK-associated long non-

coding RNAs (lncRNAs) to predict CRC outcomes.

Methods: Integrating single-cell RNA-seq (GSE146771_Smartseq2) and TCGA-

COAD/READ bulk transcriptomic data, we identified NK-specific genes and

correlated lncRNAs. A multi-step analytical approach—including univariate Cox

regression for preliminary screening, LASSO regression to minimize overfitting,

and multivariate Cox regression for final model optimization—yielded a robust

16-lncRNA prognostic signature with high predictive accuracy.

Results: This model demonstrated robust predictive performance across the

training set, validation set, and 76 independent clinical samples. Mechanistic

investigations revealed that AC010319.3 is highly expressed in NK cells, where it

attenuates NK cell cytotoxicity by suppressing the expression of IFN-g and

granzyme B, thereby promoting the proliferation and invasion of CRC cells.

Discussion: This study systematically delineates the regulatory role of NK-

associated lncRNAs within the CRC immune microenvironment, offering novel

molecular targets and stratification strategies for CRC immunotherapy.
KEYWORDS

tumor immune single-cell hub 2, colorectal cancer, NK cell-related lncRNAs, tumor
immune microenvironment, molecular subtyping
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1 Introduction

Globally in 2022, colorectal cancer was responsible for nearly

1.93 million new diagnoses, making it the third most frequent

cancer, and for approximately 904,000 fatalities, ranking it as the

second leading cause of cancer mortality, only after lung cancer (1).

CRC constitutes nearly 10% of both newly diagnosed malignancies

and cancer-associated fatalities globally (2). While surgical

resection, radiotherapy, and chemotherapy remain therapeutic

cornerstones, their clinical utility is constrained by significant

limitations. Surgery is exclusively applicable to localized lesions

and fails to address micrometastases, whereas conventional

chemoradiotherapy indiscriminately inhibits tumor proliferation,

often inducing severe off-target complications such as

myelosuppression, radiation-induced enteritis, and other related

disorders. Furthermore, these traditional modalities demonstrate

limited efficacy against microsatellite stable (MSS) CRC

(representing 85% of cases) and metastatic disease, with 5-year

survival rates remaining below 15%. In contrast, Chimeric Antigen

Receptor (CAR) technology, as a core strategy of emerging

immunotherapy, achieves precise recognition and killing by

expressing CAR structures targeting tumor-specific antigens and

utilizing host immune activation, while overcoming immune

suppression mediated by the tumor microenvironment (TME)

(such as TGF-b and PD-L1 signaling), thereby significantly

enhancing cytotoxicity against MSS-CRC (3).As a potent anti-

tumor modality, immunotherapy may represent a breakthrough

in CRC prognosis optimization and potential cure, positioning itself

as an alternative therapeutic strategy for CRC patients.

While T cell-centric immunotherapies, particularly PD-1/

PD-L1 inhibitors, have achieved remarkable progress in

microsatellite instability-high (MSI-H) CRC, their clinical efficacy

remains limited in microsatellite stable (MSS) subtypes that account

for 85% of CRC cases (4). This unmet therapeutic challenge has

prompted a redirection of scientific focus toward other immune

cells, with NK cells—central cytotoxic effectors of the innate

immune system—being one of them, demonstrating unique anti-

tumor potential in MSS-CRC. Clinical evidence indicates that MSS-

CRC patients exhibit suboptimal response rates (<15%) to T cell-

based therapies, attributable to low tumor mutational burden and

impaired antigen-presenting capacity (5). In stark contrast, NK cells

employ the ‘missing-self’ recognition paradigm, enabling MHC-I-

independent targeting of MSS tumor cells. As a crucial effector cell

of the innate immune system, NK cells possess a unique recognition

mechanism distinct from adaptive immune cells (B and T

lymphocytes) (6). CAR-T therapy is relatively mature in the

treatment of hematological tumors; however, in solid tumors such

as CRC, it faces challenges including toxicity, difficulty in tumor

microenvironment (TME) penetration, antigen escape, and limited

anti-tumor activity. CAR-NK therapy leverages the properties of

NK cells, such as the lack of requirement for HLA matching, innate

cytotoxicity, and multi-pathway killing mechanisms, thereby

reducing the risks of cytokine release syndrome (CRS) and graft-

versus-host disease (GVHD), enhancing TME infiltration and

persistence, and mitigating antigen escape, thus providing a safer,
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off-the-shelf therapeutic option for CRC (7, 8).Positioned as an

underexplored ‘missing puzzle piece’ in CRC immunotherapy, NK

cells may pioneer novel therapeutic avenues (9). With deepening

insights into NK cell biology, these innate lymphocytes are poised to

become a therapeutic pillar in CRC management.

Long non-coding RNA(lncRNAs) constitute a class of non-

coding RNA molecules exceeding 200 nucleotides in length (10).

Despite lacking open reading frames (ORFs) and consequent

protein-coding capacity, they critically regulate gene expression,

orchestrate epigenetic modifications, and dictate cellular fate across

physiological and pathological processes. These molecules execute

their functions through chromatin remodeling, transcriptional

interference, or RNA-protein complex formation, thereby

participating in sophisticated regulatory networks governing

development, metabolism, immune responses, and tumorigenesis

(11). Clinically, immune-related lncRNA-based prognostic models

demonstrate robust predictive accuracy in renal cell carcinoma;

similarly, in prostate cancer, TYMSOS, as a specific lncRNA

associated with immune microenvironment regulation, has been

confirmed as a novel biomarker with significant prognostic value

(12, 13). Nevertheless, despite growing recognition of lncRNAs’

immunomodulatory roles in oncology, the functional landscape of

NK cel l-associated lncRNAs in CRC immunotherapy

remains unexplored.

In this study, we recognized lncRNAs associated with NK cell

function through the TISCH2 and TCGA databases (14). Afterwards,

a predictive model for CRC was constructed from a stepwise

regression analysis, which incorporated 16 lncRNAs. This model,

when combined with age, TNM stage, and risk score, demonstrated

superior performance compared with traditional clinical indicators. A

risk prognostic model was constructed based on Cox regression, and

the model’s validity was verified using the TCGA dataset and 76 CRC

samples. To further elucidate the biological mechanisms underlying

the model, we focused on AC010319.3. Through in vitro and in vivo

functional experiments, we confirmed that AC010319.3 is specifically

highly expressed in NK cells and inhibits the cytotoxic function of NK

cells by negatively regulating key cytokines such as IFN-g and

granzyme B, thereby promoting the proliferation and invasion of

colorectal cancer cells. This reveals AC010319.3 as a potential

therapeutic target for regulating NK cell function, providing new

insights for CRC immunotherapy.
2 Results

2.1 Single-cell transcriptomic Atlas reveals
NK cell immune system and differentially
regulated gene signatures in colorectal
cancer

The progress of the current work is comprehensively depicted as

flow diagram (Figure 1). Conducted on the TISCH2 platform,

dimensionality diminution and clustering analysis of the single-cell

RNA sequencing (scRNA-seq) data from the GSE146771_Smartseq2

dataset unveiled a notable enrichment of NK cells in Cluster 0 and
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Cluster 4 (Figures 2A, B). The results showed that NK cells were

significantly enriched in CRC patients and formed independent

clusters, indicating that NK cells might be the dominant immune cell

population in CRC patients and have similar gene expression patterns.

A pie chart quantified the abundance and relative frequency of NK

cells, demonstrating that NK cells constituted 23.3% of immune cells in

CRC patients—significantly higher than in healthy individuals—

highlighting their aberrant enrichment and biological relevance in

CRC (Figure 2C). Cell-cell interactions within the CRC tumor

immune microenvironment critically regulate cellular functions,

immune states, and disease progression (15). Using the CellChat

calculation on the TISCH2 Database, we predicted intercellular

communication networks. The analysis identified powerful

connection between NK cells and macrophages, CD8+ and CD4+ T

cells (Figure 2D). To identify NK cell-associated genes (NKGs), we

performed Wilcoxon rank-sum tests on the TISCH2 platform (|fold

change| > 1.5; FDR < 0.05). we detected 167 elevated and 262 reduced

NKGs (Figure 2E).
2.2 NK cell functional traits in CRC

Leveraging the CellChat technique within TISCH2 system, we

quantified intercelllular correlations and identified robust

communication among NK cells and CD8+ T cells, fibroblasts,

endothelial cells, as well as malignant cells (Figure 2D). In CRC,

multiple transcription factors (TFs) play pivotal roles. Using the
Frontiers in Immunology 03
spatial association algorithm on TISCH2, we inferred key TFs

regulating gene expression within each cell cluster. Using heat

maps, we presented the expression patterns of key transcription

factors in all cell clusters within the dataset. (Supplementary Figure

S1A). Notably, in the NK_C4 and NK_C0 subgroups, KDM4c and

ZNF274, respectively, emerged as the most significantly enriched

TFs, indicating their core roles in this regulatory network

(Supplementary Figure S2A, B). These TFs may modulate NK cell

functionality and thereby influence the CRC TME, offering novel

perspectives for investigating CRC immunology. We leveraged the

advanced enrichment capabilities of the TISCH2 platform to

further investigate NK cell mechanisms in CRC. Through KEGG

pathway analysis, we identified significant upregulation of natural

killer cell-mediated cytotoxicity, ribosome, spliceosome, and

neuroac t i ve l i gand-recep tor in te rac t ions , a longs ide

downregulation of hematopoietic cell lineage, primary

immunodeficiency, and intestinal immune network for IgA

production (Supplementary Figures S3, S4). In Gene Ontology

(GO) analysis, we observed upregulated nuclear-transcribed

mRNA catabolic processes in biological processes, proteasome

core complexes and T-cell receptor complexes in cellular

components, and antigen binding in molecular functions.

Conversely, JNK kinase activity (biological processes),

endoplasmic reticulum, phagocytic vesicle membranes, and

secretory granule membranes (cellular components), as well as

cytokine receptor activity and endopeptidase activity (molecular

functions), were downregulated (Supplementary Figures S5–S7).
FIGURE 1

A detailed flowchart illustrates the construction, validation, and molecular subtyping of the NK cell-related lncRNA model in CRC. CRC: Colorectal
Cancer; TISCH2: Tumor Immune Single-Cell Hub 2; TCGA: The Cancer Genome Atlas; TF: Transcription factor; LASSO: Least absolute shrinkage and
selection operator; NK: Natural Killer cells.
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FIGURE 2

Communication networks of NK cells in CRC. (A, B) UMAP plots show the distribution and abundance of different cell subpopulations in CRC.
(C) A pie chart shows the percentage of NK cells. (D) Visualization of interaction probabilities between NK cells and other cells using CellChat.
(E) A volcano plot shows differentially expressed genes within NK cells. Red indicates fold change > 1.5, FDR < 0.05; green indicates fold change
< 1.5, FDR < 0.05.
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We observed correlations between NK cells and multiple T cell-

related immunogenomes (Supplementary Figure S8).
2.3 Construction and multi-center
validation of a prognostic model based on
NK cell signature genes

We extracted expression profiles of previously discovered NKGs

from TCGA colorectal adenocarcinoma read cohort (16). Utilizing

Pearson correlation assay (correlation coefficient exceeding 0.4, p-value
Frontiers in Immunology 05
below 0.001), we detected NK cell-associated lncRNAs. Subsequent

differential expression analysis revealed 1,133 dissimilarly expressed

NK cell- attached lncRNAs within CRC (Figure 3A). We utilized

heatmap visually displays the top 50 most differentially expressed genes

in CRC cases (Figure 3B). Univariate Cox regression analysis of the

training cohort identified 42 prognosis-associated lncRNAs

(Figure 3C). A heatmap illustrates their expression differences

between CRC tumors and normal tissues (Figure 4A). To preclude

overfitting, LASSO regression analysis was implemented (Figures 4B,

C). Multivariable Cox regression further refined the model to 16

independent NK cell-related lncRNAs with prognostic significance.
FIGURE 3

Prognosis-associated NK cell-related lncRNAs. (A) A volcano plot shows 1,133 differentially expressed NK cell-related lncRNAs identified in CRC (red:
logFC > 0.585, FDR-adjusted p < 0.05; green: logFC < 0.585, FDR-adjusted p < 0.05). (B) A heatmap visually displays the top 50 most significantly
differentially expressed NK cell-related lncRNAs. (C) A forest plot shows the results of univariate Cox regression analysis, identifying 42 lncRNAs
associated with CRC prognosis (green indicates hazard ratio < 1; red indicates hazard ratio > 1).
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Risk Score = 1.66835172119723 × LINC01354 expression +

0.382958718659199 × LINC02257 expression + 1.05788009854083 ×

AC010319.3 expression + 0.954271934790829 × AC009133.3

expression − 2.0577555829965 × THOC7-AS1 expression −

0.915211633569471 × LINC02100 expression − 1.06232138758457 ×

AL390719.3 expression + 0.876450507692965 × PLS3-AS1

expression + 0.66491751956799 × AC145423.2 expression +

0.689453742016689 × ALMS1-IT1 expression + 3.25571273528702 ×

ZFHX2-AS1 expression + 0.489382404521168 × AP003555.1

expression − 1.04327479032394 × AC103739.1 expression +
Frontiers in Immunology 06
1.06508271262886 × NSMCE1-DT expression − 2.316681672941 ×

AL596214.1 expression − 3.18945858556773 × AC244100.2

expression. The training cohorts were divided into low - high risk

(1:1 ratio). The expression analysis of 16 lncRNAs demonstrated

distinct subgroup-specific patterns: ten lncRNAs (including

LINC01354, LINC02257, AC010319.3, AC009133.3, PLS3-AS1,

AC145423.2, ALMS1-IT1, ZFHX2-AS1, AP003555.1, and NSMCE1-

DT) were significantly upregulated in high-risk patients, whereas six

lncRNAs (such as THOC7-AS1, LINC02100, AL390719.3,

AC103739.1, AL596214.1, and AC244100.2) exhibited elevated
FIGURE 4

Prognosis-associated NK cell-related lncRNAs. (A) A heatmap shows the expression differences of identified lncRNAs between CRC and normal
samples (*** indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05). (B, C) Lasso regression analysis reveals overfitting phenomena in the
model under different gene number settings and compares the severity of overfitting under these settings.
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FIGURE 5

Construction and validation of the NK cell-related prognostic model. (A) A heatmap shows the expression of 16 lncRNAs in high- and low-risk
groups in the training set. (B) Distribution and survival status of CRC patients in the training set. (C) Kaplan-Meier survival curve comparison between
high- and low-risk groups in the training set. (D) ROC curve evaluation in the training set. (E) A heatmap shows the expression of 16 lncRNAs in
high- and low-risk groups in the test set. (F) Distribution and survival status of CRC patients in the test set. (G) Kaplan-Meier survival curve
comparison between high- and low-risk groups in the test set. (H) ROC curve evaluation in the test set. (I) A heatmap shows the expression of 16
lncRNAs in high- and low-risk groups in all patients. (J) Distribution and survival status of CRC patients in all patients. (K) Kaplan-Meier survival curve
comparison between high- and low-risk groups in all patients. (L) ROC curve evaluation in all patients. (M) Heatmap displaying the expression of 16
lncRNAs in high- and low-risk groups within the external validation set(n=76). (N) Distribution and survival status of CRC patients in the external
validation set(n=76). (O) Comparison of Kaplan-Meier survival curves between high- and low-risk groups in the external validation set set(n=76).
(P) ROC curve evaluation in the external validation set(n=76).
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expression in low-risk counterparts (Figure 5A). In addition to

illustrating the distribution and survival outcomes of CRC patients in

the training cohort (Figure 5B), the study revealed a significant

correlation between high-risk scores and elevated mortality rates

(Figure 5C). The model demonstrated strong predictive functioning,

with 1,3 and 5-year AUC values of 0.918, 0.899, and 0.892, respectively,

in the training set (Figure 5D). Internal verification using the test group

and the entire group (Figures 5E–L) consistently replicated findings in

lncRNA expression patterns, survival analysis, and different expression,

confirming the soundness of the prognostic model. To verify the

validity of the model, we obtained lncRNA expression profiles and

survival data from 76 CRC clinical samples from the sample bank of

Tongji Hospital Affiliated to Tongji Medical College of Huazhong

University of Science and Technology, to further assess the robustness

of the risk scoring model. The analysis results showed that aspects such

as the expression patterns of the 16 lncRNAs (Figure 5M), the

distribution of CRC patients in risk stratification groups and their

survival status (Figure 5N), the significant correlation between high-

risk scores and higher mortality (Figure 5O), and the area under the

ROC curve (Figure 5P) were similar to those of the TCGA training set

and internal validation set, thereby further confirming the reliability of

this risk scoring model.
2.4 Clinical application value exploration of
the NK cell-related lncRNA signature

We evaluated the clinical utility of the NK cell-related lncRNA

signature by incorporating the score of risk as a prognostic parameter

alongside other clinical parameters in univariate COX regression

analysis (Figure 6A). Age, TMN stage, and risk score were recognized

as influential prognostic parameters (HR> 1, p < 0.05). Subsequent

multivariable COX regression analysis confirmed age, TNM stage,

and risk score as independent prognostic indicators (Figure 6B). ROC

analysis demonstrated that the risk score outperformed all else

clinical parameters in predictive accuracy (Figure 6C). A

nomogram uniting age, TNM stage, and risk score used to enhance

clinical risk stratification (Figure 6D). The calibration curves for 1-, 2-

, and 3-year survival closely aligned with ideal predictions, and a

concordance index (C-index) of 0.801 further validated the

nomogram’s reliability (Figure 6E). Stratified analyses across sex,

TNM stage, and age subgroups (≤65 vs. >65 years) consistently

affirmed the robust predictive power of the risk score (Figures 6F–Q).
2.5 Integrated multi-omics enrichment
analysis of dissimilarly expressed genes
reveals immune microenvironment
dysregulation in high-risk subgroups

To investigate the mechanisms underlying poor prognosis in

high-risk patients, we identified 124 dissimilarly expressed genes

(DEGs) (|log2FC| > 1, FDR-adjusted p < 0.05) between high and low

risk groups (Figure 7A). A heatmap highlights the top 30 most

important DEGs (Figure 7B). GO enrichment assay unveiled that
Frontiers in Immunology 08
the high-risk crowd exhibited marked alterations in endoplasmic

reticulum lumen and RNA polymerase II-specific DNA-binding

transcription activator activity (Figures 7C, D). KEGG pathway

assay demonstrated enrichment of cell signaling pathways in the

high-risk group, including neuroactive ligand-receptor interactions,

Wnt signaling, pluripotency regulation, Hippo signaling, AGE-

RAGE signaling, and apelin signaling (Figure 7E). Gene Set

Enrichment Analysis (GSEA) further uncovered important

beneficiation of keratinization and extracellular matrix (ECM)

structural organization in the high-risk group, suggesting

epithelial-mesenchymal dysregulation and invasive tumor

pathology. In contrast, the low-risk group showed prominent

enrichment of nucleosome assembly and chromatin structural

components, potentially linked to enhanced genomic stability and

stringent transcriptional control (Figures 7F, G).
2.6 Risk stratification of colorectal cancer
by NK cell-related lncRNA model reveals
immune microenvironment regulation
mechanisms and new strategies for
targeted therapy

In the analysis of the immune microenvironment, CRC cases in

the high-risk crowd, as determined by the NK cell-related lncRNA

signature, exhibited major discrepancies in stromal score, immune

score, and estimate score (Figures 8A-C). The combined evaluation

of these scores can systematically reveal the variation of TME in

CRC and holds important prognostic value for patients. Our study

investigated the correlation among the NK cell-related lncRNA

signature score and immune percolation within CRC. Using

numerous software tools to judge the immune cell infiltration

degree in CRC crowds, we observed that the infiltration level of

NK cells in TME of CRC crowds was significantly positively

connected with the risk score formulated on the NK cell-related

lncRNA model (Figure 8D). An elevated level of NK cell infiltration

is typically associated with enhanced tumor cell killing efficiency,

representing a proactive engagement of the immune system to curb

tumor progression. Further analysis revealed that patients in the

high-risk group displayed enhanced antigen-presenting co-

stimulation, significant upregulation of immune checkpoint

transcription levels, activation of the HLA pathway, as well as

abnormal activation of the parainflammatory response and type I

interferon (IFN) signaling pathway (Figure 8E). These phenomena

suggest a synergistic interplay between immune activation signals

and inhibitory regulatory networks within TME: on one hand,

overexpression of immune checkpoints suppresses the anti-tumor

functions of effector cells; on the other hand, chronic inflammatory

responses and activation of the type I IFN pathway may further

exacerbate immune evasion through immune exhaustion mediated

by pro-inflammatory cytokines or the recruitment of

immunosuppressive cells. Thus, the immune profile of the high-

risk sort reflects the complexity of tumor immune evasion through

multiple regulatory mechanisms. Immune checkpoint analysis

showed that, except for HHLA2, which was significantly
frontiersin.org
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overexpressed in the low-risk group, the remaining 21 immune

checkpoint genes (ICGs) were significantly upregulated in the high-

risk population, indicating a more severe state of tumor

immunosuppression. Since these genes serve as the targets of

immune checkpoint inhibitors (ICIs), the high-risk population

may exhibit greater sensitivity to ICI therapy (Figure 8F). We

conducted a drug sensitivity assessment, which revealed that the

high-risk crowd exhibited higher sensitivity to drugs including

AZ960, AZD1332, AZD2014, AZD8186, IGF1R_3801,

Luminespib, and XAV939, indicating that these patients may

benefit more from these therapies, while Dihydrorotenone and

TAF1_5496 were proved to be further suitable for patients in the

low-risk group (Figure 8J).
Frontiers in Immunology 09
2.7 Characterization of CRC molecular
subtypes based on NK cell-related lncRNA

In this way, we classified CRC tumor samples using the NK cell-

related lncRNA model. Among the tested values, k = 3 exhibited a

flatter and closer-to-maximum CDF distribution (Figures 9A-C).

Therefore, we set k = 3 and divided the CRC tumor samples into

three subtypes: Cluster 1-3 (C1, C2, C3) (Figures 9D, E). The

relationship between high and low-risk score groups and tumor

subtypes was visualized using a Sankey diagram. C1 and C2 were

predominantly found in the high-risk group, while C3 was mainly

distributed in the low-risk group (Figure 9F). Survival examination

showed that subtype C1 had the worst prognosis (Figure 9G). These
FIGURE 6

Association between the prognostic model and clinical factors. (A) Univariate Cox regression shows factors affecting CRC prognosis. (B) Multivariate
Cox regression shows independent factors affecting CRC prognosis. (C) ROC curve analysis evaluates the accuracy of various clinical variables and
risk scores in predicting CRC prognosis. (D) Nomogram predicts CRC prognosis. (E) Calibration curve assesses the predictive ability of the
nomogram. (F-O) Kaplan-Meier survival curves for various clinical subgroups based on risk scores.
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FIGURE 7

Functional enrichment analysis in different risk groups. (A) A volcano plot shows differentially expressed genes between risk groups (red: logFC > 1,
FDR-adjusted p < 0.05; green: logFC < 1, FDR-adjusted p < 0.05). (B) A heatmap shows the distribution of differentially expressed genes in different
risk groups. (C) A Circos plot reveals changes in differentially expressed genes in the GO pathways. (D) Bubble plot reveals GO pathways enriched by
significantly differentially expressed genes. (E) Bubble plot shows KEGG pathways enriched by significantly differentially expressed genes. (F) GSEA
shows upregulated pathways in the high-risk group. (G) GSEA shows downregulated pathways in the low-risk group.
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FIGURE 8

Immune and drug sensitivity analysis. (A-C) ESTIMATE scores, immune scores, and stromal scores in high- and low-risk groups. (D) Quantitative
analysis of immune infiltration in the new CRC subtyping using various algorithms. (E) Box plots show immune function status in high- and low-risk
groups. (F) Box plots show immune checkpoint status in high- and low-risk groups. (G) Box plots show drug sensitivity status in high- and low-risk
groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 9

New CRC subtyping based on NK cell-related lncRNAs. (A) Sample distribution of different subtyping numbers. (B) CDF curves for different subtyping
numbers. (C) Consensus CDF for different subtyping numbers. (D, E) Consensus matrices for three subtypes. (F) A Sankey diagram shows the
relationship between different CRC subtypes and risk scores. (G) Survival curves for different CRC subtypes.
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results demonstrate that the NK cell-related lncRNA model is

capable of classifying CRC patient samples into molecular subtypes.
2.8 Molecular subtyping of colorectal
cancer formulated on NK cell-related
lncRNA reveals heterogeneity in
immunotherapy and new strategies for
personalized treatment

To evaluate the potential of molecular subtyping based on NK

cell-related lncRNA in immunotherapy for CRC subtypes, we

conducted an in-depth analysis of the tumor immune

microenvironment. Using various algorithms, we observed the most

plentiful immune cell infiltration in subtype C1 CRC, while subtypes

C2 and C3 exhibited weaker immune cell infiltration (Figure 10A).

We further analyzed the StromalScore, ImmuneScore, and

ESTIMATEScore for different subtypes (Figure 10B). The scores for

subtype C1 were uniformly high, the estimates for subtype C3 were

low, and subtype C2 was in the middle. This further revealed the

heterogeneity of the CRC tumor microenvironment: the high-

infiltration and functional inhibition features of subtype C1, the

partial activation state of subtype C2, and the immune-cold

phenotype of subtype C3, each corresponding to different

therapeutic targets and clinical strategies. Additionally, we

performed immune checkpoint analysis (Figure 10C). For CRC

subtypes with high levels of expression of immune checkpoint

genes, the use of immune checkpoint inhibitors targeting the

corresponding genes would be more appropriate. It was found that,

except for CD40LG, TNFRSF14, and TNFRSF25, which were

extremely expressed in subtype C2, the remaining immune

checkpoint genes were highly expressed in subtype C1. Subtype C3

had the lowest expression in most immune checkpoints, indicating

less immunosuppression and a better prognosis. Our analysis of drug

sensitivity based on the three molecular subtypes showed that patients

in subtype C1 had the highest sensitivity to BPD-00008900, JQ1, and

WIKI4; those in subtype C2 had the highest sensitivity to Navitoclax;

and those in subtype C3 had the highest sensitivity to Afuresertib,

MK-2206, PF-4708671, and Selumetinib (Figure 10D, Supplementary

Figure S9). Molecular subtypes based on NK cell-related lncRNAs aid

in assessing the immune microenvironment and immunotherapy,

offering fresh thinking for precise CRC treatment, with in-depth

analysis of each subtype enhancing personalized treatment strategies

and improving therapeutic outcomes.
2.9 AC010319.3 inhibits NK cell function to
promote CRC progression

To verify the regulatory role of lncRNA on NK cells, we

employed flow cytometry to sort tumor tissues from CRC

patients (Supplementary Figure S10A). Through qPCR detection

of lncRNA expression levels in NK cells and CRC tumor tissues, we

found that AC010319.3 exhibited the most significant upregulation

relative to tumor tissues (Figure 11A). Subsequently, qPCR was
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used to detect lncRNA expression in the NK cell line NK92 and

CRC cell lines (HCT-116, HT-29, and SW-480), revealing that

AC010319.3 expression was higher in NK92 cells than in the three

CRC cell lines (Figure 11B, Supplementary Figure S10B). Therefore,

this study focused on the function of AC010319.3 in NK cells and its

mechanism by which it regulates NK cell killing capacity to

influence CRC progression. TCGA database analysis revealed that

high expression of AC010319.3 was significantly associated with

poor patient prognosis (Supplementary Figure S10C), and our 76

independent clinical samples also showed that high expression of

AC010319.3 was significantly associated with poor patient

prognosis (Supplementary Figure S10D). To clarify the function

of AC010319.3 in NK cells, we successfully constructed NK92 cell

models with overexpression and knockdown of AC010319.3

(Supplementary Figures S10E, F). Flow cytometry detection

showed that, compared to the Vector group, overexpression of

AC010319.3 significantly reduced the expression of IFN-g and

GZMB in NK92 cells; whereas, compared to the si-NC group,

knockdown of AC010319.3 markedly increased the expression of

IFN-g and GZMB in NK92 cells, indicating that AC010319.3 can

effectively inhibit the expression of key effector molecules in NK92

cells (Figure 11C). Subsequently, NK92 cells with overexpression

and knockdown of AC010319.3 were co-cultured with HCT116

cells, respectively. Transwell assays showed that the invasion ability

of HCT116 cells was enhanced in the AC010319.3 overexpression

group, while it was weakened in the knockdown group

(Figure 11D). CCK-8 and plate colony formation assays showed

that the proliferation vitality of HCT116 cells was significantly

enhanced in the AC010319.3 overexpression group, while it was

significantly inhibited in the knockdown group (Figures 11E, F).

These results consistently indicate that AC010319.3 promotes CRC

progression by inhibiting NK cell function, thereby attenuating

their suppressive effect on colorectal cancer cells.
3 Discussion

In this study, we constructed and validated a CRC prognostic

signature based on 16 lncRNAs. Analysis of the TCGA database and

76 independent clinical samples demonstrated that the model

exhibited robust stability and predictive performance in terms of

expression patterns, risk stratification, survival distribution, and

ROC curves, further supporting its clinical application potential. To

investigate the impact of lncRNAs on NK cell function, we selected

AC010319.3—the lncRNA with the most significant upregulation in

NK cells from colorectal cancer tissues—for subsequent validation.

We found that it was highly expressed in tumor-infiltrating NK cells

and the NK92 cell line, and it was significantly associated with poor

patient prognosis. Functional experiments revealed that

AC010319.3 inhibits the expression of IFN-g and GZMB in NK

cells, thereby promoting the proliferation and invasion of CRC cells.

This discovery unveils a novel mechanism by which AC010319.3

promotes CRC progression through suppression of NK cell

function, providing a potential molecular target for CRC

therapeutic strategies targeting NK cell function.
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Using the risk score, we isolated patients into high- and low-risk

crowds and found significant differences in pathway enrichment

between the two groups. KEGG enrichment analysis showed that

the cell signaling pathways enriched in the high-risk group included

neural active ligand-receptor interaction, Wnt signaling, stem cell
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pluripotency regulation, Hippo signaling, AGE-RAGE signaling

and Apelin signaling pathways. Studies have shown that Wnt

signaling and Hippo signaling can affect the development of CRC,

suggesting that the synergistic dysregulation of Wnt and Hippo

signaling pathways in CRC patients may drive the enormous
FIGURE 10

Immune and drug sensitivity analysis of the new CRC molecular subtyping. (A) Quantitative analysis of immune infiltration in the new CRC molecular
subtyping using various algorithms. (B) ESTIMATE Score, ImmuneScore, and StromalScore for different CRC subtypes. (C) Immune checkpoint
analysis for different CRC subtypes. (D) Drug sensitivity analysis for different CRC subtypes. *P < 0.05, **P < 0.01, ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1615942
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1615942
movement of tumors through the formation of YAP/b-catenin
complex (17, 18). NK cell-related lncRNA may promote

proliferation by regulating b-catenin target genes, and induce

YAP/TAZ nuclear translocation by inhibiting Hippo pathway to
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enhance the characteristics of cancer stem cells (19). In addition,

GSEA showed that keratinization and extracellular matrix

structural mechanisms were considerably enriched in the high-

risk group, possibly reflecting epithelial-mesenchymal interactions
FIGURE 11

AC010319.3 Promotes Colorectal Cancer Progression by Suppressing NK Cell-Related Functions. (A) Relative expression of lncRNA in NK cells within
tumor tissues. (B) Comparison of lncRNA expression between NK cell lines and colorectal cancer cell lines. (C) Detection of intrinsic functions of NK
cells through overexpression and knockdown of AC010319.3. (D) Transwell assay to validate invasive ability after overexpression and knockdown of
AC010319.3. (E) Colony formation assay to validate proliferative ability after overexpression and knockdown of AC010319.3. (F) CCK-8 assay to
validate proliferative ability after overexpression and knockdown of AC010319.3. *P < 0.05, **P < 0.01, ***P < 0.001.
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and the pathological mechanisms of aggressive tumors. In contrast,

the low-risk group showed more pronounced enrichment of

nucleosome assembly and chromatin structural components,

which may be related to enhanced genomic stability, tight

transcriptional regulation, and precise cell cycle control. These

findings indicate that NK cell-associated lncRNAs may influence

the malignant progression of CRC by regulating key signaling

networks and molecular mechanisms.

Our study elucidates the dynamic interplay mechanisms between

NK cell-related lncRNAs and TME in CRC. While the high-risk group

exhibits increased NK cell infiltration and enhanced immune co-

stimulation, the abnormal activation of immune checkpoints and

chronic inflammatory responses mediated by type I interferon

collectively shape the dynamic imbalance of the microenvironment.

This finding offers an academic basis for precision treatment strategies

targeting immune checkpoints in combination with inflammatory

pathway regulation. Currently, researchers are enhancing the talent

of NK cells to discern and kill tumors through genetic modification, ex

vivo expansion, and combined drug stimulation. Immune checkpoint

analysis revealed that, except for HHLA2, which was significantly

overexpressed in the low-risk group, the remaining 21 ICGs were

significantly upregulated in the high-risk group. This further highlights

the complexity of tumor immune evasion through multiple

immunosuppressive mechanisms. CTLA-4 has a chief part in

regulating immune responses and inducing self-tolerance (20).

HHLA2 is a B7 family checkpoint molecule with unique dual

immune regulatory functions, exhibiting a negative correlation with

PD-L1 expression (21). Targeting its inhibitory signaling pathway or

developing bispecific antibodies that simultaneously block PD-L1 and

activate HHLA2 may be applicable to tumors that do not respond well

to existing checkpoint inhibitors. Else ICGs molecules also hold

potential value in the progress of immunotherapeutic drugs for

colorectal cancer, which requires further validation through

multicenter, large-sample clinical studies.

The prognostic model for CRC developed in this study has

revealed distinct treatment sensitivities among different patient

cohorts through the molecular stratification into subtypes C1-C3.

Specifically, the C1 subtype exhibits the highest sensitivity to BPD-

00008900, an experimental small-molecule inhibitor targeting the

DNA damage repair pathway, as well as to JQ1 (a BET inhibitor)

and WIKI4 (a Wnt pathway inhibitor). In contrast, the C2 subtype

demonstrates sensitivity to Navitoclax, a BCL-2/BCL-xL inhibitor.

The C3 subtype shows significant responses to Afuresertib and MK-

2206, both AKT inhibitors, and to Selumetinib, a MEK inhibitor.

The study findings indicate that AKT inhibitors such as MK-2206,

MEK inhibitors like Selumetinib, and BET inhibitors including JQ1

all exert significant effects on CRC treatment (22–24). It is

important to note that drugs such as BPD-00008900 and

Navitoclax are currently in preclinical research stages, and their

safety and efficacy require validation through multicenter trials.

This study has certain limitations that warrant further

validation in future research. Although we have verified the

model’s performance using 76 clinical samples, its generalizability

still requires further confirmation through future multi-center,

large-sample prospective studies. Additionally, we fully recognize
Frontiers in Immunology 16
the importance of employing a longitudinal sampling design to

further validate the prognostic value of the aforementioned

lncRNAs. As such validation requires prospective study design,

dynamic sample collection at multiple time points, and control for

treatment-related confounding factors, it has not been included in

the current study. We plan to specifically design longitudinal cohort

studies in follow-up work to further evaluate the clinical potential of

these lncRNAs in prognostic assessment of colorectal cancer. At the

mechanistic level, the molecular mechanisms through which

AC010319.3 regulates NK cell function and the immune

microenvironment—particularly its specific downstream targets

and signaling networks—remain unclear. Therefore, future studies

will prioritize expanding the scope of external validation and

further investigating the targets and signaling networks of

AC010319.3 to faci l i tate i ts translat ion into cl inical

precision immunotherapy.
4 Conclusion

For the research, we integrated single-cell and multi-omics data

to construct a prognostic model for CRC built on 16 NK cell-related

lncRNAs, which operates independently of traditional parameters.

We focused on exploring how AC010319.3 promotes tumor

progression by inhibiting NK cell function, thereby providing

potential targets and directions for precision immunotherapy

in CRC.
5 Materials and methods

5.1 Single-cell transcriptomic data
integration and NK cell population
annotation

Single-cell transcriptomic data encompassing 10,468 cells from

CRC were obtained from the GSE146771_Smartseq2 dataset in the

GEO database. The data were analyzed using the TISCH2 platform

(25). Dimensionality reduction was performed via Principal

Component Analysis, and cell populations were identified and

classified using the K-nearest neighbors (KNN) algorithm and the

Louvain algorithm. Cell types were noted according to cell type-

specific marker genes. Subsequently, the Wilcoxon rank-sum test

was employed to identify genes with substantially differential

expression in NK cell populations compared to all other cell

populations. The selection criteria were an absolute fold change (|

fold change|) ≥1.5 and a false discovery rate (FDR) <0.05 (26).
5.2 Cell-cell communication network
analysis

We employed the CellChat tool (version 1.0.0) on the TISCH2

platform, based on the mass action model with a default interaction

score threshold of 0.01, to analyze the expression models of detected
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L-R pairs across distinct cell populations and evaluate intercellular

interactions. Using CellChat’s netVisual_circle, we mapped and

visualized significant L-R interactions across cell subtypes. For each

cell population, significant L-R pairs were identified and annotated

as either “source” or “target” cells, with a statistical significance

threshold of P < 0.05.
5.3 Functional enrichment of multicellular
clusters

To gain deeper insights into the gene enrichment characteristics

of distinct cell type populations, we performed GSEA on the

TISCH2, ranking genes based on their logarithmic fold changes

derived from differential analysis. Through an integrated approach

combining KEGG pathway analysis, GO enrichment analysis, and

GSEA, we identified and visualized substantially enriched biological

pathways across each cell cluster (FDR = 0.05). This comprehensive

methodology provided a robust foundation for elucidating

functional enrichment patterns among heterogeneous

cell populations.
5.4 TCGA data integration and NK cell-
related lncRNA screening

We first retrieved gene expression profiles, clinical data, and

somatic mutation information from 566 tumor samples and 44

normal colorectal tissue samples in TCGA database (27).

Differential expression analysis was conducted to compare mRNA

expression levels between tumor and non-tumor tissues. Building

on this, we integrated the previously identified NK cell-associated

differentially expressed genes and applied a correlation coefficient

threshold of 0.4, thereby screening 3,837 NK cell-related lncRNAs.

Finally, utilizing the “R.limma” gene expression analysis package,

we identified 1,133 NK cell-related lncRNAs that showed

substantial different manifestation between tumor and non-

tumor tissues.
5.5 Construction of the NK-lncRNA
prognostic model

CRC patients in this study were randomly divided into two cohorts

at a 1:1 ratio (28), designated as the training and validation sets.

Univariate COX regression analysis identified 42 NK cell-related

lncRNAs associated with CRC prognosis in the training set.

Subsequently, a multivariable Cox regression analysis was performed

to set up a prognostic prediction model for CRC in the training set.

Based on the coefficients assigned to each NK cell-related lncRNA by

the model, Risk Score = 1.66835172119723 × LINC01354 expression +

0.382958718659199 × LINC02257 expression + 1.05788009854083 ×

AC010319.3 expression + 0.954271934790829 × AC009133.3

expression − 2.0577555829965 × THOC7-AS1 expression −

0.915211633569471 × LINC02100 expression − 1.06232138758457 ×
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AL390719.3 expression + 0.876450507692965 × PLS3-AS1

expression + 0.66491751956799 × AC145423.2 expression +

0.689453742016689 × ALMS1-IT1 expression + 3.25571273528702 ×

ZFHX2-AS1 expression + 0.489382404521168 × AP003555.1

expression − 1.04327479032394 × AC103739.1 expression +

1.06508271262886 × NSMCE1-DT expression − 2.316681672941 ×

AL596214.1 expression − 3.18945858556773 × AC244100.2

expression. Patients were stratified into high- and low-risk groups

based on this risk score. Kaplan-Meier analysis demonstrated

significant survival differences between the risk groups. The model’s

performance was evaluated using receiver operating characteristic

(ROC) curves and further validated in both the validation dataset

and the entire cohort. In addition, we have included an extra 76

independent clinical samples as an external validation dataset to further

verify the reliability of the model.
5.6 Molecular characterization of high- and
low-risk groups

We first employed the limma package in R to identify DEGs

between risk groups using predefined thresholds (|log2(FC)| > 1,

[FDR] < 0.05). The outcomes were projected via volcano plots and

heatmaps to illustrate the distribution and magnitude of DEGs.

Subsequently, GO enrichment analysis, encompassing biological

processes, cellular components, and molecular functions, was

performed using the clusterProfiler package in R. KEGG pathway

enrichment analysis was also conducted, with significantly enriched

pathways displayed as bubble plots. Furthermore, GSEA was used

to assess biological function disparities between risk groups (29–

31). (NES > 1, FDR < 0.05).
5.7 Immune microenvironment
quantification

To investigate immune heterogeneity between risk groups, we

integrated multiple bioinformatics approaches. Differential

expression analysis of immune checkpoint-related genes was

performed using the limma package in R. Data integration and

reshaping were facilitated by the reshape2 package to ensure

compatibility with downstream analyses. Immune-related

functional states were evaluated via single-sample GSEA

implemented in the GSVA package, enabling comprehensive

quantification of immune activity. This multi-tool framework

provided robust insights into the immune landscape, supporting

translational research and clinical applications (32).
5.8 Consensus clustering-based molecular
subtyping framework for CRC

Unsupervised consensus clustering was performed using the

ConsensusClusterPlus package in R to delineate molecular subtypes

of CRC (33). The optimal cluster number was decided by
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systematically evaluating three algorithmic outputs: CDF plots:

Stability of clustering solutions was assessed by comparing slope

changes in cumulative distribution curves across candidate cluster

numbers. Consensus matrices (CM): These numerical matrices

quantified the frequency with which sample pairs were assigned

to the same cluster across iterative subsampling. Consensus

heatmaps: Visual representations of consensus matrices

highlighted clustering patterns, facilitating intuitive interpretation.

The integration of these metrics established the optimal molecular

classification, forming a theoretical foundation for prognostic

model development.
5.9 Clinical sample collection

Pathological specimens from 76 CRC patients were obtained

from Tongji Hospital, Tongji Medical College, Huazhong

University of Science and Technology, China. Informed consent

was provided by all patients, and the diagnosis of CRC was

confirmed by two pathologists. This study was conducted in

accordance with the ethical principles of the Declaration of

Helsinki regarding ethical considerations and patient safety

(Approval No.TJ-IRB20230934).
5.10 Flow cytometry cell sorting

Fresh tumor tissues were obtained from surgical resections of

CRC patients. Fresh tissue samples were rinsed with pre-chilled PBS

to remove blood and debris, then minced into 1–2 mm³ fragments.

The tissue fragments were digested in an enzyme solution

containing collagenase and DNase at 37°C in a constant-

temperature shaker for 30–60 minutes, with gentle pipetting every

15 minutes. After digestion, the mixture was filtered through a

70 mm cell strainer. The filtrate was centrifuged at 1500 rpm for

5 minutes, and the supernatant was discarded to obtain a single-cell

suspension. Cells were counted using trypan blue dye to exclude

dead cells and assess suspension viability. The cell concentration

was adjusted to 1×106–5×106 cells/ml. Subsequently, 100 ml of the
cell suspension was transferred to a flow cytometry tube, and

fluorescently labeled antibodies against CD45, CD3, and CD56

were added (at concentrat ions recommended by the

manufacturer). The mixture was gently mixed and incubated at

4°C in the dark for 30 minutes. After incubation, 2 ml of pre-chilled

PBS was added, followed by centrifugation at 1500 rpm for 5

minutes. The supernatant was discarded, and the washing step

was repeated twice. Finally, cells were resuspended in 300–500 ml of
pre-chilled PBS to prepare samples for analysis. Flow cytometry was

used to sort tumor-infiltrating NK cells from fresh CRC tumor

tissues. Single-cell suspensions were prepared from tumor tissues,

and NK cells were identified and isolated as CD56+CD3− cells. The

purity of CD56+CD3− NK cells in all samples exceeded >95%.

Immediately after sorting, a portion of the NK cells (approximately

5 × 104 to 1 × 105 cells per sample) was used for RNA extraction and

subsequent qPCR analysis of lncRNA expression levels, while the
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remaining cells were cryopreserved in liquid nitrogen for future

experiments. qPCR detection of lncRNA expression in NK cells and

CRC tumor tissues was performed using samples from 10

independent CRC patients. Cell sorting was conducted on a

CytoFLEX SRT flow cytometer. Controls included FMO controls,

with approximately 1 × 105 events acquired per sample. During flow

cytometry, appropriate gates were set to acquire 104–105 cells, and

data were analyzed using FlowJo software. The gating strategy

included: (1) FSC-H/SSC-H for lymphocytes, (2) FSC-H/FSC-A

for singlets, (3) LDPB450/FSC-A to exclude dead cells, (4)

CD45FITC-H/FSC-A to identify and isolate leukocytes, (5) CD3−

to exclude T cells, and CD56+ to select NK cells (see Supplementary

Figure S10A for details).
5.11 Cell culture

Human CRC cell lines (HCT-116, HT-29, SW480) were purchased

from the Cell Bank of the Chinese Academy of Sciences (Shanghai,

China) and cultured in Dulbecco’s Modified Eagle Medium (DMEM;

EallBio, Beijing, China) supplemented with 10% fetal bovine serum

(FBS; Gibco, California, USA) and 1% penicillin–streptomycin–

amphotericin solution (NCM Biotech, Suzhou, China).

The human NK cell line NK92 was obtained from the Cell Bank

of the Chinese Academy of Sciences (Shanghai, China). The cells

were cultured in RPMI1640 medium (GIBCO) supplemented with

10% fetal bovine serum (FBS, GIBCO), 4 mM L-glutamine

(GIBCO), 100 U/mL penicillin and 100 mg/mL streptomycin

(Sigma-Aldrich), 10 mM HEPES (Sigma-Aldrich), and 100 U/mL

recombinant human interleukin-2 (IL-2, Novartis).
5.12 Real-time quantitative PCR

Total RNA was extracted using the Trizol method (T9108,

Takara, Dalian, China), and reverse transcription was performed

using an enzyme kit. Subsequently, qRT-PCR was conducted using2

× ChamQ Universal SYBR qPCR Master Mix (Q711-02, Vazyme,

Nanjing, China). The primer sequences used are listed in

Supplementary Table S1.
5.13 Transfection

The pcDNA3.1 plasmid for AC010319.3 overexpression and the

siRNA plasmid for AC010319.3 knockdown were obtained from

Qingke Biological Company in Wuhan, China. Cells were seeded

into 6-well plates at the correct density. Transfection was performed

using lipofectamine 3000 following the provided instructions after 24 h.
5.14 Flow cytometry analysis

The NK92 cell line was used, and adherent cells were collected

via trypsin digestion to prepare a single-cell suspension. To detect
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induced IFN-g expression, cells were stimulated in complete

medium containing PMA (50 ng/mL), ionomycin (1 mg/mL), and

a protein transport inhibitor (e.g., monensin) at 37°C with 5% CO2

for 4–6 hours; all cells were uniformly subjected to stimulation

conditions. After stimulation, cells were washed with pre-chilled

PBS (centrifuged at 1500 rpm for 5 minutes, repeated twice). Then,

100 ml of cell suspension (adjusted to 1×106–5×106 cells/ml, with

viable cell count confirmed by trypan blue staining) was transferred

to a flow cytometry tube. Fluorescently labeled anti-CD56 antibody

was added (at the manufacturer-recommended concentration),

gently mixed, and incubated at 4°C in the dark for 30 minutes.

After incubation, 2 ml of pre-chilled PBS was added, followed by

centrifugation at 1500 rpm for 5 minutes; the supernatant was

discarded, and the wash was repeated twice. Cells then underwent

fixation and permeabilization (fixed with 4% paraformaldehyde for

20 minutes, followed by permeabilization with permeabilization

buffer for 15–20 minutes). Subsequently, fluorescently labeled anti-

IFN-g and anti-GZMB antibodies were added simultaneously (at

manufacturer-recommended concentrations) and incubated at 4°C

in the dark for 30 minutes. After incubation, 2 ml of pre-chilled PBS

was added, cells were centrifuged at 1500 rpm for 5 minutes, the

supernatant was discarded, and the wash was repeated twice.

Finally, cells were resuspended in 300–500 ml of pre-chilled PBS

to prepare samples for acquisition. Flow cytometry analysis was

performed on a CytoFLEX SRT flow cytometer, with FMO controls

included. Appropriate channels were set during acquisition to

collect 104–105 events per sample, and data were analyzed using

FlowJo software. The gating strategy included: (1) FSC-H/SSC-H

for lymphocytes, (2) FSC-H/FSC-A for singlets, and (3) CD56+ for

NK cell identification (see Supplementary Figure S10G for details).
5.15 Co-culture assay

NK92 cells transfected with Vector and AC010319.3-OE were co-

cultured with HCT116 cells (E:T = 1:1) for 48 hours. The cell

suspension obtained after digestion was used for functional assays.

To maintain cell viability, the mixed medium (RPMI-1640:DMEM =

1:1) containing 200 U/mL IL-2 was gently replaced every 12 hours

without disturbing the adherent cells. Functional assays were

repeated using NK92 cells transfected with si-NC and si-

AC010319.3 co-cultured with HCT116.
5.16 Transwell invasion assay

After co-culture treatment, HCT116 cells were seeded into the

upper chamber of a Matrigel-coated Transwell insert and

resuspended in serum-free medium. The lower chambers were

filled with medium supplemented with serum. After incubation,

non-invaded cells on the upper surface of the membrane were

removed, and invaded cells on the lower surface were fixed and

stained. Finally, invaded cells were visualized under a microscope

and quantified.
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5.17 Cell proliferation assay

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK-8; NCM Biotech). For the colony formation assay, 500 cells

were seeded and incubated for two weeks. Colonies were fixed with

paraformaldehyde for 0.5 hours, stained with crystal violet for 1

hour, counted, and photographed.
5.18 Analysis of statistics

All studies were conducted in R 4.4.3 and GraphPad Prism 8.0.

Key methods included: Kruskal-Wallis tests for comparing ICGs

expression, immune scores, and drug sensitivity across risk groups.

Kaplan-Meier survival curves with log-rank tests (via the survival

package) to assess survival disparities. Multivariable Cox proportional

hazards models to evaluate joint effects of covariates. All tests were

two-tailed, with statistical significance defined as P < 0.05.

Significance levels were annotated as: *P < 0.001, P < 0.01, P < 0.05.
Availability of data and materials

The primary data supporting this study were obtained from the

Gene Expression Omnibus (GEO) database via the TISCH2

platform (http://tisch.comp-genomics.org/home/; PMID:

32302573), and additional data are available from the

corresponding author upon reasonable request.
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