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Background: Metabolic reprogramming plays a critical role in various diseases,

with particular emphasis on immune cell metabolism. However, the involvement

of immune cells and metabolic reprogramming-related genes (MRRGs) in acute

respiratory distress syndrome (ARDS) remains underexplored. This study aimed to

investigate the molecular mechanisms underlying cell and metabolic

reprogramming biomarkers in ARDS.

Methods: Using transcriptomic data fromwhole blood samples, candidate genes

were identified through differential expression analysis and weighted gene co-

expression network analysis (WGCNA) in conjunction with MRRGs. Machine

learning techniques, expression analysis, and receiver operating characteristic

(ROC) analysis were employed to identify potential biomarkers. An artificial neural

network (ANN) model was developed and evaluated. Additionally, functional

enrichment, regulatory network, and drug prediction analyses were performed.

Single-cell analysis was conducted to examine the expression of biomarkers

within specific cell populations. Reverse transcription-quantitative polymerase

chain reaction (RT-qPCR) was used for biomarker validation in human whole

blood samples. The functional validation of candidate biomarkers was performed

in lipopolysaccharide (LPS)-induced ARDS mouse models (peripheral blood

neutrophils and lung tissues) and THP-1-derived macrophages.

Results: Through machine learning algorithms, RPL14, SMARCD3, and TCN1

were identified as candidate biomarkers. ROC analysis demonstrated that the

ANN model, incorporating these biomarkers, exhibited strong predictive power

for ARDS onset. Enrichment analysis revealed that these genes were linked to

various pathways, including the chemokine signaling pathway. The regulatory

network analysis suggested that KLF9 may regulate both RPL14 and SMARCD3,

with these genes playing a pivotal role in ARDS progression. Furthermore,

selenium (CTD 00006731) and Cyclosporine A(CsA)(CTD 00007121) were

identified as compounds targeting RPL14 and SMARCD3. Expression levels of

the biomarkers varied across different stages of cell differentiation. RT-qPCR
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confirmed a significant upregulation of SMARCD3 and TCN1 in ARDS samples,

aligning with dataset expression analysis results. Both in vitro and in vivo

experiments demonstrated that modulation of SMARCD3 and TCN1 (but not

RPL14) significantly affected mitochondrial function, oxidative stress, apoptosis,

glucose metabolism and inflammatory cytokine expression.

Conclusion: SMARCD3 and TCN1 were identified as key biomarkers associated

with immune cell and metabolic reprogramming in ARDS, while RPL14 was

identified as a candidate biomarker through computational approaches, offering

valuable insights for understanding the pathogenesis of the disease.
KEYWORDS

acute respiratory distress syndrome, immune cells, metabolic reprogramming,
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1 Introduction

Acute respiratory distress syndrome (ARDS) is a critical

respiratory condition characterized by acute hypoxemic

respiratory failure and bilateral infiltrates visible on chest

imaging, with no full explanation by cardiac failure or fluid

overload (1–3). Clinically, ARDS manifests as severe dyspnea,

rapid breathing, and hypoxemia, often progressing to multiple

organ failure and a high mortality rate, particularly in critically ill

patients (2, 4). This syndrome is associated with significant long-

term consequences, including physical, cognitive, and psychological

impairments, highlighting its devastating effect on patients’ quality

of life (1, 3). Current therapeutic strategies primarily focus on

supportive care, such as lung-protective ventilation, prone

positioning, and fluid balance management. Despite these

measures, treatment outcomes remain suboptimal, with a

mortality rate of 30-40% (1–3). Thus, understanding the

pathophysiology of ARDS and identifying reliable biomarkers are

essential for uncovering potential therapeutic targets.

The pathogenesis of ARDS involves a complex interaction

between inflammatory responses, endothelial and epithelial

injury, and dysregulated lung inflammation, immune cell

activation, and metabolic reprogramming in the lung

microenvironment (5–9). These processes lead to increased

alveolar-capillary permeability and pulmonary edema (1, 2). Key

immune cells, including neutrophils, alveolar macrophages, T-

lymphocytes, complement system components, dendritic cells,

and NK cells, are central to the disease’s pathophysiology,

contributing to both tissue damage and repair (10). Neutrophils,

as the initial responders, migrate to the lungs and release proteases

(e.g., elastase), reactive oxygen species (ROS), and neutrophil

extracellular traps (NETs) (11–13). These molecules exacerbate

endothelial and epithelial damage, increasing vascular

permeability and edema. Excessive neutrophil activation

intensifies tissue injury, leading to alveolar collapse and

hypoxemia (11, 13, 14). Resident lung macrophages initiate
02
inflammation by releasing pro-inflammatory cytokines such as

Tumor necrosis factor-a(TNF-a), Interleukin-1b (IL-1b), and
Interleukin-6 (IL-6), as well as chemokines like Interleukin-8 (IL-

8), which recruit neutrophils (15–18). These macrophages can

polarize into pro-inflammatory (M1) or anti-inflammatory (M2)

phenotypes (16–18). Circulating monocytes infiltrate the lungs,

differentiating into macrophages that amplify cytokine storms and

influence fibrotic responses. Dysregulated monocyte activation

contributes to prolonged inflammation and fibrosis (13). Immune

cells thus play dual roles in both the pathogenesis and resolution of

ARDS, serving as key drivers of inflammation, therapeutic targets,

and prognostic indicators.

Metabolic reprogramming plays a pivotal role in regulating

immune cell subtypes. M1 macrophages rely on glycolysis and the

pentose phosphate pathway (PPP) for rapid adenosine triphosphate

(ATP) production and ROS generation (19). In contrast, M2

macrophages utilize oxidative phosphorylation (OXPHOS) and

fatty acid oxidation (FAO) to promote tissue repair (20).

Similarly, CD4+ T helper 1 (Th1) and Th17 cells depend on

glycolysis and glutaminolysis for proliferation and cytokine

production, including interferon-gamma (IFN-g) and interleukin-

17 (IL-17) (21). These examples demonstrate how specific

metabolic pathways, such as glycolysis, OXPHOS, and FAO, are

tailored to immune cell functions, offering potential therapeutic

targets in cancer, autoimmunity, and infectious diseases. Metabolic

reprogramming not only regulates immune cell subtypes but also

improves energy metabolism balance and inhibits excessive

inflammation. This process involves adaptive metabolic changes

that cells undergo in response to alterations in their intra- and

extracellular environment. Such adjustments allow cells to meet

heightened demands for energy production and biosynthesis,

essential for growth, proliferation, survival, and other cellular

functions. This reprogramming encompasses several metabolic

pathways, including glycolysis, OXPHOS, and lipid metabolism,

thereby enhancing cellular resilience and function under

challenging conditions (22, 23). In ARDS, various immune cells,
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such as alveolar macrophages, neutrophils, monocytes, and T

lymphocytes, become activated (1). These cells release pro-

inflammatory cytokines and chemokines, which amplify the

inflammatory response and exacerbate tissue damage, particularly

in conjunction with damaged epithelial and endothelial cells (3, 10).

Investigating metabolic reprogramming can offer deeper insights

into the metabolic regulation of immune cells under both

physiological and pathological conditions, providing new

therapeutic targets for disease treatment. For instance, targeting

key metabolic pathways, such as glycolytic enzymes and lipid

metabolism, may not only regulate immune cell phenotypes but

also improve energy metabolism balance and inhibit excessive

inflammatory responses, offering novel approaches for ARDS

treatment (24–26). These results suggest that immune cell

modulation and metabolic reprogramming are pivotal in the

pathogenesis of ARDS. However, the exact mechanisms remain

unclear and require further research.

Given the limitations of current treatment strategies, identifying

new biomarkers linked to immune cells and metabolic

reprogramming is critically important. These biomarkers can

enhance our understanding of ARDS pathogenesis and guide the

development of targeted therapies. This study aims to identify

biomarkers associated with immune cells and metabolic

reprogramming in ARDS by integrating transcriptomic data,

mechanistic research, and single-cell analysis (5–9). The study

flowchart is shown in Figure 1. By examining the complex

interplay between immune cell activity and metabolic changes in
Frontiers in Immunology 03
ARDS, this research has the potential to deepen our understanding

of the syndrome and support the implementation of more effective

clinical interventions.
2 Materials and methods

2.1 Data source

When selecting datasets related to ARDS with whole blood or

peripheral blood mononuclear cell samples, the dataset should

include a sufficient sample size and provide raw or processed

gene expression data. Datasets with insufficient sample size or

poor quality control will be excluded. ARDS-related datasets were

obtained from the Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/geo/). The GSE32707 (GPL10558)

dataset included 31 whole blood samples from patients with

sepsis-induced ARDS and 34 whole blood samples from

individuals without sepsis, systemic inflammatory response

syndrome (SIRS), or ARDS (referred to as ARDS and control

samples, respectively), which served as training set 1. The

GSE243066 (GPL30209) dataset consisted of 34 whole blood

samples from patients with ARDS and 15 healthy controls,

serving as training set 2. The GSE76293 (GPL570) dataset

included 12 blood polymorphonuclear neutrophil samples from

patients with ARDS and 12 healthy controls, serving as the

validation set. Additionally, the GSE180578 (GPL24676) dataset
FIGURE 1

Schematic overview of the study design and workflow for identifying immune cell and metabolic reprogramming-related biomarkers in ARDS. This
Figure depicts the multi-omic approach used to identify biomarkers associated with immune cells and metabolic reprogramming in acute respiratory
distress syndrome (ARDS).
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included single-cell RNA sequencing (scRNA-seq) data from

peripheral blood mononuclear cells (PBMCs) collected from 4

patients with ARDS and 4 healthy controls. A total of 1,804

metabolism reprogramming-related genes (MRRGs) were

retrieved from the literature (27) (Supplementary Table 1).
2.2 Detection of differentially expressed
genes

DEGs1 between ARDS and control samples in training set 1

were identified using the limma (v 3.54.0) package (28), applying a

threshold of |log2 fold-change (FC)| > 1 and P < 0.05. The signal

intensity of chip data approximately follows a normal distribution.

Limma, based on linear models and empirical Bayes methods, is

specifically designed for such data and can effectively handle

technical noise. For lowly expressed genes, Limma’s voom

transformation enhances the detection ability of lowly expressed

genes by applying weighted root mean square standard deviations.

Similarly, DEGs2 between ARDS and control samples in training

set 2 were identified using the Differential Expression Sequencing

analysis (DESeq2, v1.42.0) package (29) with the same criteria.

GSE243066 used a high-throughput sequencing platform, and the

reads count of RNA-seq data followed a negative binomial

distribution. DESeq2 directly models this distribution using a

generalized linear model, avoiding information loss during the

normalization process. DESeq2 uses the median ratio method for

normalization, which is insensitive to extreme values and is suitable

for handling outliers in sequencing data. Volcano plots for DEGs1

and heatmaps for DEGs2 were generated using the ggplot2 (v 3.5.1)

package (30) and the ComplexHeatmap (v 2.14.0) package

(31), respectively.
2.3 Immune infiltration analysis and
weighted gene co-expression network
analysis

To evaluate the infiltration of 64 immune cell types in training

set 1, relative abundance was calculated using the xCell (v 1.1.0)

package (32), and the proportional distribution of immune cells was

visualized using ggplot2 (v 3.5.1). Differences in immune cell

infiltration between ARDS and control samples in training set 1

were assessed using the Wilcoxon test, identifying immune cell

types with significant differences in infiltration (P < 0.05), referred

to as differential immune cells. Subsequently, WGCNA was

performed on training set 1 using the WGCNA (v 1.71) package

(33). Hierarchical clustering was applied to ARDS and control

samples in training set 1 to identify and remove outlier samples.

The optimal soft threshold (b) was selected when the scale-free fit

index (R2) exceeded 0.9, and the average connectivity was near 0.

The adjacency between genes was then calculated, with each module

containing at least 50 genes. Co-expression modules were identified,

and a hierarchical clustering tree was generated. Using differential

immune cell scores as phenotypic features, the correlation between
Frontiers in Immunology 04
these scores and co-expression modules was calculated (|correlation

coefficient (cor)| > 0.30, P < 0.05) (34). The co-expression modules

with the highest positive and negative correlations with differential

immune cell scores were selected as key modules, and the key

module genes were subsequently identified.
2.4 Identification and functional analysis of
candidate genes

The intersection of DEGs1, DEGs2, MRRGs, and key module

genes was determined using the ggvenn (v 0.1.10) package (35), and

the overlapping genes were designated as candidate genes.

Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses were performed

on the candidate genes using the clusterProfiler (v 4.7.1.003)

package (36, 37)(P < 0.05). The enrichment results from both GO

and KEGG analyses were visualized with the GOplot (v 1.0.2)

package (38). A protein-protein interaction (PPI) network

(interaction score > 0.15) was constructed using the STRING

database (https://www.string-db.org) and visualized using

Cytoscape (v 3.7.1) software (39).
2.5 Identification of biomarkers

For candidate genes, Least Absolute Shrinkage and Selection

Operator (LASSO) analysis was performed using the glmnet (v

4.1.4) package (40), with genes not penalized to zero selected for

further analysis. Simultaneously, the caret (v 6.0-93) package (41)

was employed to conduct Support Vector Machine Recursive

Feature Elimination (SVM-RFE) analysis. The final feature genes

were identified by intersecting the results from LASSO and SVM-

RFE using the ggvenn (v 0.1.10) package. The expression patterns of

these feature genes were then assessed in training set 1, training set

2, and the validation set (P < 0.05) to identify potential biomarkers.

Finally, receiver operating characteristic (ROC) curves for these

feature genes were plotted using the partial ROC (v 1.18.5) package

(42), and genes with an area under the curve (AUC) > 0.7 were

considered potential biomarkers across the three datasets.
2.6 Construction and evaluation of ANN
model

To further validate the reliability of these biomarkers in

predicting ARDS, In the GSE32707 dataset, key genes were

selected as features, and all features were normalized using min-

max scaling, adjusting the value range to (0, 1). Regarding the model

architecture, the input layer consisted of 3 neurons, corresponding

to the 3 feature genes, with a hidden layer containing 5 neurons and

an output layer of 2 neurons for the binary classification task (ARDS

and control). The activation function used the hyperbolic tangent

function (tanh) for the hidden layer, and the Sigmoid function was

applied to the output layer. The loss function chosen was cross-
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entropy (Cross Entropy), as it more effectively measures the

difference between predicted and true labels in classification tasks.

During training, the backpropagation algorithm was applied, with a

learning threshold set at 0.1 and a random seed of 17 to ensure

reproducibility. The optimization goal was to minimize the cross-

entropy loss. Finally, the network structure was visualized using the

plot() function from the neuralnet (v 1.44.2) package (43). ROC

curves of the ANN model were then plotted for training set 1,

training set 2, and the validation set, using the pROC (v 1.18.5)

package, to assess the model’s performance (AUC > 0.7).
2.7 Chromosomal localization and
enrichment analysis

The chromosomal localization of biomarkers was determined

using the RCircos (v 1.2.2) package (44). Gene set enrichment

analysis (GSEA) was performed on the biomarkers using the

c2.cp.kegg.v7.4.symbols.gmt file obtained from the Molecular

Signatures Database (MSigDB) (https://www.gsea-msigdb.org/

gsea/msigdb/) as the background gene set. Spearman correlations

between the biomarkers and other genes were calculated using the

psych (v 2.2.9) package (45). Subsequently, GSEA was performed

for each biomarker using the clusterProfiler (v 4.7.1.003) package,

with the criteria |normalized enrichment score (NES)| > 1 and P <

0.05. The top 5 signaling pathways, ranked by descending P-value,

were presented using the enrichplot (v 1.18.0) package (46).

Additionally, genes associated with biomarker functions and their

respective roles were predicted from the GeneMANIA database

(http://genemania.org), and a gene-gene interaction (GGI) network

was constructed.
2.8 Construction of regulatory networks

To predict miRNAs targeting the biomarkers, the DIANA-

microT database (http://www.microrna.gr/microT) was used. The

starBase database (https://rnasysu.com/encori/) was then employed

to identify lncRNAs upstream of miRNAs (clipExpNum > 4),

facilitating the construction of an lncRNA-miRNA-biomarker

network. Transcription factors (TFs) targeting biomarkers were

predicted using the NetworkAnalyst database (https://

networkanalyst.ca/NetworkAnalyst/), resulting in the construction

of a TF-biomarker network. Cytoscape (v 3.7.1) software was used

to visualize these regulatory networks.
2.9 Drug prediction and molecular docking

The DrugBank database (https://go.drugbank.com/) was

utilized to predict potential drugs targeting the biomarkers. The

Cytoscape (v 3.7.1) software was again used to visualize the drug-

biomarker network. Based on the highest-scoring drugs targeting

the biomarkers, molecular docking was performed using the CB-

Dock2 online tool (https://cadd.labshare.cn/cb-dock2/php/
Frontiers in Immunology 05
index.php) to assess the binding ability of the biomarkers to these

drugs (binding energies ≤ -5 kcal/mol) (47). The three-dimensional

structures of the drugs were obtained from the PubChem database

(https://pubchem.ncbi.nlm.nih.gov/), and the biomarkers were

imported into the Protein Data Bank (PDB) database (https://

www.rcsb.org/) to retrieve their protein structures.
2.10 scRNA-seq analysis

For single-cell analysis, the GSE180578 dataset was processed

using the Seurat (v 5.0.1) package (48). Cells and genes of low

quality were filtered out (min.cells=3), and the remaining cells and

genes were further selected based on stringent criteria (200 <

nFeature_RNA < 3000, 200 < nCount_RNA < 15000, percent.mt

< 20%). The filtered single-cell data were integrated using the

Harmony function and normalized using the LogNormalize

function. The top 2000 highly variable genes (HVGs) were

identified using the vst method of the FindVariableFeatures

function. Principal component analysis (PCA) was performed

based on the HVGs, and a scree plot was generated using the

Elbowplot function. The appropriate principal components (PCs)

for downstream analysis were selected using the JackStraw function.

Finally, high-quality cells were separated into distinct clusters using

the FindNeighbors and FindClusters functions, with the uniform

manifold approximation and projection (UMAP) clustering

method. Marker genes for different clusters were identified using

the FindAllMarkers function for further annotation (49–59)

(Supplementary Table 2).
2.11 Cell communication analysis and
identification of key cells

The ARDS and control sample data from the GSE180578

dataset were used to analyze cellular communication networks

between different cell types using the CellChat (v 1.6.1) package

(60). The interaction relationships of receptors and ligands for each

cell type were determined. Additionally, the Wilcoxon test was

applied to assess differences in the expression of biomarkers across

different cell types in ARDS and control samples (P < 0.05) to

identify key cells.
2.12 Pseudotime analysis

Key cells were selected from the GSE180578 dataset for further

dimensionality reduction and clustering. The identified key cells

were then reclustered and categorized into distinct cell

subpopulations. Following this, to investigate the potential

differentiation or activation trajectories of key cells during the

pathogenesis of ARDS, cell pseudo-time trajectory analysis was

conducted using the Monocle (v 2.30.0) package (61), and the cell

differentiation trajectories were visualized using the DDRTree (v

0.1.5) package (62).
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2.13 Reverse transcription-quantitative
polymerase chain reaction

Twenty whole blood samples were collected from Zhongda

Hospital of Southeast University, consisting of 10 samples from

patients with ARDS and 10 from healthy controls. The study was

approved by the Ethics Committee of Zhongda Hospital Southeast

University (approval number: 2022ZDSYLL402-P01), and

informed consent was obtained from all participants. Total RNA

was extracted from the 20 samples using TRIzol reagent (Ambion,

Cat#15596026, USA) following the manufacturer’s protocol. RNA

concentration was measured using the NanoPhotometer N50.

cDNA synthesis was carried out via reverse transcription using

the SweScript RT II First Strand cDNA Synthesis Kit (Servicebio

Cat#G3333,China), and the process was performed with the

S1000TM Thermal Cycler (Bio-Rad, USA). Primer sequences for

RT-qPCR are provided in Supplementary Table 3. RT-qPCR was

performed using the CFX Connect Real-Time Quantitative

Fluorescence PCR Instrument (Bio-Rad, USA), with b-actin used

as the internal reference gene. The RT-qPCR results were analyzed

using the 2-DDCT method, exported to Excel, and then imported

into GraphPad Prism 10.1.2 for statistical analysis and visualization

(P < 0.05).
2.14 Experimental validation

2.14.1 Animal experiment
C57BL/6 male mice (8–12 weeks old, 18–22 g) were purchased

from Jiangsu Huachuang Xinnuo Pharmaceutical Technology Co.,

Ltd. (Taizhou, China) and were housed under specific pathogen-

free conditions. All animal procedures were approved by the

Institutional Animal Care and Use Committee of Southeast

University (Approval No.SEU-20252018005).Mice were randomly

divided into two groups: LPS group, mice were administered with

LPS nasal instillation at a dose of 10 mg/kg(50ul); Control group,

mice received an equal amount of saline. After 24 h, all mice were

anesthetized and sacrificed. Blood samples were collected for

subsequent neutrophils isolation. Lung tissues were harvested and

divided into three portions: one was fixed in formalin for

histological sectioning and HE staining, one was homogenized for

cytokine analysis by Enzyme-Linked Immunosorbent Assay

(ELISA), and the remainder was stored at -80°C for RT-qPCR

analysis.RPL14, SMARCD3, and TCN1 mRNA expression in

peripheral blood neutrophils and lung tissues was analyzed by

RT-qPCR. Levels of glutathione (GSH), IL-6, and TNF-a in lung

tissue homogenates were measured by ELISA.
2.14.2 Hematoxylin and eosin staining
Tissue samples were paraffin-embedded and sectioned (4-5

mm). After deparaffinization by eco-friendly deparaffinisation

solution (Servicebio, Cat #G1128,China), 20 min×2,graded

ethanol(Sinopharm Chemical Reagent Co., Ltd., Cat #100092683,

China), 100%-75%, 5 min×3) and rinsing. H&E staining was

performed by an HE HD constant dye kit according to the
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manufacturer’s protocol (Servicebio, Cat #G1076, China). Stained

sections were examined under brightfield microscopy (Nikon

Eclipse C1).

2.14.3 Isolation of neutrophils from mouse
peripheral blood

As described in previous studies, neutrophils were collected

from the whole blood of C57BL/6 mice by using a mouse peripheral

blood neutrophil separator kit (Solarbio, Cat# P9201, China)

according to the instructions (64, 65). Mice were administered

with LPS nasal instillation to activate neutrophils. 24 hours later,

blood was collected via cardiac puncture into anticoagulant tubes.

Within two hours, blood was diluted 1:1 and layered onto a

separation medium, followed by centrifugation (1500 × g, 30 min,

25°C). Neutrophils were collected from the interface, lysed to

remove RBCs, washed with PBS (pH 7.4), and either stored at

-80°C or used immediately.

2.14.4 Cell culture and transfection
Tohoku Hospital Pediatrics-1(THP-1)cells were originally

obtained from Guangzhou Cellcook Biotech Co., Ltd. The cells

were maintained in RPMI 1640 medium (Gibco, Cat#11875093,

USA) supplemented with 10% heat-inactivated fetal bovine serum

(FBS) and 1% penicillin-streptomycin (Beyotime, Cat#ST488S,

China) at 37°C in a humidified 5% CO2 atmosphere. For

differentiation, THP-1 cells were treated with 100 ng/ml phorbol

12-myristate 13-acetate (PMA) (Macklin, Cat#C708929, China)

(63). After 24-hour treatment with PMA to differentiate THP-1

cells into macrophages, the cells were subsequently stimulated with

1 mg/mL lipopolysaccharide (LPS) (Beyotime, Cat# ST1470, China).

RPL14 siRNA, SMARCD3 siRNA, TCN1 siRNA, and negative

control siRNA were synthesized by GENCEFE Biotech Co., Ltd.

(Wuxi, China) siRNA sequences are provided in Supplementary

Table 4.The siRNAs were reverse-transfected into cells using

Lipofectamine 2000 (Invitrogen, Cat#11668019,USA) according to

the manufacturer’s protocol. After 24 hours of transfection to allow

for gene silencing, the cells were stimulated with 1 mg/ml LPS.

2.14.5 ROS detection
Cells were incubated with 2’,7’-dichlorodihydrofluorescein

diacetate (DCFH-DA) from the ROS Assay Kit (Beyotime, Cat#

S0033S,China) for 20 min at 37°C under light-protected conditions.

Excess dye was removed by washing with PBS. Fluorescence

intensity was measured using fluorescence microscope with

excitation wavelengths of 485/530 nm, where increased signal

intensity correlated with elevated intracellular ROS levels.

Untreated and H2O2-treated cells were included as controls.

2.14.6 JC-1 staining for mitochondrial membrane
potential analysis

Cells were incubated with JC-1 dye (Beyotime, Cat #C2003S,

China) for 30 min at 37°C in the dark. After incubation, excess dye

was removed by washing twice with phosphate-buffered saline

(PBS). Mitochondrial membrane potential was assessed by

fluorescence microscopy (Olympus CKX53).
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2.14.7 Tunel staining assay
Fixed samples were permeabilized with 0.1% Triton X-100

(Beyotime, Cat# ST1723,China) for 5 min and then incubated with

TUNEL reaction mix from the Tunel staining Assay Kit(Beyotime,

Cat #C1088, China) for 60 min at 37°C protected from light. The

samples were washed and counterstained with DAPI. Apoptotic cells

(TUNEL-positive) were quantified by fluorescence microscopy.

2.14.8 ELISA
AN assay for the determination of TNF-a,IL-6, GSH from

THP-1 cells with SiRNA transfection and homogenate of mouse

lung tissue had been validated using a commercially available

enzyme-linked immunosorbent assay (ELISA) kit(Human TNF-a
High Sensitivity ELISA Kit, MULTI SCIENCE, Cat# EK182HS-

AW1, China; Human IL-6 ELISA Kit, Solarbio, Cat#SEKM-0013,

China;Mouse IL-6 ELISA Kit, Solarbio, Cat#SEKM-0007, China;

Total Glutathione Assay Kit, Beyotime, Cat#S0052, China; Mouse

TNF-a ELISA Kit, Solarbio, Cat# SEKM-0034,China)following

manufacturer’s protocol.

2.14.9 Lactate content assay
THP-1 cell supernatant was collected after siRNA transfection

and LPS treatment. Lactate concentration was measured using a

WST-8-based kit(Beyotime, Cat # S0208S, China). Samples were

incubated with the reaction mixture at 37°C for 30 min, and

absorbance was read at 450 nm. Results were calculated via a

lactate standard curve.

2.14.10 Glucose uptake assay
Glucose uptake assay was measured using a WST-8-based kit

(Beyotime, Cat # S0554, China).After siRNA and LPS treatment,

THP-1 cells were glucose-starved, incubated with 2-DG, and lysed.

Lysates were reacted with a WST-8 working solution, incubated at

37°C for 30 min, and absorbance was measured at 450 nm. Glucose

uptake was quantified using a 2-DG6P standard curve.

2.14.11 Glucose consumption assay
Following THP-1 cells treatment with siRNA and LPS, culture

supernatants are collected after a defined incubation period and

centrifuged to remove debris. The glucose concentration in the

supernatant is quantified using a glucose oxidase-based assay kit

(Beyotime, Cat # S0202M, China) by measuring absorbance at 490–

540 nm. Glucose consumption is calculated by subtracting the

glucose concentration at the end of the experiment from the

initial concentration, normalized to total protein or cell number

to assess cellular metabolic activity.

2.14.12 Cyclosporine A drug treatment
Induction of THP-1 cell differentiation into macrophages via

PMA treatment and then a macrophage inflammatory model was

constructed by LPS. Different concentrations of CsA were applied to

the macrophages, which was divided into three groups: low

concentration group (2mM), medium concentration group (4mM)

and high concentration group(8mM). RT-qPCR was performed to
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measure the mRNA expression levels of IL-6 and TNF-a in each

group. RPL14,SMARCD3 and TCN1 mRNA expression also was

detected by RT-qPCR. Cells from the above groups were further

assessed for mitochondrial function by JC-1 staining, oxidative

stress by ROS detection, apoptosis by TUNEL staining assay and

inflammatory markers (TNF-a, IL-6, GSH) via ELISA.
2.15 Statistical analysis

Bioinformatics analyses were performed using R (v 4.2.2). This

study first identified differentially expressed genes (DEGs1) in

training set 1 using the limma package (v 3.54.0) with the criterion

of |log2fold-change (FC)| > 1 and P < 0.05. Using the same threshold

criteria, DEGs2 were identified in training set 2 with the DEseq2

package (v 1.42.0). Based on these candidate genes, LASSO regression

analysis was performed using the glmnet package (v 4.1.4) in R

software, with the family parameter set to binomial and ten-fold

cross-validation to select the feature genes. Subsequently, the caret

package (v 6.0-93) in R was used to further screen feature genes using

the random forest method, and recursive feature elimination (RFE)

was applied to iteratively remove unimportant genes, ultimately

obtaining the selected feature genes. Next, the Wilcoxon test was

used to compare the expression differences of key genes between

ARDS and control samples in the main training set (GSE32707),

auxiliary training set (GSE243066), and validation set (GSE76293),

with FDR correction applied for multiple testing and a significance

threshold of p < 0.05. Additionally, the Wilcoxon test was used to

analyze immune cell infiltration differences between disease and

normal sample groups, with the Benjamini-Hochberg method for

multiple testing correction (a=0.05).
3 Results

3.1 Acquisition of differentially expressed
genes and module genes

A total of 523 dDEGs1 were identified in training set 1 through

differential expression analysis, with 286 up-regulated and 237 down-

regulated genes. In training set 2, 4,813 DEGs2 were detected,

including 1,795 up-regulated and 3,018 down-regulated genes. The

top 10 up-regulated and down-regulated DEGs and their expression

profiles were displayed on volcano plots and heatmaps, respectively

(Figures 2A-D). In both ARDS and control samples, the infiltration

levels of 64 immune cell types were presented in a stacked plot.

Supplementary Table 5 displays the top 10 immune cells with the

highest infiltration abundance, with neutrophils exhibiting the most

significant infiltration (Figure 3A, Supplementary Table 5). It is worth

noting that some of the control samples exhibited a relatively high

proportion of immune cells. This phenomenon may have reflected

individual differences during sample collection, such as potential

subclinical infections, inflammatory responses, or other undefined

physiological states, and these factors may have caused the non-

specific activation and recruitment of immune cells in the control
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group. A total of 35 immune cells showed significant differences in

infiltration (Figure 3B, Supplementary Table 6). Following this,

WGCNA was conducted using differential immune cell scores as

traits. No abnormal samples were found in training set 1 (Figure 3C).

The b value was determined to be 9 (Figure 3D). A co-expression

matrix was then constructed, and 14 gene modules were identified

(Figure 3E). Among these, MEbrown (cor=0.95) and MEturquoise

(cor=-0.94), which showed the largest positive and negative

correlations with differential immune cell scores, respectively, were

considered as key modules (Figure 3F). These modules contained a

total of 6,601 key module genes.
3.2 27 candidate genes were screened out
and were significantly enriched in
ribosomal function and amino acid
metabolic pathways

After overlapping DEGs1, DEGs2, key module genes, and

MRRGs, 27 candidate genes were identified (Figure 4A).

Enrichment analysis revealed that the 27 candidate genes were

significantly associated with 408 GO terms, including “structural

constituent of ribosome” (Figure 4B, Supplementary Table 7).

Additionally, KEGG analysis identified 101 enriched terms,

primarily linked to amino acid biosynthesis and metabolic

pathways, such as those involving arginine, proline, and

glutamate (Figure 4C, Supplementary Table 8). These results

suggest a strong association between the candidate genes and
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ribosomal function, as well as amino acid metabolism. In the PPI

network, two discrete targets were removed, and genes like NME1

and ASS1 showed strong connectivity with other genes, highlighting

their potential relevance (Figure 4D).
3.3 RPL14, SMARCD3, and TCN1 were
identified as potential biomarkers of ARDS

Through LASSO analysis, 10 feature genes were selected,

including RPL37A, VNN2, RPS28, NME1, TCN1, RPL14,

SMARCD3, ASS1, KYNU, and CKB (Figures 4E, F). The SVM-

RFE analysis identified 22 feature genes, including SMARCD3,

TCN1, UPP1, RPL37A, HK3, KYNU, VNN1, NUP214, RPL14,

PGS1, RPS28, RPL10A, ARG1, RPL23A, PFAS, CKB, ITPR3, ASS1,

ALOX5, ALOX5AP, SAT1, and FASN (Figure 4G). A final set of 8

feature genes was derived (Figure 4H).

Expression analysis indicated that CKB and RPL14 were

significantly down-regulated in ARDS samples across training set

1, training set 2, and the validation set. Conversely, SMARCD3 and

TCN1 were up-regulated in ARDS samples across all datasets. The

expression patterns of ASS1 and KYNU were inconsistent, and no

significant expression differences for RPL37A and RPS28 were

observed (Figures 5A-C). Consequently, CKB, RPL14, SMARCD3,

and TCN1 were identified as candidate biomarkers. Furthermore,

the AUC values for RPL14, SMARCD3, and TCN1 exceeded 0.7

across the three datasets (Figures 5D-F), supporting their potential

as reliable biomarkers.
FIGURE 2

Identification of differentially expressed genes (DEGs) in ARDS. (A) Volcano plot of DEGs in training set 1 (GSE32707). (B) Heatmap of DEGs in training
set 1. (C) Volcano plot of DEGs in training set 2 (GSE243066). (D) Heatmap of DEGs in training set 2.
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FIGURE 3

Immune infiltration analysis and weighted gene co-expression network analysis (WGCNA). (A) Analysis of immune cell infiltration. (B) Differential
immune cell infiltration analysis. (C) Sample clustering and detection of outliers. (D) Determination of the optimal soft threshold (b). (E) Cluster
dendrogram of genes, with different colors below representing different co - expression modules. (F) Heatmap displaying the correlation between
gene modules (rows) and cell type proportions (columns), where color intensity indicates the strength of correlation.
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3.4 SMARCD3 and TCN1 were highly
expressed in ARDS samples

To further validate these biomarkers, RT-qPCR analysis was

performed using human whole-blood samples. The results
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confirmed a significant upregulation of SMARCD3 and TCN1 in

ARDS samples (P < 0.05) (Figure 5G), consistent with the findings

from training set 1, training set 2, and the validation set. While

RPL14 showed a downward trend in ARDS samples, the difference

was not statistically significant (P=0.44).
FIGURE 4

Identification and validation of potential biomarkers in ARDS. (A) Venn diagram of overlapping genes. (B) Gene Ontology (GO) enrichment analysis of
27 candidate genes, highlighting significant enrichment in biological processes such as “structural constituent of ribosome.” (C) Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis, focusing on pathways related to amino acid biosynthesis and metabolism. (D) Protein-protein
interaction (PPI) network of candidate genes, with key genes such as NME1 and ASS1 showing high connectivity. (E) LASSO coefficient profiles for
the 10 selected feature genes. (F) Cross-validation for tuning parameter selection in LASSO analysis. (G) SVM-RFE analysis for feature selection. (H)
Venn diagram illustrating the overlap of feature genes identified by LASSO and SVM-RFE.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1615748
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1615748
3.5 The ANN model of biomarkers was
constructed and evaluated

Based on these biomarkers, an ANN model was constructed to

evaluate their predictive power in ARDS onset (Figure 6A). The
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ROC curve analysis showed that the AUC values for training set 1,

training set 2, and the validation set were 0.97 (specificity: 0.9706,

sensitivity: 0.9677), 0.80 (specificity: 0.8670, sensitivity: 0.7330), and

0.75 (specificity: 0.9170, sensitivity: 0.5830), respectively

(Figures 6B-D).
FIGURE 5

Identification and validation of biomarkers in ARDS. (A-C) Expression analysis of candidate biomarkers. (D-F) ROC curve analysis for the performance
of biomarkers. (G) RT-qPCR validation of biomarkers. *p<0.05, **p<0.01, ***p<0.001 vs control group. "ns" indicates no significance.
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3.6 The core biomarkers were found to be
involved in the pathogenesis of ARDS by
regulating immune signaling and ribosomal
pathways

RPL14, SMARCD3, and TCN1 were mapped to chromosomes

3, 7, and 7, respectively (Figure 6E), suggesting that these three

biomarkers may have distinct biological functions. GSEA revealed

that RPL14, SMARCD3, and TCN1 were enriched in 82, 89, and 69

pathways, respectively (Supplementary Tables 9–11). Notably, the

ribosome pathway was significantly associated with both RPL14 and

SMARCD3, while chemokine, B cell receptor, and T cell receptor

signaling pathways were uniquely linked to both SMARCD3 and

TCN1 (Figures 6F-H). These findings indicate that these

biomarkers may contribute to ARDS by modulating T/B cell

immune responses, in addition to the inflammatory response.

The GGI network constructed revealed the top 20 genes

associated with the function of the biomarkers, such as CBLIF,

which are involved in water-soluble vitamin metabolic

processes (Figure 6I).
3.7 The regulatory networks of RPL14,
SMARCD3, and TCN1 were constructed

A total of 44 miRNAs were predicted to target RPL14 and

SMARCD3, while no miRNA targeting TCN1 was identified. Based

on a threshold of clipExpNum > 4, 107 lncRNAs were predicted by

the 20 miRNAs. Consequently, a lncRNA-miRNA-mRNA network

involving 2 biomarkers, 20 miRNAs, and 107 lncRNAs was

constructed (Figure 7A). Additionally, 62 TFs targeting RPL14,

SMARCD3, and TCN1 were identified, and the TF-biomarker

network was generated (Figure 7B). Among these, KLF9 was

found to target both RPL14 and SMARCD3, suggesting common

transcriptional regulation in ARDS for these biomarkers.
3.8 Selenium and cyclosporin A were
screened as potential drugs and molecular
docking was conducted

The drug-biomarker network revealed that 41 drugs targeted

RPL14, 4 targeted SMARCD3, and 6 targeted TCN1. Notably,

tetradioxin (CTD 00006848) was identified as a drug targeting both

SMARCD3 and TCN1, while selenium (CTD 00006731) and CsA

(CTD 00007121) were found to target both RPL14 and SMARCD3

(Figure 7C, Supplementary Table 12). Molecular docking was then

performed using the highest-scoring drugs targeting the biomarkers.

Mesalazine (MCF7 UP) and arbutin (CTD 00005438) showed the

highest scores for RPL14 and TCN1, respectively. For SMARCD3,

although selenium (CTD 00006731) and methaneseleninic acid

(CTD 00000412) had relatively high scores, their 3D structures

were unavailable, so tetradioxin (CTD 00006848) was used instead.

The binding energies of the complexes formed by RPL14 and
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mesalazine (Figure 7D), SMARCD3 and tetradioxin (Figure 7E),

and TCN1 and arbutin (Figure 7F) were -4.5, -6.8, and -7.1 kcal/mol

respectively, with the binding centers located at (-4, -3, -1), (-22, 38,

4), and (-15, -3, 10) (Supplementary Table 13). The binding energy of

RPL14 and mesalazine did not reach -5 kcal/mol, indicating a

relatively low affinity between the ligand and receptor, suggesting

that the complex formed might be easily dissociated. Overall, these

results highlight the potential therapeutic relevance of RPL14,

SMARCD3, and TCN1, particularly in the context of

ARDS treatment.
3.9 Annotation yielded 8 cell types

In the GSE180578 dataset, prior to quality control, a total of

57,811 cells and 19,704 genes were identified. After quality control,

53,816 cells and 19,704 genes were retained (Figures 8A, B). The top

2,000 HVGs and the top 30 PCs were then used for UMAP clustering

(Figures 8C, D). This process led to the classification of all high-

quality cells into 16 distinct clusters (Figure 8E). The cell clusters were

annotated, revealing 8 cell types, including B cells, endothelial cells,

macrophages, natural killer cells, neutrophils, plasma cells, red blood

cells, and T cells (Figure 8F). The marker genes displayed high

specificity across different cell clusters (Figure 8G). Notably, T cells

comprised the highest proportion among all cell types. A comparison

between ARDS and control samples revealed that macrophages,

endothelial cells, and neutrophils were significantly more abundant

in ARDS samples (Figures 8H, I).
3.10 Macrophages and neutrophils were
recognized as key cells in ARDS

The cell-cell communication network analysis showed that, in

ARDS samples, macrophages and neutrophils exhibited a greater

number of interactions with other cell types compared to control

samples (Figures 9A, C). This suggests that macrophages and

neutrophils may play more pivotal roles in ARDS than other cell

types. In ARDS samples, the interaction intensity of Neutrophils

with other cells was stronger than that in control samples

(Figures 9B, D). Figures 9E, F display the receptor-ligand pairings

between different cell types in ARDS and control samples. Among

these pairings, MIF-(CD74+CXCR4) and MIF-(CD74+CD44) were

the core regulatory pathways for intercellular communication in

both types of samples, and they could collectively regulate a variety

of intercellular interactions, including T cell→Macrophage, Plasma

cell→B cell, and Plasma cell→Macrophage. Furthermore, the

expression patterns of RPL14, SMARCD3, and TCN1 at the

cellular level were examined. It was found that RPL14 and

SMARCD3 were expressed in multiple cell types, whereas TCN1

was not expressed (Figure 10A). Among these, RPL14 and

SMARCD3 showed significant differential expression in

macrophages and neutrophils (Figures 10B, C), making them key

cells for further investigation.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1615748
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1615748
FIGURE 6

Construction and evaluation of the ANN model and functional enrichment analysis of biomarkers. (A) Architecture of the ANN model. (B-D) ROC
curve analysis for the ANN model. (E) Chromosomal localization of biomarkers. (F-H) GSEA of biomarkers. (I) Gene-gene interaction (GGI) network
of biomarkers.
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3.11 RPL14 and SMARCD3 expression
changes during the differentiation of key
cells were investigated

Secondary dimensionality reduction clustering analysis was

performed on the key cells. It was observed that macrophages

were divided into 16 subtypes, and neutrophils were divided into

9 subtypes (Figures 11A, B). These subtypes were then placed along
Frontiers in Immunology 14
a differentiation trajectory based on differentiation time sequence,

with darker shades of blue corresponding to earlier stages of

differentiation. Macrophages were found to have 7 differentiation

states, with State 1 representing the earliest and most specific stage

(Figure 11C). Neutrophils exhibited 3 differentiation states, with

State 1 also being the earliest and most specific (Figure 11D).

As macrophages differentiated, the expression of RPL14

increased initially and then decreased, while the expression of
FIGURE 7

Regulatory networks, drug prediction and molecular docking analysis for biomarkers. (A, B) Regulatory networks associated with biomarkers. (C)
Drug-biomarker interaction network. (D-F) Molecular docking analysis of drugs targeting biomarkers.
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SMARCD3 followed an opposite trend (Figure 11E). In neutrophils,

RPL14 expression generally trended upward, whereas SMARCD3

expression initially increased and then decreased (Figure 11F).

These results suggest that the expression trends of RPL14 and

SMARCD3 during differentiation of key cells were heterogeneous,

potentially reflecting their distinct roles in cell differentiation.

RPL14 and SMARCD3 likely function in different capacities

during this process, influencing the differentiation trajectories of

macrophages and neutrophils in ARDS.
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3.12 High expression of SMARCD3 and
TCN1 in LPS induced murine model of
acute lung injury

Building upon these results, we next sought to determine

whether these effects could be recapitulated in vivo.C57BL/6J

mice were stratified into control and LPS-induced acute lung

injury groups, and the validity of the model was validated using

pathological morphology and inflammation/oxidative stress
FIGURE 8

Single-cell RNA sequencing (scRNA-seq) analysis of ARDS samples. (A, B) Number of cells and genes before and after quality control. (C) UMAP plot
depicting the top 2,000 highly variable genes (HVGs). (D) Scree plot for principal component analysis (PCA), with the top 30 principal components
selected for further analysis. (E) UMAP plot showing the identification of 16 distinct cell clusters. (F) Annotation of 8 major cell types, including B
cells, macrophages, and neutrophils. (G) Expression patterns of marker genes across different cell types. (H) Bar plot depicting the proportion of cell
types in ARDS and control samples. (I) UMAP plot emphasizing the enrichment of macrophages, endothelial cells, and neutrophils in ARDS samples.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1615748
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1615748
FIGURE 9

Cell-cell communication and key cell identification in ARDS. (A) The cell communication network count plot between ARDS samples. The thickness
of the lines represents the quantity of interactions between cells. (B) The cell communication network weight plot between ARDS samples. The
thickness of the lines represents the strength of interactions between cells. (C) The cell communication network count plot between control
samples. (D) The cell communication network weight plot between control samples. (E) Bubble plot of receptor ligand interactions in the ARDS
samples. The y-axis represented different receptor-ligand pairs, and the x-axis represented different cell-cell interactions. The color of the legend on
the right ranged from blue to red, with the redder the color, the stronger the interaction. (F) Bubble plot of receptor ligand interactions in control
sample.
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indicators. Histopathological examination of lung tissues via HE

staining revealed pronounced structural disruption of alveoli in

murine model of acute lung injury, characterized by widespread

thickening of alveolar septa (Figure 12A). Further quantification by

ELISA showed markedly increased concentrat ions of

proinflammatory cytokines IL-6 and TNF-a, coupled with a

significant reduction in GSH levels in lung tissue homogenates
Frontiers in Immunology 17
from LPS-induced acute lung injury mice relative to controls

(Figure 12B). Subsequent RT-qPCR analysis demonstrated that

RPL14 mRNA expression remained unchanged in both lung tissue

homogenates and peripheral blood neutrophils of LPS-induced acute

lung injury mice. In contrast, SMARCD3 and TCN1 transcript levels

were significantly elevated in both lung tissue (Figure 12C) and

neutrophils (Figure 12D) compared to control.
FIGURE 10

The expression of RPL14 (H) and SMARCD3 in cells. (A) UMAP plot showing the expression of RPL14 and SMARCD3 in different cell types. (B, C) Box
plots illustrating significant differential expression of RPL14 and SMARCD3 in macrophages and neutrophils. ***p<0.001,****p<0.0001,vs control
group. "ns" indicates no significance.
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3.13 Distinct roles of RPL14, SMARCD3 and
TCN1 in regulating mitochondrial function
and inflammation

To decipher the cellular mechanisms underlying the observed

lung injury, we next performed in vitro experiments. THP-1 cells

were first transfected with siRNA targeting RPL14, SMARCD3, or

TCN1, then stimulated with LPS (Figure 13A). ROS detection

(Figure 13B) revealed that RPL14 silencing did not affect
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mitochondrial membrane potential and concomitantly showed no

change in JC-1 staining, with TUNEL assay further confirming no

significant effect on cellular apoptosis. In contrast, both SMARCD3

and TCN1 silencing led to reduced ROS production and increased

mitochondrial membrane potential, accompanied by suppressed

apoptotic activity. Compared to the control group, GSH levels were

significantly increased by SMARCD3 and TCN1 silencing after LPS

stimulation (Figures 13C-E). RT-qPCR analysis revealed that

RPL14 interference did not affect IL-6 or TNF-a mRNA
FIGURE 11

Pseudotime analysis of key cells in ARDS. (A) UMAP plot showing 16 subtypes of macrophages. (B) UMAP plot showing 9 subtypes of neutrophils. (C)
Pseudotime trajectory of macrophages with 7 differentiation states. (D) Pseudotime trajectory of neutrophils with 3 differentiation states. (E)
Expression trends of RPL14 and SMARCD3 during macrophage differentiation. (F) Expression trends of RPL14 and SMARCD3 during neutrophil
differentiation.
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expression, whereas SMARCD3 and TCN1 knockdown

significantly reduced both cytokines (Figure 13F). Consistently,

ELISA measurements showed RPL14 silencing had no notable

effects on IL-6/TNF-a secretion; however, SMARCD3 and TCN1

silencing markedly inhibited IL-6/TNF-a secretion (Figure 13G). In

terms of alterations in glucose metabolism, silencing SMARCD3 or

TCN1, but not RPL14, decreased lactate production, glucose uptake

and glucose consumption compared to the control group.

(Figures 13H-J).
3.14 CsA inhibition of LPS-induced
macrophage injury is associated with
downregulation of SMARCD3

To further investigate the role of CsA in LPS-induced

macrophages, we differentiated THP-1 cells into macrophages

with PMA (63). We measured cytokine expression by RT-qPCR,

the result showed that LPS stimulation significantly upregulated IL-

6 and TNF-amRNA, while medium/high-dose CsA attenuated this

upregulation (Figure 14A). Notably, the inhibitory effects of CsA

extended beyond cytokine modulation to transcriptional regulators.

LPS-treated macrophages exhibited unchanged RPL14 mRNA but

significantly increased SMARCD3 expression. The LPS+CsA group

showed no alteration in RPL14 versus LPS-only group, but

displayed significant SMARCD3 downregulation (Figure 14B).

These findings indicate that LPS stimulation enhances SMARCD3

expression in macrophages, while CsA administration reverses this

LPS-induced SMARCD3 upregulation.
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JC-1 (Figure 14C) and TUNEL assay (Figure 14D) revealed that

LPS stimulation significantly reduced mitochondrial membrane

potential and induced apoptosis in macrophages, effects that were

dose-dependently reversed by medium/high-concentration CsA

treatment. Concurrently, LPS triggered pro-inflammatory

cytokine overproduction (IL-6, TNF-a) and depleted intracellular

GSH, all of which were attenuated by CsA in a concentration-

dependent manner. Notably, all CsA-treated groups exhibited

significantly reduced cytokine secretion and restored GSH levels

versus LPS-only controls, with maximal efficacy at medium/high

doses (Figure 14E). These data demonstrate that CsAmitigates LPS-

induced macrophage injury, and its protective effects are associated

with downregulation of SMARCD3.
4 Discussion

The interplay between directional immune cell migration and

metabolic reprogramming is pivotal in ARDS. Metabolic alterations

not only impact immune cell function but also regulate their

migration toward damaged lung tissue (66). For example,

metabolic by-products can modify immune cells’ response to

chemical signals, thereby affecting their migratory capacity (67).

This relationship suggests that targeting these processes could be a

viable strategy to control inflammation and mitigate lung damage in

ARDS. This study identified three biomarkers (RPL14, SMARCD3,

TCN1) through machine learning algorithms and explored their

potential mechanisms in ARDS via ANN model construction,

enrichment analysis, regulatory network construction, and drug
FIGURE 12

The expression levels of hub ARDS-ARDEGs (RPL14, SMARCD3, TCN1), inflammatory cytokines and GSH in murine acute lung injury models. (A)
Histopathological images of lung tissues in LPS-induced ALI mice and control group. Scale bar, 100 mm. (B) ELISA analysis of inflammatory cytokines
and GSH from ALI mice. (C) RPL14 mRNA expression remained unchanged but SMARCD3/TCN1 mRNA expression increased in ALI mice lung tissue
homogenate. (D) RPL14, SMARCD3, TCN1 mRNA expression in ALI mice peripheral blood neutrophils. n=3 in each group. The data are shown as
mean ± standard deviation;**p<0.01, ***p<0.001 vs control group.
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prediction analysis. Key cells were subsequently identified using

single-cell data, and the expression of biomarkers was examined at

the cellular level, offering new insights into the pathogenesis

of ARDS.

SMARCD3 (SWI/SNF-Related Matrix-Associated Actin-

Dependent Regulator of Chromatin Subfamily D Member 3)

plays a pivotal role in chromatin remodeling and regulates

essential cellular processes, including differentiation, proliferation,

and apoptosis. Its dysfunction is associated with a range of diseases.

In cancer, alterations in chromatin structure and gene expression

disrupt cell cycle regulation and modify the activity of proto-

oncogenes or tumor suppressor genes (68, 69). Although

SMARCD3 has not been directly studied in ARDS, chromatin

remodeling is well-established as a critical factor in controlling
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the inflammatory responses central to ARDS pathogenesis. In

infectious diseases, including viral infections like influenza and

Coronavirus Disease 2019(COVID-19), SMARCD3 is involved in

regulating the immune response (70, 71). Additionally, chromatin

remodeling influences the epigenetics of immune cells in sepsis,

suggesting an indirect link between SMARCD3 and ARDS

development (68, 69, 72). Furthermore, immune cell metabolic

requirements and pathways undergo significant changes during

different activation states. For instance, lipid metabolic

reprogramming in CD8+ T cells is crucial for anti-tumor

immunity. As a chromatin remodeling factor, SMARCD3 may

modulate immune cell metabolic reprogramming by regulating

key metabolic genes, ultimately affecting their immunological

functions (73). Our study observed that upregulation of
FIGURE 13

Functional validation of hub ARDS-ARDEGs (RPL14, SMARCD3, TCN1) in THP-1-derived macrophages. (A) siRNA-mediated silencing reduced the
expression levels of the corresponding target genes in THP-1 cells. (B) SMARCD3/TCN1 silencing reduced ROS production with LPS stimulation. (C)
ELISA analysis of GSH. (D) SMARCD3/TCN1 silencing led to increased mitochondrial membrane potential with LPS stimulation. (E) TUNEL assay
showed SMARCD3/TCN1 silencing suppressed apoptotic activity. (F) Inflammatory cytokine mRNA expression. (G) ELISA of cytokine secretion levels.
(H) Reduction in lactate production upon SMARCD3 or TCN1 knockdown. (I) Impaired glucose uptake following SMARCD3 or TCN1 silencing. (J)
Decreased glucose consumption in SMARCD3- or TCN1-deficient cells. ###p<0.001 vs siRNA-NC group;*p<0.05, **p<0.01, ***p<0.001 vs siRNA-
NC+LPS group.
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SMARCD3 in ARDS may drive macrophages and neutrophils

toward a glycolysis-dependent M1/N1-like polarization state. This

metabolic reprogramming not only meets the heightened energy

demands and biosynthetic precursor requirements for rapid cellular

proliferation and activation, but also promotes reactive oxygen

species (ROS) generation and the release of proinflammatory

cytokines such as IL-6 and TNF-a. In summary, SMARCD3

likely serves as a crucial molecular regulator of inflammatory

responses in ARDS by reprogramming metabolic pathways in

immune cells.

TCN1 (Transcobalamin 1) is a critical transporter of vitamin

B12 in the bloodstream, ensuring the delivery of vitamin B12 to

tissues and cells, thus supporting normal metabolic and

physiological functions (74, 75). Dysfunction of TCN1 can impair

vitamin B12 transport, leading to metabolic disturbances. Vitamin

B12 is integral to cellular metabolism, and as a transport protein,

TCN1 may influence vitamin B12 levels in immune cells, thereby

impacting their metabolic processes (76). In inflammatory

conditions like ulcerative colitis, TCN1 expression can be altered

by inflammation (74). Although TCN1 has not been directly studied

in ARDS, vitamin B12 metabolism is crucial for cellular function

and immune responses, and TCN1 may therefore indirectly affect

the progression of ARDS. In infectious diseases such as COVID-19,

TCN1 has been linked to poor outcomes, with vitamin B12
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deficiency associated with a worse prognosis (77). Altered TCN1

levels have also been observed in sepsis, likely due to its role in

immune modulation and cellular metabolism (77). Furthermore,

TCN1 is implicated in autoimmune diseases, where it may help

regulate inflammatory responses (74, 75, 77). This study found that

TCN1 was significantly upregulated in ARDS samples, and after

silencing TCN1, the intracellular GSH level increased and the

secretion of inflammatory factors decreased. This result suggests

that TCN1 may affect the activation state of immune cells and the

output of inflammation by regulating the vitamin B12-dependent

metabolic pathway: its abnormal expression may reshape the

methylation metabolic efficiency and antioxidant capacity of

immune cells, and ultimately participate in the pathological

process of ARDS. In summary, TCN1, as a key molecule

connecting vitamin B12 metabolism and immune inflammation,

provides a new perspective for understanding the cross-regulation

mechanism of immunity and metabolism in ARDS.

RPL14 (Ribosomal Protein L14) is essential for ribosome

function and plays a role in cell growth, proliferation, and cancer

progression (78). Mutations in the RPL14 gene can disrupt protein

synthesis, leading to developmental disorders. RPL14 also

influences immunity, as it is often disrupted during viral

infections (e.g., influenza, COVID-19), where viruses hijack

ribosomal proteins to replicate and evade immune defenses (79).
FIGURE 14

CsA reversed LPS-induced mitochondrial damage, inflammation, and oxidative stress in macrophages. (A) LPS-induced IL-6/TNF-a upregulation was
attenuated by medium/high-dose CsA. (B) LPS stimulation enhances SMARCD3 expression (but not RPL14) in macrophages, while CsA
administration reverses this LPS-induced SMARCD3 upregulation. (C) JC-1 assay. Medium- to high-concentration CsA dose-dependently reversed
the LPS-induced reduction in mitochondrial membrane potential. (D) TUNEL assay. LPS-induced apoptosis was dose-dependently mitigated by
medium/high-dose CsA. (E) Inflammatory markers and redox status. LPS triggered IL-6/TNF-a overproduction and GSH depletion, all dose-
dependently attenuated by CsA (maximal efficacy at medium/high doses). The data are shown as mean ± standard deviation; *p<0.05, **p<0.01,
***p<0.001 vs control group; #p<0.05, ###p<0.001 vs LPS group.
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RPL14 is involved in ribosome construction, which is directly

related to protein synthesis and energy metabolism. Thus, RPL14

may regulate the energy metabolism pathways of immune cells,

such as glycolysis and OXPHOS, by influencing protein synthesis

(80). Additionally, RPL14 is linked to immune dysfunction in

sepsis, a leading cause of death. In cancer, elevated levels of

RPL14 correlate with tumor growth and aggression (81).

SMARCD3 and TCN1, not RPL14, act as key molecular nodes

linking inflammatory signaling (LPS/TLR4) to metabolic

reprogramming. Silencing SMARCD3 or TCN1 leads to

metabolic alterations characterized by reduced glucose uptake,

glucose consumption and lactate production, thereby inhibiting

glycolytic flux. At the functional level, this suppression prevents

polarization toward a pro-inflammatory phenotype and enhances

antioxidant capacity.

The RT-qPCR results from clinical patients with ARDS

confirmed that SMARCD3 and TCN1 are highly expressed in

ARDS, consistent with the bioinformatics analysis. However,

RPL14 expression showed a decreasing trend in ARDS samples,

though this difference was not statistically significant, likely due to

the limited sample size. GSEA analysis revealed significant

enrichment of 82, 89, and 69 pathways for RPL14, SMARCD3,

and TCN1, respectively. Notably, the ribosome pathway was

strongly associated with both RPL14 and SMARCD3, while

chemokine, B cell receptor, and T cell receptor signaling

pathways were significantly associated with both SMARCD3

and TCN1.

The pathways associated with SMARCD3, TCN1, and RPL14

converge on key processes critical in ARDS, including: (1) Immune

Cell Recruitment and Activation: Chemokine and receptor

signaling pathways, such as chemokine, B cell receptor, and T cell

receptor pathways, are essential for directing immune cells to the

lung and regulating their function. Dysregulation of these pathways

can lead to excessive inflammation and tissue damage (82–84). (2)

Inflammatory Signaling: TLR and neurotrophin signaling pathways

underline the role of innate immunity and neuroimmune

interactions in ARDS. These pathways contribute to the

hyperinflammatory state and systemic effects associated with

ARDS (82, 85). (3) Cellular Stress and Repair: Ribosome and

spliceosome pathways highlight the importance of cellular stress

and repair processes. Dysregulation of these pathways can impair

lung tissue repair, exacerbating injury (82).

The biomarkers SMARCD3, TCN1, and RPL14 are linked to

critical pathways involved in immune regulation, inflammation,

and cellular repair in ARDS. Their roles in chemokine signaling,

receptor signaling, and ribosomal function suggest they may

contribute to the dysregulated immune response and tissue

damage observed in ARDS. Further research is necessary to

elucidate their specific mechanisms and potential as

therapeutic targets.

In this study, a comprehensive molecular regulatory network

involving miRNAs, lncRNAs, and TFs was constructed to

investigate the potential mechanisms underlying ARDS. The

network highlights interactions between two key biomarkers,

RPL14 and SMARCD3, and their regulatory molecules. TCN1
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appears to play a less prominent role in the network due to the

lack of predicted miRNA interactions.

MiRNA-Mediated Regulation of Biomarkers: MiRNAs typically

bind to the 3’ untranslated region (3’UTR) of target mRNAs,

leading to mRNA degradation or translational repression (86). In

ARDS, dysregulated miRNAs have been shown to modulate

inflammatory pathways, oxidative stress, and cell apoptosis—key

processes in ARDS development (87, 88). For instance, miR-155

and miR-146a, which are commonly dysregulated in ARDS, target

genes involved in NF-kB signaling and cytokine production, thus

contributing to the inflammatory response (87).

Based on the above information (68, 69, 74, 75, 79, 89), this

study hypothesizes the following potential mechanisms:

Dysregulation of RPL14 could impair ribosomal function, leading

to defective protein synthesis and heightened susceptibility to

cellular damage in ARDS (79, 89). SMARCD3 may be targeted by

miRNAs, which regulate gene expression and chromatin structure.

Altered SMARCD3 expression could disrupt the transcriptional

regulation of inflammatory genes, thereby exacerbating ARDS

pathology (68, 69). The absence of predicted miRNAs targeting

TCN1 suggests that its regulation may occur at other levels, such as

transcriptional or post-translational modifications (90). TCN1, as a

vitamin B12-binding protein, may influence ARDS through

mechanisms independent of miRNA regulation, such as

modulation of oxidative stress or immune responses.

KLF9 (Krüppel-like factor 9), a TF that targets both RPL14 and

SMARCD3, plays a key role in regulating cell differentiation,

inflammation, and stress responses. In chronic obstructive

pulmonary disease (COPD), KLF9 modulates airway

inflammation by controlling pro-inflammatory cytokines and

antioxidant genes (91), suggesting a similar function in ARDS

due to the shared inflammatory mechanisms between the two

conditions. KLF9 has also been implicated in airway remodeling

and inflammation in benign tracheal stenosis (92), as well as in

asthma and pulmonary fibrosis, where it regulates epithelial-

mesenchymal transition (EMT) and fibrotic responses—processes

part icular ly relevant to ARDS, especial ly during the

fibroproliferative phase. By regulating RPL14 and SMARCD3,

KLF9 may influence ribosomal function and chromatin

remodeling, affecting inflammatory gene expression and protein

synthesis under stress conditions in ARDS. This regulation of

RPL14 and SMARCD3 by KLF9 could modulate cellular

responses to injury and inflammation in ARDS, with KLF9-

mediated changes in SMARCD3 expression potentially altering

inflammatory gene regulation and its impact on protein synthesis

through RPL14 under stress.

In drug prediction, molecular docking is a widely used

computational method, offering a preliminary assessment of the

binding ability between drugs and targets. Despite its limitations,

drug prediction remains a critical step in drug development. Three

drugs—tetradioxin (CTD 00006848), selenium (CTD 00006731),

and CsA (CTD 00007121)—are notable for their ability to target

multiple biomarkers simultaneously. Although direct evidence for

tetradioxin in ARDS is lacking, its dual targeting of SMARCD3 and

TCN1 suggests it may regulate inflammatory and metabolic
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pathways pertinent to ARDS. Both chromatin remodeling and

metabolic dysregulation have been implicated in respiratory

diseases like COVID-19 and COPD (93, 94). Selenium has been

extensively studied in the context of respiratory diseases, including

ARDS and COVID-19. Selenium deficiency is associated with

worsened severity of respiratory infections and inflammation,

while supplementation has been shown to alleviate oxidative

stress and improve ARDS prognosis (94, 95). Its role in immune

regulation and antioxidant defense positions selenium as a

promising agent for ARDS treatment, particularly for patients

with comorbidities such as asthma or vitamin D deficiency (96).

CsA has been explored in ARDS and other inflammatory lung

diseases for its ability to suppress cytokine storms and reduce lung

injury. Its immunosuppressive properties make it a potential

therapeutic option for ARDS, especially in hyperinflammatory

cases (97). CsA has also been studied in COVID-19, where

cytokine storms and immune dysregulation play a central role in

disease progression (94). These drugs may also offer broader

therapeutic applications in systemic diseases with similar

pathogenesis, such as COVID-19, COPD, and asthma, where

inflammation, oxidative stress, and immune dysregulation are key

drivers of disease progression (94, 95). Although drug prediction

analysis is primarily based on computational results, the drugs

identified provide valuable leads for further experimental research,

potentially accelerating the drug development process.

Single-cell data offer in-depth insights into cellular

heterogeneity, enabling the identification of distinct cell types and

states at the individual level. This is particularly important in ARDS,

a condition characterized by diverse cell types and complex

mechanisms. Single-cell sequencing can unveil specific immune

cell subsets and their interactions in ARDS. Analysis of the

GSE180578 dataset through single-cell sequencing identified eight

distinct cell types, with macrophages, neutrophils, and endothelial

cells being enriched in ARDS samples (66, 98, 99). Dynamic

intercellular interactions were observed during the pathogenesis

of ARDS, emphasizing the complex nature of immune responses.

Specifically, 16 subtypes of macrophages and 9 subtypes of

neutrophils were identified, highlighting the functional diversity

within these populations. This level of detail is beyond the reach of

conventional bulk transcriptomics (100) and provides valuable

insights into the specific role of immune cells in ARDS progression.

Our findings highlight the critical role of macrophages and

neutrophils in ARDS. Increased macrophage activity, consistent

with their dual roles in inflammation and tissue repair (66, 98),

likely contributes to the upregulation of RPL14 and SMARCD3

expression in certain subtypes. Neutrophils’ robust communication

network may facilitate ARDS progression through the formation of

NETs and IL-10-mediated inflammatory responses (78, 80). The

differential expression of RPL14 and SMARCD3 suggests their

involvement in metabolic or transcriptional regulation during

cellular activation (100–102). While scRNA-seq of blood samples

has its limitations—since blood does not fully reflect the local

pathological and physiological changes in the lungs during ARDS

—it still provides crucial information about the systemic immune
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response and offers valuable clues for understanding immune

dynamics in ARDS.

Pseudo-temporal trajectory analysis revealed distinct

expression patterns of RPL14 and SMARCD3 during macrophage

and neutrophil differentiation. In macrophages, RPL14 peaks early

and then declines, potentially contributing to early inflammatory

responses (98). In contrast, SMARCD3 increases gradually,

suggesting its role in regulating anti-inflammatory or metabolic

adaptations during later stages. In neutrophils, RPL14 remains

elevated, supporting sustained inflammatory processes, while

SMARCD3 peaks during mid-differentiation, likely promoting

functional maturation (99, 100). These expression profiles support

the hypothesis that metabolic reprogramming modulates immune

cell behavior in ARDS, with RPL14 promoting glycolysis in early

macrophage activation and SMARCD3 facilitating the transition to

an anti-inflammatory state (101, 102).

This study has several limitations. First, the specific mechanisms

of biomarkers in ARDS and the precise actions of the predicted drugs

require further experimental validation. Second, the biomarkers were

analyzed only in whole blood samples, not in lung tissue or

bronchoalveolar lavage fluid, which are more directly related to

ARDS pathophysiology. Biomarker expression may also vary over

time, yet the pseudotime analysis focused only on differentiation

status rather than disease progression. To address these limitations,

subsequent studies will integrate cellular and animal models,

combined with metabolic analysis (such as Seahorse XF Analyzer

assays), to further investigate the mechanisms of immune-metabolic

biomarkers in ARDS and predict drug action pathways. Moreover,

the RT-qPCR verification sample size will be expanded to include

patients at different disease stages and levels of severity. Other

techniques, such as Western blotting, will be added for further

validation to enhance the reliability of the results. Flow cytometry

will be used to sort different types of immune cells from peripheral

blood for the detection of RPL14, SMARCD3 and TCN1 expression

levels; Additionally, single-cell data will be collected from lung tissue

or bronchoalveolar lavage fluid and integrated with clinical data to

create a more comprehensive map of the local immune environment.

This approach will deepen our understanding of the disease

mechanisms of ARDS and provide a more robust theoretical

foundation for clinical diagnosis and treatment.
5 Conclusion

In conclusion, this study identified candidate biomarkers—

RPL14, SMARCD3, and TCN1—linked to immune cell activity

and metabolic reprogramming in ARDS, and developed an ANN

model. Functional enrichment analysis highlighted the biological

pathways through which these biomarkers influence ARDS

pathogenesis. Single-cell analysis further explored the cellular

expression of these biomarkers. Both in vitro and in vivo

experiments demonstrated that hub ARDS-ARDEGs (SMARCD3

and TCN1,but not RPL14) significantly affected mitochondrial

function, oxidative stress, apoptosis, glucose metabolism and
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inflammatory cytokine expression, offering new insights into

potential mechanisms underlying ARDS and providing valuable

information for optimizing clinical treatment strategies. It is

noteworthy that while RPL14 demonstrated predictive value in

transcriptomic analysis and ANN modeling, its functional role in

ARDS requires further validation.
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Glossary

3’UTR 3’ untranslated region
Frontiers in Immunol
ANN An artificial neural network
ARDS Acute respiratory distress syndrome
ALI Acute lung injury
AUC Area under the curve
CsA cyclosporine A
COPD chronic obstructive pulmonary disease
COVID-19 Coronavirus Disease 2019
DEGs Differentially expressed genes
DESeq2 Differential Expression Sequencing analysis
ELISA Enzyme-Linked Immunosorbent Assay
EMT Epithelial-Mesenchymal Transition
FAO Fatty acid oxidation
GGI Gene-gene interaction
GO Gene ontology
GSEA Gene set enrichment analysis
GSH Glutathione
HVGs High-variant genes
HE Hematoxylin and eosin
IL-1b Interleukin-1b
IL-6 Interleukin-6
KEGG Kyoto Encyclopedia of Genes and Genomes
KLF9 Krüppel-like factor 9
LASSO Least absolute shrinkage and selection operator
ogy 28
LPS Lipopolysaccharide
MRRGs Metabolic reprogramming-related genes
MSigDB Molecular Signatures Database
NETs Neutrophil extracellular traps
OXPHOS Oxidative phosphorylation
PBS Phosphate-buffered saline
PCA Principal component analysis
PCs Principal components
PMA Phorbol 12-myristate 13-acetate
PPI Protein-protein interaction
PPP Pentose phosphate pathway
ROC Receiver operating characteristic
RPL14 Ribosomal protein L14
RT-qPCR Reverse transcription-quantitative polymerase chain reaction
SMARCD3 Sw/snf-related matrix-associated actin-dependent regulator

of chromatin subfamily d member 3
SVM-RFE Support vector machine recursive feature elimination
TCN1 Transcobalamin 1
TF Transcription factor
THP-1 Tohoku Hospital Pediatrics-1
TNF-a Tumor necrosis factor-a
UMAP Uniform manifold approximation and projection
WGCNA Weighted gene co-expression network analysis.
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