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Background: Metabolic reprogramming plays a critical role in various diseases,
with particular emphasis on immune cell metabolism. However, the involvement
of immune cells and metabolic reprogramming-related genes (MRRGs) in acute
respiratory distress syndrome (ARDS) remains underexplored. This study aimed to
investigate the molecular mechanisms underlying cell and metabolic
reprogramming biomarkers in ARDS.

Methods: Using transcriptomic data from whole blood samples, candidate genes
were identified through differential expression analysis and weighted gene co-
expression network analysis (WGCNA) in conjunction with MRRGs. Machine
learning techniques, expression analysis, and receiver operating characteristic
(ROC) analysis were employed to identify potential biomarkers. An artificial neural
network (ANN) model was developed and evaluated. Additionally, functional
enrichment, regulatory network, and drug prediction analyses were performed.
Single-cell analysis was conducted to examine the expression of biomarkers
within specific cell populations. Reverse transcription-quantitative polymerase
chain reaction (RT-gPCR) was used for biomarker validation in human whole
blood samples. The functional validation of candidate biomarkers was performed
in lipopolysaccharide (LPS)-induced ARDS mouse models (peripheral blood
neutrophils and lung tissues) and THP-1-derived macrophages.

Results: Through machine learning algorithms, RPL14, SMARCD3, and TCN1
were identified as candidate biomarkers. ROC analysis demonstrated that the
ANN model, incorporating these biomarkers, exhibited strong predictive power
for ARDS onset. Enrichment analysis revealed that these genes were linked to
various pathways, including the chemokine signaling pathway. The regulatory
network analysis suggested that KLF9 may regulate both RPL14 and SMARCD?3,
with these genes playing a pivotal role in ARDS progression. Furthermore,
selenium (CTD 00006731) and Cyclosporine A(CsA)(CTD 00007121) were
identified as compounds targeting RPL14 and SMARCD3. Expression levels of
the biomarkers varied across different stages of cell differentiation. RT-qPCR
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confirmed a significant upregulation of SMARCD3 and TCN1 in ARDS samples,
aligning with dataset expression analysis results. Both in vitro and in vivo
experiments demonstrated that modulation of SMARCD3 and TCN1 (but not
RPL14) significantly affected mitochondrial function, oxidative stress, apoptosis,
glucose metabolism and inflammatory cytokine expression.

Conclusion: SMARCD3 and TCN1 were identified as key biomarkers associated
with immune cell and metabolic reprogramming in ARDS, while RPL14 was
identified as a candidate biomarker through computational approaches, offering
valuable insights for understanding the pathogenesis of the disease.

acute respiratory distress syndrome, immune cells, metabolic reprogramming,
biomarkers, single-cell RNA sequencing

1 Introduction

Acute respiratory distress syndrome (ARDS) is a critical
respiratory condition characterized by acute hypoxemic
respiratory failure and bilateral infiltrates visible on chest
imaging, with no full explanation by cardiac failure or fluid
overload (1-3). Clinically, ARDS manifests as severe dyspnea,
rapid breathing, and hypoxemia, often progressing to multiple
organ failure and a high mortality rate, particularly in critically ill
patients (2, 4). This syndrome is associated with significant long-
term consequences, including physical, cognitive, and psychological
impairments, highlighting its devastating effect on patients” quality
of life (1, 3). Current therapeutic strategies primarily focus on
supportive care, such as lung-protective ventilation, prone
positioning, and fluid balance management. Despite these
measures, treatment outcomes remain suboptimal, with a
mortality rate of 30-40% (1-3). Thus, understanding the
pathophysiology of ARDS and identifying reliable biomarkers are
essential for uncovering potential therapeutic targets.

The pathogenesis of ARDS involves a complex interaction
between inflammatory responses, endothelial and epithelial
injury, and dysregulated lung inflammation, immune cell
activation, and metabolic reprogramming in the lung
microenvironment (5-9). These processes lead to increased
alveolar-capillary permeability and pulmonary edema (1, 2). Key
immune cells, including neutrophils, alveolar macrophages, T-
lymphocytes, complement system components, dendritic cells,
and NK cells, are central to the disease’s pathophysiology,
contributing to both tissue damage and repair (10). Neutrophils,
as the initial responders, migrate to the lungs and release proteases
(e.g., elastase), reactive oxygen species (ROS), and neutrophil
extracellular traps (NETs) (11-13). These molecules exacerbate
endothelial and epithelial damage, increasing vascular
permeability and edema. Excessive neutrophil activation
intensifies tissue injury, leading to alveolar collapse and
hypoxemia (11, 13, 14). Resident lung macrophages initiate
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inflammation by releasing pro-inflammatory cytokines such as
Tumor necrosis factor-o(TNF-), Interleukin-13 (IL-1B), and
Interleukin-6 (IL-6), as well as chemokines like Interleukin-8 (IL-
8), which recruit neutrophils (15-18). These macrophages can
polarize into pro-inflammatory (M1) or anti-inflammatory (M2)
phenotypes (16-18). Circulating monocytes infiltrate the lungs,
differentiating into macrophages that amplify cytokine storms and
influence fibrotic responses. Dysregulated monocyte activation
contributes to prolonged inflammation and fibrosis (13). Immune
cells thus play dual roles in both the pathogenesis and resolution of
ARDS, serving as key drivers of inflammation, therapeutic targets,
and prognostic indicators.

Metabolic reprogramming plays a pivotal role in regulating
immune cell subtypes. M1 macrophages rely on glycolysis and the
pentose phosphate pathway (PPP) for rapid adenosine triphosphate
(ATP) production and ROS generation (19). In contrast, M2
macrophages utilize oxidative phosphorylation (OXPHOS) and
fatty acid oxidation (FAO) to promote tissue repair (20).
Similarly, CD4+ T helper 1 (Thl) and Th17 cells depend on
glycolysis and glutaminolysis for proliferation and cytokine
production, including interferon-gamma (IFN-y) and interleukin-
17 (IL-17) (21). These examples demonstrate how specific
metabolic pathways, such as glycolysis, OXPHOS, and FAO, are
tailored to immune cell functions, offering potential therapeutic
targets in cancer, autoimmunity, and infectious diseases. Metabolic
reprogramming not only regulates immune cell subtypes but also
improves energy metabolism balance and inhibits excessive
inflammation. This process involves adaptive metabolic changes
that cells undergo in response to alterations in their intra- and
extracellular environment. Such adjustments allow cells to meet
heightened demands for energy production and biosynthesis,
essential for growth, proliferation, survival, and other cellular
functions. This reprogramming encompasses several metabolic
pathways, including glycolysis, OXPHOS, and lipid metabolism,
thereby enhancing cellular resilience and function under
challenging conditions (22, 23). In ARDS, various immune cells,
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FIGURE 1

Schematic overview of the study design and workflow for identifying immune cell and metabolic reprogramming-related biomarkers in ARDS. This
Figure depicts the multi-omic approach used to identify biomarkers associated with immune cells and metabolic reprogramming in acute respiratory

distress syndrome (ARDS).

such as alveolar macrophages, neutrophils, monocytes, and T
lymphocytes, become activated (1). These cells release pro-
inflammatory cytokines and chemokines, which amplify the
inflammatory response and exacerbate tissue damage, particularly
in conjunction with damaged epithelial and endothelial cells (3, 10).
Investigating metabolic reprogramming can offer deeper insights
into the metabolic regulation of immune cells under both
physiological and pathological conditions, providing new
therapeutic targets for disease treatment. For instance, targeting
key metabolic pathways, such as glycolytic enzymes and lipid
metabolism, may not only regulate immune cell phenotypes but
also improve energy metabolism balance and inhibit excessive
inflammatory responses, offering novel approaches for ARDS
treatment (24-26). These results suggest that immune cell
modulation and metabolic reprogramming are pivotal in the
pathogenesis of ARDS. However, the exact mechanisms remain
unclear and require further research.

Given the limitations of current treatment strategies, identifying
new biomarkers linked to immune cells and metabolic
reprogramming is critically important. These biomarkers can
enhance our understanding of ARDS pathogenesis and guide the
development of targeted therapies. This study aims to identify
biomarkers associated with immune cells and metabolic
reprogramming in ARDS by integrating transcriptomic data,
mechanistic research, and single-cell analysis (5-9). The study
flowchart is shown in Figure 1. By examining the complex
interplay between immune cell activity and metabolic changes in
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ARDS, this research has the potential to deepen our understanding
of the syndrome and support the implementation of more effective
clinical interventions.

2 Materials and methods
2.1 Data source

When selecting datasets related to ARDS with whole blood or
peripheral blood mononuclear cell samples, the dataset should
include a sufficient sample size and provide raw or processed
gene expression data. Datasets with insufficient sample size or
poor quality control will be excluded. ARDS-related datasets were
obtained from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/). The GSE32707 (GPL10558)
dataset included 31 whole blood samples from patients with
sepsis-induced ARDS and 34 whole blood samples from
individuals without sepsis, systemic inflammatory response
syndrome (SIRS), or ARDS (referred to as ARDS and control
samples, respectively), which served as training set 1. The
GSE243066 (GPL30209) dataset consisted of 34 whole blood
samples from patients with ARDS and 15 healthy controls,
serving as training set 2. The GSE76293 (GPL570) dataset
included 12 blood polymorphonuclear neutrophil samples from
patients with ARDS and 12 healthy controls, serving as the
validation set. Additionally, the GSE180578 (GPL24676) dataset
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included single-cell RNA sequencing (scRNA-seq) data from
peripheral blood mononuclear cells (PBMCs) collected from 4
patients with ARDS and 4 healthy controls. A total of 1,804
metabolism reprogramming-related genes (MRRGs) were
retrieved from the literature (27) (Supplementary Table 1).

2.2 Detection of differentially expressed
genes

DEGsl1 between ARDS and control samples in training set 1
were identified using the limma (v 3.54.0) package (28), applying a
threshold of |log, fold-change (FC)| > 1 and P < 0.05. The signal
intensity of chip data approximately follows a normal distribution.
Limma, based on linear models and empirical Bayes methods, is
specifically designed for such data and can effectively handle
technical noise. For lowly expressed genes, Limma’s voom
transformation enhances the detection ability of lowly expressed
genes by applying weighted root mean square standard deviations.
Similarly, DEGs2 between ARDS and control samples in training
set 2 were identified using the Differential Expression Sequencing
analysis (DESeq2, v1.42.0) package (29) with the same criteria.
GSE243066 used a high-throughput sequencing platform, and the
reads count of RNA-seq data followed a negative binomial
distribution. DESeq2 directly models this distribution using a
generalized linear model, avoiding information loss during the
normalization process. DESeq2 uses the median ratio method for
normalization, which is insensitive to extreme values and is suitable
for handling outliers in sequencing data. Volcano plots for DEGsl
and heatmaps for DEGs2 were generated using the ggplot2 (v 3.5.1)
package (30) and the ComplexHeatmap (v 2.14.0) package
(31), respectively.

2.3 Immune infiltration analysis and
weighted gene co-expression network
analysis

To evaluate the infiltration of 64 immune cell types in training
set 1, relative abundance was calculated using the xCell (v 1.1.0)
package (32), and the proportional distribution of immune cells was
visualized using ggplot2 (v 3.5.1). Differences in immune cell
infiltration between ARDS and control samples in training set 1
were assessed using the Wilcoxon test, identifying immune cell
types with significant differences in infiltration (P < 0.05), referred
to as differential immune cells. Subsequently, WGCNA was
performed on training set 1 using the WGCNA (v 1.71) package
(33). Hierarchical clustering was applied to ARDS and control
samples in training set 1 to identify and remove outlier samples.
The optimal soft threshold (B) was selected when the scale-free fit
index (R?) exceeded 0.9, and the average connectivity was near 0.
The adjacency between genes was then calculated, with each module
containing at least 50 genes. Co-expression modules were identified,
and a hierarchical clustering tree was generated. Using differential
immune cell scores as phenotypic features, the correlation between
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these scores and co-expression modules was calculated (|correlation
coefficient (cor)| > 0.30, P < 0.05) (34). The co-expression modules
with the highest positive and negative correlations with differential
immune cell scores were selected as key modules, and the key
module genes were subsequently identified.

2.4 Identification and functional analysis of
candidate genes

The intersection of DEGs1, DEGs2, MRRGs, and key module
genes was determined using the ggvenn (v 0.1.10) package (35), and
the overlapping genes were designated as candidate genes.
Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses were performed
on the candidate genes using the clusterProfiler (v 4.7.1.003)
package (36, 37)(P < 0.05). The enrichment results from both GO
and KEGG analyses were visualized with the GOplot (v 1.0.2)
package (38). A protein-protein interaction (PPI) network
(interaction score > 0.15) was constructed using the STRING
database (https://www.string-db.org) and visualized using
Cytoscape (v 3.7.1) software (39).

2.5 ldentification of biomarkers

For candidate genes, Least Absolute Shrinkage and Selection
Operator (LASSO) analysis was performed using the glmnet (v
4.1.4) package (40), with genes not penalized to zero selected for
further analysis. Simultaneously, the caret (v 6.0-93) package (41)
was employed to conduct Support Vector Machine Recursive
Feature Elimination (SVM-RFE) analysis. The final feature genes
were identified by intersecting the results from LASSO and SVM-
RFE using the ggvenn (v 0.1.10) package. The expression patterns of
these feature genes were then assessed in training set 1, training set
2, and the validation set (P < 0.05) to identify potential biomarkers.
Finally, receiver operating characteristic (ROC) curves for these
feature genes were plotted using the partial ROC (v 1.18.5) package
(42), and genes with an area under the curve (AUC) > 0.7 were
considered potential biomarkers across the three datasets.

2.6 Construction and evaluation of ANN
model

To further validate the reliability of these biomarkers in
predicting ARDS, In the GSE32707 dataset, key genes were
selected as features, and all features were normalized using min-
max scaling, adjusting the value range to (0, 1). Regarding the model
architecture, the input layer consisted of 3 neurons, corresponding
to the 3 feature genes, with a hidden layer containing 5 neurons and
an output layer of 2 neurons for the binary classification task (ARDS
and control). The activation function used the hyperbolic tangent
function (tanh) for the hidden layer, and the Sigmoid function was
applied to the output layer. The loss function chosen was cross-
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entropy (Cross Entropy), as it more effectively measures the
difference between predicted and true labels in classification tasks.
During training, the backpropagation algorithm was applied, with a
learning threshold set at 0.1 and a random seed of 17 to ensure
reproducibility. The optimization goal was to minimize the cross-
entropy loss. Finally, the network structure was visualized using the
plot() function from the neuralnet (v 1.44.2) package (43). ROC
curves of the ANN model were then plotted for training set 1,
training set 2, and the validation set, using the pROC (v 1.18.5)
package, to assess the model’s performance (AUC > 0.7).

2.7 Chromosomal localization and
enrichment analysis

The chromosomal localization of biomarkers was determined
using the RCircos (v 1.2.2) package (44). Gene set enrichment
analysis (GSEA) was performed on the biomarkers using the
c2.cp.kegg.v7.4.symbols.gmt file obtained from the Molecular
Signatures Database (MSigDB) (https://www.gsea-msigdb.org/
gsea/msigdb/) as the background gene set. Spearman correlations
between the biomarkers and other genes were calculated using the
psych (v 2.2.9) package (45). Subsequently, GSEA was performed
for each biomarker using the clusterProfiler (v 4.7.1.003) package,
with the criteria |normalized enrichment score (NES)| > 1 and P <
0.05. The top 5 signaling pathways, ranked by descending P-value,
were presented using the enrichplot (v 1.18.0) package (46).
Additionally, genes associated with biomarker functions and their
respective roles were predicted from the GeneMANIA database
(http://genemania.org), and a gene-gene interaction (GGI) network
was constructed.

2.8 Construction of regulatory networks

To predict miRNAs targeting the biomarkers, the DIANA-
microT database (http://www.microrna.gr/microT) was used. The
starBase database (https://rnasysu.com/encori/) was then employed
to identify IncRNAs upstream of miRNAs (clipExpNum > 4),
facilitating the construction of an IncRNA-miRNA-biomarker
network. Transcription factors (TFs) targeting biomarkers were
predicted using the NetworkAnalyst database (https://
networkanalyst.ca/NetworkAnalyst/), resulting in the construction
of a TF-biomarker network. Cytoscape (v 3.7.1) software was used
to visualize these regulatory networks.

2.9 Drug prediction and molecular docking

The DrugBank database (https://go.drugbank.com/) was
utilized to predict potential drugs targeting the biomarkers. The
Cytoscape (v 3.7.1) software was again used to visualize the drug-
biomarker network. Based on the highest-scoring drugs targeting
the biomarkers, molecular docking was performed using the CB-
Dock2 online tool (https://cadd.labshare.cn/cb-dock2/php/
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index.php) to assess the binding ability of the biomarkers to these
drugs (binding energies < -5 kcal/mol) (47). The three-dimensional
structures of the drugs were obtained from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/), and the biomarkers were
imported into the Protein Data Bank (PDB) database (https://
www.rcsb.org/) to retrieve their protein structures.

2.10 scRNA-seq analysis

For single-cell analysis, the GSE180578 dataset was processed
using the Seurat (v 5.0.1) package (48). Cells and genes of low
quality were filtered out (min.cells=3), and the remaining cells and
genes were further selected based on stringent criteria (200 <
nFeature RNA < 3000, 200 < nCount_ RNA < 15000, percent.mt
< 20%). The filtered single-cell data were integrated using the
Harmony function and normalized using the LogNormalize
function. The top 2000 highly variable genes (HVGs) were
identified using the vst method of the FindVariableFeatures
function. Principal component analysis (PCA) was performed
based on the HVGs, and a scree plot was generated using the
Elbowplot function. The appropriate principal components (PCs)
for downstream analysis were selected using the JackStraw function.
Finally, high-quality cells were separated into distinct clusters using
the FindNeighbors and FindClusters functions, with the uniform
manifold approximation and projection (UMAP) clustering
method. Marker genes for different clusters were identified using
the FindAllMarkers function for further annotation (49-59)
(Supplementary Table 2).

2.11 Cell communication analysis and
identification of key cells

The ARDS and control sample data from the GSE180578
dataset were used to analyze cellular communication networks
between different cell types using the CellChat (v 1.6.1) package
(60). The interaction relationships of receptors and ligands for each
cell type were determined. Additionally, the Wilcoxon test was
applied to assess differences in the expression of biomarkers across
different cell types in ARDS and control samples (P < 0.05) to
identify key cells.

2.12 Pseudotime analysis

Key cells were selected from the GSE180578 dataset for further
dimensionality reduction and clustering. The identified key cells
were then reclustered and categorized into distinct cell
subpopulations. Following this, to investigate the potential
differentiation or activation trajectories of key cells during the
pathogenesis of ARDS, cell pseudo-time trajectory analysis was
conducted using the Monocle (v 2.30.0) package (61), and the cell
differentiation trajectories were visualized using the DDRTree (v
0.1.5) package (62).
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2.13 Reverse transcription-quantitative
polymerase chain reaction

Twenty whole blood samples were collected from Zhongda
Hospital of Southeast University, consisting of 10 samples from
patients with ARDS and 10 from healthy controls. The study was
approved by the Ethics Committee of Zhongda Hospital Southeast
University (approval number: 2022ZDSYLL402-P01), and
informed consent was obtained from all participants. Total RNA
was extracted from the 20 samples using TRIzol reagent (Ambion,
Cat#15596026, USA) following the manufacturer’s protocol. RNA
concentration was measured using the NanoPhotometer N50.
cDNA synthesis was carried out via reverse transcription using
the SweScript RT II First Strand cDNA Synthesis Kit (Servicebio
Cat#G3333,China), and the process was performed with the
S§1000TM Thermal Cycler (Bio-Rad, USA). Primer sequences for
RT-qPCR are provided in Supplementary Table 3. RT-qPCR was
performed using the CFX Connect Real-Time Quantitative
Fluorescence PCR Instrument (Bio-Rad, USA), with -actin used
as the internal reference gene. The RT-qPCR results were analyzed
using the 2-AACT method, exported to Excel, and then imported
into GraphPad Prism 10.1.2 for statistical analysis and visualization
(P < 0.05).

2.14 Experimental validation

2.14.1 Animal experiment

C57BL/6 male mice (8-12 weeks old, 18-22 g) were purchased
from Jiangsu Huachuang Xinnuo Pharmaceutical Technology Co.,
Ltd. (Taizhou, China) and were housed under specific pathogen-
free conditions. All animal procedures were approved by the
Institutional Animal Care and Use Committee of Southeast
University (Approval No.SEU-20252018005).Mice were randomly
divided into two groups: LPS group, mice were administered with
LPS nasal instillation at a dose of 10 mg/kg(50ul); Control group,
mice received an equal amount of saline. After 24 h, all mice were
anesthetized and sacrificed. Blood samples were collected for
subsequent neutrophils isolation. Lung tissues were harvested and
divided into three portions: one was fixed in formalin for
histological sectioning and HE staining, one was homogenized for
cytokine analysis by Enzyme-Linked Immunosorbent Assay
(ELISA), and the remainder was stored at -80°C for RT-qPCR
analysis.RPL14, SMARCD3, and TCN1 mRNA expression in
peripheral blood neutrophils and lung tissues was analyzed by
RT-qPCR. Levels of glutathione (GSH), IL-6, and TNF-o in lung
tissue homogenates were measured by ELISA.

2.14.2 Hematoxylin and eosin staining

Tissue samples were paraffin-embedded and sectioned (4-5
um). After deparaffinization by eco-friendly deparaffinisation
solution (Servicebio, Cat #G1128,China), 20 minx2,graded
ethanol(Sinopharm Chemical Reagent Co., Ltd., Cat #100092683,
China), 100%-75%, 5 minx3) and rinsing. H&E staining was
performed by an HE HD constant dye kit according to the
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manufacturer’s protocol (Servicebio, Cat #G1076, China). Stained
sections were examined under brightfield microscopy (Nikon
Eclipse Cl1).

2.14.3 Isolation of neutrophils from mouse
peripheral blood

As described in previous studies, neutrophils were collected
from the whole blood of C57BL/6 mice by using a mouse peripheral
blood neutrophil separator kit (Solarbio, Cat# P9201, China)
according to the instructions (64, 65). Mice were administered
with LPS nasal instillation to activate neutrophils. 24 hours later,
blood was collected via cardiac puncture into anticoagulant tubes.
Within two hours, blood was diluted 1:1 and layered onto a
separation medium, followed by centrifugation (1500 x g, 30 min,
25°C). Neutrophils were collected from the interface, lysed to
remove RBCs, washed with PBS (pH 7.4), and either stored at
-80°C or used immediately.

2.14.4 Cell culture and transfection

Tohoku Hospital Pediatrics-1(THP-1)cells were originally
obtained from Guangzhou Cellcook Biotech Co., Ltd. The cells
were maintained in RPMI 1640 medium (Gibco, Cat#11875093,
USA) supplemented with 10% heat-inactivated fetal bovine serum
(FBS) and 1% penicillin-streptomycin (Beyotime, Cat#ST488S,
China) at 37°C in a humidified 5% CO, atmosphere. For
differentiation, THP-1 cells were treated with 100 ng/ml phorbol
12-myristate 13-acetate (PMA) (Macklin, Cat#C708929, China)
(63). After 24-hour treatment with PMA to differentiate THP-1
cells into macrophages, the cells were subsequently stimulated with
1 pg/mL lipopolysaccharide (LPS) (Beyotime, Cat# ST1470, China).

RPL14 siRNA, SMARCD3 siRNA, TCN1 siRNA, and negative
control siRNA were synthesized by GENCEFE Biotech Co., Ltd.
(Wuxi, China) siRNA sequences are provided in Supplementary
Table 4.The siRNAs were reverse-transfected into cells using
Lipofectamine 2000 (Invitrogen, Cat#11668019,USA) according to
the manufacturer’s protocol. After 24 hours of transfection to allow
for gene silencing, the cells were stimulated with 1 pg/ml LPS.

2.14.5 ROS detection

Cells were incubated with 2’,7’-dichlorodihydrofluorescein
diacetate (DCFH-DA) from the ROS Assay Kit (Beyotime, Cat#
S0033S,China) for 20 min at 37°C under light-protected conditions.
Excess dye was removed by washing with PBS. Fluorescence
intensity was measured using fluorescence microscope with
excitation wavelengths of 485/530 nm, where increased signal
intensity correlated with elevated intracellular ROS levels.
Untreated and H,O,-treated cells were included as controls.

2.14.6 JC-1 staining for mitochondrial membrane
potential analysis

Cells were incubated with JC-1 dye (Beyotime, Cat #C2003S,
China) for 30 min at 37°C in the dark. After incubation, excess dye
was removed by washing twice with phosphate-buffered saline
(PBS). Mitochondrial membrane potential was assessed by
fluorescence microscopy (Olympus CKX53).
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2.14.7 Tunel staining assay

Fixed samples were permeabilized with 0.1% Triton X-100
(Beyotime, Cat# ST1723,China) for 5 min and then incubated with
TUNEL reaction mix from the Tunel staining Assay Kit(Beyotime,
Cat #C1088, China) for 60 min at 37°C protected from light. The
samples were washed and counterstained with DAPI. Apoptotic cells
(TUNEL-positive) were quantified by fluorescence microscopy.

2.14.8 ELISA

AN assay for the determination of TNF-o,IL-6, GSH from
THP-1 cells with SiRNA transfection and homogenate of mouse
lung tissue had been validated using a commercially available
enzyme-linked immunosorbent assay (ELISA) kit(Human TNF-o
High Sensitivity ELISA Kit, MULTI SCIENCE, Cat# EK182HS-
AW1, China; Human IL-6 ELISA Kit, Solarbio, Cat#SEKM-0013,
China;Mouse IL-6 ELISA Kit, Solarbio, Cat#SEKM-0007, China;
Total Glutathione Assay Kit, Beyotime, Cat#S0052, China; Mouse
TNF-o. ELISA Kit, Solarbio, Cat# SEKM-0034,China)following
manufacturer’s protocol.

2.14.9 Lactate content assay

THP-1 cell supernatant was collected after siRNA transfection
and LPS treatment. Lactate concentration was measured using a
WST-8-based kit(Beyotime, Cat # S0208S, China). Samples were
incubated with the reaction mixture at 37°C for 30 min, and
absorbance was read at 450 nm. Results were calculated via a
lactate standard curve.

2.14.10 Glucose uptake assay

Glucose uptake assay was measured using a WST-8-based kit
(Beyotime, Cat # S0554, China).After siRNA and LPS treatment,
THP-1 cells were glucose-starved, incubated with 2-DG, and lysed.
Lysates were reacted with a WST-8 working solution, incubated at
37°C for 30 min, and absorbance was measured at 450 nm. Glucose
uptake was quantified using a 2-DG6P standard curve.

2.14.11 Glucose consumption assay

Following THP-1 cells treatment with siRNA and LPS, culture
supernatants are collected after a defined incubation period and
centrifuged to remove debris. The glucose concentration in the
supernatant is quantified using a glucose oxidase-based assay kit
(Beyotime, Cat # S0202M, China) by measuring absorbance at 490—
540 nm. Glucose consumption is calculated by subtracting the
glucose concentration at the end of the experiment from the
initial concentration, normalized to total protein or cell number
to assess cellular metabolic activity.

2.14.12 Cyclosporine A drug treatment

Induction of THP-1 cell differentiation into macrophages via
PMA treatment and then a macrophage inflammatory model was
constructed by LPS. Different concentrations of CsA were applied to
the macrophages, which was divided into three groups: low
concentration group (2uM), medium concentration group (4uM)
and high concentration group(8uM). RT-qPCR was performed to
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measure the mRNA expression levels of IL-6 and TNF-o in each
group. RPL14,SMARCD3 and TCN1 mRNA expression also was
detected by RT-qPCR. Cells from the above groups were further
assessed for mitochondrial function by JC-1 staining, oxidative
stress by ROS detection, apoptosis by TUNEL staining assay and
inflammatory markers (TNF-o., IL-6, GSH) via ELISA.

2.15 Statistical analysis

Bioinformatics analyses were performed using R (v 4.2.2). This
study first identified differentially expressed genes (DEGsl) in
training set 1 using the limma package (v 3.54.0) with the criterion
of |log2fold-change (FC)| > 1 and P < 0.05. Using the same threshold
criteria, DEGs2 were identified in training set 2 with the DEseq2
package (v 1.42.0). Based on these candidate genes, LASSO regression
analysis was performed using the glmnet package (v 4.1.4) in R
software, with the family parameter set to binomial and ten-fold
cross-validation to select the feature genes. Subsequently, the caret
package (v 6.0-93) in R was used to further screen feature genes using
the random forest method, and recursive feature elimination (RFE)
was applied to iteratively remove unimportant genes, ultimately
obtaining the selected feature genes. Next, the Wilcoxon test was
used to compare the expression differences of key genes between
ARDS and control samples in the main training set (GSE32707),
auxiliary training set (GSE243066), and validation set (GSE76293),
with FDR correction applied for multiple testing and a significance
threshold of p < 0.05. Additionally, the Wilcoxon test was used to
analyze immune cell infiltration differences between disease and
normal sample groups, with the Benjamini-Hochberg method for
multiple testing correction (0t=0.05).

3 Results

3.1 Acquisition of differentially expressed
genes and module genes

A total of 523 dDEGs1 were identified in training set 1 through
differential expression analysis, with 286 up-regulated and 237 down-
regulated genes. In training set 2, 4,813 DEGs2 were detected,
including 1,795 up-regulated and 3,018 down-regulated genes. The
top 10 up-regulated and down-regulated DEGs and their expression
profiles were displayed on volcano plots and heatmaps, respectively
(Figures 2A-D). In both ARDS and control samples, the infiltration
levels of 64 immune cell types were presented in a stacked plot.
Supplementary Table 5 displays the top 10 immune cells with the
highest infiltration abundance, with neutrophils exhibiting the most
significant infiltration (Figure 3A, Supplementary Table 5). It is worth
noting that some of the control samples exhibited a relatively high
proportion of immune cells. This phenomenon may have reflected
individual differences during sample collection, such as potential
subclinical infections, inflammatory responses, or other undefined
physiological states, and these factors may have caused the non-
specific activation and recruitment of immune cells in the control
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Identification of differentially expressed genes (DEGs) in ARDS. (A) Volcano plot of DEGs in training set 1 (GSE32707). (B) Heatmap of DEGs in training
set 1. (C) Volcano plot of DEGs in training set 2 (GSE243066). (D) Heatmap of DEGs in training set 2.

group. A total of 35 immune cells showed significant differences in
infiltration (Figure 3B, Supplementary Table 6). Following this,
WGCNA was conducted using differential immune cell scores as
traits. No abnormal samples were found in training set 1 (Figure 3C).
The P value was determined to be 9 (Figure 3D). A co-expression
matrix was then constructed, and 14 gene modules were identified
(Figure 3E). Among these, MEbrown (cor=0.95) and MEturquoise
(cor=-0.94), which showed the largest positive and negative
correlations with differential immune cell scores, respectively, were
considered as key modules (Figure 3F). These modules contained a
total of 6,601 key module genes.

3.2 27 candidate genes were screened out
and were significantly enriched in
ribosomal function and amino acid
metabolic pathways

After overlapping DEGsl, DEGs2, key module genes, and
MRRGs, 27 candidate genes were identified (Figure 4A).
Enrichment analysis revealed that the 27 candidate genes were
significantly associated with 408 GO terms, including “structural
constituent of ribosome” (Figure 4B, Supplementary Table 7).
Additionally, KEGG analysis identified 101 enriched terms,
primarily linked to amino acid biosynthesis and metabolic
pathways, such as those involving arginine, proline, and
glutamate (Figure 4C, Supplementary Table 8). These results
suggest a strong association between the candidate genes and
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ribosomal function, as well as amino acid metabolism. In the PPI
network, two discrete targets were removed, and genes like NME1
and ASS1 showed strong connectivity with other genes, highlighting
their potential relevance (Figure 4D).

3.3 RPL14, SMARCD3, and TCN1 were
identified as potential biomarkers of ARDS

Through LASSO analysis, 10 feature genes were selected,
including RPL37A, VNN2, RPS28, NME1, TCNI1, RPL14,
SMARCD3, ASS1, KYNU, and CKB (Figures 4E, F). The SVM-
RFE analysis identified 22 feature genes, including SMARCD3,
TCNI1, UPP1, RPL37A, HK3, KYNU, VNNI, NUP214, RPL14,
PGS1, RPS28, RPL10A, ARGI, RPL23A, PFAS, CKB, ITPR3, ASS1,
ALOXS5, ALOX5AP, SAT1, and FASN (Figure 4G). A final set of 8
feature genes was derived (Figure 4H).

Expression analysis indicated that CKB and RPL14 were
significantly down-regulated in ARDS samples across training set
1, training set 2, and the validation set. Conversely, SMARCD3 and
TCNI were up-regulated in ARDS samples across all datasets. The
expression patterns of ASS1 and KYNU were inconsistent, and no
significant expression differences for RPL37A and RPS28 were
observed (Figures 5A-C). Consequently, CKB, RPL14, SMARCD3,
and TCN1 were identified as candidate biomarkers. Furthermore,
the AUC values for RPL14, SMARCD3, and TCN1 exceeded 0.7
across the three datasets (Figures 5D-F), supporting their potential
as reliable biomarkers.
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FIGURE 3

Immune infiltration analysis and weighted gene co-expression network analysis (WGCNA). (A) Analysis of immune cell infiltration. (B) Differential
immune cell infiltration analysis. (C) Sample clustering and detection of outliers. (D) Determination of the optimal soft threshold (B). (E) Cluster
dendrogram of genes, with different colors below representing different co - expression modules. (F) Heatmap displaying the correlation between
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FIGURE 4

Identification and validation of potential biomarkers in ARDS. (A) Venn diagram of overlapping genes. (B) Gene Ontology (GO) enrichment analysis of
27 candidate genes, highlighting significant enrichment in biological processes such as “structural constituent of ribosome.” (C) Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis, focusing on pathways related to amino acid biosynthesis and metabolism. (D) Protein-protein
interaction (PPI) network of candidate genes, with key genes such as NME1 and ASS1 showing high connectivity. (E) LASSO coefficient profiles for
the 10 selected feature genes. (F) Cross-validation for tuning parameter selection in LASSO analysis. (G) SVM-RFE analysis for feature selection. (H)

Venn diagram illustrating the overlap of feature genes identified by LASSO and SVM-RFE.

3.4 SMARCD3 and TCN1 were highly
expressed in ARDS samples

To further validate these biomarkers, RT-qPCR analysis was
performed using human whole-blood samples. The results
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confirmed a significant upregulation of SMARCD3 and TCNI in
ARDS samples (P < 0.05) (Figure 5G), consistent with the findings
from training set 1, training set 2, and the validation set. While

10

RPL14 showed a downward trend in ARDS samples, the difference
was not statistically significant (P=0.44).
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Identification and validation of biomarkers in ARDS. (A-C) Expression analysis of candidate biomarkers. (D-F) ROC curve analysis for the performance
of biomarkers. (G) RT-gPCR validation of biomarkers. *p<0.05, **p<0.01, ***p<0.001 vs control group. "ns" indicates no significance.

3.5 The ANN model of biomarkers was
constructed and evaluated

Based on these biomarkers, an ANN model was constructed to
evaluate their predictive power in ARDS onset (Figure 6A). The
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ROC curve analysis showed that the AUC values for training set 1,
training set 2, and the validation set were 0.97 (specificity: 0.9706,
sensitivity: 0.9677), 0.80 (specificity: 0.8670, sensitivity: 0.7330), and
0.75 (specificity: 0.9170, sensitivity: 0.5830), respectively
(Figures 6B-D).
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3.6 The core biomarkers were found to be
involved in the pathogenesis of ARDS by
regulating immune signaling and ribosomal
pathways

RPL14, SMARCD3, and TCNI1 were mapped to chromosomes
3, 7, and 7, respectively (Figure 6E), suggesting that these three
biomarkers may have distinct biological functions. GSEA revealed
that RPL14, SMARCD3, and TCN1 were enriched in 82, 89, and 69
pathways, respectively (Supplementary Tables 9-11). Notably, the
ribosome pathway was significantly associated with both RPL14 and
SMARCD3, while chemokine, B cell receptor, and T cell receptor
signaling pathways were uniquely linked to both SMARCD3 and
TCN1 (Figures 6F-H). These findings indicate that these
biomarkers may contribute to ARDS by modulating T/B cell
immune responses, in addition to the inflammatory response.

The GGI network constructed revealed the top 20 genes
associated with the function of the biomarkers, such as CBLIF,
which are involved in water-soluble vitamin metabolic
processes (Figure 61).

3.7 The regulatory networks of RPL14,
SMARCD3, and TCN1 were constructed

A total of 44 miRNAs were predicted to target RPL14 and
SMARCD3, while no miRNA targeting TCN1 was identified. Based
on a threshold of clipExpNum > 4, 107 IncRNAs were predicted by
the 20 miRNAs. Consequently, a IncRNA-miRNA-mRNA network
involving 2 biomarkers, 20 miRNAs, and 107 IncRNAs was
constructed (Figure 7A). Additionally, 62 TFs targeting RPL14,
SMARCD3, and TCN1 were identified, and the TF-biomarker
network was generated (Figure 7B). Among these, KLF9 was
found to target both RPL14 and SMARCD3, suggesting common
transcriptional regulation in ARDS for these biomarkers.

3.8 Selenium and cyclosporin A were
screened as potential drugs and molecular
docking was conducted

The drug-biomarker network revealed that 41 drugs targeted
RPL14, 4 targeted SMARCD3, and 6 targeted TCN1. Notably,
tetradioxin (CTD 00006848) was identified as a drug targeting both
SMARCD3 and TCNI1, while selenium (CTD 00006731) and CsA
(CTD 00007121) were found to target both RPL14 and SMARCD3
(Figure 7C, Supplementary Table 12). Molecular docking was then
performed using the highest-scoring drugs targeting the biomarkers.
Mesalazine (MCF7 UP) and arbutin (CTD 00005438) showed the
highest scores for RPL14 and TCNI, respectively. For SMARCD?3,
although selenium (CTD 00006731) and methaneseleninic acid
(CTD 00000412) had relatively high scores, their 3D structures
were unavailable, so tetradioxin (CTD 00006848) was used instead.
The binding energies of the complexes formed by RPLI14 and
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mesalazine (Figure 7D), SMARCD3 and tetradioxin (Figure 7E),
and TCN1 and arbutin (Figure 7F) were -4.5, -6.8, and -7.1 kcal/mol
respectively, with the binding centers located at (-4, -3, -1), (-22, 38,
4),and (-15, -3, 10) (Supplementary Table 13). The binding energy of
RPL14 and mesalazine did not reach -5 kcal/mol, indicating a
relatively low affinity between the ligand and receptor, suggesting
that the complex formed might be easily dissociated. Overall, these
results highlight the potential therapeutic relevance of RPL14,
SMARCD3, and TCNI, particularly in the context of
ARDS treatment.

3.9 Annotation yielded 8 cell types

In the GSE180578 dataset, prior to quality control, a total of
57,811 cells and 19,704 genes were identified. After quality control,
53,816 cells and 19,704 genes were retained (Figures 8A, B). The top
2,000 HVGs and the top 30 PCs were then used for UMAP clustering
(Figures 8C, D). This process led to the classification of all high-
quality cells into 16 distinct clusters (Figure 8E). The cell clusters were
annotated, revealing 8 cell types, including B cells, endothelial cells,
macrophages, natural killer cells, neutrophils, plasma cells, red blood
cells, and T cells (Figure 8F). The marker genes displayed high
specificity across different cell clusters (Figure 8G). Notably, T cells
comprised the highest proportion among all cell types. A comparison
between ARDS and control samples revealed that macrophages,
endothelial cells, and neutrophils were significantly more abundant
in ARDS samples (Figures 8H, I).

3.10 Macrophages and neutrophils were
recognized as key cells in ARDS

The cell-cell communication network analysis showed that, in
ARDS samples, macrophages and neutrophils exhibited a greater
number of interactions with other cell types compared to control
samples (Figures 9A, C). This suggests that macrophages and
neutrophils may play more pivotal roles in ARDS than other cell
types. In ARDS samples, the interaction intensity of Neutrophils
with other cells was stronger than that in control samples
(Figures 9B, D). Figures 9E, F display the receptor-ligand pairings
between different cell types in ARDS and control samples. Among
these pairings, MIF-(CD74+CXCR4) and MIF-(CD74+CD44) were
the core regulatory pathways for intercellular communication in
both types of samples, and they could collectively regulate a variety
of intercellular interactions, including T cell—=Macrophage, Plasma
cell>B cell, and Plasma cell-Macrophage. Furthermore, the
expression patterns of RPL14, SMARCD3, and TCNI1 at the
cellular level were examined. It was found that RPL14 and
SMARCD?3 were expressed in multiple cell types, whereas TCN1
was not expressed (Figure 10A). Among these, RPL14 and
SMARCD3 showed significant differential expression in
macrophages and neutrophils (Figures 10B, C), making them key
cells for further investigation.
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FIGURE 7

Regulatory networks, drug prediction and molecular docking analysis for biomarkers. (A, B) Regulatory networks associated with biomarkers. (C)
Drug-biomarker interaction network. (D-F) Molecular docking analysis of drugs targeting biomarkers.

3.11 RPL14 and SMARCD3 expression
changes during the differentiation of key
cells were investigated

Secondary dimensionality reduction clustering analysis was
performed on the key cells. It was observed that macrophages
were divided into 16 subtypes, and neutrophils were divided into
9 subtypes (Figures 11A, B). These subtypes were then placed along
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a differentiation trajectory based on differentiation time sequence,
with darker shades of blue corresponding to earlier stages of
differentiation. Macrophages were found to have 7 differentiation
states, with State 1 representing the earliest and most specific stage
(Figure 11C). Neutrophils exhibited 3 differentiation states, with
State 1 also being the earliest and most specific (Figure 11D).

As macrophages differentiated, the expression of RPLI14
increased initially and then decreased, while the expression of
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SMARCD3 followed an opposite trend (Figure 11E). In neutrophils,
RPL14 expression generally trended upward, whereas SMARCD3
expression initially increased and then decreased (Figure 11F).

acute lung i

These results suggest that the expression trends of RPL14 and

SMARCD?3 during differentiation of key cells were heterogeneous,
potentially reflecting their distinct roles in cell differentiation.
RPL14 and SMARCD3 likely function in different capacities
during this process, influencing the differentiation trajectories of

macrophages and neutrophils in ARDS.
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3.12 High expression of SMARCD3 and
TCNL1 in LPS induced murine model of

Building upon these results, we next sought to determine
whether these effects could be recapitulated in vivo.C57BL/6]
mice were stratified into control and LPS-induced acute lung
injury groups, and the validity of the model was validated using

pathological morphology and inflammation/oxidative stress
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FIGURE 10

The expression of RPL14 (H) and SMARCD?3 in cells. (A) UMAP plot showing the expression of RPL14 and SMARCD?3 in different cell types. (B, C) Box
plots illustrating significant differential expression of RPL14 and SMARCD3 in macrophages and neutrophils. ***p<0.001,****p<0.0001,vs control

group. "ns" indicates no significance.

indicators. Histopathological examination of lung tissues via HE
staining revealed pronounced structural disruption of alveoli in
murine model of acute lung injury, characterized by widespread
thickening of alveolar septa (Figure 12A). Further quantification by
ELISA showed markedly increased concentrations of
proinflammatory cytokines IL-6 and TNF-o, coupled with a
significant reduction in GSH levels in lung tissue homogenates

Frontiers in Immunology

from LPS-induced acute lung injury mice relative to controls
(Figure 12B). Subsequent RT-qPCR analysis demonstrated that
RPL14 mRNA expression remained unchanged in both lung tissue
homogenates and peripheral blood neutrophils of LPS-induced acute
lung injury mice. In contrast, SMARCD3 and TCN1 transcript levels
were significantly elevated in both lung tissue (Figure 12C) and
neutrophils (Figure 12D) compared to control.
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FIGURE 11

Pseudotime analysis of key cells in ARDS. (A) UMAP plot showing 16 subtypes of macrophages. (B) UMAP plot showing 9 subtypes of neutrophils. (C)
Pseudotime trajectory of macrophages with 7 differentiation states. (D) Pseudotime trajectory of neutrophils with 3 differentiation states. (E)
Expression trends of RPL14 and SMARCD3 during macrophage differentiation. (F) Expression trends of RPL14 and SMARCD3 during neutrophil

differentiation.

3.13 Distinct roles of RPL14, SMARCD3 and
TCNL1 in regulating mitochondrial function
and inflammation

To decipher the cellular mechanisms underlying the observed
lung injury, we next performed in vitro experiments. THP-1 cells
were first transfected with siRNA targeting RPL14, SMARCD3, or
TCNI1, then stimulated with LPS (Figure 13A). ROS detection
(Figure 13B) revealed that RPL14 silencing did not affect
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mitochondrial membrane potential and concomitantly showed no
change in JC-1 staining, with TUNEL assay further confirming no
significant effect on cellular apoptosis. In contrast, both SMARCD3
and TCNT1 silencing led to reduced ROS production and increased
mitochondrial membrane potential, accompanied by suppressed
apoptotic activity. Compared to the control group, GSH levels were
significantly increased by SMARCD3 and TCN1 silencing after LPS
stimulation (Figures 13C-E). RT-qPCR analysis revealed that
RPL14 interference did not affect IL-6 or TNF-oo mRNA
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The expression levels of hub ARDS-ARDEGs (RPL14, SMARCD3, TCN1), inflammatory cytokines and GSH in murine acute lung injury models. (A)
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expression, whereas SMARCD3 and TCNI1 knockdown
significantly reduced both cytokines (Figure 13F). Consistently,
ELISA measurements showed RPLI14 silencing had no notable
effects on IL-6/TNF-o secretion; however, SMARCD3 and TCN1
silencing markedly inhibited IL-6/TNF-a, secretion (Figure 13G). In
terms of alterations in glucose metabolism, silencing SMARCD3 or
TCNI1, but not RPL14, decreased lactate production, glucose uptake
and glucose consumption compared to the control group.
(Figures 13H-]).

3.14 CsA inhibition of LPS-induced
macrophage injury is associated with
downregulation of SMARCD3

To further investigate the role of CsA in LPS-induced
macrophages, we differentiated THP-1 cells into macrophages
with PMA (63). We measured cytokine expression by RT-qPCR,
the result showed that LPS stimulation significantly upregulated IL-
6 and TNF-o. mRNA, while medium/high-dose CsA attenuated this
upregulation (Figure 14A). Notably, the inhibitory effects of CsA
extended beyond cytokine modulation to transcriptional regulators.
LPS-treated macrophages exhibited unchanged RPL14 mRNA but
significantly increased SMARCD3 expression. The LPS+CsA group
showed no alteration in RPL14 versus LPS-only group, but
displayed significant SMARCD3 downregulation (Figure 14B).
These findings indicate that LPS stimulation enhances SMARCD3
expression in macrophages, while CsA administration reverses this
LPS-induced SMARCD3 upregulation.
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JC-1 (Figure 14C) and TUNEL assay (Figure 14D) revealed that
LPS stimulation significantly reduced mitochondrial membrane
potential and induced apoptosis in macrophages, effects that were
dose-dependently reversed by medium/high-concentration CsA
treatment. Concurrently, LPS triggered pro-inflammatory
cytokine overproduction (IL-6, TNF-at) and depleted intracellular
GSH, all of which were attenuated by CsA in a concentration-
dependent manner. Notably, all CsA-treated groups exhibited
significantly reduced cytokine secretion and restored GSH levels
versus LPS-only controls, with maximal efficacy at medium/high
doses (Figure 14E). These data demonstrate that CsA mitigates LPS-
induced macrophage injury, and its protective effects are associated
with downregulation of SMARCD3.

4 Discussion

The interplay between directional immune cell migration and
metabolic reprogramming is pivotal in ARDS. Metabolic alterations
not only impact immune cell function but also regulate their
migration toward damaged lung tissue (66). For example,
metabolic by-products can modify immune cells’ response to
chemical signals, thereby affecting their migratory capacity (67).
This relationship suggests that targeting these processes could be a
viable strategy to control inflammation and mitigate lung damage in
ARDS. This study identified three biomarkers (RPL14, SMARCD3,
TCN1) through machine learning algorithms and explored their
potential mechanisms in ARDS via ANN model construction,
enrichment analysis, regulatory network construction, and drug
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prediction analysis. Key cells were subsequently identified using
single-cell data, and the expression of biomarkers was examined at
the cellular level, offering new insights into the pathogenesis
of ARDS.

SMARCD3 (SWI/SNF-Related Matrix-Associated Actin-
Dependent Regulator of Chromatin Subfamily D Member 3)
plays a pivotal role in chromatin remodeling and regulates
essential cellular processes, including differentiation, proliferation,
and apoptosis. Its dysfunction is associated with a range of diseases.
In cancer, alterations in chromatin structure and gene expression
disrupt cell cycle regulation and modify the activity of proto-
oncogenes or tumor suppressor genes (68, 69). Although
SMARCD3 has not been directly studied in ARDS, chromatin
remodeling is well-established as a critical factor in controlling
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the inflammatory responses central to ARDS pathogenesis. In
infectious diseases, including viral infections like influenza and
Coronavirus Disease 2019(COVID-19), SMARCD3 is involved in
regulating the immune response (70, 71). Additionally, chromatin
remodeling influences the epigenetics of immune cells in sepsis,
suggesting an indirect link between SMARCD3 and ARDS
development (68, 69, 72). Furthermore, immune cell metabolic
requirements and pathways undergo significant changes during
different activation states. For instance, lipid metabolic
reprogramming in CD8+ T cells is crucial for anti-tumor
immunity. As a chromatin remodeling factor, SMARCD3 may
modulate immune cell metabolic reprogramming by regulating
key metabolic genes, ultimately affecting their immunological
functions (73). Our study observed that upregulation of
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SMARCD3 in ARDS may drive macrophages and neutrophils
toward a glycolysis-dependent M1/N1-like polarization state. This
metabolic reprogramming not only meets the heightened energy
demands and biosynthetic precursor requirements for rapid cellular
proliferation and activation, but also promotes reactive oxygen
species (ROS) generation and the release of proinflammatory
cytokines such as IL-6 and TNF-o. In summary, SMARCD3
likely serves as a crucial molecular regulator of inflammatory
responses in ARDS by reprogramming metabolic pathways in
immune cells.

TCNI (Transcobalamin 1) is a critical transporter of vitamin
B12 in the bloodstream, ensuring the delivery of vitamin B12 to
tissues and cells, thus supporting normal metabolic and
physiological functions (74, 75). Dysfunction of TCN1 can impair
vitamin B12 transport, leading to metabolic disturbances. Vitamin
B12 is integral to cellular metabolism, and as a transport protein,
TCN1 may influence vitamin B12 levels in immune cells, thereby
impacting their metabolic processes (76). In inflammatory
conditions like ulcerative colitis, TCN1 expression can be altered
by inflammation (74). Although TCN1 has not been directly studied
in ARDS, vitamin B12 metabolism is crucial for cellular function
and immune responses, and TCN1 may therefore indirectly affect
the progression of ARDS. In infectious diseases such as COVID-19,
TCN1 has been linked to poor outcomes, with vitamin BI12
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deficiency associated with a worse prognosis (77). Altered TCN1
levels have also been observed in sepsis, likely due to its role in
immune modulation and cellular metabolism (77). Furthermore,
TCNI1 is implicated in autoimmune diseases, where it may help
regulate inflammatory responses (74, 75, 77). This study found that
TCN1 was significantly upregulated in ARDS samples, and after
silencing TCN1, the intracellular GSH level increased and the
secretion of inflammatory factors decreased. This result suggests
that TCN1 may affect the activation state of immune cells and the
output of inflammation by regulating the vitamin B12-dependent
metabolic pathway: its abnormal expression may reshape the
methylation metabolic efficiency and antioxidant capacity of
immune cells, and ultimately participate in the pathological
process of ARDS. In summary, TCN1, as a key molecule
connecting vitamin B12 metabolism and immune inflammation,
provides a new perspective for understanding the cross-regulation
mechanism of immunity and metabolism in ARDS.

RPL14 (Ribosomal Protein L14) is essential for ribosome
function and plays a role in cell growth, proliferation, and cancer
progression (78). Mutations in the RPL14 gene can disrupt protein
synthesis, leading to developmental disorders. RPL14 also
influences immunity, as it is often disrupted during viral
influenza, COVID-19), where viruses hijack
ribosomal proteins to replicate and evade immune defenses (79).

infections (e.g.,
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RPL14 is involved in ribosome construction, which is directly
related to protein synthesis and energy metabolism. Thus, RPL14
may regulate the energy metabolism pathways of immune cells,
such as glycolysis and OXPHOS, by influencing protein synthesis
(80). Additionally, RPL14 is linked to immune dysfunction in
sepsis, a leading cause of death. In cancer, elevated levels of
RPL14 correlate with tumor growth and aggression (81).

SMARCD3 and TCN1, not RPL14, act as key molecular nodes
linking inflammatory signaling (LPS/TLR4) to metabolic
reprogramming. Silencing SMARCD3 or TCN1 leads to
metabolic alterations characterized by reduced glucose uptake,
glucose consumption and lactate production, thereby inhibiting
glycolytic flux. At the functional level, this suppression prevents
polarization toward a pro-inflammatory phenotype and enhances
antioxidant capacity.

The RT-qPCR results from clinical patients with ARDS
confirmed that SMARCD3 and TCN1 are highly expressed in
ARDS, consistent with the bioinformatics analysis. However,
RPL14 expression showed a decreasing trend in ARDS samples,
though this difference was not statistically significant, likely due to
the limited sample size. GSEA analysis revealed significant
enrichment of 82, 89, and 69 pathways for RPL14, SMARCD3,
and TCNI, respectively. Notably, the ribosome pathway was
strongly associated with both RPL14 and SMARCD3, while
chemokine, B cell receptor, and T cell receptor signaling
pathways were significantly associated with both SMARCD3
and TCNI1.

The pathways associated with SMARCD3, TCN1, and RPL14
converge on key processes critical in ARDS, including: (1) Immune
Cell Recruitment and Activation: Chemokine and receptor
signaling pathways, such as chemokine, B cell receptor, and T cell
receptor pathways, are essential for directing immune cells to the
lung and regulating their function. Dysregulation of these pathways
can lead to excessive inflammation and tissue damage (82-84). (2)
Inflammatory Signaling: TLR and neurotrophin signaling pathways
underline the role of innate immunity and neuroimmune
interactions in ARDS. These pathways contribute to the
hyperinflammatory state and systemic effects associated with
ARDS (82, 85). (3) Cellular Stress and Repair: Ribosome and
spliceosome pathways highlight the importance of cellular stress
and repair processes. Dysregulation of these pathways can impair
lung tissue repair, exacerbating injury (82).

The biomarkers SMARCD3, TCN1, and RPL14 are linked to
critical pathways involved in immune regulation, inflammation,
and cellular repair in ARDS. Their roles in chemokine signaling,
receptor signaling, and ribosomal function suggest they may
contribute to the dysregulated immune response and tissue
damage observed in ARDS. Further research is necessary to
elucidate their specific mechanisms and potential as
therapeutic targets.

In this study, a comprehensive molecular regulatory network
involving miRNAs, IncRNAs, and TFs was constructed to
investigate the potential mechanisms underlying ARDS. The
network highlights interactions between two key biomarkers,
RPL14 and SMARCD3, and their regulatory molecules. TCNI
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appears to play a less prominent role in the network due to the
lack of predicted miRNA interactions.

MiRNA-Mediated Regulation of Biomarkers: MiRNAs typically
bind to the 3’ untranslated region (3’UTR) of target mRNAs,
leading to mRNA degradation or translational repression (86). In
ARDS, dysregulated miRNAs have been shown to modulate
inflammatory pathways, oxidative stress, and cell apoptosis—key
processes in ARDS development (87, 88). For instance, miR-155
and miR-146a, which are commonly dysregulated in ARDS, target
genes involved in NF-kB signaling and cytokine production, thus
contributing to the inflammatory response (87).

Based on the above information (68, 69, 74, 75, 79, 89), this
study hypothesizes the following potential mechanisms:
Dysregulation of RPL14 could impair ribosomal function, leading
to defective protein synthesis and heightened susceptibility to
cellular damage in ARDS (79, 89). SMARCD3 may be targeted by
miRNAs, which regulate gene expression and chromatin structure.
Altered SMARCD3 expression could disrupt the transcriptional
regulation of inflammatory genes, thereby exacerbating ARDS
pathology (68, 69). The absence of predicted miRNAs targeting
TCNI suggests that its regulation may occur at other levels, such as
transcriptional or post-translational modifications (90). TCNI1, as a
vitamin B12-binding protein, may influence ARDS through
mechanisms independent of miRNA regulation, such as
modulation of oxidative stress or immune responses.

KLF9 (Kriippel-like factor 9), a TF that targets both RPL14 and
SMARCD3, plays a key role in regulating cell differentiation,
inflammation, and stress responses. In chronic obstructive
pulmonary disease (COPD), KLF9 modulates airway
inflammation by controlling pro-inflammatory cytokines and
antioxidant genes (91), suggesting a similar function in ARDS
due to the shared inflammatory mechanisms between the two
conditions. KLF9 has also been implicated in airway remodeling
and inflammation in benign tracheal stenosis (92), as well as in
asthma and pulmonary fibrosis, where it regulates epithelial-
mesenchymal transition (EMT) and fibrotic responses—processes
particularly relevant to ARDS, especially during the
fibroproliferative phase. By regulating RPL14 and SMARCD3,
KLF9 may influence ribosomal function and chromatin
remodeling, affecting inflammatory gene expression and protein
synthesis under stress conditions in ARDS. This regulation of
RPL14 and SMARCD3 by KLF9 could modulate cellular
responses to injury and inflammation in ARDS, with KLF9-
mediated changes in SMARCD3 expression potentially altering
inflammatory gene regulation and its impact on protein synthesis
through RPL14 under stress.

In drug prediction, molecular docking is a widely used
computational method, offering a preliminary assessment of the
binding ability between drugs and targets. Despite its limitations,
drug prediction remains a critical step in drug development. Three
drugs—tetradioxin (CTD 00006848), selenium (CTD 00006731),
and CsA (CTD 00007121)—are notable for their ability to target
multiple biomarkers simultaneously. Although direct evidence for
tetradioxin in ARDS is lacking, its dual targeting of SMARCD3 and
TCNI1 suggests it may regulate inflammatory and metabolic
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pathways pertinent to ARDS. Both chromatin remodeling and
metabolic dysregulation have been implicated in respiratory
diseases like COVID-19 and COPD (93, 94). Selenium has been
extensively studied in the context of respiratory diseases, including
ARDS and COVID-19. Selenium deficiency is associated with
worsened severity of respiratory infections and inflammation,
while supplementation has been shown to alleviate oxidative
stress and improve ARDS prognosis (94, 95). Its role in immune
regulation and antioxidant defense positions selenium as a
promising agent for ARDS treatment, particularly for patients
with comorbidities such as asthma or vitamin D deficiency (96).
CsA has been explored in ARDS and other inflammatory lung
diseases for its ability to suppress cytokine storms and reduce lung
injury. Its immunosuppressive properties make it a potential
therapeutic option for ARDS, especially in hyperinflammatory
cases (97). CsA has also been studied in COVID-19, where
cytokine storms and immune dysregulation play a central role in
disease progression (94). These drugs may also offer broader
therapeutic applications in systemic diseases with similar
pathogenesis, such as COVID-19, COPD, and asthma, where
inflammation, oxidative stress, and immune dysregulation are key
drivers of disease progression (94, 95). Although drug prediction
analysis is primarily based on computational results, the drugs
identified provide valuable leads for further experimental research,
potentially accelerating the drug development process.
Single-cell data offer in-depth insights into cellular
heterogeneity, enabling the identification of distinct cell types and
states at the individual level. This is particularly important in ARDS,
a condition characterized by diverse cell types and complex
mechanisms. Single-cell sequencing can unveil specific immune
cell subsets and their interactions in ARDS. Analysis of the
GSE180578 dataset through single-cell sequencing identified eight
distinct cell types, with macrophages, neutrophils, and endothelial
cells being enriched in ARDS samples (66, 98, 99). Dynamic
intercellular interactions were observed during the pathogenesis
of ARDS, emphasizing the complex nature of immune responses.
Specifically, 16 subtypes of macrophages and 9 subtypes of
neutrophils were identified, highlighting the functional diversity
within these populations. This level of detail is beyond the reach of
conventional bulk transcriptomics (100) and provides valuable
insights into the specific role of immune cells in ARDS progression.
Our findings highlight the critical role of macrophages and
neutrophils in ARDS. Increased macrophage activity, consistent
with their dual roles in inflammation and tissue repair (66, 98),
likely contributes to the upregulation of RPL14 and SMARCD3
expression in certain subtypes. Neutrophils’ robust communication
network may facilitate ARDS progression through the formation of
NETs and IL-10-mediated inflammatory responses (78, 80). The
differential expression of RPL14 and SMARCD3 suggests their
involvement in metabolic or transcriptional regulation during
cellular activation (100-102). While scRNA-seq of blood samples
has its limitations—since blood does not fully reflect the local
pathological and physiological changes in the lungs during ARDS
—it still provides crucial information about the systemic immune
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response and offers valuable clues for understanding immune
dynamics in ARDS.

Pseudo-temporal trajectory analysis revealed distinct
expression patterns of RPL14 and SMARCD3 during macrophage
and neutrophil differentiation. In macrophages, RPL14 peaks early
and then declines, potentially contributing to early inflammatory
responses (98). In contrast, SMARCD3 increases gradually,
suggesting its role in regulating anti-inflammatory or metabolic
adaptations during later stages. In neutrophils, RPL14 remains
elevated, supporting sustained inflammatory processes, while
SMARCD3 peaks during mid-differentiation, likely promoting
functional maturation (99, 100). These expression profiles support
the hypothesis that metabolic reprogramming modulates immune
cell behavior in ARDS, with RPL14 promoting glycolysis in early
macrophage activation and SMARCD?3 facilitating the transition to
an anti-inflammatory state (101, 102).

This study has several limitations. First, the specific mechanisms
of biomarkers in ARDS and the precise actions of the predicted drugs
require further experimental validation. Second, the biomarkers were
analyzed only in whole blood samples, not in lung tissue or
bronchoalveolar lavage fluid, which are more directly related to
ARDS pathophysiology. Biomarker expression may also vary over
time, yet the pseudotime analysis focused only on differentiation
status rather than disease progression. To address these limitations,
subsequent studies will integrate cellular and animal models,
combined with metabolic analysis (such as Seahorse XF Analyzer
assays), to further investigate the mechanisms of immune-metabolic
biomarkers in ARDS and predict drug action pathways. Moreover,
the RT-qPCR verification sample size will be expanded to include
patients at different disease stages and levels of severity. Other
techniques, such as Western blotting, will be added for further
validation to enhance the reliability of the results. Flow cytometry
will be used to sort different types of immune cells from peripheral
blood for the detection of RPL14, SMARCD3 and TCNI1 expression
levels; Additionally, single-cell data will be collected from lung tissue
or bronchoalveolar lavage fluid and integrated with clinical data to
create a more comprehensive map of the local immune environment.

This approach will deepen our understanding of the disease
mechanisms of ARDS and provide a more robust theoretical
foundation for clinical diagnosis and treatment.

5 Conclusion

In conclusion, this study identified candidate biomarkers—
RPL14, SMARCD3, and TCN1—linked to immune cell activity
and metabolic reprogramming in ARDS, and developed an ANN
model. Functional enrichment analysis highlighted the biological
pathways through which these biomarkers influence ARDS
pathogenesis. Single-cell analysis further explored the cellular
expression of these biomarkers. Both in vitro and in vivo
experiments demonstrated that hub ARDS-ARDEGs (SMARCD3
and TCN1,but not RPL14) significantly affected mitochondrial
function, oxidative stress, apoptosis, glucose metabolism and
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inflammatory cytokine expression, offering new insights into
potential mechanisms underlying ARDS and providing valuable
information for optimizing clinical treatment strategies. It is
noteworthy that while RPL14 demonstrated predictive value in
transcriptomic analysis and ANN modeling, its functional role in
ARDS requires further validation.
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Glossary
3’'UTR
ANN
ARDS
ALI
AUC
CsA
COPD
COVID-19
DEGs
DESeq2
ELISA
EMT
FAO
GGI
GO
GSEA
GSH
HVGs
HE
IL-1B
IL-6
KEGG
KLF9

LASSO

3’ untranslated region

An artificial neural network

Acute respiratory distress syndrome
Acute lung injury

Area under the curve

cyclosporine A

chronic obstructive pulmonary disease
Coronavirus Disease 2019
Differentially expressed genes
Differential Expression Sequencing analysis
Enzyme-Linked Immunosorbent Assay
Epithelial-Mesenchymal Transition
Fatty acid oxidation

Gene-gene interaction

Gene ontology

Gene set enrichment analysis
Glutathione

High-variant genes

Hematoxylin and eosin

Interleukin-1f

Interleukin-6

Kyoto Encyclopedia of Genes and Genomes

Kriippel-like factor 9

Least absolute shrinkage and selection operator
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LPS
MRRGs
MSigDB
NETs
OXPHOS
PBS

PCA

PCs

PMA

PPI

PPP

ROC
RPL14
RT-qPCR
SMARCD3

SVM-RFE
TCN1

TF

THP-1
TNF-ou
UMAP

WGCNA
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Lipopolysaccharide

Metabolic reprogramming-related genes
Molecular Signatures Database
Neutrophil extracellular traps

Oxidative phosphorylation
Phosphate-buffered saline

Principal component analysis

Principal components

Phorbol 12-myristate 13-acetate
Protein-protein interaction

Pentose phosphate pathway

Receiver operating characteristic
Ribosomal protein L14

Reverse transcription-quantitative polymerase chain reaction

Sw/snf-related matrix-associated actin-dependent regulator
of chromatin subfamily d member 3

Support vector machine recursive feature elimination
Transcobalamin 1

Transcription factor

Tohoku Hospital Pediatrics-1

Tumor necrosis factor-o.

Uniform manifold approximation and projection

Weighted gene co-expression network analysis.
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