? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Mohamad Taleuzzaman,
Maulana Azad University, India

REVIEWED BY
Wenjia Tian,

Peking University People’s Hospital, China
B Tazneem,

Deccan School of Pharmacy, India

*CORRESPONDENCE
Yingwen Zhang
hhao3838@sina.com

These authors have contributed
equally to this work

RECEIVED 21 April 2025
AcCePTED 08 September 2025
PUBLISHED 30 September 2025

CITATION
Yu C, Jia C, Chen G, Li Y, Liu Y and Zhang Y
(2025) Yiai Fuzheng decoction inhibits triple-
negative breast cancer by remodeling the
immune microenvironment.

Front. Immunol. 16:1615631.

doi: 10.3389/fimmu.2025.1615631

COPYRIGHT
© 2025 Yu, Jia, Chen, Li, Liu and Zhang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Immunology

TvPE Original Research
PUBLISHED 30 September 2025
po110.3389/fimmu.2025.1615631

Yiai Fuzheng decoction
Inhibits triple-negative breast
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Immune microenvironment
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Objective: This study aimed to examine the potential anticancer properties of Yiai
Fuzheng decoction (YFD), along with its mechanism of action against triple-
negative breast cancer (TNBC).

Methods: A TNBC mouse model was established by inoculating 4T1 cells into the
4th mammary fat pad. Micropositron emission tomography (micro-PET),
hematoxylin and eosin (HE) staining, immunohistochemistry,
immunofluorescence assays, flow cytometry, and western blotting were used to
assess the therapeutic effects of YFD. The components of YFD were identified via
UHPLC-Q/Orbitrap MS. Nontargeted metabolomic analysis was performed to
identify changes in tumor metabolites via gas chromatography-time-of-flight
mass spectrometry (GC-TOF/MS). The Illumina sequencing platform was used to
identify differentially expressed genes in the tumors.

Results: A total of 20 bioactive components of YFD were screened and identified.
We found that YFD treatment resulted in a substantial increase in CD4* and CD8* T
cells, a reduction in myeloid-derived suppressor cells (MDSCs) and tumor-
associated macrophages (TAMs), and an increase in the M1/M2 ratio of TAMs in
tumors. These changes create a tumor-suppressive microenvironment that inhibits
tumor growth and metastasis in TNBC mice. YFD can affect various immune
regulatory pathways, such as inactivation of the mitogen-activated protein kinase
kinase/extracellular signal-regulated kinase 1 and 2 (MEK/ERK1/2) pathway.
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Additionally, metabolomic analysis suggested that YFD could reprogram several
altered metabolic pathways, including the urea cycle; metabolism of arginine and
proline; pyruvate; the Warburg effect; D-arginine; and D-ornithine, glutamate,
glycine, serine, and tryptophan, to suppress cancer progression.

Conclusion: Our findings provide preclinical evidence that supports the
application of YFD in TNBC treatment.

Yiai Fuzheng decoction, triple-negative breast cancer, tumor microenvironment,
transcriptomic profiling, metabonomic profiling

Introduction

Breast cancer (BC) is the most frequently diagnosed cancer in
women worldwide. In 2022, 287,850 new BC cases and 43,250
fatalities from BC occurred in the United States alone (1). A recent
investigation revealed that BC surpassed lung cancer as the most
common cancer globally (2). In 2020, there were more than 2
million new cases, accounting for 11.7% of all cancer cases, and
684,996 new fatalities, accounting for 6.9% of all cancer-related
deaths (2). BC is highly heterogeneous with varying genetic profiles
and histopathological changes. These subtypes are divided into
luminal A, luminal B, human epidermal growth factor receptor 2
(HER2)-enriched, and triple-negative breast cancer (TNBC)
subtypes (3). TNBC has unusual molecular characteristics, as it
does not express any of the three major receptors: estrogen,
progesterone, or HER2. It is aggressive and tends to spread to
other areas of the body, such as the lungs, brain, and bones (4).
Patients with TNBC have a poor prognosis and a high recurrence
rate (5). TNBC is not sensitive to molecular-targeted or endocrine
therapy (3). Currently, chemotherapy is the principal therapeutic
option for TNBC (6). Currently, approved chemotherapeutics, such
as taxanes and anthracyclines, have shown less satisfactory efficacy
in TNBC owing to the heterogeneity and development of
chemoresistance (7). Therefore, identifying an effective therapy
that can slow disease progression and improve patient survival
is crucial.

The tumor microenvironment (TME) plays a pivotal role in the
malignant progression and therapeutic response of BC (8). It is
composed of various components, including cancer cells, cancer
stem cells, tumor-associated macrophages (TAMs), myeloid-
derived suppressor cells (MDSCs), lymphocytes, natural killer
cells, cancer-associated fibroblasts, the extracellular matrix,
cytokines, and growth factors (9). The exponential proliferation of
BC cells induces a highly hypoxic environment, which results in
metabolic reprogramming of BC cells, immune cells, and other
surrounding TME cells, thus driving tumor growth, angiogenesis,
stemness, metastasis, and therapeutic resistance (10). Consequently,
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TME remodeling could be a promising method for treating TNBC
(10). MDSCs are the predominant immunosuppressive cells in the
TME (11). MDSCs are immature myeloid cells that can produce
immunosuppressive cells, such as regulatory T cells and T helper 17
cells, and limit T-cell proliferation and activation (12). TAMs are
the major types of tumor-infiltrating immune cells (13). They are
divided into activated M1-like TAMs, which have antitumor effects,
and activated M2-like TAMs, which promote cancer growth (14).
The accumulation of MDSCs and TAMs can suppress antitumor
immunity and contribute to BC progression (15, 16). Additionally,
clinical studies have shown that an increased population of MDSCs
or TAMs is associated with metastasis and decreased survival in
patients with BC (17, 18). Thus, targeting MDSCs or TAMs to
remodel the TME may be an encouraging approach for BC
immunotherapy (12, 19).

An increasing body of evidence suggests that traditional
Chinese herbal medicines and ingredients originating from
medicinal plants have significant potential as adjuvant treatments
for BC (20-24). Furthermore, studies have revealed that traditional
Chinese medicine (TCM) can slow cancer growth by modifying the
TME (25, 26). According to Li et al,, the Chinese medicine
decoction Aiduqing inhibits TAM/CXCLI1-induced Treg
differentiation and infiltration, thereby dramatically suppressing
cancer growth and lung metastasis (27). Wang et al. demonstrated
that the classical Chinese medicine formula Yu-Ping-Feng
significantly extended the survival of mice with Lewis lung cancer
by activating M1 macrophage polarization and increasing CD4" T-
cell cytotoxicity (28). However, there are few reports of effective
Chinese herbal decoctions that can remodel the TME to prevent
TNBC progression.

Yiai Fengzheng decoction (YFD) is a custom-made compound
formula developed by Prof. Yingwen Zhang on the basis of TCM
theory and long-term clinical experience. YFD can effectively
decrease BC-related fatigue, reduce the incidence of cancer
recurrence, prolong survival, and treat chemotherapy-related
adverse reactions (29). Additionally, the YFD successfully
obtained invention patent certification (30). Therefore,
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uncovering the underlying mechanisms by which YFD prevents BC
progression and providing compelling data to support its wider
therapeutic application are worthwhile. In recent years, omics
research techniques, such as transcriptomics, metabolomics,
proteomics, and phenomics, have been increasingly used to
elucidate the biological mechanisms of TCM prescriptions for the
treatment of diverse ailments from a systematic and holistic
perspective (31, 32). Owing to the intricate pathophysiology and
evolution of TNBC, multiomic profiling may be more appropriate
for understanding the landscape of the TNBC microenvironment
(33, 34). Accordingly, it is reasonable to assume that multiomic
techniques may be more useful for understanding the mechanism of
the antitumor actions of YFD and for identifying potential
biomarkers for prognosis and treatment. In this study, multiomics
technologies, including transcriptomic and metabolomic profiling,
were used to elucidate the mechanisms through which YFD
reshaped the TME in TNBC. UHPLC-Q/Orbitrap MS was used
to identify bioactive ingredients in YFD. This study not only
identified the bioactive components of YFD but also elucidated its
anti-BC mechanisms from the perspective of systematic biology and
TME remodeling, which have not been sufficiently reported.

The present study pioneers the role of YFD in MEK/ERK1/2
signaling-mediated immune microenvironment remodeling,
metabolome-driven TAM polarization and MDSC inhibition. This
study provides convincing experimental evidence supporting the
application of YFD in treatment. The workflow is illustrated in Figure 1.

10.3389/fimmu.2025.1615631

Materials and methods

Preparation of YFD decoction

All of the herbs were prepared by the pharmacy of Zhongnan
Hospital of Wuhan University. All herbal components of YFD were
purchased from Hubei Chenmei Chinese Traditional Medicine Co.,
Ltd. (Huanggang, China).The herbal material consisted of 15
medicinal herbs: 15 g Huang Qi (root of Astragalus
membranaceus), 15 g Fu Ling (dried sclerotium of Poria cocos),
12 g Shen Jin Cao (whole dried Lycopodium japonicum Thunb), 15 g
Si Gua Luo (vascular bundle of Luffa cylindrica Roem), 12 g Kun Bu
(thallus of Laminaria japonica Aresch), 15 g Zhe Bei Mu (dry bulb
part of Fritillaria thunbergii Miq), 15 g San Leng (dry tuber part of
Sparganium stoloniferun Buch), 6 g Shui Zhi (whole dried body of
Whitmania pigra Whitman), 15 g Yu Jin (tuberous root of Curcuma
longa L), 15 g Xia Ku Cao (dry fruit cluster of Prunella vulgaris L),
15 g Bai Hua She She Cao (whole part of Oldenlandia diffusa), 15 g E
Zhu (dry tuberous root of Curcuma phaeocaulis Valeton), 15 g Pu
Gong Ying (whole part of dried Taraxacum mongolicum Hand),
15 g Zao Jiao Ci (dry caltrop of Gleditsia sinensis Linn), and 12 g
Hong Teng (dry rattan of Sargentodoxa cuneata). All the herbs
were soaked and washed in a 6-fold volume of water for half an
hour, followed by boiling for 30 min. The final concentration of the
herbal medicine solution was 4.4 g/ml. Finally, the decoction was
stored at 4°C.
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Workflow of the present study.
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UHPLC-Q/orbitrap MS analysis of YFD

The freeze-dried YFD formulation (drug concentration: 6.37 g/g)
was reconstituted in 30 mL of heated deionized water. A 100 UL aliquot
of this mixture was subsequently mixed with 400 uL of methanol and
vortexed for 10 min. After centrifugation (4°C, 13,000 xg, 10 min), the
resulting mixture was filtered and subjected to chromatographic
analysis via an LC-MS system. The detailed LC-MS parameters are
provided in Table 1 and Table 2. High-resolution LC-MS/MS datasets
were computationally processed via Compound Discoverer 3.3
(CD 3.3) with reference to the McCloud metabolomic database for
compound annotation.

Ethics statement

All experimental procedures involving animals were approved
by the Institutional Animal Ethical Review Board of Zhongnan
Hospital, Wuhan University (Approval ID: ZN2022059). This study
strictly complied with Wuhan University’s institutional guidelines
for laboratory animal care and utilization throughout the
experimental protocol.

Animal experiments

Female C57BL/6 mice (8 weeks old) were procured from SPF
Biotechnology Co., Ltd. (Beijing; Certification: SCXK[Jing]2019-0010)
and maintained under controlled environmental conditions (12-hour
photocycle, 20 — 22°C, 30 - 70% relative humidity; Facility License:
110324220104570773SCXK-2020-100). After a 7-day acclimation
period, TNBC models were surgically established via the orthotopic
implantation of 1x10* 4T1 cells into the fourth mammary fat pad. The
tumor-bearing mice were randomized into three groups (n=10/

TABLE 1 The mass spectrometry conditions.

Condition items Parameters

ion source electrospray ionization (ESI)

scan method switching between positive and negative ion modes

detection method full mass/dd-MS,

resolution 70000 (full mass) and 17500 (dd-MS2)
scan range 100.0-1500.0 m/z
spray voltage 3.2 kV (positive, negative)

capillary temperature 300°C

collision gas high-purity argon gas (299.999% purity)
collision energy (N)CE 30, 40, 60
sheath gas nitrogen (299.999% purity) at 40 Arb

auxiliary gas nitrogen (=99.999% purity) at 15Arb and 350 °C

data acquisition time 30 min
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group): the control, low-dose (YFD'"), and high-dose (YFDMeh)
groups. Dosages were calculated via interspecies dose translation
(animal equivalent dose = human dose x 12.3 km ratio) (35). YFD
solutions (11.07 g/kg (YFD'®Y) and 44.28 g/kg (YFDM8h)) were
administered intragastrically as previously reported. Our previous in
vitro cytotoxicity tests demonstrated that different concentrations
ranging from 15 - 60 mg/ml had few harmful effects (36).
Biometric parameters (body mass and tumor dimensions) were
recorded triweekly, and the tumor volume was calculated as
0.5xlengthxwidth® Pharmacological intervention commenced upon
confirmed tumor engraftment (days 7 — 9 postimplantation), which
consisted of daily oral gavage for 14 consecutive days.

Micropositron emission tomography
imaging

A TransPE BioCaliburn LH instrument (RAYCAN, Suzhou,
China) was used to performed the microPET scans. After anesthesia
with 2% isoflurane, the mice were placed in the prone position, and
18F-fluorodeoxyglucose (FDG) was injected into the mice via the tail
vein. Scanning was started 50 min after the injection. Each mouse
was scanned for 30 min. Next, the microPET data were
reconstructed via a 3D ordered subset expectation-maximum
(OSEM) algorithm. The mean standardized uptake values (SUVs)
were calculated via region-of-interest (ROI) analysis.

Sample collection and preparation

Following microPET imaging, tumor-bearing mice were
anesthetized via inhalation of 2% isoflurane, followed by
immediate procurement of the peripheral blood serum. Splenic,
pulmonary, and neoplastic tissues were subjected to cryogenic
storage (0 — 4°C). The harvested serum and splenic samples were
processed for immunophenotypic profiling via flow cytometry.
Concurrently, pulmonary and tumor tissue aliquots were flash-
frozen in liquid nitrogen vapor for cryopreservation at -80°C, while
residual tissue segments were immersed in a 4% paraformaldehyde
(PFA) solution.

TABLE 2 The liquid chromatography conditions.

Condition items Parameters

chromatographic column AQ-C18, 150 x 2.1 mm, 1.8 um, Welch

flow velocity 0.30 mL/min

aqueous phase 0.1% of formic acid in water

organic phase methanol
column oven temperature 35°C
autosampler temperature 10°C
sample injection volume 5ul
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Flow cytometry analysis

First, we separated the peripheral blood lymphocytes and
splenocytes. Next, the erythrocytes were subsequently lysed. Then,
we incubated the obtained cell suspensions with anti-mouse CD16/
32. To identify different subtypes of T cells, we stained the cells with
PE-conjugated anti-CD8, FITC-conjugated anti-CD4, and APC-
conjugated anti-CD3 antibodies. A flow cytometer was used to
detect the labeled cells. FlowJo software (Tree Star Inc., Ashland,
OR, USA) was used to calculate the number of labeled cells.

Hematoxylin and eosin staining and
immunohistochemistry

Lung and tumor tissues were fixed in 4% paraformaldehyde for
24 h. The fixed tissues were dehydrated and embedded in paraffin.
The embedded sections were cut into 5 pm thick slices. HE staining
was used to detect metastatic nodules in the lungs, and a BX53
microscope was used to determine the area of the metastatic lesions
(Olympus, Center Valley, PA, USA). Immunohistochemical analysis
was performed to validate the effect of YFD on metastatic potential.
The samples were subjected to antigen retrieval by heating in sodium
citrate buffer, followed by endogenous peroxidase blocking. The
sections were then incubated with N-cadherin (1:500, GB12135;
Servicebio, Wuhan, China), vimentin (1:500, GB11192; Servicebio),
and Ki67 (1:500, GB111141; Servicebio) antibodies at 4°C overnight.
The slides were then incubated with a suitable secondary antibody for
one hour at 37°C. Immunostaining was performed by incubation
with diaminobenzidine and counterstaining with hematoxylin.
Finally, a BX53 microscope was used to observe the staining
results. Image] software (National Institutes of Health, Bethesda,
MD, USA) was used for data analysis.

Immunofluorescence assay

The tumor tissue sections were subjected to an antigen retrieval
procedure by heating in sodium citrate buffer and blocked for 1 h
with 10% goat serum. To detect TAMs, the slides were incubated
with an anti-F4/80 antibody (1:200, sc-377009, Santa Cruz
Biotechnology, Santa Cruz, CA, USA) overnight at 4°C. The
sections were then washed with PBS and incubated with
secondary antibody (1:500, ab150116, Abcam, Inc., USA) for 1 h.
Next, the slides were washed with PBS 4 times (5 min/wash) and
blocked for 1 h with 10% goat serum. The slides were subsequently
incubated with an anti-CD11b antibody (1:500, ab184308, Abcam,
Inc., USA) at 4°C overnight. The cells were incubated with a
secondary antibody (1:500, ab150116, Abcam, Inc., USA) for 1 h.
After several washes with PBS, the nuclei were stained with DAPI.
The procedure used to detect MDSCs was similar to that described
above, but the labeling antibodies used were anti-Ly6G antibody
(1:300, sc-53515, Santa Cruz, CA, USA) and anti-CD11b antibody.
To detect T cells, the sections were incubated with an anti-CD3
antibody (1:300, sc-20047, Santa Cruz, CA, USA) and secondary
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antibodies (1:500, ab150116, Abcam, Inc., USA). To detect M1-type
TAMs, the slides were incubated with anti-F4/80 and anti-CD86
antibodies (1:400, sc-28347, Santa Cruz, CA, USA). To detect M2-
type TAMs, the slides were incubated with anti-F4/80 and anti-
CD206 antibodies (1:300, sc-58986, Santa Cruz, CA, USA). The
appropriate secondary antibodies were selected on the basis of the
reactivity of the primary antibodies. A laser confocal fluorescence
microscope (STELLARIS 5 SR, Leica, Mannheim, Germany) was
used to observe the immunofluorescence results.

Western blot analysis

Tumor tissues from three mice in each group were randomly
selected for western blot analysis. First, 10% SDS-PAGE gels were
used to separate equal amounts of the loaded proteins. The isolated
proteins were transferred onto polyvinylidene fluoride membranes.
Next, the membranes were incubated overnight at 4 °C with the
following primary antibodies: MEK-1/2 mouse mAb (1:500, sc-81504,
Santa Cruz, CA, USA), phospho-MEK1/MEK2-S217/S221 rabbit
mAb (1:500, AP1349, ABclonal, Wuhan, China), ERK1+ERK2
rabbit mAb (1:10000, ab184699, Abcam, Inc., USA), phospho-
ERK1-T202/Y204+ERK2-T185/Y187 rabbit pAb (1:500, AP0472,
ABclonal, Wuhan, China), LAD1 Rabbit pAb (1:500, AP17506,
ABclonal, Wuhan, China), and TNFo mouse mAb (1:500, sc-
52746, Santa Cruz, CA, USA).), IL-10 mouse mAb (1:500, sc-
365858; Santa Cruz Biotechnology, CA, USA), and GAPDH
(1:5000, HRP-60004; Proteintech, Wuhan, China). After incubation
with the appropriate secondary antibodies, protein signals were
detected via a ChemiDocXRS+Imaging System (Tanon-5200,
Tanon, Shanghai, China.) and quantified via ImageJ software.

RNA extraction and sequencing

TRIzol was used to separate total RNA from the tumor tissues.
After RNA was extracted by DNasel, the DNA digestion procedure
was performed. The RNA quality was then assessed via a
NanodropTM OneC spectrophotometer (Thermo Fisher
Scientific, Inc., MA, USA). Subsequently, 1.5% agarose gel
electrophoresis was performed to assess RNA integrity.
Additionally, qualifying RNAs were quantified via a Qubit 3.0
instrument with a QubitTM RNA Broad Range Assay Kit. A
stranded RNA sequencing library was created with 2 ug of total
RNA via the KCTM Stranded mRNA Library Prep Kit for
Mlumina® (catalog no. DR08402; Wuhan SeqHealth Co., Ltd.
Wuhan, China). PCR products in the range of 200 — 500 bp were
isolated and sequenced via a HiSeq x 10 sequencer.

RNA-seq data analysis
Using the STRA software and the default parameters, the

acquired data were mapped to the reference genome of Homo
sapiens (Homosapiens. GRCh38; ftp://ftp.ensembl.org/pub/release-
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87/fasta/homo_sapiens/dna/). Based on feature counts (Subread-
1.5.1; Bioconductor), reads mapped to each gene’s exon regions
were counted, and RPKMs were then computed. The edgeR
program was used to identify the genes that were differentially
expressed between groups. The statistical significance of variations
in gene expression was assessed via a false discovery rate (FDR)-
adjusted p value threshold of 0.05 and a fold change criterion of 2.
On the basis of a corrected p value cutoft of 0.05, to determine
statistically significant enrichment, KOBAS software was used to
perform gene ontology (GO) and KEGG enrichment analyses for
the DEGs. Alternative splicing events were identified via rMATS
with an FDR value threshold of 0.05 and an absolute value of 0.05.

Metabolomic analysis

Untargeted metabolomic analysis across the control, low-, and
high-dose cohorts was conducted via the XploreMET platform.
Specifically, 50 mg of tumor samples from each group were
homogenized with 25 mg of precooled zirconium oxide beads
supplemented with 10 uL of DL-chlorophenylalanine (internal
standard). This quality control marker was introduced prior to
metabolite extraction to systematically quantify the technical
variations arising from sample preparation and instrumental
analysis. The overall coefficient of variation (CV), defined as the
ratio of the standard deviation to the mean peak signal intensity,
was assumed to be within 20% for each analytical block of 180
samples. After homogenization with 50% precooled methanol and
centrifugation at 14000 rpm and 4°C for 20 min, the mixture was
homogenized in 175 UL of precooled methanol/chloroform (v:
v=3:1) for one more round of extraction, followed by
centrifugation at 14000 rpm and 4°C for 20 min. The chloroform
in the remaining supernatant was removed and lyophilized via a
FreeZone freeze-dryer. A robotic multipurpose MPS2 sample with
dual heads was used for sample derivatization and injection.
Specifically, the dried sample was derivatized with 50 pL of
methoxyamine (20 mg/mL in pyridine) at 30°C for 2 h, followed
by the addition of 50 puL of MSTFA (1% TMCS) at 37.5°C for
another 1 h via the sample preparation head. After derivatization,
the samples were injected via a sample injection head. Quality
control was conducted to ensure repeatability and stability.

A gas chromatography-time-of-flight mass spectrometry (GC-
TOF/MS) machine (Pegasus HT, Leco Corp., St. Joseph, MO, USA)
with an Agilent 7890 B gas chromatograph and a Gerstel
multipurpose pattern MPS2 with dual heads (Gerstel, Muehlheim,
Germany) was used for untargeted metabolic profiling. The
parameters were set as follows: column, DB-5MS (5% diphenyl/
95% dimethyl polysiloxane) 30 m (length) x 250 um LD., 0.25-um
film thickness; oven programmed temperature, 80°C (2 minutes),
80 - 300°C (12°C/min), 300°C (8 minutes); inlet temperature, 270°C;
injection volume, 1.0 UL (splitless); carrier gas, helium (99.9999%);
transfer interface temperature, 270°C; flow rate, 1.0 mL/min;
ionization mode electron energy, 70 EV; detector voltage, -1700 V;
source temperature, 220°C; acquisition rate, 25 spectra/sec; and mass
range, 50 - 500 Da.
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ChromaTOF (v4.71, Leco Corp., St. Joseph, MO, USA) was
used to process the raw data obtained by GC-TOF/MS. Metabolites
were identified by comparison with the JiaLib metabolite database.
Principal component analysis (PCA), projection to latent structure
discriminant analysis (PLS-DA), and orthogonal PLS-DA (OPLS-
DA) were used. The importance of variables in the projection (VIP)
of each identified metabolite was subsequently calculated.
Metabolites with VIP > 1, p< 0.05, and [log,fold change (FC)|=0
were considered differentially abundant metabolites. Pathway-
associated metabolite sets were used for pathway enrichment
analysis. The KEGG database was used to conduct functional
annotation and enrichment analyses of the differentially
expressed metabolites.

Statistical analysis

The results are expressed as the means + standard deviations
(means = SDs). The data were subjected to one-way analysis of
variance via GraphPad software (version 8), followed by either
Dunnett’s t test or Tukey’s test. Statistical significance was defined
as a p value< 0.05.

Results
Components of YFD

The phytochemical components of YFD were studied via
UHPLC-Q/Orbitrap MS in positive and negative ion modes. The
total ion chromatograms are shown in Figure 2. The bioactive
ingredients in YFD were identified by comparison with standard
materials and chemical information obtained from the mzCloud
mass spectrometry library. The top 20 bioactive compounds were
screened and identified and are presented in Table 3.

YFD inhibited breast tumor growth and
metastasis in vivo

A flowchart of the experiment is shown in Figure 3A. Tumor-
bearing mice were orally administered YFD or saline once daily for
two weeks, beginning in the second week after 4T1 breast cancer
cells were inoculated. The body weights of the mice and the increase
in tumor volume were measured every three days. During the
treatment period, there was little significant variation in body
weight among the groups (Figure 3C). Furthermore, the results
from dynamic monitoring (Figures 3B, D) and microPET scanning
(Figures 4A, C, D) revealed that YFD administration suppressed
tumor development in a dose-dependent manner, with high-dose
YFD treatment inhibiting tumor growth more than low-dose YFD
treatment did. To assess the effects of YFD treatment on metastasis,
immunohistochemistry was used to measure the levels of tumor
metastasis-associated markers, including ki67, N-cadherin, and
vimentin, in tumor tissues. The results showed that high-dose
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FIGURE 2
Total ion current diagram in positive and negative modes of Yiai Fengzhen
YFD.

YFD therapy considerably decreased Ki67 and N-cadherin
expression levels (Figures 3H, I) but had little effect on vimentin
levels (Figures 3]). Furthermore, HE staining (Figures 3E-G) and
microPET scanning (Figures 4B, E, F) revealed that YFD treatment
reduced the number of metastatic lesions in the lungs. These
findings strongly indicate that YFD inhibits breast tumor growth
and lung metastasis.

YFD reshaped the tumor immune
microenvironment in breast cancer

Flow cytometry and immunofluorescence were used to examine
the primary tumor-inhibiting and tumor-promoting leukocytes,
respectively, to observe changes in the immunogenic
microenvironment of TNBC mice. The results revealed that the
ratio of CD3" T cells in the peripheral blood increased (Figure 5A),
but there were no statistically significant differences between the YFD-
treated groups in terms of CD4" and CD8" T cells (Figures 5B, D). In
contrast, the fractions of CD3" and CD4" T cells and CD8" T cells in
the spleen increased only with high-dose YFD treatment (Figures 5C,
E), indicating that high-dose YFD increased the antitumor
immune reaction.

It is commonly acknowledged that MDSCs and TAMs
predominate within the immunosuppressive TME (9). High-dose
YFD therapy consistently increased the proportion of CD3* T cells
(Figures 6B, E) and dramatically decreased the proportions of
TAMs (CD11b"F4/80") (Figures 6A, D) and polymorphonuclear
MDSCs (CD11b"Ly6G"; a crucial MDSC subtype) (Figures 6C, F).
Collectively, our results suggest that YFD can create a tumor-
inhibiting immunogenic milieu in the TME by significantly
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g decoction (YFD). (A) Negative ion mode of YFD. (B) Positive ion mode of

increasing the number of T cells and reducing the number of
TAMs and MDSCs. High-dose YFD treatment had greater
tumor-inhibiting effects than did low-dose YFD treatment.

YFD regulated tumor metabolomic
profiling in the breast cancer mouse model

We utilized a metabolomic approach to study the changes in
metabolites in the breast tumor tissues of mice, and multivariate
analysis was combined with PCA and OPLS-DA to identify potential
biomarkers. The representative GC-TOF/MS chromatograms and
detailed spectral data for metabolite identification are provided in
Supplementary File 2. The PCA score plots displayed in Figure 7A
show the overall differences among the groups (control vs. low, control
vs. high, and low vs. high). A score plot with aggregated quality control
samples indicates good quality control and a stable detection process.
Next, we performed OPLS-DA to maximize the covariance among the
data to distinguish the metabolites between the groups. As shown in
Figure 7B, each comparison had good prediction ability, with high
R*Y and Q” values. In the OPLS-DA model, the parameters were as
follows: control vs. low, R*Y=0.887, Q?=-0.423; control vs. high,
R*Y=0911, Q* = 0.439; and low vs. high, R*Y=0.888, Q* = 0.334.
The separation differences were substantial between the control vs.
low, control vs. high, and low vs. high groups, indicating that YFD
treatment had a significant effect on the metabolites. A volcano plot
combining the strengths of both the variable contributions (variable
importance in projection, VIP) and variable reliability (correlation
coefficients (Figure 7C), Corr. coefficients) was used to screen for
potential biomarkers. In this analysis, the threshold values for
identifying different metabolites were set at p< 0.05 and |log2FC| >0.
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TABLE 3 Top 20 components of YFD.

10.3389/fimmu.2025.1615631

Compound Formula Calculated molecular weight Retention time(min) mzCloud best match(%)
L-Phenylalanine CoH,;1NO, 165.07878 5.284 100
Nicotinic acid Ce Hs NO, 123.03217 2.161 100
Linoleic acid Cis Hay O, 280.23985 22.052 99.9
Benzoic acid C; Hg O, 122.03545 9.719 99.9
Palmitic acid Ci6 H3,0, 256.23993 22.565 99.9
Caffeic acid Cy Hg O4 180.04117 10.245 99.8
Formononetin Cis Hi» Oy 268.0729 15.857 99.8
‘;ﬂ ‘Cguer r:;lige-o- Ca1 Hyig Oy 1446.08455 13917 99.8
Salicylic acid C; He O; 138.03038 12.952 99.8
Catechol CeHq0, 110.03258 7.366 99.7
Oleanolic acid C30Hy503 456.3595 22.1 99.6
Chlorogenic Ci6H 1500 354.09508 10.205 99.6
Rutin Cy7H30016 610.15256 12.982 99.5
Apigenin C15H1005 270.05238 15.774 97.9
Asiatic acid CsoHys05 488.34978 19.537 97.9
Catechin C15H1406 290.07895 9.114 97.6
Eicosapentaenoic acid Cy0H300, 302.22389 21.748 97.3
Quercetin Cy5H,00; 302.04216 12.987 96.5
Vanillin CgH;0s5 152.04724 10.577 96.4
Astragalin C1H001, 402.095 13.668 95.2

According to the selection threshold, the low-dose YFD group
presented five upregulated and three downregulated metabolites
compared with the control group (Figure 8A), the majority of
which fell within the categories of amides (oleamide), amino acids
(kynurenine and methylcysteine), carbohydrates (ribitol and
mannose), lactones (dehydroascorbic acid), nucleotides (thymidine),
and organic acids (phosphoglycolic acid). Compared with those in the
control group, ten upregulated and nine downregulated metabolites
were detected in the high-dose YFD group, with the majority being
amines (urea and melamine), amino acids (alanine, methylcysteine,
aminoadipic acid, phosphoserine, and cystine), carbohydrates
(dihydroxyacetone, xylitol, and ribitol), eicosanoids (prostaglandin
E2), lactones (erythrono-1,4-lactone), nucleotides (7-methylxanthine
and pseudouridine), and organic acids (3-hydroxybutyric acid, 2-
hydroxyglutaric acid, citric acid, and 4-hydroxybutyric acid)
(Figure 8B). Compared with the low-dose YFD group, the high-
dose YFD group presented nine upregulated and five downregulated
metabolites (Figure 8C). These metabolites include amines (urea, 3-
amino-2-piperidone, and spermine), amino acids (alanine, proline,
and aminomalonic acid), carbohydrates (xylitol and sucrose), fatty
acids (pelargonic acid), lactones (erythrono-1,4-lactone), nucleotides
(pseudouridine), and organic acids (3-hydroxybutyric acid, malic acid,
and 2-hydroxyglutaric acid). Interestingly, as shown in Figures 8A, B,
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D, both low- and high-dose YFD increased the amount of ribitol and
lowered the level of methylcysteine.

Pathway enrichment analysis was performed on the identified
differentially abundant metabolites via the pathway-associated
metabolite set (SMPDB) database. Our results revealed that
catecholamine biosynthesis; fructose and mannose degradation; and
galactose, pyrimidine, tryptophan, and tyrosine metabolism were the
key metabolic pathways that differed between the control and low-
dose YFD groups (Figure 8E). The main metabolic pathways included
the urea cycle; D-arginine and D-ornithine metabolism; ketone bodies;
the glucose-alanine cycle; glycine and serine metabolism; alanine
metabolism; glutathione metabolism; the transfer of acetyl groups
into the mitochondria; caffeine metabolism; selenoamino acid
metabolism; lysine degradation; the citric acid cycle; glutamate
metabolism; arginine and proline metabolism; the Warburg effect;
and tryptophan metabolism (Figure 8F).

In contrast, the urea cycle, arginine and proline metabolism, D-
arginine and D-ornithine metabolism, ketone body metabolism, the
glucose-alanine cycle, alanine metabolism, spermidine and
spermine biosynthesis, glutathione metabolism, transfer of acetyl
groups into mitochondria, and caffeine metabolism were the
metabolic pathways that differed between the low-dose and high-
dose YFD groups (Figure 8G). This may partially explain why high-
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FIGURE 3
YFD inhibited breast cancer growth and metastasis in vivo. (A) Schematic flowchart of the experiment. The mice in the low- and high-dose groups
received YFD orally once daily for 2 successive weeks, whereas the mice in the control group received saline. (B) Dissociated tumor tissues from
each group. (C, D) Body weight changes and tumor growth curves (n=10). Weight and tumor growth were measured every 3 days. (E)
Representative HE-stained images of lung sections from each group. The black arrows indicate metastatic lesions. (F) Representative
immunohistochemistry images of Ki67, N-cadherin, and vimentin in tumor tissues. (G) Comparison of metastatic lesion areas in lung sections. (H-J)
Expression levels of Ki67, N-cadherin, and vimentin in tumor tissues from each group. The data are expressed as the means + SDs (n=3 for each
group). *p< 0.05, **p< 0.01, nsp>0.05 compared with the intended group by ANOVA followed by Dunnett's t post hoc test.
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Microposition emission tomography (microPET) scanning after YFD treatment. (A, B) Representative microPET images of the breast tumors and lungs
from each group. MicroPET scanning was used to evaluate the effects of YFD on tumor growth and lung metastasis. (C, D) Comparison of the
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subjected to flow cytometry analysis. (B, C) CD3*, CD4", and CD8™ T cells in the blood and spleen were analyzed via flow cytometry. (D, E)
Comparison of the proportions of CD3*, CD4", and CD8" T cells in the blood and spleen in each group (n=3 for each group). *p< 0.05, **p< 0.01,
"*p>0.05 compared with the intended group by ANOVA followed by Dunnett's t post hoc test.
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Effects of YFD treatment on tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and CD3™ T cells. (A-C)
Representative images of IF-stained TAMs, CD3" T cells, and MDSCs. TAMs were labeled with anti-F4/80 and anti-CD11b antibodies. MDSCs were
labeled with anti-Ly6G and anti-CD11b antibodies. CD3" T cells were labeled with an anti-CD3 antibody. (D-F) Immunofluorescence analysis of
TAMs, CD3* T cells, and MDSCs in tumor sections from each group. The data are presented as the means + SDs (n=3). *p< 0.05, **p< 0.01, "*p>0.05
compared with the intended group by ANOVA followed by Dunnett's t post hoc test.

dose YFD had more potent antitumor effects than did low-
dose YFD.

YFD regulated the tumor transcriptome in
BC mice

To investigate the molecular mechanisms underlying the
reshaping of the immunogenic BC microenvironment by YFD
treatment, we conducted a transcriptome analysis of the tumor
tissue. The quality control data are presented in Supplementary
Table 1. The average raw reads of all the samples were 45885130,
with a mean effective rate of 83.60%. The clean Q20 ratios of these
samples ranged from 98.97% to 99.12%, with an average ratio of
99.06%, and the clean Q30 ratios ranged from 95.51% to 96.12%,
with a mean ratio of 95.89%. These data suggested that the RNA-
Seq data were precise and could be used for subsequent analyses.
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In this study, edge R was used to analyze the differentially
expressed genes (DEGs), and the results are presented in Figure 9.
Our findings indicate that low-dose YFD treatment resulted in 28
downregulated genes and nine upregulated genes compared with
those in the control group (Figures 9A, D). Conversely, high-dose
YFD treatment induced the downregulation of 35 genes and the
upregulation of 68 genes (Figures 9B, D). In total, 207 DEGs were
identified between the low- and high-dose YFD groups. Among
these genes, 152 genes were upregulated and 55 genes were
downregulated in the low-dose YFD group compared with the
high-dose YFD group (Figures 9C, D). Notably, both low- and high-
dose YFD treatments resulted in the downregulation of the ladinin-
1 (LADI) gene (Figure 9E), which has been associated with the
metastatic potential of cancer (37, 38). We hypothesized that this
gene could be the key gene responsible for the antigrowth and
antimetastatic effects of YFD. High-dose YFD treatment also
upregulated the expression of Ank3, Ube2qll, Baalc, Thbs4, and
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FIGURE 7

Comparisons of principal component analysis (PCA) score plots, orthogonal projections to latent structure-discriminant analysis (OPLS-DA) score plots,
and volcano plots of metabolic profiles among the groups. (A) PCA score plots for the control group vs. low-dose group, control group vs. high-dose
group, and low-dose group vs. high-dose group. (B) OPLS-DA score plots for the control group vs. low-dose group, control group vs. high-dose group,
and low-dose group vs. high-dose group. (C) Volcano plots for the control group vs. the low-dose group, the control group vs. the high-dose group,

and the low-dose group vs. the high-dose group.

Dsg2, which are known to participate in cancer growth and
metastasis (39-43). These findings suggest that high-dose YFD
may have stronger antitumor effects than low-dose YFD does.
Additionally, a statistically significant difference in gene
expression was observed among the three groups, as shown in the
DEG heatmap (Figure 9F).

Furthermore, we performed functional annotation analysis of
DEGs via the GO database and set the selection threshold for
enriched GO terms at p< 0.05. Compared with the low-dose YFD
group, the control group presented increased defense responses to
viruses, protein kinase B signaling, the MAPK cascade, and ERK
signaling (Figure 10A) and decreased regulation of immune system
processes, lymphocytes, leukocytes, B cells, and extracellular regions
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(Figure 10B). The DEGs were enriched in five pathways: primary
immunodeficiency, hematopoietic cell lineage, Epstein-Barr virus
infection, complement and coagulation cascades, and the B-cell
receptor signaling pathway (Figure 10G).

Compared with the high-dose YFD group, the control group
presented an increase in GO terms related to the regulation of
cardiac muscle function and heart rate (Figure 10C). In contrast, the
GO terms related to the positive regulation of the innate immune
response, inflammatory response, and immune response-regulating
signaling pathways were downregulated in the control group
(Figure 10D). These DEGs were enriched in tight junctions,
hypertrophic cardiomyopathy, type I diabetes mellitus, the T-cell
receptor signaling pathway, natural killer cell-mediated cytotoxicity,
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YFD-induced changes in metabolic profiles in a mouse model of breast cancer. (A-C) Heatmaps of potential biomarkers for each comparison,
including the control group vs. the low-dose group, the control group vs. the high-dose group, and the low-dose group vs. the high-dose group.
(D) Venn diagram of differentially abundant metabolites between the control group and the low-dose group, between the control group and the
high-dose group, and between the low-dose group and the high-dose group. (E-G) Metabolite set enrichment in the control group vs. low-dose
group, control group vs. high-dose group, and low-dose group vs. high-dose group.

cytokine—cytokine receptor interactions, the chemokine signaling
pathway, and cell adhesion molecules (Figures 10H, I).

Compared with the high-dose YFD group, the low-dose YFD
group presented increased expression of GO terms such as
regulation of interleukin-10 production, regulation of gliogenesis,
regulation of B-cell activation, positive regulation of cell migration,
and positive regulation of cell motility (Figure 10E). Conversely, the
main downregulated GO terms were transmembrane receptor
protein serine/threonine kinase signaling pathway, regulation of
protein targeting, peptidyl-serine phosphorylation, glucose
metabolic process, and collagen metabolic process (Figure 10F).
These DEGs were enriched predominantly in pathways such as
Type 1 diabetes mellitus, tuberculosis, rheumatoid arthritis,
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cytokine-cytokine receptor interaction, tight junctions, and the
PPAR signaling pathway (Figures 10]-K).

Integrative analysis of the metabolome and
transcriptome

Next, we analyzed the correlations between the identified genes
and their metabolites. The correlation coefficient was measured via
the Spearman correlation coefficient method with the Cor function
of R language. A correlation coefficient greater than 0.8 and a p
value < 0.05 were used to determine a significant correlation
between the metabolites and genes. An interaction network of
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Differentially expressed genes (DEGs) among the groups. (A-D) Volcano plots for the control group vs. low-dose group, control group vs. high-dose
group, and low-dose group vs. high-dose group. (E) Shared upregulated and downregulated DEGs among the groups. (F) DEG heatmap for the

groups.

gene-metabolite expression was constructed, and the igraph
package of the R language was used to draw the network
diagram. The molecular types (genes and metabolites) are marked
on the network icon, and a line was drawn between the interacting
molecules. The arrow represents the default direction of regulation
from the gene to the metabolite. Our results revealed that both high
and low doses of YFD upregulated LADI expression in mice with
TNBC. This leads to reduced expression of methylcysteine and
increased expression of mannose, ribitol, melamine, alanine,
aminoadipic acid, and prostaglandin E2 (Figure 11).
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YFD induced M1 macrophage polarization
and inhibited M2 macrophages, likely by
inactivating the MEK/ERK1/2 pathway

Enrichment analysis of the RNA-seq data revealed that,
compared with the control group, the YFD treatment groups
presented significant enrichment of terms related to the MAPK
cascade, ERK signaling, and regulation of the inflammatory
response. These findings indicate that the antitumor effects of
YFD may be mediated through the MAPK and ERK pathways,
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GO terms and KEGG pathways of DEGs. (A-F) GO terms enriched with upregulated and downregulated genes from the comparisons between the
control group and the low-dose group, between the control group and the high-dose group, and between the low-dose group and the high-dose

group. (G-K) KEGG pathways enriched with upregulated and downregulated

DEGs between the control group and the low-dose group, between the

control group and the high-dose group, and between the low-dose group and the high-dose group.

which regulate the immune response. Recent studies have shown
that LADI can be affected by the EGFR/MEK/ERK1/2 cascade,
which affects the invasion and migration of BC cells (38).
Additionally, TAMs with an M2-like phenotype are correlated
with an immunosuppressive TME and cancer metastases (14). To
measure the levels of M1- and M2-like TAM markers, we analyzed
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the activated phenotype via the expression levels of F4/80/CD86
(M1-like marker) and F4/80/CD206 (M2-like marker). Our
immunofluorescence results revealed a significant increase in the
fluorescence intensity of M1-like TAMs and a decrease in that of
M2-like TAMs in the YFD-treated groups (Figures 12A-D). YFD
treatment resulted in a substantial increase in TNF-ot and a decrease
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FIGURE 11

Interaction network of genes and metabolites affected by YFD. The correlation coefficient between genes and metabolites was measured via the
Spearman correlation coefficient. The arrow direction represents the direction of regulation from the gene to the metabolite. Both low-dose and

high-dose YFD treatment upregulated the LADI gene.

in IL-10 expression (Figures 13A, B). Additionally, we observed a
decrease in the expression of MEK/ERK1/2 signaling pathway
proteins and LAD1 following YFD administration (Figures 13A,
B). Overall, these results suggest that YFD treatment induces M1
macrophage polarization and inhibits M2 macrophage polarization
by partially inactivating the MEK/ERK1/2 pathway.

Discussion

The relationship between the TME and the progression of various
solid cancers, such as lung, breast, gastric, and colorectal cancers, is
widely accepted (9, 44). TNBC, a highly aggressive and metastatic
subtype of BC, lacks specific targets or targeted therapeutics (3).
Therefore, reshaping the components of the TME, including
immunosuppressive cells and metabolites, may be a promising
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therapeutic approach for TNBC (45). Our study aimed to validate
the bioactive ingredients, anticancer effects, and underlying
mechanisms of action of the multitarget Chinese medicine formula
YFD in TNBC mice via a comprehensive approach.

Twenty compounds were identified, including 1-phenylalanine,
nicotinic acid, linoleic acid, benzoic acid, palmitic acid, caffeic acid,
formononetin, apigenin 7-O-glucuronide, salicylic acid, catechol,
oleanolic acid, chlorogenic acid, rutin, apigenin, asiatic acid,
catechin, eicosapentaenoic acid, quercetin, vanillin, and astragalin.
Our findings indicated that YFD significantly suppressed breast
tumor growth and lung metastasis in a dose-dependent manner,
with high-dose YFD treatment resulting in stronger antitumor
effects. Importantly, YFD significantly affected the TME by
increasing the number of T cells and decreasing the number of
TAMs and MDSCs. Furthermore, YFD was found to target
important immune regulatory pathways, including the LADI
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YFD can remodel the polarization phenotypes of TAMs. (A, B) Representative immunofluorescence images of M1-type TAMs and M2-type TAMs in
tumor sections from each group. The white arrows indicate macrophages. (C, D) Immunofluorescence analysis of M1- and M2-like macrophages in
tumor sections from each group. The data are presented as the means + SDs (n=3). *p< 0.05, **p< 0.01, "p>0.05 compared with the intended

group by ANOVA followed by Dunnett's t post hoc test

gene, and promote the polarization of M1 macrophages while
inhibiting M2 macrophage polarization and MDSC accumulation
by inactivating the MEK/ERK1/2 pathway. Metabolomic analysis
demonstrated that YFD affects various metabolic pathways related
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to immune response regulation. Recently, several studies have
validated the anticancer mechanisms of ancient and classical
Chinese medicine decoctions, such as the Tao Hong Si Wu
decoction (46), Gegen Qinlian Decoction (47), Siwu Decoction
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FIGURE 13

YFD inhibited the MEK/ERK1/2 pathway. (A) Expression of LAD1, TNFo, IL-10, and MEK/ERK1/2 signaling proteins in tumor tissues from each group,
as measured by Western blot analysis. (B) Densitometry values for the proteins were normalized to those of GAPDH. All the data represent the
means + SDs of three independent experiments performed in triplicate. *p< 0.05, **p< 0.01, "p>0.05 compared with the intended group by ANOVA

followed by Dunnett's t post hoc test.

(48), Liujunzi Decoction (49), and Banxia Xiexin Decoction (50),
but less emphasis has been placed on their effects on the TME. In
the present study, we demonstrated that YFD can inhibit TNBC
progression by remodeling the TME. In addition, the material basis,
effects on TME remodeling, and transcriptomic and metabolomic
characteristics of the decoction were validated via combined and
systematic approaches, in accordance with the holistic view
of TCM.

Mounting evidence has shown that the identified components
of YFD exert significant anticancer effects. Patients with BC who
received L-phenylalanine mustard demonstrated prolonged
disease-free survival and a significant survival benefit compared
with those who received placebo (51). Meng et al. reported that a
copolymer of L-phenylalanine and salicylic acid significantly
inhibited the lung metastasis of BC (52). Additionally, derivatives
of benzoic acid retard tumor growth and metastasis by inhibiting
the TNFo/NF-kB and iNOS/NO pathways (53). A recent study
revealed that palmitic acid-modified human serum albumin
paclitaxel nanoparticles significantly polarized macrophages to the
M1 type, thus reshaping the TME and inhibiting BC metastasis
(54). Quercetin and astragalin are known to exert strong anticancer
effects (55, 56). Nicotinic acid (57), linoleic acid (58), caffeic acid
(59), oleanolic acid (60), chlorogenic acid (61), rutin (62), apigenin
(63), asiatic acid (64), catechin (65), eicosapentaenoic acid (66),
vanillin (67), and formononetin (68) are also considered promising
anticancer agents.
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There is significant evidence that TAMs and MDSCs are
primarily responsible for immune suppression and evasion in
cancer (69-72) and that they play a vital role in tumor growth
and metastasis (73, 74). MDSCs can increase the expression of the
immune checkpoint molecule PD-L1, which suppresses the T-cell
response by interacting with PD-1 on T cells (75, 76). Furthermore,
the production of ARGl by MDSCs can lead to increased
consumption of extracellular l-arginine, which is essential for T-
cell metabolism and function, ultimately resulting in T-cell
inhibition (77). Additionally, the increased secretion of nitric
oxide, oxygen radicals, and reactive nitrogen species from MDSCs
can impair T-cell function (77-79). Therefore, targeting
immunosuppressive cells is a potential therapeutic approach for
cancer treatment (11). Mounting evidence suggests that TCM may
effectively inhibit tumor growth by suppressing MDSCs. One major
biocomponent of TCM, icariin, reduces MDSCs and restores IFN-y
production in CD8" T cells, ultimately leading to tumor growth
(80). In addition, Gansui-Banxia decoction, a TCM formula, has
notable antitumor effects by reducing the accumulation of MDSCs,
which in turn inhibits the AKT/STAT3/ERK pathway (81).
Consistently, in this study, a reduced accumulation of MDSCs in
tumors was observed.

Similarly, we found that YFD reduced the proportion of TAMs
in tumors. In addition, the inhibition of M2 polarization and
promotion of M1 polarization of TAMs by YFD were observed.
TAMs are closely associated with a poor prognosis in multiple
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cancers (82-84). M1-like macrophages generally have high levels of
CD80, CD86, TNF-a, IL-6, and iNOS, which exert antitumorigenic
effects. In contrast, M2-like macrophages usually express CD163,
CD206, IL-10, and arginase 1, which are considered protumorigenic
(85). Mounting evidence suggests that an increase in M2-like TAMs
creates a microenvironment that promotes tumor progression
within the TME. This increase in the number of M2-like TAMs is
correlated with tumor growth and metastasis. Conversely, an
increase in M1-like TAMs is closely associated with less
aggressive tumors (86, 87). Switching from the M2-like phenotype
to the Ml-like phenotype has been shown to inhibit tumor
angiogenesis and metastasis in BC (88). Transcriptomic analysis
was conducted to investigate the mechanisms underlying the YFD-
mediated reduction in TAMs and MDSCs in breast tumors. The
RNA-seq data revealed that the GO terms related to the regulation
of immune processes were enriched in the low- and high-dose YFD
treatment groups compared with the control group. Additionally,
several signaling pathways, including protein kinase B signaling, the
ERK1/2 cascade, and the MAPK pathway, are involved in the
immune-regulating properties of YFD (89, 90). The YFD
treatment group presented decreased expression of LADI. LADI
is an anchoring filament protein in mammalian epidermal cells (91,
92) and has been implicated in the metastatic potential of breast
(38), prostate (93), and colorectal cancers (37). A recent study
explored genomic profiles and identified LAD1 as a potential target
for TNBC therapy (94). Additionally, high levels of LADI
transcripts have been linked to a poor prognosis in patients with
BC (38). LAD1 is a downstream target of the EGFR/MEK/ERK1/2
signaling pathway, which affects actin polymerization and cross-
linking, ultimately controlling BC cell migration and proliferation.
LADI1 depletion reduces the invasion and migration of BC cells, and
similar results have been reported in colorectal cancer cells (37). We
also found that LADI transcription and expression were increased
in TNBC mice but were restored by YFD administration, possibly
through inhibition of the MEK/ERK1/2 signaling pathway.

The MEK/ERK/1/2 signaling pathway is a widely known MAPK
pathway that plays crucial roles in apoptosis, cell proliferation, and the
immune response (95). Studies have shown that this pathway is also
involved in tumor invasion and metastasis (96, 97). Preclinical studies
have revealed that the MEK/ERK pathway is hyperactivated in TNBC,
suggesting that targeting this pathway may be an effective treatment
strategy for TNBC (98, 99). Zhang et al. reported that the activation of
EGFR/MEK/ERK signaling contributes to BC progression (100).
Conversely, inhibition of the RAS/RAF/MEK/ERK and PI3K/AKT/
mTOR signaling pathways suppressed the growth of BC cells (101). The
activation of MEK/ERK1/2 signaling can reverse TAM polarization
from the tumor-inhibiting M1-like phenotype to the tumor-promoting
M2-like phenotype, leading to increased metastatic potential. However,
Kang et al. demonstrated that puerarin, a major bioactive component of
the TCM herb Ge-gen (Radix Puerariae), not only inhibits M2-like
macrophage polarization but also suppresses tumor growth and
metastasis. This was achieved through the partial inactivation of
MEK/ERK1/2 signaling in a non-small cell lung carcinoma xenograft
model (102, 103). ERK signaling cascades are involved in regulating
MDSCs in cancer cells. Liu et al. reported that activation of the MEK/
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ERK1/2 pathway could increase MDSC recruitment to the spleen and
tumor tissues of tumor-bearing mice. This ultimately promotes tumor
growth and metastasis (104). A recent study revealed that the inhibitor
SCH?772984 induced apoptosis in MDSCs and increased the ratio of
M1l-like phenotype TAMs (105). Ras/MEK-dependent CXCL1/2
expression mediates the recruitment of immunosuppressive MDSCs
to TNBC (106). A reduction in MDSC infiltration was partially achieved
through the suppression of IL-6 via the inhibition of MEK (107). Our
observations indicated that activation of the MEK/ERK1/2 signaling
pathway led to increased accumulation of MDSCs and M2-like TAMs
in TNBC mice, which was effectively reversed by YFD treatment.
Therefore, we speculated that inactivation of MEK/ERK1/2 could play
a role in the remodeling of the immune landscape by YFD.

We also investigated the metabolomic pathways affected by
YFD administration in TNBC mice. Our findings revealed
significant changes in various metabolic pathways, including the
urea cycle, arginine and proline metabolism, D-arginine and D-
ornithine metabolism, glutamate metabolism, the glucose-alanine
cycle, alanine metabolism, the transfer of acetyl groups into the
mitochondria, pyruvate metabolism, the Warburg effect, glycine
and serine metabolism, and tryptophan metabolism. These changes
may be responsible for the antitumor effects observed in YFD-
treated mice.

Aberrant metabolism is correlated with the immune response in
various cancers, including breast (108), lung (109), gastric, and
colorectal cancers (110). The urea cycle (UC) in the liver converts
excess nitrogen waste into disposable urea. Enzymes involved in
UG, such as ornithine transcarbamylase (OTC), argininosuccinate
synthase, argininosuccinate lyase, and arginase (ARG), are the
primary sources of endogenous arginine, ornithine, and citrulline
in the liver. These enzymes meet cellular needs (111). Changes in
UC gene expression may contribute to cancer development and
progression by affecting the expression of UC-related metabolites.
Research has demonstrated that the overexpression of ARG1 and
OTC leads to the accumulation of ammonia, which is often
observed in cancer cells (112). This excess ammonia can be
utilized and recycled by cancer cells through glutamate
dehydrogenase to synthesize amino acids and nucleic acids, which
fuel tumor growth (112). Moreover, modifications of UC enzymes
within cancer cells can alter the TME, ultimately affecting the
immune response and the initiation of metastasis.

Ovarian cancer cells reportedly secrete extracellular vesicles
containing ARGI1, thus suppressing antigen-specific T-cell
proliferation. This leads to immune suppression and enhanced tumor
growth (113). Cytoplasmic ornithine, an intermediate product of UC, is
a substrate for ornithine decarboxylase (ODC) and plays a significant
role in putrescine synthesis (114). Dysregulated ornithine metabolism
and subsequently elevated polyamine biosynthesis have been linked to
tumor growth (115). The inhibition of polyamine metabolism can result
in decreased tumor growth by increasing T-cell infiltration and the
accumulation of antitumorigenic M1-like TAMs (116, 117).
Dysregulated biosynthesis of glycine, serine, and tryptophan, which
are essential for the synthesis of proteins, nucleic acids, and lipids, has
been implicated in immune function and cancer progression (118-120).
A recent study reported that itaconate production by MDSCs inhibits
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the proliferation and function of CD8" T cells by suppressing serine and
glycine biosynthesis. This ultimately leads to increased tumor growth
(121). Additionally, a study revealed that microbial indole production
via tryptophan metabolism can activate aryl hydrocarbon receptors in
TAMs. This leads to tumor-promoting polarization of TAMs and
suppresses inflammatory CD8" T-cell infiltration in the TME,
ultimately promoting pancreatic ductal adenocarcinoma growth (122).
Reprogramming the urea cycle; arginine, ornithine, and glutamate
metabolism; and glycine, serine, and tryptophan metabolism could
offer new perspectives for the development of anticancer therapies.
Our study also revealed that YFD administration induced changes in
metabolic profiles, which could explain the antitumor effects of YFD.

Several studies have demonstrated that abnormal glucose, amino
acid, glutamine, and lipid metabolism are typical hallmarks of cancer
(123) and can be used to predict the prognosis of patients with cancer
(124-127). Tumor-derived exosomes can induce macrophages in a
premetastatic environment to adopt an M2-like phenotype. This is
achieved through the activation of NF-kB, which increases glycolysis
and lactate production. These changes ultimately facilitate tumor
metastasis (128). Aerobic glycolysis (the Warburg effect) has been
shown to facilitate tumor invasion and metastasis by producing
lactate, which plays a vital role as a proinflammatory and
immunosuppressive mediator (129). Chen et al. reported that an
acidic microenvironment caused by the Warburg effect can have a
significant effect on the macrophage-mediated immunosurveillance of
cancer cells. This was due to a shift from an M1-like phenotype to an
M2-like phenotype (130). A recent study revealed that M2-like TAMs
exhibit increased glucose uptake, leading to O-GlcNAcylation and the
promotion of cancer metastasis and chemoresistance (73). Our study
revealed that YFD administration could recondition aerobic glycolysis;
however, further investigation is needed to understand the underlying
mechanisms involved. Single-cell RNA transcriptomic and
bioinformatics analyses can be used to screen for potential changes
in the genes and pathways associated with TAMs and MDSCs induced
by YFD.

We utilized a gene-metabolite expression interaction network
to illustrate the relationships between the identified genes and
metabolites. Correlation analysis revealed that the target gene
LADI may affect methylcysteine, mannose, ribitol, melamine,
alanine, aminoadipic acid, and prostaglandin E2 levels. Among
these metabolites, mannose, ribitol, alanine, and prostaglandin E2
are associated with immune regulation and tumor growth (131-
134). However, the direct and indirect effects of LADI on these
metabolites remain to be elucidated.

This study has several limitations. First, although the bioactive
components with anticancer properties of YFD were identified, the
main ingredients that can reshape the TME and their targets or
signaling pathways could not be validated. In the future, an
approach combining integrated network pharmacology, molecular
docking, and proteomics should be used to reveal the relationships
underlying the component-target-action network. Second, the
effects of YFD on TAMs and MDSCs should be tested in other
breast cancer cell lines. This study primarily utilized the 4T1
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syngeneic mouse model, which limits generalizability to other
TNBC subtypes. Future work will validate YFD efficacy in
additional models (e.g., MDA-MB-231 xenografts). Third,
although YFD can recondition a wide range of metabolic
pathways involved in cancer progression, the primary metabolic
pathways involved in the anticancer effects of YFD on the TME
have not been investigated. Finally, the limited efficacy observed at
the low YFD dose (e.g., absence of a PET-CT metabolic response)
suggests potential bioavailability thresholds (e.g., intestinal
absorption barriers) and pharmacodynamic thresholds (e.g.,
insufficient target engagement). As this study prioritized
validation of the formula’s holistic efficacy, systematic
pharmacokinetic investigations (e.g., plasma exposure-AUC
quantification) and dose-escalation experiments were not
conducted, precluding a precise definition of the minimal effective
dose and maximum tolerated dose. Future studies should quantify
tumor drug concentrations via patient-derived xenograft (PDX)
models coupled with LC-MS/MS and predict human dose-
exposure relationships via physiologically based pharmacokinetic
modeling. In addition, biomarker-guided dose exploration should
be implemented to optimize the clinical therapeutic window
of YFD.

Conclusion

In the present study, we used UHPLC-Q/Orbitrap MS and
metabolomic and transcriptomic approaches to investigate the
components and potential mechanisms of YFD in YFD treatment.
These results suggest that YFD may target various immune regulatory
pathways, leading to reshaping of the TME. This effect may be
achieved by inactivating the MEK/ERK1/2 and LADI genes.
Additionally, YFD may reprogram a wide range of altered metabolic
pathways involved in cancer progression, such as the urea cycle and
the metabolism of arginine, proline, D-arginine, D-ornithine,
glutamate, pyruvate, the Warburg effect, glycine, serine, and
tryptophan. Although YFD has been found to induce TME
remodeling in BC, the underlying mechanisms require further
investigation and validation. Specifically, the regulation of the urea
cycle; aerobic glycolysis; and glycine, serine, tryptophan, and ornithine
metabolism should be studied in more detail.
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