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Background: Vaccinia-related kinase (VRK) family genes play a multifunctional

role in tumor development. However, the role of VRK family genes in

hepatocellular carcinoma (HCC) requires further research. Moreover, the

clinical potential of the VRK-related model remains unclear. The aim of this

study is to construct a VRK-related model to predict HCC prognosis and

therapeutic efficacy.

Methods: The data of HCC patients were extracted from The Cancer Genome

Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene

Expression Omnibus (GEO) databases. The single-sample gene set enrichment

analysis (ssGSEA) algorithm was used to calculate the VRK score of each sample.

Tumor IMmune Estimation Resource 2.0 (TIMER 2.0) and Tumor Immune

Dysfunction and Exclusion (TIDE) were used to evaluate immune cell

infiltration and the immune checkpoint response. pRRophetic was used for

predicting drug sensitivity. CCK-8, colony formation, wound healing, transwell

and xenograft assays were used to experimentally validate the biofunction of

VRK2 in HCC.

Results: We found that all VRK family genes were highly expressed in HCC.

Compared with patients with low VRK scores, patients with high VRK1 or VRK2

expression in the TCGA, ICGC, and GSE14520 cohorts had poorer outcomes.

Moreover, patients with a high VRK score in the TCGA, ICGC, and GSE14520

cohorts also had poorer outcomes. Importantly, Cox analysis revealed that the

VRK score was a potential independent risk factor for HCC. Notably, TIMER2.0

and TIDE suggested that patients with high VRK scores had higher immune

checkpoint response rates. Similarly, drug sensitivity analyses suggested that

patients with high VRK scores were more resistant to sorafenib, paclitaxel,

cisplatin, and gemcitabine. Finally, experimental validation revealed that VRK2

knockdown inhibited HCC development in vitro and in vivo.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614702/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614702/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614702/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614702/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614702/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614702/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1614702&domain=pdf&date_stamp=2025-09-17
mailto:cd_hospital@126.com
mailto:gongjianping@hospital.cqmu.edu.cn
https://doi.org/10.3389/fimmu.2025.1614702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1614702
https://www.frontiersin.org/journals/immunology


Fu et al. 10.3389/fimmu.2025.1614702

Frontiers in Immunology
Conclusion: The VRK score was found to be a reliable indicator for predicting

HCC prognosis and therapeutic efficacy. VRK2 is a potential therapeutic target

for HCC.
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VRK, immune, therapy, bioinformatics, HCC
1 Introduction

Primary liver cancer is a malignant disease with the sixth

highest incidence and the third highest mortality worldwide (1).

Hepatocellular carcinoma (HCC) accounts for approximately 80%

of primary liver cancer cases (2). Although HCC treatment methods

have significantly advanced, the 5-year survival rate remains

unsatisfactory (3–5), partly due to the lack of effective prognostic

and therapeutic biomarkers. Recently, increasing evidence has

shown that the construction of prognostic signatures and

screening of biomarkers on the basis of bioinformatics can

effectively predict the outcomes of HCC patients and the efficacy

of drug therapy (6–8). The signatures of the disulfidptosis-related

lncRNAs were successfully used to assess the immune status and

chemotherapy drug sensitivity of HCC patients, which provided

novel insights into precision therapy (9). These studies provide a

theoretical basis for further exploration of HCC data and screening

of reliable biomarkers through bioinformatics methods. Larger

sample sizes and lower costs are advantages to using this

methodology. However, current prognostic models and

biomarkers have limitations. The most important limitation is

that these models are constructed by algorithms that produce a

specific risk coefficient value and divide HCC patients into high-

and low-risk groups to evaluate the outcomes of HCC patients and

effects of treatment strategies. Ignoring the different cohorts

produces different coefficient values due to the heterogeneity of

the samples. Therefore, there is a subjective tendency to choose a

coefficient value from the training set as the unified standard.

Therefore, further development of novel models and biomarkers

for evaluating the outcomes of HCC patients and therapeutic effects

of treatment strategies is essential.

Vaccinia-related kinase (VRK) family genes include VRK1,

VRK2, and VRK3. This family of genes exhibits serine/threonine

protein kinase activity (10). The crucial roles and functions of

serine/threonine protein kinases, including MAPK, AKT, and

mTORC, in solid tumors have been widely investigated and

reported (11, 12). In clinical samples of HCC, phosphorylation of

mTORC and AKT has been observed to be associated with poor

prognosis (13, 14). Functionally, phosphorylation of mTORC and

AKT promotes proliferation and cell cycle regulation in HCC cells

(15, 16). Given the established importance of serine/threonine

protein kinases, VRK family genes with serine/threonine protein

kinase activity likely contribute significantly to the development of
02
HCC. Previous studies have shown that VRK family genes play

important roles in HCC progression. In vitro VRK1 knockdown

suspended the cell cycle and inhibited proliferation in the setting of

HCC (17). Similarly, VRK2 is enriched in sorafenib-resistant HCC

cells, and VRK2 knockdown overcomes sorafenib resistance in

HCC (18). This evidence supports the importance of VRK family

genes in HCC. Unfortunately, studies focusing on the role of VRK

family genes in the outcomes of HCC patients and efficacy of

treatment methods are limited. Therefore, systematic exploration of

novel prognostic signatures based on VRK family genes is urgently

needed to evaluate HCC prognosis and treatment efficacy.

In this study, we systematic investigated the expression and

prognosis of VRK family genes in HCC and different subgroups.

Next, we established a novel prognostic signature (the VRK score)

independent of subjective selection bias using the single-sample

Gene Set Enrichment Analysis (ssGSEA) algorithm. Importantly,

we verified the robustness of our prognostic signature in three

independent HCC cohorts. Furthermore, our prognostic signature

successfully predicted the efficacy of drug treatment in HCC

patients. Moreover, we experimentally verified that VRK2

knockdown inhibited HCC proliferation in vitro and in vivo.

Overall, our study highlights the importance of VRK family genes

and identifies a novel signature and biomarkers for assessing HCC

prognosis and drug efficacy.
2 Materials and methods

2.1 Data collection and processing

For the Cancer Genome Atlas (TCGA) data (TCGA-LIHC),

mRNA expression transcriptome profiles (transcripts per kilobase

of exon model per million mapped reads format, TPM) and

corresponding clinical information were obtained using the

‘TCGAbiolinks’ package (version 2.28.4) (19). For International

Cancer Genome Consortium (ICGC) data (ICGC-LIRI-JP), mRNA

expression transcriptome profiles and corresponding clinical

information were acquired from the ICGC database (https://

dcc.icgc.org/). For Gene Expression Omnibus (GEO) data

(GSE14520), mRNA expression transcriptome profiles and

corresponding clinical information were acquired from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/). All HCC samples

without complete clinical information (such as TNM stage, sex,
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age, survival status, and time) were removed. Finally, the TCGA

cohort (T = 365, N = 50), ICGC cohort (T = 203, N = 177) and GEO

cohort (T = 239, N = 239) were created.
2.2 VRK score construction and
independent prognostic analysis

The single-sample Gene Set Enrichment Analysis (ssGSEA)

algorithm was used with the ‘GSVA’ package (version 2.0.6) to

calculate the VRK score of each HCC sample. The optimum cutoff

values were selected with the ‘survival’ package (version 3.8.3).

Univariate and multivariate Cox analyses were performed with

SPSS software (version 27). Nomograms and calibration curves

were produced with the ‘rms’ package (version 7.0).
2.3 Immune and tumor microenvironment
analysis

Immune cell infiltration analysis based on the 6 algorithms

(XCELL, TIMER, MCPCOUNTER, QUANTISEQ, EPIC, and

CIBERSORT) was performed using the TIMER2.0 database (http://

timer.comp-genomics.org/) (20). The ssGSEA algorithm was used

with the ‘GSVA’ package (version 2.0.6) to calculate the scores of

immune cells and the function of each HCC sample. Next, immune

checkpoint blockade response prediction and corresponding

Tumor Immune Dysfunction and Exclusion (TIDE) analyses were

performed using the TIDE database (http://tide.dfci.harvard.edu/).
2.4 Gene mutation analysis and drug
sensitivity prediction

Gene mutation analysis and tumor mutation burden (TMB)

analysis of the TCGA cohort were performed with the ‘maftools’

package (version 2.22.0). Drug sensitivity prediction was

subsequently performed with the ‘pRRophetic’ package (version 0.5).
2.5 Cell culture and transfection

MHCC97H cells were obtained from the National Collection of

Authenticated Cell Cultures. The cells were cultured in DEME

(HyClone, China) containing 10% fetal bovine serum (Gibco, USA)

and 1% penicillin–streptomycin solution (Solarbio, China) at 37°C

with 5% CO2. Small interfering RNAs (siRNAs) were designed and

constructed by GenePharma, and short hairpin RNA (shRNA)

lentivirus was constructed from siRNA#1 by ViGene Biosciences.

For siRNA transfection, cells (2x105/well) were seeded into a 6-well

plate and transfected with Lipofectamine™ 3000 (L3000015,

Thermo Fisher Scientific, USA) according to the manufacturer’s

instructions. For shRNA transfection, cells (1x105/well) were seeded

into a 6-well plate and transfected according to the manufacturer’s

instructions. After 48 hours, the efficacy of VRK2 knockdown was
Frontiers in Immunology 03
verified by the quantitative real-time reverse transcription PCR

(qRT–PCR). The sequences of the siRNAs can be found in

Supplementary Table S1.
2.6 Cell proliferation and half-maximal
inhibitory concentration assays

For the CCK-8 assays, cells (2000/well) were seeded into a 96-

well plate. Next, a CCK-8 kit (ZP328-1, Beijing Zoman

Biotechnology, China) was used to detect the absorbance of the

samples at 0, 24, 48, 72, and 96 hours. Briefly, 10 ml of CCK-8
solution was added to each well, followed by incubation at 37°C for

2 hours. Then, the absorbance values were detected at 450 nm. For

the half-maximal inhibitory concentration assays, cells (5000/well)

were seeded into a 96-well plate and treated with indicated

concentrations of cisplatin for 24 hours. Then, 100 ml fresh

complete medium containing 10 ml CCK-8 solution was added to

each well, followed by incubation at 37°C for 2 hours. Subsequently,

the absorbance values were detected at 450 nm. For the colony

formation assays, the cells (500/well) were seeded into a 6-well plate

and cultured for 14 days. Next, 4% paraformaldehyde solution was

used to fix the cells for 20 minutes at room temperature, followed by

staining for 20 minutes at room temperature with 0.1% crystal violet

solution. The number of cells was determined with ImageJ software

(version 1.53). Cisplatin (M2223) was purchased from AbMole.
2.7 Cell metastasis assays

For the wound healing assays, the cells were seeded into a 6-well

plate. When cell fusion reached 95%, a wound was generated by

scraping the middle of the plate with a 200 ml sterile pipette tip, after
which the medium was replaced with serum-free medium. After 48

and 72 hours, the migration distance was measured with ImageJ

software (version 1.53). For transwell assays, 24-well transwell

chambers with 8 mm pores and Matrigel (354480, Corning, USA)

were used. Briefly, cells (1x104/well) were seeded into the top

compartment with 250 ml of serum-free medium, and 500 ml of
complete medium was added to the bottom compartment. After 30

hours, the cells that had passed through the filter were fixed with 4%

paraformaldehyde for 30 minutes at room temperature, followed by

staining for 20 minutes at room temperature with 0.1% crystal violet

solution. The number of cells was determined with ImageJ software

(version 1.53).
2.8 Gene set enrichment analysis

GSEA was performed by the GSEA soft (version 4.3.2). The

hallmark gene sets were obtained from the molecular signatures

database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).

The number of permutations is 500. The pathways with FDR

<0.25 and P <0.05 were considered to have differences between

high and low VRK2 groups.
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2.9 Animal model

Five-week-old male BALB/c nude mice were purchased from

GemPharmatech and housed in a specific pathogen-free environment

with a 12-h light/dark cycle and controlled temperature and humidity,

and food and water were provided ad libitum. MHCC97H cells (2x106/

mouse) were subcutaneously injected into the mice. The tumor volume

was measured every 5 days. The tumor volume formula was as follows:

volume = 0.5 × longest diameter × (shortest diameter)2. After 15 days,

the mice were euthanized, and the tumors were fixed with 4%

paraformaldehyde for 2 days, then embedded in paraffin. All

operations on laboratory animals were performed in accordance with

the NIH Guide for the Care and Use of Laboratory Animals and were

approved by the Animal Care and Use Committee of West China

Hospital, Sichuan University (20240815015).
2.10 Immunohistochemistry

Paraffin-embedded tumor tissue sections were deparaffinized,

repaired with 0.01 M citric acid buffer at 95°C for 20 minutes and

incubated overnight at 4°C with a Ki-67 antibody (1:10000, 27309-

1-AP, Proteintech, China). Then, the sections were incubated with

secondary antibody (PV-6000, ZSGB-BIO, China) for 1 hour at

room temperature after being washed with TBS three times. The

IHC results were quantified with ImageJ software (version 1.53).
2.11 Western blotting

Protein lysates were prepared by RIPA buffer (P0013B, Beyotime,

China) and run on sodium dodecyl sulfate-polyacrylamide gels for

electrophoresis (ZD304A-2, Zoman, China). Separated proteins were

then transferred to the polyvinylidene fluoride (PVDF) membranes

(ISEQ00005, Millipore, USA). The membranes were blocked with 5%

skim milk and incubated with the primary antibody in the blocking

buffer (overnight at 4°C) followed by horseradish-peroxidase-

conjugated secondary antibodies (Proteintech) for 1 h at room

temperature. The blots were developed by performing the

enhanced chemiluminescence detection reagents on the membranes

and the signals were detected by the ECL blotting analysis system

(4AW011-100, 4abio, China). Beta-actin in Western blotting was

used as the endogenous loading control. Anti-VRK2 antibody

(1:1000; Proteintech; 12946-1-AP), anti-AKT1 antibody (1:1000;

HUABIO; ET1609-47), anti-pAKT1 antibody (1:1000; HUABIO;

ET1607-73), anti-RPS6 antibody (1:1000; Proteintech; 80208-1-RR),

anti-pRPS6 antibody (1:1000; Proteintech; 29223-1-AP), anti-beta-

actin antibody (1:1000; HUABIO; M1210-2), goat anti-rabbit IgG

(1:10000; ZSGB-BIO; ZB-2301) and goat anti-mouse IgG (1:10000;

ZSGB-BIO; ZB-2305)were used.
2.12 Statistical analysis

All data are presented as the means ± standard deviations (SDs).

The comparison of quantitative data between the two groups was
Frontiers in Immunology 04
performed using Student’s t test (normal distribution) or the

Mann–Whitney test (nonnormal distribution). The comparison of

quantitative data among three or more groups was performed using

one-way or two-way ANOVA with Bonferroni correction. Count

data were compared using the chi-square test. Correlation analysis

was performed using Spearman correlation analysis. The prognostic

analysis based on Kaplan–Meier survival curves was completed

using the log-rank test. All statistical analyses were completed with

R (version 4.4.2), SPSS (version 27), and GraphPad Prism (version

10.2.3) software. The ‘ggplot2’ package (version 3.5.1) and

GraphPad Prism (version 10.2.3) were used to create plots. P <

0.05 was considered statistically significant.

3 Results

3.1 Expression levels of VRK family genes

A comprehensive flow diagram is shown in Figure 1. To

comprehensively understand the expression distribution of VRK

family genes in cancer, we first used the TIMER2.0 database to

explore the expression of VRK family genes in 22 cancers. As

expected, the expression of VRK family genes was consistent across

cancers. In breast, bile duct, esophageal, lung, and colon cancers,

VRK family genes were highly expressed in tumors, whereas the

expression of VRK family genes was lower in kidney and thyroid

cancers (Supplementary Figure S1).

Next, we comprehensively explored the expression of VRK

family genes in HCC. All three independent HCC cohorts

(TCGA, ICGC, and GSE14520) exhibited high VRK gene family

expression (Figure 2A). The subgroup analysis further revealed that

only VRK2 expression was closely associated with TNM stage in the

three HCC cohorts, whereas VRK1 expression was associated with

TNM stage in the TCGA and ICGC cohorts and VRK3 expression

was associated with TNM stage in the ICGC and GSE14520 cohorts

(Figure 2B). Furthermore, we did not observe an obvious

association of VRK family genes with sex or age (Supplementary

Figures S2A, B). TP53 and CTNNB1 are commonly mutated genes

in HCC and are closely associated with HCC progression (21).

Therefore, we also compared the expression of VRK family genes

between the wild-type and mutated groups in HCC patients in the

TCGA cohort. Notably, the expression of VRK family genes was

greater in the mutated TP53 groups, whereas the expressions of

VRK2 and VRK3 were not significantly different between the

CTNNB1 wild-type and mutated groups (Figure 2C). Therefore,

the expression of VRK family genes appeared to be more closely

associated with TP53 than with CTNNB1. Furthermore, we

examined the protein expression of VRK family genes in HCC

using the HPA database. Consistently, the IHC results revealed that

the protein expression of VRK family genes was increased in tumor

tissues (Figure 2D). Additionally, we evaluated correlations between

VRK family genes using Spearman correlation analysis. In the three

HCC cohorts, VRK1 expression was significantly and positively

correlated with VRK2 expression, whereas VRK3 expression was

not obviously correlated with VRK1 or VRK2 expression

(Figure 3E). Further, we also analyzed the correlations between
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VRK family genes and immune cell infiltration in tumor

microenvironment (TME) using Spearman correlation analysis

(Supplementary Figures S2C–E). Overall, VRK family genes were

highly expressed in most cancers, and the expression of VRK family

genes in HCC was closely associated with TNM stage and

TP53 mutation.
3.2 Establishment and independent
prognostic analysis of the VRK score

Considering the high expression of VKR family genes in HCC,

we next explored the effect of VRK family genes on the outcomes of

HCC patients. First, we used the ‘survival’ package to automatically

obtain the optimal cutoff values for VRK1, VRK2, and VRK3. Next,

HCC patients were divided into high- and low-expression groups

based on the cutoff values of the three genes. HCC patients with

high VRK1 or VRK2 expression had poorer overall survival than

patients with low VRK1 or VRK2 expression in all three

independent HCC cohorts (Figures 3A, B). Interestingly, patients

with high VRK3 expression had better overall survival than patients

with low VRK3 expression in the ICGC and GSE1520 cohorts,
Frontiers in Immunology 05
a l though the resu l t s in the TCGA cohort were the

opposite (Figure 3C).

Therefore, we aimed to construct a novel prognostic signature

to evaluate HCC prognosis based on the VRK family gene

expressions. Given the inconsistent prognostic results of VRK3

expression in the three cohorts, we used VRK1 and VRK2 for

construction of the signature. With the ssGSEA algorithm, we

calculated the VRK score of each HCC patient in the three

cohorts and divided the patients into high- or low-VRK score

groups using the ‘survival’ package. As expected, patients with

high VRK scores had poorer overall survival than patients with

low VRK scores did in all cohorts (Figure 3D). Furthermore,

univariate and multivariate Cox analyses suggested that the VRK

score was not inferior to the TNM stage as an independent

prognostic risk factor for HCC in the TCGA cohort (Figure 3E).

Moreover, we constructed a nomogram to assess HCC prognosis

visually based on the VRK score (Figure 3F). To further verify the

robustness of the VRK score, we also examined whether the VRK

score was not inferior to the TNM stage as an independent

prognostic risk factor for HCC in the other two cohorts. As

expected, we found that the VRK score remained an independent

prognostic risk factor in the ICGC and GSE14520 cohorts.
FIGURE 1

Flowchart of this study.
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Additionally, we plotted nomograms of the two cohorts to assess

HCC prognosis based on the VRK score (Supplementary Figures

S3A–D). Moreover, calibration curves were used to evaluate the

accuracy of the nomograms (Supplementary Figure S3E). Overall,

these results support the potential of the VRK score as an

independent prognostic risk factor in HCC patients.
Frontiers in Immunology 06
3.3 TME and immune checkpoint blockade
response analysis of the VRK score

Increasing evidence has shown that immune activity in the

tumor microenvironment (TME) strongly affects HCC prognosis

and treatment (22, 23). Therefore, we explored immune cell
FIGURE 2

Differential mRNA and protein expression of VRK family genes. (A) mRNA expression heatmap of VRK family genes between tumor and nontumor tissues
in the TCGA, ICGC, and GSE14520 cohorts. (B) mRNA expression of VRK family genes between the TNM stages I-II and III-IV groups in the TCGA, ICGC,
and GSE14520 cohorts. (C) mRNA expression of VRK family genes in the wild-type and mutated groups in the TCGA, ICGC, and GSE14520 cohorts. (D)
Representative IHC images of VRK family genes in tumor and nontumor tissues from the HPA database. (E) Correlation analysis of VRK family genes in
the TCGA, ICGC, and GSE14520 cohorts. T, tumor; NT, nontumor; WT, wild type. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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FIGURE 3

Prognostic analysis of VRK family genes and VRK scores. (A) The overall survival of HCC patients with high and low VRK1 expression in the TCGA,
ICGC, and GSE14520 cohorts. (B) The overall survival of HCC patients with high and low VRK2 expression in the TCGA, ICGC, and GSE14520
cohorts. (C) The overall survival of HCC patients with high and low VRK3 expression in the TCGA, ICGC, and GSE14520 cohorts. (D) The overall
survival of HCC patients with high and low VRK scores in the TCGA, ICGC, and GSE14520 cohorts. (E) Univariate and multivariate Cox analysis of the
VRK score and other clinical features in the TCGA cohort. (F) The nomogram of the VRK score and other clinical features in the TCGA cohort.
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infiltration in the TME in the high- and low-VRK score groups. The

heatmap depicting immune infiltration revealed substantial

correlations between the VRK score and various immune cells,

including B cells, T cells, macrophages, and NK cells (Figure 4A).

Furthermore, we explored the differences in immune infiltration

and function between the high- and low-VRK score groups using

the ssGSEA algorithm. The results revealed that the high-VRK-

score group was characterized by elevated levels of macrophages,

follicular helper T cells (Tfh), and regulatory T cells (Treg), which

were juxtaposed with decreased levels of mast cells and a decreased

interferon (IFN) response (Figure 4B). In addition, a heatmap

depicting immune infiltration in the ICGC and GSE14520 cohorts

was used to verify the correlations between the VRK score and

immune cells. Decreased levels of the IFN response were also

observed in the ICGC and GSE14520 cohorts (Supplementary

Figures S4A–D).

Considering the disparities in immune infiltration and function

associated with high and low VRK scores, we then used TIDE

analysis to predict the response to immune checkpoint blockade

(such as anti-PD-1 therapy) in the VRK score subgroups. The ratios

of response in the low-VRK-score group were greater than the

ratios of response in the high-VRK-score group in the three HCC

cohorts (Figure 4C). Patients with high VRK scores had higher

TIDE and exclusion of T cell scores and lower T cell dysfunction

scores than patients with low VRK scores (Figures 4D–F),

suggesting that patients in the low-VRK-score group may be

more likely to benefit from immune checkpoint blockade.

Moreover, GSEA analysis revealed that the high-VRK-score

groups were characterized by upregulation of E2F targets, G2M

checkpoint, DNA repair, mitotic spindle, mTORC1 signaling, and

MYC targets in three HCC cohorts (Supplementary Figures S5A–

C). In conclusion, these results revealed that the VRK score may be

a potential predictor of the response to immune checkpoint

blockade in HCC patients.
3.4 Mutation, TMB, and drug susceptibility
analysis of VRK scores

In addition to the tumor immune microenvironment, genetic

mutations in tumors also affect HCC prognosis and treatment (24).

Waterfall diagrams depicting gene mutation frequency revealed that

TP53 and CTNNB1 are frequently mutated in both the high- and

low-VRK score groups (Figure 5A). Increasing evidence has shown

that the tumor mutational burden (TMB) reflects the gene mutation

levels and prognosis of tumors (25). Accordingly, we calculated the

TMB of each HCC patient in the TCGA cohort and found that

patients with high TMB had poorer overall survival (Figure 5B).

Furthermore, a high TMB combined with a high VRK score was

associated with the poorest outcomes in HCC patients (Figure 5C).

Next, we assessed the sensitivity of other systemic therapy drugs

beyond immune checkpoint inhibitors among the VRK score

subgroups. Interestingly, patients with a low VRK score were

more likely to be sensitive to sorafenib, gemcitabine, paclitaxel,

and cisplatin (Figures 5D, E). These results were verified in the
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ICGC and GSE14520 cohorts (Supplementary Figures S6A–C). In

summary, these findings demonstrated that the VRK score serves as

a robust predictive biomarker for systemic therapy response in

HCC patients.
3.5 VRK2 knockdown inhibited cell
proliferation and metastasis in HCC

As VRK2 was highly expressed in tumor tissues in all three

HCC cohorts in this study, we further investigated the functional

role of VRK2 in HCC. The western blot results revealed that the

siRNA successfully knocked down VRK2 protein expression

(Supplementary Figure S7A). The results of the CCK-8 and

colony formation assays suggested that VRK2 knockdown

inhibited the proliferation ability of MHCC97H and HCCLM3

cells (Figures 6A–C). Similarly, the results of the wound healing

and transwell assays also indicated that VRK2 knockdown

suppressed the migration and invasion ability of MHCC97H and

HCCLM3 cells (Figures 6D, E). Then, we validated that VRK2

knockdown increased the sensitivity of HCC cells to cisplatin

(CDDP) (Supplementary Figure S7B). Further, we performed the

GSEA analysis and found that the PI3K/AKT/mTOR pathway was

enriched in high VRK2 expression groups in three HCC cohorts

(Supplementary Figures S7C, D). Importantly, western blot results

verified that VRK2 knockdown decreased the phosphorylation

levels of AKT1 and RPS6 (Supplementary Figure S7E).

Additionally, we also found that patients with TNM staging III-

IV had the poorer prognosis (Supplementary Figures S7F, G).

Therefore, these results showed that VRK2 knockdown

suppressed HCC proliferation and metastasis in vitro, as well as

decreasing in phosphorylation levels of AKT1 and RPS6.

Next, we examined the effect of VRK2 knockdown on HCC in

vivo (Supplementary Figure S7H). The xenograft tumor model

verified that VRK2 knockdown inhibited tumor growth in vivo,

accompanied by reductions in both tumor weight and volume

(Figures 7A–C). H&E staining verified that the xenografts were

tumors (Figure 7D). Additionally, Ki-67 staining revealed that

VRK2 knockdown decreased tumor proliferation (Figure 7E).

Taken together, these findings indicated that VRK2 knockdown

inhibited HCC progression in vitro and in vivo.
4 Conclusion

Hepatocellular carcinoma (HCC), the predominant type of

primary liver cancer, is a serious threat to an individual’s health

and life due to its increasing morbidity and mortality (26). Recently,

several models and signatures have been constructed for the

prediction of the efficacy of treatment strategies and outcomes of

HCC patients. Nevertheless, due to methodological limitations in

modeling and tumor heterogeneity, the translational application of

these models in clinical practice remains a significant challenge (7,

27, 28). Therefore, the identification of innovative biomarkers and

signatures for predicting prognosis and therapeutic response holds
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FIGURE 4

Immune microenvironment and immune checkpoint response analysis of the VRK score. (A) Heatmap of immune cell infiltration and correlation with
the VRK score in the TCGA cohort based on 6 algorithms. (B) The score based on single-sample Gene Set Enrichment Analysis (ssGSEA) of immune
cell infiltration and function between the high- and low-VRK score groups in the TCGA cohort. (C) Immune checkpoint response rates of the high-
and low-VRK score groups in the TCGA, ICGC, and GSE14520 cohorts. (D) TIDE scores of the high- and low-VRK score groups in the TCGA, ICGC,
and GSE14520 cohorts. (E) Dysfunction scores of the high- and low-VRK score groups in the TCGA, ICGC, and GSE14520 cohorts. (F) Exclusion
scores of the high- and low-VRK score groups in the TCGA, ICGC, and GSE14520 cohorts. NK, natural killer; DC, dendritic cell; CCR, chemokine
receptor; HLA, human leukocyte antigen; MHC, major histocompatibility complex; Tfh, follicular helper T cell; Th, helper T cell; Treg, regulatory T
cell; TIDE, tumor immune dysfunction and exclusion. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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paramount clinical significance for precision therapy in HCC.

There are three key points to highlight in our study. First, we

established a novel model independent of specific coefficient values

from training sets using the single-sample Gene Set Enrichment

Analysis (ssGSEA) algorithm. Second, the VRK score precisely

predicts the outcomes and therapeutic responses of HCC patients.

Finally, we experimentally confirmed that VRK2 knockdown

inhibited HCC growth in vitro and in vivo.

Several prognostic models and molecular subtypes have been

developed to predict the prognosis and treatment efficacy of solid

tumors. For example, in breast cancer, stemness-related lncRNA

signatures and disulfidptosis-related risk scores based on the least

absolute shrinkage and selection operator (LASSO) algorithm are

used to predict patient outcomes, stemness, and immunotherapy
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response (29, 30). Similarly, in lung cancer, radioresistance-related

signatures also predict patient outcomes and immune status (31),

identifying TOP2A, CDH3, ASPM, CENPF, SLC2A1, and PRC1 as

potential detection biomarkers for early lung cancer (32).

Additionally, in hepatocellular carcinoma (HCC), a three-gene

prognostic model based on micro vessel invasion-related genes

has been used to assess overall survival and recurrence-free

survival (7). Although these prognostic models are established

based on various proteins or noncoding RNAs, their modeling

methods all rely on specific coefficient values generated by

regression analysis of training sets. Due to the high heterogeneity

of tumors, the clinical application of such methodological models

may face challenges. Recently, modeling methods based on the

ssGSEA algorithm for predicting patient outcomes and treatment
FIGURE 5

Mutation and drug sensitivity of the VRK score. (A) Waterfall plots showing the mutation frequency of common protumoral genes in HCC in the
high- and low-VRK score groups in the TCGA cohort. (B) The overall survival of HCC patients with high and low TMB scores in the TCGA cohort.
(C) The overall survival of HCC patients with VRK score combined with TMB score in the TCGA cohort. (D) The correlation analysis of the VRK score
and sorafenib sensitivity in the TCGA cohort. (E) The correlation analysis of the VRK score and sensitivity to gemcitabine, paclitaxel, and cisplatin in
the TCGA cohort. TMB, tumor mutation burden.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1614702
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2025.1614702
efficacy have attracted widespread attention (33). This approach is

independent of specific coefficient values and involves calculating

the risk score based on the total RNA level of each sample. In fact,

models based on the ssGSEA algorithm for evaluating tumor

prognosis and treatment efficacy have been validated across
Frontiers in Immunology 11
cancers. For example, a high FOXO score indicates excellent

immune activity in the microenvironment and sensitivity to drug

treatment (34). Notably, our VRK score based on the ssGSEA

algorithm not only matches previous prognostic models for

predicting HCC prognosis and treatment efficacy but also
FIGURE 6

VRK2 knockdown inhibited cell proliferation in vitro. (A, B) CCK-8 results showing that VRK2 knockdown suppressed MHCC97H (A) and HCCLM3
(B) cell proliferation. (C) Colony formation results showing that VRK2 knockdown decreased the number of colonies formed by MHCC97H and
HCCLM3 cells. (D) Wound healing results showing that VRK2 knockdown suppressed cell migration. (E) Transwell results showing that VRK2
knockdown inhibited cell invasion. siRNA, small interfering RNA. **P<0.01, ***P<0.001, ****P<0.0001.
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demonstrates superior robustness while overcoming the limitations

of previous models. Specifically, our research results indicated that

the univariate and multivariate Cox regression analysis of the VRKs

score in multiple cohorts all performed better than TNM staging.

However, signatures from other researchers’ studies were not

superior to TNM staging (35, 36). Meanwhile, our VRKs score

was constructed through the ssGSEA algorithm while other studies’

signatures were constructed by Cox and LASSO algorithms (7, 35).

Importantly, our VRKs score accurately predicted the response of
Frontiers in Immunology 12
patients to immune checkpoint blockade treatment, which is

overlooked in the studies of others (35–37).

VRK family genes encode VRK1, VRK2, and VRK3 proteins

with serine/threonine protein kinase activity (10). Previous studies

have focused mainly on the roles and functions of VRK1 in solid

tumors, whereas relatively few studies have focused on VRK2 and

VRK3. In addition, an increasing number of studies have indicated

that VRK family genes play crucial roles in the cell cycle, the DNA

damage response, and metastasis in tumors (38, 39). These studies
FIGURE 7

VRK2 knockdown inhibited cell proliferation in vivo. (A) Xenograft images of MHCC97H cells. (B) VRK2 knockdown decreased the tumor weight.
(C) VRK2 knockdown decreased the tumor volume. (D) Representative H&E staining images of xenografts. (E) Representative Ki67 staining images
(left panel) and statistical results (right panel) of the xenografts. H&E, hematoxylin and eosin. **P<0.01, ***P<0.001.
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highlight the importance of VRK family genes in tumor

development. Unfortunately, there is a lack of relevant studies on

tumor prognostic models and molecular subtypes based on VRK

family genes. Our study established a novel prognostic model based

on VRK family genes and highlighted the importance of VRK

family genes in cancer from a bioinformatics perspective. Notably,

previous studies have shown that VRK2 can promote HCC

metastasis and sorafenib resistance (19, 39). Our study further

confirmed that VRK2 knockdown inhibited cell proliferation in

vitro and in vivo. Moreover, we also found that the VRK score was

positively associated with sorafenib resistance, which is consistent

with the findings of Chen. Interestingly, the opposite results for

VRK3 expression and prognosis were obtained in the ICGC and

GSE14520 cohorts. To ensure the consistency of the VRK score and

VRK family genes in the setting of HCC, we believe that VRK3 may

not be suitable for inclusion as a modeling molecule. In fact, few

studies have reported the roles and functions of VRK3 in solid

tumors, including HCC.

To date, an increasing number of prognostic models and

molecular subtypes have been developed for evaluating HCC

prognosis and treatment efficacy (9, 23). Nevertheless, no model

based on VRK family genes has been developed for HCC. In our

study, a novel model was developed based on VRK family genes to

predict HCC prognosis and treatment efficacy. With the increasing

application of immune checkpoint blockade (ICB) therapy in

combination with other drug therapies for HCC, it is critical to

identify reliable biomarkers or assessment systems to predict

therapeutic responses in HCC patients. Our study constructed a

VRK score and successfully predicted ICB efficacy, as well as the

efficacy of several drugs (sorafenib, paclitaxel, cisplatin, and

gemcitabine) used for treating HCC. Importantly, these results

can be verified across multiple independent HCC cohorts,

confirming the robustness of the VRK score and providing

theoretical support for further clinical translation. Considering

that patients with high VRK scores have a poorer outcomes and

efficacy of ICB and several drugs (sorafenib, paclitaxel, cisplatin,

and gemcitabine) than patients with low VRK scores, HCC patients

with high VRK family gene expressions and high VRK scores

should be monitored closely.

However, there are several limitations in our study. First, our

study was based on information from previous HCC cohorts, and

no prospective study has been conducted to further validate our

findings. Second, our study did not further investigate the molecular

mechanisms of VRK family genes in the setting of HCC. In our

study, a novel model was constructed to evaluate the outcomes of

HCC patients and the therapeutic efficacy of HCC treatments,

which we hope will provide a basis for the precise treatment

of HCC.
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