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Background: Vaccinia-related kinase (VRK) family genes play a multifunctional
role in tumor development. However, the role of VRK family genes in
hepatocellular carcinoma (HCC) requires further research. Moreover, the
clinical potential of the VRK-related model remains unclear. The aim of this
study is to construct a VRK-related model to predict HCC prognosis and
therapeutic efficacy.

Methods: The data of HCC patients were extracted from The Cancer Genome
Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene
Expression Omnibus (GEO) databases. The single-sample gene set enrichment
analysis (ssGSEA) algorithm was used to calculate the VRK score of each sample.
Tumor IMmune Estimation Resource 2.0 (TIMER 2.0) and Tumor Immune
Dysfunction and Exclusion (TIDE) were used to evaluate immune cell
infiltration and the immune checkpoint response. pRRophetic was used for
predicting drug sensitivity. CCK-8, colony formation, wound healing, transwell
and xenograft assays were used to experimentally validate the biofunction of
VRK2 in HCC.

Results: We found that all VRK family genes were highly expressed in HCC.
Compared with patients with low VRK scores, patients with high VRK1 or VRK2
expression in the TCGA, ICGC, and GSE14520 cohorts had poorer outcomes.
Moreover, patients with a high VRK score in the TCGA, ICGC, and GSE14520
cohorts also had poorer outcomes. Importantly, Cox analysis revealed that the
VRK score was a potential independent risk factor for HCC. Notably, TIMER2.0
and TIDE suggested that patients with high VRK scores had higher immune
checkpoint response rates. Similarly, drug sensitivity analyses suggested that
patients with high VRK scores were more resistant to sorafenib, paclitaxel,
cisplatin, and gemcitabine. Finally, experimental validation revealed that VRK2
knockdown inhibited HCC development in vitro and in vivo.
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Conclusion: The VRK score was found to be a reliable indicator for predicting
HCC prognosis and therapeutic efficacy. VRK2 is a potential therapeutic target

for HCC.

VRK, immune, therapy, bioinformatics, HCC

1 Introduction

Primary liver cancer is a malignant disease with the sixth
highest incidence and the third highest mortality worldwide (1).
Hepatocellular carcinoma (HCC) accounts for approximately 80%
of primary liver cancer cases (2). Although HCC treatment methods
have significantly advanced, the 5-year survival rate remains
unsatisfactory (3-5), partly due to the lack of effective prognostic
and therapeutic biomarkers. Recently, increasing evidence has
shown that the construction of prognostic signatures and
screening of biomarkers on the basis of bioinformatics can
effectively predict the outcomes of HCC patients and the efficacy
of drug therapy (6-8). The signatures of the disulfidptosis-related
IncRNAs were successfully used to assess the immune status and
chemotherapy drug sensitivity of HCC patients, which provided
novel insights into precision therapy (9). These studies provide a
theoretical basis for further exploration of HCC data and screening
of reliable biomarkers through bioinformatics methods. Larger
sample sizes and lower costs are advantages to using this
methodology. However, current prognostic models and
biomarkers have limitations. The most important limitation is
that these models are constructed by algorithms that produce a
specific risk coefficient value and divide HCC patients into high-
and low-risk groups to evaluate the outcomes of HCC patients and
effects of treatment strategies. Ignoring the different cohorts
produces different coefficient values due to the heterogeneity of
the samples. Therefore, there is a subjective tendency to choose a
coefficient value from the training set as the unified standard.
Therefore, further development of novel models and biomarkers
for evaluating the outcomes of HCC patients and therapeutic effects
of treatment strategies is essential.

Vaccinia-related kinase (VRK) family genes include VRKI,
VRK2, and VRK3. This family of genes exhibits serine/threonine
protein kinase activity (10). The crucial roles and functions of
serine/threonine protein kinases, including MAPK, AKT, and
mTORC, in solid tumors have been widely investigated and
reported (11, 12). In clinical samples of HCC, phosphorylation of
mTORC and AKT has been observed to be associated with poor
prognosis (13, 14). Functionally, phosphorylation of mTORC and
AKT promotes proliferation and cell cycle regulation in HCC cells
(15, 16). Given the established importance of serine/threonine
protein kinases, VRK family genes with serine/threonine protein
kinase activity likely contribute significantly to the development of
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HCC. Previous studies have shown that VRK family genes play
important roles in HCC progression. In vitro VRK1 knockdown
suspended the cell cycle and inhibited proliferation in the setting of
HCC (17). Similarly, VRK2 is enriched in sorafenib-resistant HCC
cells, and VRK2 knockdown overcomes sorafenib resistance in
HCC (18). This evidence supports the importance of VRK family
genes in HCC. Unfortunately, studies focusing on the role of VRK
family genes in the outcomes of HCC patients and efficacy of
treatment methods are limited. Therefore, systematic exploration of
novel prognostic signatures based on VRK family genes is urgently
needed to evaluate HCC prognosis and treatment efficacy.

In this study, we systematic investigated the expression and
prognosis of VRK family genes in HCC and different subgroups.
Next, we established a novel prognostic signature (the VRK score)
independent of subjective selection bias using the single-sample
Gene Set Enrichment Analysis (ssGSEA) algorithm. Importantly,
we verified the robustness of our prognostic signature in three
independent HCC cohorts. Furthermore, our prognostic signature
successfully predicted the efficacy of drug treatment in HCC
patients. Moreover, we experimentally verified that VRK2
knockdown inhibited HCC proliferation in vitro and in vivo.
Overall, our study highlights the importance of VRK family genes
and identifies a novel signature and biomarkers for assessing HCC
prognosis and drug efficacy.

2 Materials and methods
2.1 Data collection and processing

For the Cancer Genome Atlas (TCGA) data (TCGA-LIHC),
mRNA expression transcriptome profiles (transcripts per kilobase
of exon model per million mapped reads format, TPM) and
corresponding clinical information were obtained using the
‘TCGADiolinks’ package (version 2.28.4) (19). For International
Cancer Genome Consortium (ICGC) data (ICGC-LIRI-JP), mRNA
expression transcriptome profiles and corresponding clinical
information were acquired from the ICGC database (https://
dcc.icgc.org/). For Gene Expression Omnibus (GEO) data
(GSE14520), mRNA expression transcriptome profiles and
corresponding clinical information were acquired from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). All HCC samples
without complete clinical information (such as TNM stage, sex,
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age, survival status, and time) were removed. Finally, the TCGA
cohort (T =365, N = 50), ICGC cohort (T =203, N = 177) and GEO
cohort (T = 239, N = 239) were created.

2.2 VRK score construction and
independent prognostic analysis

The single-sample Gene Set Enrichment Analysis (ssGSEA)
algorithm was used with the ‘GSVA’ package (version 2.0.6) to
calculate the VRK score of each HCC sample. The optimum cutoft
values were selected with the ‘survival’ package (version 3.8.3).
Univariate and multivariate Cox analyses were performed with
SPSS software (version 27). Nomograms and calibration curves
were produced with the ‘rms’ package (version 7.0).

2.3 Immune and tumor microenvironment
analysis

Immune cell infiltration analysis based on the 6 algorithms
(XCELL, TIMER, MCPCOUNTER, QUANTISEQ, EPIC, and
CIBERSORT) was performed using the TIMER2.0 database (http://
timer.comp-genomics.org/) (20). The ssGSEA algorithm was used
with the ‘GSVA’ package (version 2.0.6) to calculate the scores of
immune cells and the function of each HCC sample. Next, immune
checkpoint blockade response prediction and corresponding
Tumor Immune Dysfunction and Exclusion (TIDE) analyses were
performed using the TIDE database (http://tide.dfciharvard.edu/).

2.4 Gene mutation analysis and drug
sensitivity prediction

Gene mutation analysis and tumor mutation burden (TMB)
analysis of the TCGA cohort were performed with the ‘maftools’
package (version 2.22.0). Drug sensitivity prediction was
subsequently performed with the ‘pRRophetic’ package (version 0.5).

2.5 Cell culture and transfection

MHCCY7H cells were obtained from the National Collection of
Authenticated Cell Cultures. The cells were cultured in DEME
(HyClone, China) containing 10% fetal bovine serum (Gibco, USA)
and 1% penicillin-streptomycin solution (Solarbio, China) at 37°C
with 5% CO,. Small interfering RNAs (siRNAs) were designed and
constructed by GenePharma, and short hairpin RNA (shRNA)
lentivirus was constructed from siRNA#1 by ViGene Biosciences.
For siRNA transfection, cells (2x10°/well) were seeded into a 6-well
plate and transfected with LipofectamineTM 3000 (L3000015,
Thermo Fisher Scientific, USA) according to the manufacturer’s
instructions. For shRNA transfection, cells (1x10°/well) were seeded
into a 6-well plate and transfected according to the manufacturer’s
instructions. After 48 hours, the efficacy of VRK2 knockdown was
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verified by the quantitative real-time reverse transcription PCR
(QRT-PCR). The sequences of the siRNAs can be found in
Supplementary Table SI.

2.6 Cell proliferation and half-maximal
inhibitory concentration assays

For the CCK-8 assays, cells (2000/well) were seeded into a 96-
well plate. Next, a CCK-8 kit (ZP328-1, Beijing Zoman
Biotechnology, China) was used to detect the absorbance of the
samples at 0, 24, 48, 72, and 96 hours. Briefly, 10 ul of CCK-8
solution was added to each well, followed by incubation at 37°C for
2 hours. Then, the absorbance values were detected at 450 nm. For
the half-maximal inhibitory concentration assays, cells (5000/well)
were seeded into a 96-well plate and treated with indicated
concentrations of cisplatin for 24 hours. Then, 100 ul fresh
complete medium containing 10 ul CCK-8 solution was added to
each well, followed by incubation at 37°C for 2 hours. Subsequently,
the absorbance values were detected at 450 nm. For the colony
formation assays, the cells (500/well) were seeded into a 6-well plate
and cultured for 14 days. Next, 4% paraformaldehyde solution was
used to fix the cells for 20 minutes at room temperature, followed by
staining for 20 minutes at room temperature with 0.1% crystal violet
solution. The number of cells was determined with Image]J software
(version 1.53). Cisplatin (M2223) was purchased from AbMole.

2.7 Cell metastasis assays

For the wound healing assays, the cells were seeded into a 6-well
plate. When cell fusion reached 95%, a wound was generated by
scraping the middle of the plate with a 200 ul sterile pipette tip, after
which the medium was replaced with serum-free medium. After 48
and 72 hours, the migration distance was measured with Image]
software (version 1.53). For transwell assays, 24-well transwell
chambers with 8 um pores and Matrigel (354480, Corning, USA)
were used. Briefly, cells (1x10*well) were seeded into the top
compartment with 250 pl of serum-free medium, and 500 pl of
complete medium was added to the bottom compartment. After 30
hours, the cells that had passed through the filter were fixed with 4%
paraformaldehyde for 30 minutes at room temperature, followed by
staining for 20 minutes at room temperature with 0.1% crystal violet
solution. The number of cells was determined with Image]J software
(version 1.53).

2.8 Gene set enrichment analysis

GSEA was performed by the GSEA soft (version 4.3.2). The
hallmark gene sets were obtained from the molecular signatures
database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).
The number of permutations is 500. The pathways with FDR
<0.25 and P <0.05 were considered to have differences between
high and low VRK2 groups.
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2.9 Animal model

Five-week-old male BALB/c nude mice were purchased from
GemPharmatech and housed in a specific pathogen-free environment
with a 12-h light/dark cycle and controlled temperature and humidity,
and food and water were provided ad libitum. MHCC97H cells (2x10%/
mouse) were subcutaneously injected into the mice. The tumor volume
was measured every 5 days. The tumor volume formula was as follows:
volume = 0.5 x longest diameter x (shortest diameter)”. After 15 days,
the mice were euthanized, and the tumors were fixed with 4%
paraformaldehyde for 2 days, then embedded in paraffin. All
operations on laboratory animals were performed in accordance with
the NIH Guide for the Care and Use of Laboratory Animals and were
approved by the Animal Care and Use Committee of West China
Hospital, Sichuan University (20240815015).

2.10 Immunohistochemistry

Paraffin-embedded tumor tissue sections were deparaffinized,
repaired with 0.01 M citric acid buffer at 95°C for 20 minutes and
incubated overnight at 4°C with a Ki-67 antibody (1:10000, 27309-
1-AP, Proteintech, China). Then, the sections were incubated with
secondary antibody (PV-6000, ZSGB-BIO, China) for 1 hour at
room temperature after being washed with TBS three times. The
THC results were quantified with Image] software (version 1.53).

2.11 Western blotting

Protein lysates were prepared by RIPA bufter (P0013B, Beyotime,
China) and run on sodium dodecyl sulfate-polyacrylamide gels for
electrophoresis (ZD304A-2, Zoman, China). Separated proteins were
then transferred to the polyvinylidene fluoride (PVDF) membranes
(ISEQ00005, Millipore, USA). The membranes were blocked with 5%
skim milk and incubated with the primary antibody in the blocking
buffer (overnight at 4°C) followed by horseradish-peroxidase-
conjugated secondary antibodies (Proteintech) for 1 h at room
temperature. The blots were developed by performing the
enhanced chemiluminescence detection reagents on the membranes
and the signals were detected by the ECL blotting analysis system
(4AWO011-100, 4abio, China). Beta-actin in Western blotting was
used as the endogenous loading control. Anti-VRK2 antibody
(1:1000; Proteintech; 12946-1-AP), anti-AKT1 antibody (1:1000;
HUABIO; ET1609-47), anti-pAKT1 antibody (1:1000; HUABIO;
ET1607-73), anti-RPS6 antibody (1:1000; Proteintech; 80208-1-RR),
anti-pRPS6 antibody (1:1000; Proteintech; 29223-1-AP), anti-beta-
actin antibody (1:1000; HUABIO; M1210-2), goat anti-rabbit IgG
(1:10000; ZSGB-BIO; ZB-2301) and goat anti-mouse IgG (1:10000;
ZSGB-BIO; ZB-2305)were used.

2.12 Statistical analysis

All data are presented as the means + standard deviations (SDs).
The comparison of quantitative data between the two groups was
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performed using Student’s t test (normal distribution) or the
Mann-Whitney test (nonnormal distribution). The comparison of
quantitative data among three or more groups was performed using
one-way or two-way ANOVA with Bonferroni correction. Count
data were compared using the chi-square test. Correlation analysis
was performed using Spearman correlation analysis. The prognostic
analysis based on Kaplan-Meier survival curves was completed
using the log-rank test. All statistical analyses were completed with
R (version 4.4.2), SPSS (version 27), and GraphPad Prism (version
10.2.3) software. The ‘ggplot2’ package (version 3.5.1) and
GraphPad Prism (version 10.2.3) were used to create plots. P <
0.05 was considered statistically significant.

3 Results
3.1 Expression levels of VRK family genes

A comprehensive flow diagram is shown in Figure 1. To
comprehensively understand the expression distribution of VRK
family genes in cancer, we first used the TIMER2.0 database to
explore the expression of VRK family genes in 22 cancers. As
expected, the expression of VRK family genes was consistent across
cancers. In breast, bile duct, esophageal, lung, and colon cancers,
VRK family genes were highly expressed in tumors, whereas the
expression of VRK family genes was lower in kidney and thyroid
cancers (Supplementary Figure S1).

Next, we comprehensively explored the expression of VRK
family genes in HCC. All three independent HCC cohorts
(TCGA, ICGC, and GSE14520) exhibited high VRK gene family
expression (Figure 2A). The subgroup analysis further revealed that
only VRK2 expression was closely associated with TNM stage in the
three HCC cohorts, whereas VRK1 expression was associated with
TNM stage in the TCGA and ICGC cohorts and VRK3 expression
was associated with TNM stage in the ICGC and GSE14520 cohorts
(Figure 2B). Furthermore, we did not observe an obvious
association of VRK family genes with sex or age (Supplementary
Figures S2A, B). TP53 and CTNNBI are commonly mutated genes
in HCC and are closely associated with HCC progression (21).
Therefore, we also compared the expression of VRK family genes
between the wild-type and mutated groups in HCC patients in the
TCGA cohort. Notably, the expression of VRK family genes was
greater in the mutated TP53 groups, whereas the expressions of
VRK2 and VRK3 were not significantly different between the
CTNNBI wild-type and mutated groups (Figure 2C). Therefore,
the expression of VRK family genes appeared to be more closely
associated with TP53 than with CTNNBI. Furthermore, we
examined the protein expression of VRK family genes in HCC
using the HPA database. Consistently, the IHC results revealed that
the protein expression of VRK family genes was increased in tumor
tissues (Figure 2D). Additionally, we evaluated correlations between
VRK family genes using Spearman correlation analysis. In the three
HCC cohorts, VRK1 expression was significantly and positively
correlated with VRK2 expression, whereas VRK3 expression was
not obviously correlated with VRKI or VRK2 expression
(Figure 3E). Further, we also analyzed the correlations between
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FIGURE 1

Flowchart of this study.

VRK family genes and immune cell infiltration in tumor
microenvironment (TME) using Spearman correlation analysis
(Supplementary Figures S2C-E). Overall, VRK family genes were
highly expressed in most cancers, and the expression of VRK family
genes in HCC was closely associated with TNM stage and
TP53 mutation.

3.2 Establishment and independent
prognostic analysis of the VRK score

Considering the high expression of VKR family genes in HCC,
we next explored the effect of VRK family genes on the outcomes of
HCC patients. First, we used the ‘survival’ package to automatically
obtain the optimal cutoff values for VRK1, VRK2, and VRK3. Next,
HCC patients were divided into high- and low-expression groups
based on the cutoff values of the three genes. HCC patients with
high VRK1 or VRK2 expression had poorer overall survival than
patients with low VRK1 or VRK2 expression in all three
independent HCC cohorts (Figures 3A, B). Interestingly, patients
with high VRK3 expression had better overall survival than patients
with low VRK3 expression in the ICGC and GSE1520 cohorts,

Frontiers in Immunology

05

In vivo

The xenagraft model

although the results in the TCGA cohort were the
opposite (Figure 3C).

Therefore, we aimed to construct a novel prognostic signature
to evaluate HCC prognosis based on the VRK family gene
expressions. Given the inconsistent prognostic results of VRK3
expression in the three cohorts, we used VRK1 and VRK2 for
construction of the signature. With the ssGSEA algorithm, we
calculated the VRK score of each HCC patient in the three
cohorts and divided the patients into high- or low-VRK score
groups using the ‘survival’ package. As expected, patients with
high VRK scores had poorer overall survival than patients with
low VRK scores did in all cohorts (Figure 3D). Furthermore,
univariate and multivariate Cox analyses suggested that the VRK
score was not inferior to the TNM stage as an independent
prognostic risk factor for HCC in the TCGA cohort (Figure 3E).
Moreover, we constructed a nomogram to assess HCC prognosis
visually based on the VRK score (Figure 3F). To further verify the
robustness of the VRK score, we also examined whether the VRK
score was not inferior to the TNM stage as an independent
prognostic risk factor for HCC in the other two cohorts. As
expected, we found that the VRK score remained an independent
prognostic risk factor in the ICGC and GSE14520 cohorts.
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FIGURE 2

Differential mMRNA and protein expression of VRK family genes. (A) mRNA expression heatmap of VRK family genes between tumor and nontumor tissues
in the TCGA, ICGC, and GSE14520 cohorts. (B) mRNA expression of VRK family genes between the TNM stages I-1l and llI-IV groups in the TCGA, ICGC,
and GSE14520 cohorts. (C) mRNA expression of VRK family genes in the wild-type and mutated groups in the TCGA, ICGC, and GSE14520 cohorts. (D)
Representative IHC images of VRK family genes in tumor and nontumor tissues from the HPA database. (E) Correlation analysis of VRK family genes in
the TCGA, ICGC, and GSE14520 cohorts. T, tumor; NT, nontumor; WT, wild type. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

Additionally, we plotted nomograms of the two cohorts to assess
HCC prognosis based on the VRK score (Supplementary Figures
S3A-D). Moreover, calibration curves were used to evaluate the
accuracy of the nomograms (Supplementary Figure S3E). Overall,
these results support the potential of the VRK score as an
independent prognostic risk factor in HCC patients.
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3.3 TME and immune checkpoint blockade
response analysis of the VRK score

Increasing evidence has shown that immune activity in the

tumor microenvironment (TME) strongly affects HCC prognosis
and treatment (22, 23). Therefore, we explored immune cell
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FIGURE 3

Prognostic analysis of VRK family genes and VRK scores. (A) The overall survival of HCC patients with high and low VRK1 expression in the TCGA,
ICGC, and GSE14520 cohorts. (B) The overall survival of HCC patients with high and low VRK2 expression in the TCGA, ICGC, and GSE14520
cohorts. (C) The overall survival of HCC patients with high and low VRK3 expression in the TCGA, ICGC, and GSE14520 cohorts. (D) The overall
survival of HCC patients with high and low VRK scores in the TCGA, ICGC, and GSE14520 cohorts. (E) Univariate and multivariate Cox analysis of the
VRK score and other clinical features in the TCGA cohort. (F) The nomogram of the VRK score and other clinical features in the TCGA cohort.
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infiltration in the TME in the high- and low-VRK score groups. The
heatmap depicting immune infiltration revealed substantial
correlations between the VRK score and various immune cells,
including B cells, T cells, macrophages, and NK cells (Figure 4A).
Furthermore, we explored the differences in immune infiltration
and function between the high- and low-VRK score groups using
the ssGSEA algorithm. The results revealed that the high-VRK-
score group was characterized by elevated levels of macrophages,
follicular helper T cells (Tth), and regulatory T cells (Treg), which
were juxtaposed with decreased levels of mast cells and a decreased
interferon (IFN) response (Figure 4B). In addition, a heatmap
depicting immune infiltration in the ICGC and GSE14520 cohorts
was used to verify the correlations between the VRK score and
immune cells. Decreased levels of the IFN response were also
observed in the ICGC and GSE14520 cohorts (Supplementary
Figures S4A-D).

Considering the disparities in immune infiltration and function
associated with high and low VRK scores, we then used TIDE
analysis to predict the response to immune checkpoint blockade
(such as anti-PD-1 therapy) in the VRK score subgroups. The ratios
of response in the low-VRK-score group were greater than the
ratios of response in the high-VRK-score group in the three HCC
cohorts (Figure 4C). Patients with high VRK scores had higher
TIDE and exclusion of T cell scores and lower T cell dysfunction
scores than patients with low VRK scores (Figures 4D-F),
suggesting that patients in the low-VRK-score group may be
more likely to benefit from immune checkpoint blockade.
Moreover, GSEA analysis revealed that the high-VRK-score
groups were characterized by upregulation of E2F targets, G2M
checkpoint, DNA repair, mitotic spindle, mTORCI signaling, and
MYC targets in three HCC cohorts (Supplementary Figures S5A-
C). In conclusion, these results revealed that the VRK score may be
a potential predictor of the response to immune checkpoint
blockade in HCC patients.

3.4 Mutation, TMB, and drug susceptibility
analysis of VRK scores

In addition to the tumor immune microenvironment, genetic
mutations in tumors also affect HCC prognosis and treatment (24).
Waterfall diagrams depicting gene mutation frequency revealed that
TP53 and CTNNBI are frequently mutated in both the high- and
low-VRK score groups (Figure 5A). Increasing evidence has shown
that the tumor mutational burden (TMB) reflects the gene mutation
levels and prognosis of tumors (25). Accordingly, we calculated the
TMB of each HCC patient in the TCGA cohort and found that
patients with high TMB had poorer overall survival (Figure 5B).
Furthermore, a high TMB combined with a high VRK score was
associated with the poorest outcomes in HCC patients (Figure 5C).

Next, we assessed the sensitivity of other systemic therapy drugs
beyond immune checkpoint inhibitors among the VRK score
subgroups. Interestingly, patients with a low VRK score were
more likely to be sensitive to sorafenib, gemcitabine, paclitaxel,
and cisplatin (Figures 5D, E). These results were verified in the
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ICGC and GSE14520 cohorts (Supplementary Figures S6A-C). In
summary, these findings demonstrated that the VRK score serves as
a robust predictive biomarker for systemic therapy response in
HCC patients.

3.5 VRK2 knockdown inhibited cell
proliferation and metastasis in HCC

As VRK2 was highly expressed in tumor tissues in all three
HCC cohorts in this study, we further investigated the functional
role of VRK2 in HCC. The western blot results revealed that the
siRNA successfully knocked down VRK2 protein expression
(Supplementary Figure S7A). The results of the CCK-8 and
colony formation assays suggested that VRK2 knockdown
inhibited the proliferation ability of MHCC97H and HCCLM3
cells (Figures 6A-C). Similarly, the results of the wound healing
and transwell assays also indicated that VRK2 knockdown
suppressed the migration and invasion ability of MHCC97H and
HCCLMS3 cells (Figures 6D, E). Then, we validated that VRK2
knockdown increased the sensitivity of HCC cells to cisplatin
(CDDP) (Supplementary Figure S7B). Further, we performed the
GSEA analysis and found that the PI3K/AKT/mTOR pathway was
enriched in high VRK2 expression groups in three HCC cohorts
(Supplementary Figures S7C, D). Importantly, western blot results
verified that VRK2 knockdown decreased the phosphorylation
levels of AKT1 and RPS6 (Supplementary Figure S7E).
Additionally, we also found that patients with TNM staging III-
IV had the poorer prognosis (Supplementary Figures S7F, G).
Therefore, these results showed that VRK2 knockdown
suppressed HCC proliferation and metastasis in vitro, as well as
decreasing in phosphorylation levels of AKT1 and RPS6.

Next, we examined the effect of VRK2 knockdown on HCC in
vivo (Supplementary Figure S7H). The xenograft tumor model
verified that VRK2 knockdown inhibited tumor growth in vivo,
accompanied by reductions in both tumor weight and volume
(Figures 7A-C). H&E staining verified that the xenografts were
tumors (Figure 7D). Additionally, Ki-67 staining revealed that
VRK2 knockdown decreased tumor proliferation (Figure 7E).
Taken together, these findings indicated that VRK2 knockdown
inhibited HCC progression in vitro and in vivo.

4 Conclusion

Hepatocellular carcinoma (HCC), the predominant type of
primary liver cancer, is a serious threat to an individual’s health
and life due to its increasing morbidity and mortality (26). Recently,
several models and signatures have been constructed for the
prediction of the efficacy of treatment strategies and outcomes of
HCC patients. Nevertheless, due to methodological limitations in
modeling and tumor heterogeneity, the translational application of
these models in clinical practice remains a significant challenge (7,
27, 28). Therefore, the identification of innovative biomarkers and
signatures for predicting prognosis and therapeutic response holds
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Mutation and drug sensitivity of the VRK score. (A) Waterfall plots showing the mutation frequency of common protumoral genes in HCC in the
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and sorafenib sensitivity in the TCGA cohort. (E) The correlation analysis of the VRK score and sensitivity to gemcitabine, paclitaxel, and cisplatin in

the TCGA cohort. TMB, tumor mutation burden.

paramount clinical significance for precision therapy in HCC.
There are three key points to highlight in our study. First, we
established a novel model independent of specific coefficient values
from training sets using the single-sample Gene Set Enrichment
Analysis (ssGSEA) algorithm. Second, the VRK score precisely
predicts the outcomes and therapeutic responses of HCC patients.
Finally, we experimentally confirmed that VRK2 knockdown
inhibited HCC growth in vitro and in vivo.

Several prognostic models and molecular subtypes have been
developed to predict the prognosis and treatment efficacy of solid
tumors. For example, in breast cancer, stemness-related IncRNA
signatures and disulfidptosis-related risk scores based on the least
absolute shrinkage and selection operator (LASSO) algorithm are
used to predict patient outcomes, stemness, and immunotherapy
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response (29, 30). Similarly, in lung cancer, radioresistance-related
signatures also predict patient outcomes and immune status (31),
identifying TOP2A, CDH3, ASPM, CENPF, SLC2A1, and PRC1 as
potential detection biomarkers for early lung cancer (32).
Additionally, in hepatocellular carcinoma (HCC), a three-gene
prognostic model based on micro vessel invasion-related genes
has been used to assess overall survival and recurrence-free
survival (7). Although these prognostic models are established
based on various proteins or noncoding RNAs, their modeling
methods all rely on specific coefficient values generated by
regression analysis of training sets. Due to the high heterogeneity
of tumors, the clinical application of such methodological models
may face challenges. Recently, modeling methods based on the
ssGSEA algorithm for predicting patient outcomes and treatment
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efficacy have attracted widespread attention (33). This approach is
independent of specific coefficient values and involves calculating
the risk score based on the total RNA level of each sample. In fact,
models based on the ssGSEA algorithm for evaluating tumor
prognosis and treatment efficacy have been validated across
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cancers. For example, a high FOXO score indicates excellent
immune activity in the microenvironment and sensitivity to drug
treatment (34). Notably, our VRK score based on the ssGSEA
algorithm not only matches previous prognostic models for
predicting HCC prognosis and treatment efficacy but also
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VRK2 knockdown inhibited cell proliferation in vivo. (A) Xenograft images of MHCC97H cells. (B) VRK2 knockdown decreased the tumor weight.
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demonstrates superior robustness while overcoming the limitations
of previous models. Specifically, our research results indicated that
the univariate and multivariate Cox regression analysis of the VRKs
score in multiple cohorts all performed better than TNM staging.
However, signatures from other researchers’ studies were not
superior to TNM staging (35, 36). Meanwhile, our VRKs score
was constructed through the ssGSEA algorithm while other studies’
signatures were constructed by Cox and LASSO algorithms (7, 35).
Importantly, our VRKs score accurately predicted the response of
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patients to immune checkpoint blockade treatment, which is
overlooked in the studies of others (35-37).

VRK family genes encode VRK1, VRK2, and VRK3 proteins
with serine/threonine protein kinase activity (10). Previous studies
have focused mainly on the roles and functions of VRK1 in solid
tumors, whereas relatively few studies have focused on VRK2 and
VRK3. In addition, an increasing number of studies have indicated
that VRK family genes play crucial roles in the cell cycle, the DNA
damage response, and metastasis in tumors (38, 39). These studies

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1614702
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Fu et al.

highlight the importance of VRK family genes in tumor
development. Unfortunately, there is a lack of relevant studies on
tumor prognostic models and molecular subtypes based on VRK
family genes. Our study established a novel prognostic model based
on VRK family genes and highlighted the importance of VRK
family genes in cancer from a bioinformatics perspective. Notably,
previous studies have shown that VRK2 can promote HCC
metastasis and sorafenib resistance (19, 39). Our study further
confirmed that VRK2 knockdown inhibited cell proliferation in
vitro and in vivo. Moreover, we also found that the VRK score was
positively associated with sorafenib resistance, which is consistent
with the findings of Chen. Interestingly, the opposite results for
VRK3 expression and prognosis were obtained in the ICGC and
GSE14520 cohorts. To ensure the consistency of the VRK score and
VRK family genes in the setting of HCC, we believe that VRK3 may
not be suitable for inclusion as a modeling molecule. In fact, few
studies have reported the roles and functions of VRK3 in solid
tumors, including HCC.

To date, an increasing number of prognostic models and
molecular subtypes have been developed for evaluating HCC
prognosis and treatment efficacy (9, 23). Nevertheless, no model
based on VRK family genes has been developed for HCC. In our
study, a novel model was developed based on VRK family genes to
predict HCC prognosis and treatment efficacy. With the increasing
application of immune checkpoint blockade (ICB) therapy in
combination with other drug therapies for HCC, it is critical to
identify reliable biomarkers or assessment systems to predict
therapeutic responses in HCC patients. Our study constructed a
VRK score and successfully predicted ICB efficacy, as well as the
efficacy of several drugs (sorafenib, paclitaxel, cisplatin, and
gemcitabine) used for treating HCC. Importantly, these results
can be verified across multiple independent HCC cohorts,
confirming the robustness of the VRK score and providing
theoretical support for further clinical translation. Considering
that patients with high VRK scores have a poorer outcomes and
efficacy of ICB and several drugs (sorafenib, paclitaxel, cisplatin,
and gemcitabine) than patients with low VRK scores, HCC patients
with high VRK family gene expressions and high VRK scores
should be monitored closely.

However, there are several limitations in our study. First, our
study was based on information from previous HCC cohorts, and
no prospective study has been conducted to further validate our
findings. Second, our study did not further investigate the molecular
mechanisms of VRK family genes in the setting of HCC. In our
study, a novel model was constructed to evaluate the outcomes of
HCC patients and the therapeutic efficacy of HCC treatments,
which we hope will provide a basis for the precise treatment
of HCC.
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