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Ankylosing spondylitis (AS) is a chronic autoimmune inflammatory disease primarily

affecting the axial skeleton, characterized by joint erosion and ankylosis. AS

significantly impacts quality of life, work capacity and mental health through

chronic pain, stiffness and functional decline. Its pathogenesis is multifactorial,

involving genetic predispositions, immunological dysregulation and environmental

triggers. Current treatments, including nonsteroidal anti-inflammatory drugs and

immunosuppressive agents, offer limited symptomatic relief and fail to improve

long-term prognosis due to efficacy limitations and side effects. Recent advances in

cell therapy, particularly mesenchymal stem cells (MSCs) and chimeric antigen

receptor (CAR) T-cell therapy, demonstrate promise in addressing these limitations

by providing immunomodulatory, anti-inflammatory and regenerative benefits. This

review summarizes the pathogenesis of AS, the limitations of existing treatments and

the clinical progress of MSC therapy, while exploring the potential of emerging CAR-

based therapies.
KEYWORDS

ankylosing spondylitis, mesenchymal stem cells, regenerative medicine, chimeric
antigen receptor T-cell therapy, clinical progress, autoimmune inflammation
1 Introduction

Ankylosing spondylitis (AS) is a chronic autoimmune inflammatory disease

predominantly affecting the axial skeleton, including the spine and sacroiliac joints,

resulting in progressive joint erosion and eventual ankylosis (1). The disease progresses
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slowly with a long duration, and its peak onset occurs in young

adults aged 20–30 years (2). The global prevalence of AS varies

geographically, ranging from 0.1% to 1.4%, with a male-to-female

ratio averaging 3.4:1 (3). Specifically, the prevalence rates are

0.238% in Europe, 0.167% in Asia, 0.102% in Latin America,

0.319% in North America and 0.074% in Africa. In China, a

comprehensive survey across 16 regions reported an overall

prevalence of 0.22%, with a male prevalence of 0.36% and female

prevalence of 0.09%, yielding a male-to-female ratio of 4:1 (4).

According to the latest Chinese guidelines (2022), the estimated

prevalence is 0.3%, which exhibits an upward trend (5).

Clinically, AS presents with significant back pain, stiffness and

functional decline, ultimately leading to spinal and pelvic fusion (6). In

adolescents, AS may initially manifest as non-radiographic axial

spondyloarthritis (nr-axSpA), with characteristic sacroiliac joint

changes emerging later (7). AS is frequently associated with other

autoimmune diseases, such as acute anterior uveitis, inflammatory

bowel disease and psoriasis (8). AS exerts a lifelong detrimental effect

on patients, significantly impacting their quality of life, work capacity

and mental health (9). Furthermore, AS is correlated with an increased

risk of premature mortality (10). In the treatment of AS, nonsteroidal

anti-inflammatory drugs (NSAIDs) and immunosuppressive agents

have traditionally been employed. While these therapies can effectively

mitigate inflammatory responses, alleviate clinical symptoms and

enhance patients’ quality of life, they are still associated with

suboptimal therapeutic outcomes and a range of adverse effects (11).

Moreover, current treatments fail to enhance long-term prognosis,

imposing a significant burden on patients and society (12).

Consequently, there is an urgent requirement for more

comprehensive research into the pathogenesis of AS, alongside the

expedited development of innovative therapeutic strategies.

In recent years, the emergence and advancement of innovative

therapies, such as cell therapy, have offered promising new avenues for

the treatment of AS. Extensive research has demonstrated that

mesenchymal s tem ce l l s (MSCs) possess s ignificant

immunomodulatory and regenerative properties (13). They can

mitigate inflammatory responses and facilitate tissue repair through

both direct cell-to-cell interactions and the secretion of bioactive

soluble factors (13). Additionally, chimeric antigen receptor (CAR)

T-cell therapy has emerged as a promising therapeutic strategy for

autoimmune diseases, demonstrating significant potential in early

clinical trials for conditions such as rheumatoid arthritis (RA),

systemic lupus erythematosus (SLE) and type 1 diabetes (14–16).

This article reviews the pathogenesis of AS, existing treatment

methods and their limitations, summarizes the clinical progress and

mechanisms of MSC treatment for AS, and explores the potential of

other cell therapies (such as CAR-based cell therapies) in the treatment

of AS. Furthermore, we critically analyze the issues that need to be

addressed before cell therapy can be routinely used to treat AS.
2 Pathogenesis of AS

The pathogenesis of AS is multifactorial, involving a complex

interplay between genetic and environmental factors. Genetic
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factors are considered significant contributors to the development

of AS, especially the human leukocyte antigen B27 (HLA-B27),

which has been strongly implicated in disease susceptibility (17).

The positivity rate of HLA-B27 in AS patients is over 90%,

compared to only 4%-7% in the general population (17). The

potential mechanisms through which HLA-B27 abnormalities

contribute to the development of AS encompass: the arthritogenic

peptide hypothesis, immune recognition of abnormal forms of

HLA-B27, and the induction of endoplasmic reticulum stress

(ERS) response due to the accumulation of misfolded HLA-B27

molecules (18).

The arthritogenic peptide hypothesis proposes that antigen-

presenting cells (APCs) in AS patients present both self-antigens

and microbial peptides via HLA-B27, thereby triggering a specific

immune response mediated by CD8+ cytotoxic T cells (19). These T

cells recognize and respond to the presented peptides, leading to the

activation and clonal expansion of pathogenic T-cell clones that

drive inflammation and tissue damage in the joints (19). A recent

study has provided compelling evidence supporting the

arthritogenic peptide hypothesis associated with HLA-B27 (20).

This work identified CD8+ T cells expressing disease-related T cell

receptors (TCRs) with specific TRBV9–CDR3–Jb2.3 chains in the

blood and synovial fluid of AS patients. These TRBV9 chains pair

with TRAV21 chains and expand clonally within the joints.

Utilizing an HLA-B27:05 yeast display peptide library, the study

successfully identified microbial and self-antigen peptides capable

of activating AS-associated TCRs. Structural analysis revealed that

the cross-reactivity between peptide-MHC and TCRs originates

from a common motif shared by self-antigens and microbial

antigens, which binds specifically to the TRBV9-CDR3b TCR.

These findings underscore the potential pathogenic role of both

microbial and self-antigens in HLA-B27-associated diseases and

highlight the arthritogenic peptide hypothesis as a key mechanism

underlying the development of AS.

Abnormal forms of HLA-B27, such as homodimers, are

suggested to bind to specific killer cell immunoglobulin-like

receptors (KIRs) expressed on natural killer (NK) cells and CD4+

T cells (21–23). This interaction triggers the release of inflammatory

cytokines and chemokines, thereby enhancing T cell activation and

stimulating other immune cells to initiate an inflammatory

response (21–23). The unfolded protein response (UPR)

hypothesis suggests that the accumulation of misfolded HLA-B27

in the ER during protein biosynthesis leads to an inflammatory

response (24). HLA-B27 misfolding is associated with specific

polymorphisms that characterize this allele, leading to inefficient

folding and peptide loading of the heavy chain (24). This misfolding

can trigger ER-associated degradation (ERAD) of the heavy chains,

primarily mediated by the E3 ubiquitin ligase HRD1 (SYVN1) and

the ubiquitin-conjugating enzyme UBE2JL (25). Activation of the

UPR has been associated with cytokine dysregulation, leading to

increased production of IL-23, IFNb, and IL-1a (26, 27). In

addition to the above hypotheses, there is also evidence that

HLA-B27 can disrupt the composition of the gut microbiota,

leading to microbial dysbiosis, metabolic dysfunction, and loss of

mucosal tolerance. This disruption can result in the release of pro-
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inflammatory cytokines such as IFN-g, TNF, and IL-17, as well as

the activation of regulatory T cells (Tregs) and helper T cells (Th1,

Th2, and Th17 cells) (28–31). These changes contribute to chronic

inflammation in the joints, skin, or gut, further complicating the

pathogenesis of AS (28–31).

In addition to HLA-B27, more than 100 genes have been identified

as contributing to the susceptibility of AS (32). ER aminopeptidase 1

(ERAP1) stands out as the secondmost significant gene associated with

AS pathogenesis (33, 34). ERAP1 polymorphisms directly influence the

generation of the peptide repertoire, thereby modulating the formation

of pathogenic peptides that contribute to AS development (33, 34). The

IL-23 receptor and the Th17/IL-23 axis are critical factors in the

inflammatory cascade of AS (35). Genetic polymorphisms within these

pathways have been robustly associated with disease pathogenesis,

emphasizing their role in the inflammatory process. Additionally, IFNs,

as key early inflammatorymediators, can induce the production of pro-

inflammatory cytokines TNFa and IL-1 and activate the NF-kB
signaling pathway, thereby participating in the pathogenesis of AS

(36). Toll-like receptor 7 (TLR7) has also been implicated in AS

susceptibility, although its role varies by sex. TLR7 acts as a

protective factor in females with AS but serves as a risk factor in

males, suggesting sex-specific mechanisms in disease pathogenesis (37).

Additionally, the janus kinase-signal transducer and activators of

transcription (JAK-STAT) pathway, a canonical signaling pathway in

the inflammatory network, plays a pivotal role in AS pathogenesis (6).

This pathway integrates signals from various cytokines and growth

factors, driving the transcriptional response that perpetuates

inflammation and tissue damage in AS (6).

Collectively, these genetic and molecular pathways underscore

the complex multifactorial nature of AS, emphasizing the intricate

interplay between genetic predisposition, immune signaling, and

inflammatory mediators in disease development. Future research

should aim to elucidate the precise mechanisms by which these

genetic variants contribute to AS pathogenesis and investigate

potential therapeutic targets within these pathways.
3 Current AS treatment options and
their limitations

The treatment drugs for AS recommended jointly by the

Assessment of Spondylo Arthritis International Society (ASAS),

the European League Against Rheumatism (EULAR), and the

Chinese Society of Rheumatology (CSR) encompass NSAIDs,

biologic disease-modifying antirheumatic drugs (bDMARDs),

sulfasalazine (SSZ), methotrexate (MTX), and corticosteroids (38).

The efficacy of these medications varies significantly, with each class

of drugs presenting distinct advantages and limitations (Figure 1).
3.1 NSAIDs

NSAIDs are the first-line treatment for AS, exerting their anti-

inflammatory effects by inhibiting cyclooxygenase (COX), also

known as prostaglandin endoperoxide synthase (PGHS-1 and
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PGHS-2) (39). These enzymes play an essential role in the

biosynthesis of prostaglandins, which are key mediators of

inflammation, pain, and fever. Nevertheless, despite their

extensive clinical application, NSAIDs exhibit notable limitations.

A recent report in Germany revealed that only 19.1% of AS patients

achieved complete remission with NSAIDs (40). 30% of patients

responded to NSAIDs, but many of them experienced side effects (8,

41). Long-term use of NSAIDs can induce adverse reactions in the

cardiovascular, gastrointestinal, and renal systems (8, 41).

Additionally, approximately one-third of patients are completely

unresponsive or intolerant to NSAIDs, necessitating alternative

treatment approaches (42). Consequently, bDMARDs such as

TNF-a inhibitors and IL-17 inhibitors, along with Janus kinase

inhibitors (JAKi), have been adopted as second-line therapies

following NSAIDs failure (43).
3.2 Conventional synthetic DMARDs

csDMARDs are a class of drugs that can alleviate and improve

symptoms in AS, includingMTX, SSZ, and hydroxychloroquine (44).

However, it typically takes several months to achieve therapeutic

effects (44). MTX is an anti-metabolite that competitively inhibits

dihydrofolate reductase, thereby interfering with DNA synthesis and

modulating the expression of various cytokines (45). Patients

receiving MTX should be regularly monitored for side effects

through detailed questioning and frequent blood tests (46). SSZ

exerts its effects by inhibiting the synthesis of prostaglandins (47).

However, a recently published guideline recommends SSZ only for

patients with persistent peripheral arthritis who are intolerant to or

contraindicated for TNF inhibitors (48). In addition, the

administration of csDMARDs at higher doses is associated with an

increased risk of various adverse events, including gastrointestinal

perforations, thromboembolism, and serious infections (49).
3.3 Targeted biological agents

3.3.1 TNF inhibitors
TNF-a plays a crucial role in spondylitis and sacroiliitis, as well

as in extra-articular manifestations such as uveitis (50, 51). TNF-a
inhibitors (TNFi) are the most widely used and studied therapeutic

agents in the treatment of AS (50, 51). Since their introduction in

the early 21st century, TNFi agents have significantly improved the

management of AS. Five TNF-a inhibitors are available for the

treatment of AS (52, 53). Infliximab (IFX) was the first TNFi

approved for treating AS. IFX is a chimeric monoclonal antibody

(75% human, 25% mouse) that blocks TNF-a from activating the

cellular receptor complex and is administered intravenously (IV)

(54). Adalimumab (ADA), a fully humanized monoclonal antibody

(IgG1), inhibits TNF-a from binding to its receptor sites and is

administered subcutaneously (SC) (55). Etanercept (ETN) is a

dimeric chimeric protein that combines the extracellular binding

domain of human TNF receptor-2 with the Fc region of human

IgG1 (56). This fusion blocks TNF from binding to cell surface
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receptors, inhibiting the inflammatory cascade. ETN is

administered SC. Golimumab (GLM) is a fully human

monoclonal antibody that specifically binds to both soluble and

transmembrane TNFs, thereby inhibiting their interaction with

TNF receptors (57). Administration of GLM can be performed

via IV or SC routes. Lastly, Certolizumab pegol (CZP) is a

PEGylated antigen-binding fragment of a recombinant human

monoclonal antibody that selectively binds to and neutralizes

both soluble and membrane-bound TNF-a, and is administered

SC (58).

TNFi agents have demonstrated efficacy and tolerability in the

treatment of AS; however, a significant number of cases have reported

treatment failure. Studies have shown that approximately 35% of AS

patients are primary non-responders to TNFi therapy, a condition

referred to as primary clinical failure (2). Additionally, 30% of AS

patients experience TNFi treatment failure within the first year of

therapy (1). Notably, the rate of TNFi treatment failure is twice as

high in female AS patients compared to males (59). This disparity
Frontiers in Immunology 04
may be attributed to differences in sex hormone balance and gene-

specific expression (59). The primary cause of clinical non-response

to infliximab or adalimumab is believed to be the development of

antidrug antibodies (ADAs), which can affect drug bioavailability and

reduce efficacy (60). The immunogenicity of biologics is

unpredictable, but it can be mitigated by selecting humanized or

fully human antibodies (61, 62). Beyond immunogenicity, variations

in patient genetic background, disease activity, drug dosage and

schedule, route of administration, concomitant medications

(including immunosuppressants), and other factors all contribute

to the differing sustained efficacy of each drug (60, 63).

Furthermore, TNFi treatment also brings certain side effects,

limiting its applicability. AS patients with heart failure (HF) have

been observed to experience worsening of their HF condition after

using TNFi (64, 65). Therefore, the American College of

Rheumatology (ACR) guidelines tend to recommend non-TNFi

bDMARDs for treating AS patients with HF (64, 65). Infections are

the most common serious adverse events associated with TNF
FIGURE 1

Current treatments for AS. (A) Nonsteroidal anti-inflammatory drugs (NSAIDs): NSAIDs are the first-line treatment for AS, providing rapid relief of
back pain, morning stiffness, and joint swelling. Commonly used NSAIDs include ibuprofen, naproxen, diclofenac and indomethacin. (B) Biological
agents: Biological agents, including TNF-a inhibitors (TNFi), interleukin inhibitors, and JAK inhibitors (JAKi), constitute a targeted and efficacious
therapeutic strategy for the management of AS. These agents modulate specific inflammatory pathways, offering a more precise treatment option
for patients, particularly those who exhibit an inadequate response to NSAIDs. (C) Conventional synthetic disease-modifying antirheumatic drugs
(csDMARDs): Drugs like sulfasalazine and methotrexate are used for patients with peripheral joint involvement or those with contraindications to
biologics. (D) Physical therapy: Physical therapy and surgical interventions are both essential components in the comprehensive management of AS.
Physical therapy aims to enhance mobility and strength through personalized exercise regimens, while surgery is considered for severe cases to
correct deformities or alleviate symptoms that have not responded to conservative treatments.
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inhibitors (66). An analysis of 71 clinical trials revealed that 40% of

serious infections were attributed to the use of TNF inhibitors (67).

The most common infections in IFX treatment were upper

respiratory infections (24%) and skin symptoms (24%), such as

itching, rash, or fungal infections (68). Other common adverse

reactions included bronchitis (28%) and infusion-related symptoms

(24%) (68). Moreover, the incidence of malignancies was found to

be threefold higher in patients treated with IFX and ADA for

rheumatoid spondylitis (69). The use of immunosuppressive drugs,

including TNFi, can increase cancer risk through various pathways,

with the risk varying depending on the type of cancer (69).

Additionally, a significant increase in tuberculosis risk has been

observed with TNFi use (70).

3.3.2 IL-17/23 inhibitors
Bone marrow cells within the spine can produce IL-23 in

response to mechanical stress and various other factors (71). IL-

23 promotes the differentiation of Th17 cells and stimulates

multiple cell types to produce IL-17 (72). Elevated levels of IL-17

and IL-23 have been observed in the peripheral blood of patients

with AS compared to healthy individuals (73). IL-17A and IL-17F

can amplify inflammatory responses in vitro when combined with

TNF inflammatory regulatory factors (74). Consequently, IL-17

inhibitors, such as secukinumab, have emerged as effective second-

line treatments for AS, offering significant relief of spinal pain and

improved sleep quality (75, 76). However, some patients still

experience treatment failure or severe side effects (74).

In a clinical study of secukinumab for AS, the most common

adverse event was nasopharyngitis (11.2%), followed by mild or

moderate oral candidiasis (5.3%) and serious adverse events (4.3%)

(76, 77). Additionally, 6.6% of patients discontinued treatment due to

adverse events (76, 77). The incidence of inflammatory bowel disease

(IBD) was comparable to that observed with TNF inhibitors (76, 77).

Other adverse reactions included acute uveitis, cardiovascular

diseases, neutropenia, leukopenia, and staphylococcus aureus

subcutaneous abscesses (76, 77). Notably, two Phase II clinical

trials of IL-17 blockers for Crohn’s disease were terminated early

due to worsening disease activity or a high incidence of serious

adverse events (66). Therefore, AS patients with IBD or uveitis

symptoms are advised to avoid IL-17 inhibitors (78).

IL-23 inhibitors initially showed promise in early studies but

failed to demonstrate efficacy in Phase III clinical trials in Germany

(72). Furthermore, in the treatment of AS patients with

ustekinumab, an IL-23 inhibitor, it was observed that individuals

at high risk for cardiovascular disease exhibited a significantly

elevated risk of acute coronary syndrome and stroke (79).
3.3.3 JAK inhibitors
JAK inhibitors (JAKi) interfere with the JAK-STAT signaling

pathway by inhibiting one or more JAK enzymes (JAK1, JAK2, JAK3,

TYK2), thereby regulating the expression of numerous inflammatory

cytokines involved in autoimmune and inflammatory diseases (80).

Since the approval of tofacitinib in 2012 for rheumatoid arthritis
Frontiers in Immunology 05
(RA), several other JAKi, including baricitinib, upadacitinib,

filgotinib, and peficitinib, have been introduced into clinical

practice (69). These agents have demonstrated robust efficacy in

controlling disease activity, often outperforming traditional TNF

inhibitors (81). However, the broad impact of JAKi on the JAK-

STAT pathway, which is involved in multiple signaling cascades,

raises concerns about potential off-target effects and associated

safety risks.

Recent real-world clinical data and randomized trials have

highlighted significant safety concerns associated with the use of

Janus kinase inhibitors (JAKi). Potential serious adverse events

(AEs) linked to JAKi include major adverse cardiovascular events

(MACE), venous thromboembolic events (VTEs), herpes zoster,

serious infections (including tuberculosis), and malignancies (82).

For instance, the ORAL Surveillance trial revealed that tofacitinib

was associated with a higher incidence of MACE and malignancies

compared to TNFi in patients with RA (83). Additionally, tofacitinib

exhibited a twofold higher risk of herpes zoster relative to bDMARDs,

and this elevated risk was also observed with other JAKi (69).

These findings have prompted regulatory agencies, including

the FDA and the European Medicines Agency (EMA), to issue

warnings and impose restrictions on the use of JAKi, particularly in

patients with cardiovascular risk factors or a history of malignancies

(43). The FDA has extended boxed warnings for increased risks of

MACE, VTE, infection, malignancy, and mortality to the entire

class of JAKi (43). This regulatory stance underscores the critical

importance of careful patient selection and individualized risk-

benefit assessment when considering JAKi therapy.

Despite the availability of various treatment options, challenges

persist in the management of AS. While biologics and JAK

inhibitors provide substantial therapeutic benefits, they are

associated with significant safety concerns, especially in patients

with comorbidities such as cardiovascular disease or a history of

infections. Additionally, the high costs of biologics may restrict their

accessibility for certain patient populations.
3.4 Physical therapy

Surgical intervention may be considered for patients with AS in

cases of severe spinal deformity, spinal fractures, or other significant

complications when non-surgical treatments have failed. In AS,

multi-level ankylosis compromises spinal stability, leading to

fractures that are 3–4 times more prevalent than in the general

population and predominantly affect the cervical spine or cervical-

thoracic junction (84). Given the complexity, surgery is preferred

over conservative treatment for better outcomes. However, it carries

high risks of complications both peri-operatively and post-

operatively (85). Other conventional physical therapies include

cryotherapy, ultrasound therapy, electrotherapy, kinesiotherapy,

and massage (86). Systematic physical activity is essential as it

effectively mitigates the progression of AS. Nevertheless, physical

therapy may have certain limitations, including the requirement for

consistent effort and time commitment, varying effectiveness
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depending on individual conditions, and potentially high costs.

There is an increasing emphasis on adopting a personalized and

multidimensional approach to AS treatment, which integrates

diverse therapeutic modalities. In light of these limitations, there

is increasing interest in investigating alternative therapeutic

approaches, such as cell therapy.
4 Mechanisms and therapeutic effects
of MSCs in the treatment of AS

4.1 Overview of MSCs

MSCs are multipotent adult stem cells derived from the

mesoderm during early embryonic development, characterized by

their self-renewal capacity and potential for multilineage

differentiation (Figure 2). Initially identified in bone marrow by

Friedenstein et al., MSCs have since been isolated from various
Frontiers in Immunology 06
tissues, including umbilical cord, dental pulp, and adipose tissue

(87, 88). The International Society for Cellular Therapy (ISCT) has

established standardized criteria for the identification of MSCs,

which include: (1) adherence to plastic in vitro; (2) expression of

specific surface markers, such as CD105, CD90, and CD73, while

lacking expression of CD45, CD34, CD14 or CD11a, CD79a or

CD19, and HLA II molecules; and (3) the ability to differentiate into

osteoblasts, chondrocytes, and adipocytes in vitro (88).

Beyond their differentiation potential, MSCs exhibit robust

immunomodulatory functions, capable of modulating both innate

and adaptive immune responses. They reduce the pro-

inflammatory phenotype by directly or indirectly interacting with

dendritic cells, macrophages, NK cells, B cells, and T cells (89).

Notably, MSCs can adapt their polarization phenotypes in response

to the local microenvironment, shifting between anti-inflammatory

and pro-inflammatory states according to disease conditions. This

adaptability makes MSCs a promising therapeutic candidate for

autoimmune diseases, including AS, where the inflammatory milieu

can be dynamically targeted.
FIGURE 2

Characterization of MSCs. MSCs are derived from diverse tissue sources, including bone marrow, dental pulp, umbilical cord, and iPSCs. These cells
exhibit specific surface marker expression profiles, such as CD105, CD90, and CD73, while lacking the expression of hematopoietic markers CD45,
CD34, CD14 or CD11b, B cell markers CD79a or CD19, and HLA-DR. Notably, MSCs possess multipotent differentiation potential, enabling them to
differentiate into various lineages, including adipocytes, osteoblasts, and chondrocytes.
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4.2 Immunomodulatory effects
and mechanisms of MSCs in the
treatment of AS

MSCs are multipotent progenitor cells with the capacity to

modulate immune responses and promote tissue repair through the

secretion of soluble factors and direct cell-to-cell interactions. These

cells exhibit potent immunosuppressive properties by secreting a

variety of molecules, including indoleamine 2,3-dioxygenase (IDO),

prostaglandin E2 (PGE2), hepatocyte growth factor (HGF),

transforming growth factor-beta1 (TGF-b1), insulin-like growth

factor-1 (IGF-1), nitric oxide (NO), heme oxygenase-1 (HO-1),

cyclooxygenase-2 (COX-2), and IL-10 (90–92).

HLA-B27 is a well-established immunogenetic marker for AS,

with the arthritogenic peptide hypothesis suggesting that abnormal

antigen presentation to CD8+ T cells by HLA class I molecules

triggers a specific immune response. MSCs have the ability to

regulate T cell proliferation, differentiation, and activity, and can

reduce the production of pro-inflammatory cytokines. MSCs can

upregulate IDO expression in response to inflammatory cytokines,

notably IFN-g. IDO catalyzes the conversion of tryptophan to

kynurenine, thereby inhibiting T cell proliferation through

disruption of cellular protein synthesis (13, 93). Additionally,

MSCs produce inducible nitric oxide synthase (iNOS), which

induces macrophages to release NO, thereby suppressing T cell

function (94). MSCs also inhibit the differentiation of Th17 cells, a

subset of T cells implicated in the pathogenesis of AS. Huang et al.

described the inhibitory effect of human umbilical cord-derived

MSCs on T cells in patients with SpA (95). In co-culture with

peripheral blood mononuclear cells (PBMCs), umbilical cord-

derived MSCs significantly reduced the production of IL-17,

showing potential for the treatment of SpA. Regulatory T cells

(Tregs) are a subset of T cells with potent immunosuppressive

functions, acting by suppressing effector T cells and mitigating

inflammation-induced tissue damage. Both peripheral blood and

synovial fluid examinations in AS patients have shown a reduced

number of Tregs, which is positively correlated with lower FOXP3

expression levels (96, 97). Multiple studies have shown that MSCs

induce Treg proliferation, a key mechanism by which they limit

inflammation. For instance, bone marrow-derived MSCs promote

the differentiation of CD4+ T cells into Tregs in co-culture with

PBMCs, expressing high levels of CD25 and FOXP3 (98). Moreover,

bone marrow-derived MSCs induce Treg proliferation through the

secretion of TGF-b1 and interaction with macrophages (99). IDO is

also implicated in MSC-induced Treg generation (100). MSCs can

directly interact with T cells, exhibiting the most potent inhibitory

effects on activated T cells through direct cell-to-cell contact (101).

This interaction is further enhanced by the upregulation of

intercellular adhesion molecule-1 (ICAM-1) and vascular cell

adhesion molecule-1 (VCAM-1) in MSCs, which strengthens

their engagement with T cells (101).

Monocytes and macrophages in AS can polarize into pro-

inflammatory (M1) or anti-inflammatory (M2) phenotypes, a

process closely related to active inflammation, tissue damage, and

regenerative reconstruction. In late-stage AS patients, monocytes
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were significantly polarized into M2 macrophages, with the M2/M1

ratio positively correlated with structural lesion damage (mSASSS)

and negatively correlated with inflammatory markers (ESR, CRP)

and the Bath Ankylosing Spondylitis Disease Activity Index

(BASDAI) (102) . MSCs influence the polarizat ion of

macrophages, which may be caused by cell-to-cell contact

mechanisms and soluble factors (such as IDO, PGE2, IL-10, and

COX-2) (13). For example, MSCs inhibit the proliferation of M1

macrophages and activate the production of M2 macrophages

through the activation of TNF-mediated COX-2 and TNF-

stimulated gene 6 (TSG-6) (13). Our previous work also

demonstrated that in a mouse spondylitis model, the injection of

umbilical cord-derived MSCs reduced the levels of inflammatory

cytokines (TNF-a and CCL-2) in the spleen and serum of

mice (103).

NK cells are a critical component of the innate immune system.

HLA-B27 is specifically recognized by the inhibitory receptor

KIR3DL1 on NK cells, with a correlation between KIR receptor

expression and AS activity (104). This suggests that NK cells play a

significant role in AS pathogenesis. MSCs can regulate NK cell

phenotype through cell-to-cell interactions or secretion of factors

such as TGF-b1 and PGE2, inhibiting their proliferation, cytokine

secretion, and cytotoxicity (105). MSCs also suppress IL-2-

stimulated NK cell proliferation (106). Interestingly, MSCs secrete

HLA-G5 and IFNg, which inhibit NK cell cytotoxicity and innate

immune responses while promoting Treg proliferation (90).

Dendritic cells (DCs) are key antigen-presenting cells that

synthesize IL-23, a major pro-inflammatory cytokine in AS

(26, 107). IL-23 induces the differentiation of lymph node T cells

into pro-inflammatory Th17 cells and stimulates IL-23R+

lymphocytes in the sacroiliac joints to secrete IL-22, which in

turn activates osteoblasts and leads to local bone formation

(108, 109). MSCs inhibit the upregulation of antigen-presenting

and co-stimulatory signals (CD1a, CD40, CD80, CD86, and HLA-

DR) during DC differentiation and prevent the increase in CD40,

CD86, and CD83 expression during DC maturation (110).

Moreover, MSCs and their supernatants interfere with DC

endocytosis, reducing their ability to secrete IL-12 and activate

allogeneic T cells (110). Jiang et al. also proposed a similar view that

MSCs can reduce the expression of CD83 on mature DCs,

indicating that DCs have lost their mature characteristics (111).

MSCs can also inhibit DC maturation stimulated by CSF and IL-4

through the secretion of PGE2 (111). Additionally, MSCs inhibit

DC differentiation through the production of IL-10 and cell-to-cell

contact (112).
4.3 Heterotopic ossification (HO): a
potential mechanism of MSCs in the
treatment of AS

HO represents a pathological condition defined by the ectopic

formation of new bone tissue in soft tissues beyond the normal

skeletal system, typically evidenced by the presence of osteoblasts

and chondrocytes. HO is one of most significant pathological
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features of AS (113). In AS, HO is predominantly manifested in soft

tissues such as spinal ligaments and tendons, where the appearance

of chondrocytes leads to the development of new bone (113). This

process commonly occurs in conjunction with the progression of

inflammation and bone erosion observed in AS patients. It can lead

to joint stiffness, spinal ankylosis, and spinal deformity, and may

even result in the “folded person” phenomenon. Although

inflammation has long been considered a trigger for HO in AS,

existing AS treatments such as NSAIDs and TNFi can rapidly

alleviate inflammation and pain, but they do not significantly

prevent the progression of bone lesions in AS patients.

4.3.1 Stages of HO in AS
The formation of bone tissue primarily happens through two

distinct processes: intramembranous ossification and endochondral

ossification (114). Intramembranous ossification is directly

mediated by osteoblasts, which facilitate the local deposition of

calcium phosphate crystals and subsequently contribute to bone

formation (115). Endochondral ossification, which is initially

mediated by chondrocytes and subsequently replaced by

osteoblasts for the formation of bone tissue, plays a pivotal role in

the progression of HO in AS (116).

HO in AS can be divided into four stages: inflammation,

chondrogenesis, osteogenic activity, and pathological bone

formation (117, 118). The initial inflammatory stage, mediated by

both innate and adaptive immune cells, is a crucial trigger for HO in

AS. Neutrophils from AS patients exhibited enhanced formation of

neutrophil extracellular traps that carry bioactive IL-17A and IL-1b,
which promote the differentiation of MSCs toward bone-forming

cells (119). This inflammatory microenvironment sets the stage for

subsequent pathological alterations. During the chondrogenesis

stage, chondrocyte differentiation and cartilage formation occur,

particularly in the ligaments of patients with early-stage AS (118).

This cartilage formation serves as an intermediate phase before the

onset of calcification. As the disease progresses, calcified cartilage is

resorbed by osteoclasts, which are numerous in areas of ligament

inflammation and on the surfaces of calcified cartilage. This

osteoclast-mediated resorption of calcified cartilage initiates

ossification, representing a pathologic process similar to acquired

HO (118). In the osteogenic activity stage, osteoblasts replace the

resorbed cartilage with bone tissue, leading to the formation of

mature bone (120). As the disease progresses, approximately 60% to

70% of AS patients exhibit radiographic evidence of sacroiliac joint

ankylosis, bridging ligament bone spurs in the axial skeleton, and

enthesophytes or peripheral joint osteophytes (121). HO in AS is a

complex and multifaceted pathological process, and understanding

its stages and mechanisms is essential for developing targeted

therapeutic strategies to manage HO in AS patients.

4.3.2 The molecular mechanisms of endogenous
MSCs in HO in AS

During bone formation, chondrocytes differentiate from MSCs

and promote the recruitment and proliferation of MSCs. These

MSCs subsequently differentiate into chondrocytes and osteoblasts,

eventually forming a mature bone tissue structure (117). MSCs
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differentiation capacity, and MSCs migrating into cartilaginous

tissues can promote pathological ossification by differentiating

into osteoblasts. HLA-B27 promotes pathological ossification

caused by AS-MSCs through the sXBP1/RARB/TNAP pathway

(122). In addition to inducing ER stress, HLA-B27 accelerates

bone formation by interacting with the activin receptor-like

kinase-2 (ALK2) subunit of the BMP signaling pathway, thereby

enhancing the sensitivity of the BMP-TGF signaling pathway to

TGF-b and upregulating the expression of tissue nonspecific

alkaline phosphatase (TNAP) (123). Mutations in TNAP

haplotypes, including rs3767155 (G), rs3738099 (G), and

rs1780329 (T), are primarily associated with ankylosis in AS

(124). The ossification of AS-MSCs requires the synergistic action

of HLA-B27 and TNAP, which may explain why not all HLA-B27-

positive individuals develop ankylosis.

Furthermore, the reduction of DKK-1 in AS-MSCs mediated by

inflammatory cytokines is a key factor in pathological bone

formation. Compared with controls, MSCs from AS patients

exhibit insufficient DKK-1 expression, mainly due to IL-17-

mediated inhibition of DKK-1 and stimulation of osteoblast

function (125). Additionally, the imbalance of BMP-2 and Noggin

secretion may lead to abnormal osteogenic differentiation of AS-

MSCs (126). Osteoprogenitor cells secrete chemokine ligand

CXCL12 and stem cell factors, stimulating the proliferation of

myeloid MSCs. Osteocytes secrete sclerostin and granulocyte

colony-stimulating factor, regulating the differentiation of

lymphocytes and myeloid cells (127). In summary, these studies

reveal the intricate interplay between the immune and skeletal

systems, with numerous common cytokines implicated in both.

4.3.3 Therapeutic potential of transplanted MSCs
for HO in AS

In the preceding section, numerous studies have demonstrated

the immunomodulatory role of MSCs in the inflammatory process

of AS. MSCs suppress inflammatory signals that are essential for

osteogenesis, such as IL-17, thereby potentially inhibiting HO (128).

Moreover, our previous preclinical animal experiments have shown

the therapeutic effects of MSC transplantation on AS, with MSC

treatment inhibiting HO, maintaining clear facet joint spaces, and

slowing down structural lesions in the intervertebral disc, nucleus

pulposus, annulus fibrosus, and cartilage (103). However, further

in-depth exploration is still needed regarding the effects and

mechanisms of MSC transplantation on AS, especially in terms

of HO.
4.4 Clinical application of MSCs in the
treatment of AS

In recent years, the immunomodulatory and regenerative

properties of MSCs have garnered significant attention,

prompting the initiation of several clinical trials to explore their

therapeutic potential for AS (Figure 3). The earliest reported use of

stem cells for AS was serendipitous: a patient with acute myeloid
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leukemia and AS experienced marked relief of AS symptoms and

improved clinical indicators following peripheral blood stem cell

transplantation (129). This patient remained symptom-free from

AS for approximately 3 years post-transplantation, without the

need for anti-TNF or NSAID therapy (129).

In 2013, the Wang group conducted a comprehensive study to

evaluate the feasibility, safety, and efficacy of bone marrow-derived

MSC therapy in 31 AS patients who were intolerant to NSAIDs

(130). AS patients participating in this study received four

intravenous infusions of MSCs on days 0, 7, 14, and 21, with each

infusion containing 1×10^6 cells/kg. The results showed that the

proportion of patients achieving ASAS20 response was 77.4% at

week 4, 54.8% at week 12, and 32.3% at week 16, with a mean

response duration of 7.1 weeks following the fourth infusion. The

mean ASDAS-CRP score decreased from 3.6 ± 0.6 at baseline to 2.4

± 0.5 at week 4, but increased to 3.2 ± 0.8 at week 20. MRI

assessments revealed a mean total inflammatory extent (TIE) of

533,482.5 at baseline, which decreased to 480,692.3 at week 4 (p >

0.05) and further to 400,547.2 at week 20 (p < 0.05). No adverse

reactions were reported. In 2017, the Li group explored the

therapeutic effect of umbilical cord-derived MSCs on AS (131). In

this study, umbilical cord-derived MSCs were administered via

intravenous infusion to five patients with AS. The cell doses ranged

from 1.2 to 3.5×10^6 cells/kg, and each patient received between 1

to 3 infusions. The study revealed that following treatment, both the

Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and

the Bath Ankylosing Spondylitis Functional Index (BASFI)

demonstrated significant reductions. Specifically, BASDAI

decreased from a baseline of 4.686 ± 0.999 to 1.880 ± 1.499 at the

3-month follow-up (P=0.014), while BASFI declined from 42.000 ±
Frontiers in Immunology 09
21.213 at baseline to 10.900 ± 13.585 at the 3-month follow-up

(P=0.062). However, the Bath Ankylosing Spondylitis Metrological

Index (BASMI) increased nonsignificantly (P=0.676). The

erythrocyte sedimentation rate decreased in 3 patients, and the C-

reactive protein level was significantly reduced in 1 patient. Overall,

symptoms of AS improved in all patients. No serious adverse

reactions were noted; however, mild transient fever occurred in

three patients within 2–6 hours post intravenous administration.

More recently, we conducted a clinical study (NCT05962762)

further confirmed the safety and efficacy of umbilical cord-

derived MSCs for AS treatment. Other ongoing trials

(NCT01420432, NCT01709656, NCT02809781) continue to

evaluate the therapeutic potential of MSC infusion for AS (Table 1).

MSC therapy has demonstrated significant potential in

improving clinical symptoms and alleviating pain in patients with

AS, with a favorable safety profile. This emerging therapeutic

strategy offers a promising alternative to current treatments, such

as biologics and JAK inhibitors, which are often associated with

notable safety concerns and high costs. The immunomodulatory

and regenerative properties of MSCs, which include the secretion of

soluble factors and direct interactions with immune cells, may

address the underlying pathogenesis of AS more effectively, with

fewer adverse effects. However, several challenges remain to be

addressed. Future research should focus on optimizing MSC

sourcing, dosing, and administration routes, as well as conducting

well-designed clinical trials to further validate their efficacy and

safety in AS. Continued research and larger-scale clinical trials are

anticipated to provide valuable insights and drive the development

of this innovative treatment strategy, ultimately offering new hope

for patients with AS.
FIGURE 3

Immunomodulatory mechanisms of MSCs and current clinical trials in AS. MSCs inhibit the proliferation of T cells, promote the differentiation of
regulatory T cells (Tregs), suppress dendritic cell (DC) maturation, and induce macrophages to adopt an immunosuppressive phenotype. Additionally,
several clinical trials are currently underway to validate the safety and efficacy of MSCs in AS, including the ongoing trial in our research group.
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5 CAR-based cell therapies in
autoimmune diseases and their
potential in AS treatment

A CAR is a chimeric antigen receptor molecule constructed

through gene engineering technology, designed to confer specificity

to immune effector cells, such as T lymphocytes, for a particular

target antigen epitope (132). This modification enhances the ability of

T cells to recognize and respond to antigen signals, thereby

facilitating their activation and cytotoxic activity (132). Initially

developed for cancer treatment, CAR T-cell therapy has

demonstrated remarkable efficacy in managing hematologic

malignancies and solid tumors. Building on these successes, CAR

T-cell therapy is now being explored for its potential applications in

autoimmune diseases (Figure 4). The rationale behind this expansion

lies in the ability of CAR T cells to selectively deplete pathogenic

immune cells, such as autoreactive B cells, T cells, and antigen-

presenting cells (APCs), which drive the pathogenesis of autoimmune

disorders. This approach aims to reset the immune system by

eliminating the cells responsible for aberrant immune responses,

thereby offering a novel therapeutic strategy for diseases characterized

by high levels of autoantibodies or overactive lymphocytes.
5.1 Emerging CAR targets in autoimmune
diseases

CD19 and B cell maturation antigen (BCMA) have emerged as

key B-cell surface targets, demonstrating significant therapeutic

potential in conditions such as systemic lupus erythematosus
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(SLE), idiopathic inflammatory myopathies, and systemic sclerosis

(133). CD19 is expressed throughout multiple stages of B cell

development, from pro-B cells to plasmablasts, but not in plasma

cells (134). This widespread expression, coupled with CD19’s

multifunctional role in B cell activation, maturation, and

signaling, makes it an attractive target for B cell-directed

therapies in autoimmune diseases such as SLE. Molecules like

BCMA, CD38, and CD138 are predominantly expressed on

plasma cells, with BCMA and CD38 also present on plasmablasts

(134). This differential expression pattern allows therapeutic

strategies to selectively target specific subsets or broader spectra

of the B cell lineage, depending on the disease context and desired

therapeutic effect.

Beyond B-cell targets, CAR T-cell therapies are being developed

to directly target specific autoantibodies involved in autoimmune

diseases. For instance, in pemphigus vulgaris, a skin disease

characterized by autoantibodies against desmoglein 3 (Dsg3),

anti-Dsg3 CAR T-cell therapy is currently undergoing clinical

trials (135). Additionally, CAR T-cell therapies targeting

cytokines are also in development, with a focus on modulating

the inflammatory milieu in autoimmune diseases. Key targets

include IL-23, which plays a critical role in mediating

inflammatory responses (136). By targeting these cytokines, CAR

T cells may potentially disrupt the pro-inflammatory signaling

pathways, leading to reduced disease activity and improved

clinical outcomes.

An innovative therapeutic strategy focuses on the precise

elimination of pathogenic T-cell subsets that proliferate

abnormally in specific autoimmune diseases. For example,

targeting TRBV9+ T cells in AS aims to selectively eliminate

pathogenic T cells while preserving normal immune cell
TABLE 1 Clinical trials for AS treatment with MSCs.

Clinical
trial/
Report

Study
design

Cell
source

Number
of patients

Route of administration and doses Follow-up
time

Locations

NCT01420432 Phase I UC-MSCs 10 UC- MSCs at a dose of 1.0 × 106 MSC/kg, repeated
after three months and DMARDs such as
sulfasalazine, methotrexate, thalidomide for
12 months

3 months Shandong University

NCT02809781 Phase
II/III

hBM-MSCs 250 1.0 × 106 MSC/kg, receive infusion per week in the
first 4 weeks and every two weeks in the second
8 weeks.

12 weeks Sun Yat-Sen Memorial
Hospital of Sun Yat-
Sen University

NCT01709656 Not
Applicable

MSCs 120 Human-MSCs: 1.0 × 104-6 cells/kg, IV on day 1 of
each 14–60 day cycle, 1–6 times treatment,
plus NSAIDs.

24 weeks Sun Yat-Sen University

NCT05962762 Phase I UC-MSC 9 Low-dose group: 1x106cells/kg
Medium-dose group: 3x106cells/kg
High-does group: 5x106cells/kg

4 weeks Asia Cell
Therapeutics (Shanghai)

Report (130). / Allogenic
MSCs

31 1x106 MSCs/kg body weight in 10 ml normal saline 20 weeks Sun Yat-sen Memorial
Hospital, Sun Yat-sen
University, Guangzhou, P.
R. China

Report (131) / UMSCs 5 1.2-3.5x106/kg The Second Hospital of
Shandong University
The clinical information is sourced from the ClinicalTrials.gov website (https://clinicaltrials.gov/).
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populations (137). This strategy enhances treatment precision and

reduces adverse effects on healthy cells, potentially improving the

safety and efficacy of CAR T-cell therapy in autoimmune diseases.

These advancements reflect the ongoing evolution of CAR T-cell

therapy, moving beyond traditional cancer applications to address

the complex immunopathology of autoimmune diseases. Future

research is expected to identify additional targets and refine current

strategies, thereby significantly broadening the therapeutic potential

of CAR T-cell therapy in this field.
5.2 Clinical application of CAR-based cell
therapies in the treatment of autoimmune
diseases

Preclinical and clinical studies have demonstrated the promising

therapeutic potential of CAR T-cell therapy in various autoimmune

diseases, including multiple sclerosis, type 1 diabetes, inflammatory

bowel disease, SLE, and pemphigus vulgaris (138). A notable case

reported by the Mougiakakos group involved a woman with severe

refractory SLE (SELENA score: 16) and Class III/IV lupus nephritis

who received anti-CD19 CAR T-cell therapy (139). Following

fludarabine lymphodepletion and CAR T-cell infusion, significant

clinical improvement was observed within five weeks, characterized

by normalization of dsDNA autoantibody titers and complement

levels (C3 and C4). The SLE disease activity index score decreased

from 16 at baseline to 0 at follow-up, and no significant adverse

reactions were reported. The research team subsequently

administered CAR T-cell therapy to four additional patients with

refractory SLE, all of whom achieved a low lupus disease activity state

(LLDAS) and successfully discontinued all SLE-specific medications

(https://doi.org/10.1136/annrheumdis-2022-eular.1120). In another

clinical study conducted by the Zhang group, patients with SLE and

stage IV diffuse large B-cell lymphoma (DLBCL) exhibited

continuous relief from disease activity following the infusion of
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CAR T cells targeting CD19 and BCMA (139). Follow-up

examinations confirmed effective B-cell depletion, with stable

disease remission lasting up to 23 months. These findings are

encouraging and suggest that CAR T-cell therapy may offer a

novel treatment option for patients with autoimmune diseases.

However, the potential risks associated with CAR T-cell therapy,

such as cytokine release syndrome (CRS) and neurotoxicity,

necessitate further investigation (140). Additionally, the high cost

of CAR T-cell therapy limits its widespread application.

To address these challenges, advancements in preparation

techniques and diversification of cell types are being explored.

Recent studies have investigated the expression of CARs in

alternative cell types, such as NK cells, macrophages, regulatory T

cells (Tregs), and MSCs (138). NK cells, known for their MHC-

independent cytotoxicity and high safety profile, present a

promising avenue for developing allogeneic therapies aimed at

targeting pathogenic immune cells (141). Macrophages can

phagocytose specific antigens and promote inflammatory

responses, while also cross-presenting antigens to activate T cells.

In contrast to the direct cytotoxic mechanisms, the activation of

Tregs or MSCs through CAR-mediated antigen stimulation

leverages their immunomodulatory properties to regulate immune

responses. Tregs can secrete immunosuppressive molecules such as

TGF-b, IL-10, and IL-35, making them suitable candidates for

treating autoimmune diseases and preventing organ transplant

rejection by inhibiting excessive T-cell activation (15). The

Fransson group utilized CAR technology to target myelin

oligodendrocyte glycoprotein (MOG) and co-express FoxP3,

resulting in the generation of antigen-specific CAR Tregs (142).

These MOG-CAR Tregs demonstrated the ability to inhibit effector

T-cell proliferation in vitro and alleviate symptoms in experimental

autoimmune encephalomyelitis (EAE) mouse models by reducing

pro-inflammatory cytokine levels. Moreover, the MacDonald group

reported that allogeneic HLA-A2 antigen-specific CAR Tregs (A2-

CAR Tregs) maintained high expression levels of FoxP3, CD25, and
FIGURE 4

CAR-based immunotherapy for autoimmune diseases. The process of developing CAR-based therapies involves several key steps, starting from the
selection of the cell source to the final deployment of engineered CAR cells.
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CTLA-4 in vitro, effectively preventing graft-versus-host disease

(GVHD) in immunodeficient mouse models (143). Recently, the

Sirpilla group demonstrated the therapeutic potential of CAR-

MSCs in treating GVHD (144). Specifically, E-cadherin-targeted

CAR-MSCs localized to colonic cells and improved symptoms and

survival rates through the upregulation of immunosuppressive

genes and cytokines.

Table 2 summarizes the main clinical progress of CAR-based

cell therapies for the treatment of autoimmune diseases to date.

CAR-based cell therapy has emerged as a revolutionary

immunotherapy, achieving significant breakthroughs in the

treatment of autoimmune diseases in recent years. These studies

highlight the potential of CAR-based cell therapy to induce long-

term remission and reduce disease activity in patients with severe

autoimmune diseases. AS is an autoimmune disease characterized

by immune system dysregulation. CAR-based cell therapy may offer

new treatment opportunities for AS patients by targeting abnormal

immune cells. However, the application of CAR-based cell therapy

for AS is still in the research and exploration stage and has not yet

reached a mature stage for clinical application.
5.3 Potential of CAR-based therapy for AS
treatment

In contrast to SLE, which is primarily driven by pathogenic B

cells, AS is characterized by dysregulated T cell activation (145). In

recent years, significant progress has been made in CD7- and CD5-

targeted CAR-T cell therapy for T-cell malignancies (146, 147).

However, the efficacy of these approaches in AS remains to be

demonstrated. Considering the widespread distribution and critical

role of T cell antigens in normal tissues, the design of CAR-T cell

therapy for AS should emphasize precision to minimize potential

off-target effects and preserve the integrity of the immune system.

Pathogenic T cells, such as TRBV9+ T cells as reported, represent

promising candidates for therapeutic targeting (20). Targeting these

specific T cells may offer a more refined strategy for AS treatment,

thereby minimizing the risk of off-target effects.

Utilizing CAR-T cells to target and eliminate pathogenic cells

represents one potential therapeutic strategy for AS. Another

approach involves harnessing immune regulatory cells to precisely

modulate the immune microenvironment in AS. Given the limited

accessibility of the disease site in AS, employing inflammation-

suppressing cells such as Tregs and MSCs, with enhanced targeting

capabilities, may also hold considerable promise for effectively

treating AS. CAR-based therapies warrant further investigation in

future studies. Leveraging CAR-based therapies to selectively

eliminate the root causes of the disease while simultaneously

modulating the excessive inflammatory microenvironment,

without inducing significant systemic immune suppression, may

offer a new generation of safe and effective therapies for curing AS.
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6 Perspective on novel cell therapies
for AS treatment

Despite the availability of diverse treatment modalities for AS,

many therapeutic regimens are often accompanied by challenges

such as adverse effects and the development of long-term drug

resistance. These challenges require us to continuously explore and

develop novel treatment approaches. The emergence and

development of novel cell therapies, particularly MSC therapy

and CAR-based therapy, have brought promising hope to the

treatment of AS (Figure 5).
6.1 Current challenges and next steps of
MSCs for AS treatment

Extensive preclinical and clinical studies have demonstrated

that MSCs exhibit high safety and efficacy in treating AS. These cells

play a pivotal role in modulating overactivated immune cells,

reducing chronic inflammation and promoting tissue repair

through their anti-inflammatory and regenerative properties.

However, before wide application of MSC treatment to AS,

several challenges must be addressed.

6.1.1 Quality and cost control of MSCs
The origin of MSCs is a significant factor. For acquisition,

umbilical cord-derived MSCs (UC-MSCs) provide a more

convenient and non-invasive alternative to bone marrow-derived

MSCs (BM-MSCs) and adipose tissue-derived MSCs (AD-MSCs)

(148). Moreover, the heterogeneity of different MSC populations

must be carefully considered for clinical applications. A systematic

review and network meta-analysis revealed that, autologous BM-

MSCs showed the most improvement in Range of Motion (ROM)

and pain relief in knee osteoarthritis patients, UC-MSC were most

effective for positive Whole-Organ Magnetic Resonance Imaging

Score (WORMS), and AD-MSCs were most effective for Western

Ontario McMaster Universities Osteoarthritis Index (WOMAC)-

positive patients (149). However, which types of MSCs have the best

therapeutic outcomes for AS remain uncertain.

Recently, the U.S. Food and Drug Administration (FDA) in the

United States and the National Medical Products Administration

(NMPA) in China approved two MSC drugs for treating GVHD

(150). However, there is a significant price difference between the

Ryoncil® (allogeneic BM-MSCs, Mesoblast) and Amimestrocel

Injection (hUC-MSCs, Platinum Life). This discrepancy can

primarily be attributed to variations in cell sources, research costs,

manufacturing procedures, and market strategies. To address the

cost and ensure consistent quality and efficacy, standardization of

practices in culture, cryopreservation, and transportation of MSCs

is essential in both preclinical and clinical settings (151). Moreover,

the in vitro expansion of MSCs to achieve high cell yields is critical
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1613502
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ke et al. 10.3389/fimmu.2025.1613502
for advancing MSC therapy (151). This process involves cost

challenges that must be addressed for feasible and scalable MSC

treatments. Striking a balance between optimizing MSC

proliferation and ensuring safety, efficacy and cost-effectiveness is

essential for broader clinical application.

6.1.2 Optimization of the MSC administration
procedure

The ideal treatment dosage, optimization of the administration

route and determination of the optimal timing for MSC

intervention in AS patients should be standardized and

incorporated into a standardized operating procedure (SOP) to

facilitate comparisons of MSC therapy efficacy.
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In a rat model of osteoarthritis, MSC transplantation via both

intra-articular injection and intravenous injection was explored,

with results indicating that cells administered through intra-

articular injection persisted in the knee joint for up to one week,

highlighting the potential for sustained local therapeutic effects

(152). Current clinical trials of MSC administration for AS

predominantly utilize intravenous injection, which may be limited

by insufficient cell homing and retention. Exploring alternative

administration routes or evaluating the potential of repeated

injections represents a critical direction for advancing future

research. In addition, larger-scale and higher-quality studies are

needed to comprehensively evaluate the feasibility and potential

value of MSC therapy for AS.
TABLE 2 The summary of ongoing and planned clinical trials of CAR-based treatments for autoimmune diseases.

Condition Trial registry number Target Cell type

SLE NCT03030976 / NCT06150651 / NCT05988216 / NCT05859997 /
NCT06333483 / NCT06056921 / NCT06420154 / NCT05859997 /
NCT06222853 / NCT06347718 / NCT06294236 / NCT05765006 /
NCT06361745 / NCT06417398 / NCT06152172 / NCT06121297
/ NCT06297408

CD19 CAR-T cells

SLE NCT05858684 / NCT05474885 / NCT06350110 / NCT06428188 /
NCT05846347 / NCT05030779

BCMA-CD19 CAR-T cells

SLE NCT06340490 CD19 CAR-DNT cells

SLE NCT06373081 CD19-CD3E CAR-T cells

SLE NCT06153095 / NCT06462144 CD19 / CD20 CAR-T cells

SLE NCT06249438 / NCT06316076 CD20-BCMA/ CD19 CAR-T cells /
CAR-DNT cells

SLE NCT06106906 / NCT06106893 / NCT06310811 CD19 CAR-T cells /
CAR-gdT cells

SLE NCT05869955 CC-97540 / CD-19 CAR-T cells

SS NCT05085431 BCMA / CD19 CAR-T cells

SSc NCT05085444 CD19 / BCMA CAR-T cells

ANCA-associated vasculitis,
AIHA (+ POEMS syndrome
and amyloidosis)

NCT05263817 BCMA / CD19 CAR-T cells

MG NCT06371040 CD19-BCMA CAR-T cells

MG NCT06193889 / NCT06359041 CD19 CAR-T cells

MG NCT05828225 / NCT06419166 CD19/ CD19-BCMA CAR-T cells

MG NCT04146051 / NCT04561557 BCMA CAR-T cells

MG NCT05451212 MuSK CAART cells

PV NCT04422912 Dsg3 autoantibodies CAART cells

NMOSD NCT03605238 CD19, CD20 CAR-T cells

MG, NMOSD, CIDP, IMNM NCT04561557 BCMAs CAR-T cells

CD, UC, DM, AOSD NCT05239702 CD7 CAR T cells

GVHD NCT05993611 CD6 CAR-Tregs cells
SLE, Systemic lupus erythematosus; SS, Sjögren’s syndrome; SSc, Systemic sclerosis; MG, Myasthenia gravis; PV, Polycythemia vera; NMOSD, Neuromyelitis optica spectrum disorders; CIDP,
Neuromyelitis optica spectrum disorders; IMNM, Immune-mediated necrotizing myopathy; CD, Crohn’s disease; UC, Ulcerative colitis; DM, Dermatomyositis; AOSD, Adult-onset still’s disease;
GVHD, Graft-versus-host disease. The clinical information is sourced from the ClinicalTrials.gov website (https://clinicaltrials.gov/).
frontiersin.org

https://clinicaltrials.gov/
https://doi.org/10.3389/fimmu.2025.1613502
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ke et al. 10.3389/fimmu.2025.1613502
6.1.3 Tracing MSC cell fate and effects in vivo
Although the safety of administering MSCs has been

demonstrated in numerous clinical trials, the limited understanding

of their dynamic biodistribution and fate within the body represents a

significant challenge to the advancement of MSC therapies.

The majority of studies indicate that MSCs exhibit a relatively

brief residence time in the body following intravenous

administration, with most cells being sequestered in the lungs and

remaining viable for 24–72 hours (153, 154). This rapid clearance is

attributed to multiple factors, including apoptosis, autophagy,

ferroptosis in MSCs, as well as phagocytosis by various immune

cells (154–158). The fate of infused MSCs, including their

interaction with the host immune system, is crucial for their

therapeutic impact. MSCs are efficiently phagocytosed by innate

immune cells, such as monocytes and macrophages, resulting in

phenotypic and functional modifications in these cells, including

the secretion of IDO and IL-10 (154, 155, 158). Innate immune cells

may either remain at the initial site or migrate to other organs,

thereby further regulating the adaptive immune response (154,

159). This intricate interplay of combined effects profoundly

shapes the therapeutic potential of MSCs.

The development of advanced imaging and tracking

technologies is crucial for elucidating the fate of MSC. In

preclinical studies, precise and effective detection methods, such
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as magnetic resonance imaging, fluorescence labeling, optical

imaging, photoacoustic imaging, ultrasound imaging and

quantitative gene detection, have been widely utilized to non-

invasively track transplanted stem cells (160, 161). Despite these

advancements, the clinical translation of these technologies faces

significant challenges. Currently, there is a lack of robust and

reliable methods for tracking MSCs and their production in

clinical trials. To address this challenge, the integration of

multiple imaging modalities may enhance precision and provide

complementary information. The development of novel imaging

techniques and the identification of specific markers for MSCs are

equally critical. Future progress in integrated imaging platforms,

coupled with in-depth mechanistic studies, will accelerate the

clinical translation of MSC-based therapies in AS.
6.2 The potential of precision CAR-based
cell therapies for AS

CAR-based cell therapies represent a highly specific and

targeted treatment modality that aligns well with the complex

pathophysiology of AS. However, several critical questions still

require clarification.
FIGURE 5

Schematic overview of current and future directions in cell therapy for AS. The left side illustrates the current schematic, mechanisms, and future
directions of MSC therapy for AS, while the right side depicts the possible schematic, mechanisms, and future directions of CAR-based therapy for
AS. Solid lines indicate ongoing research, and dashed lines suggest potential future directions.
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6.2.1 Ideal targets for precision
The selection of CAR targets is of paramount importance in the

development of CAR-based cell immunotherapy for AS. An ideal

target antigen must exhibit high specificity and safety to minimize

the risk of off-target effects leading to severe tissue damage. CAR-

mediated target recognition is not limited to cell surface proteins

but can also identify soluble protein ligands, post-translational

modifications, and glycolipids. However, the complexity of

autoimmune diseases requires careful consideration of antigen

expression patterns and potential off-target effects. Unlike cancer,

where CAR-T cells aim to eliminate malignant cells, CAR-based

therapy for autoimmune diseases may have distinct or more

complicated therapeutic mechanisms, i.e. immunomodulation.

Therefore, how to selectively target pathogenic cells while sparing

healthy tissues should be given more consideration. This

necessitates a deep understanding of disease-specific antigen

profiles and the development of CAR constructs with enhanced

specificity. For instance, instead of targeting the overall T cells

implicated in AS pathogenesis, targeting TRBV9+ T cells, a subset of

T cells closed related to AS pathogenesis, provides a more precise

strategy to meet the above ends.

Targeting pro-inflammatory cytokines is another strategy

awaiting preclinical evaluation. A series of cytokines such as

TNF-a, IL-6, and IL-17A are upregulated in AS and have a

pathogenic role (162). Theoretically, using cytokine receptors as

the extracellular domain of CARs could convert pro-inflammatory

signals into CAR co-stimulatory signals. For instance, in tumor

treatment, genetically modified CARs targeting TGF-b have been

used to transmit TGF-b signals to the CD28 co-stimulatory domain,

enhancing T-cell therapy (163).

6.2.2 Optimal cellular candidates
The choice of CAR cells is crucial for the success of AS

treatment. Tregs, known for their immunomodulatory functions,

can be activated in inflammatory environments and release

inhibitory cytokines such as IL-10 and TGF-b. CAR-Tregs have

the potential to achieve highly effective and durable immune

modulation through direct or paracrine actions, which could

positively impact the disease course and prognosis of AS.

Macrophages, whose phenotypes can regulate immune responses,

have shown promise in treating autoimmune diseases such as type 1

diabetes when using reparative M2 macrophages (164). CAR-

modified M2 macrophages may become a novel immunotherapy

option for AS. Additionally, MSCs, with their potent

immunomodulatory properties, could offer a new treatment

paradigm for AS after CAR modification, providing higher

precision and specificity. Further exploration of the roles of these

cells in AS, identification of specific phenotypic markers and

optimization of their regulatory functions are essential for

developing new CAR therapies.

6.2.3 Comprehensive preclinical validation
Before initiating multicenter clinical trials, extensive basic and

preclinical research is necessary to evaluate the effects of CAR cell

therapy for AS and optimize its safety and specificity. Key areas of
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focus include determining appropriate CAR designs and signaling

mechanisms, assessing potential toxicity to normal tissues, and

refining cell infusion techniques and treatment protocols.

Additionally, a comprehensive evaluation of potential adverse

events and long-term effects is crucial to ensure the controllability

and sustainability of the treatment. By systematically conducting

these preliminary studies, a solid scientific foundation can be laid

for future multicenter clinical trials, thereby advancing the progress

of CAR cell therapy in treating AS and making it a safer, more

effective, and more sustainable treatment option.
7 Conclusion

The pathogenesis of AS is multifactorial, involving a complex

interplay of genetic, immunological, and environmental factors.

While the treatment landscape for AS has significantly evolved with

the advent of advanced therapies, challenges remain in achieving

long-term disease control and minimizing adverse effects.

Traditional first-line treatments, such as NSAIDs and TNFis,

remain the cornerstone of therapy but often fall short in

addressing the heterogeneous nature of AS. The introduction of

more biologic and targeted synthetic DMARDs, including IL-17A

inhibitors and JAKis, has expanded therapeutic options.

Emerging cell therapies, such as MSCs and CAR-based cell

therapy, offer novel approaches by targeting specific immune cells

or providing regenerative benefits. These therapies hold promise in

addressing the underlying pathophysiology of AS, potentially

offering more durable and personalized treatment options.

Nevertheless, their application in AS is still in its infancy, with

ongoing clinical trials exploring their safety and efficacy.

Despite these advancements, several challenges persist. The

high costs and accessibility issues associated with advanced

therapies, particularly cell therapy, limit their widespread use.

Furthermore, the long-term safety and efficacy of these novel

approaches require further investigation through large-scale,

randomized clinical trials. Future research should focus on

optimizing treatment protocols, developing more precise targeting

mechanisms, and exploring combination therapies to enhance

efficacy and reduce side effects. Additionally, a deeper

understanding of the pathogenesis of AS is crucial for the

development of more effective and targeted treatments.
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