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Background: Triple-negative breast cancer (TNBC), a highly heterogeneous breast

cancer subtype, poses significant challenges to human health. Intra-tumor

heterogeneity (ITH) limits the reliability of conventional prognostic models.

Methods: Using multi-region RNA-seq, we quantified TNBC transcriptomic

heterogeneity through an integrative heterogeneity score (IHS). After evaluating

inter-patient heterogeneity (IPH) and ITH, prognostic and low-heterogeneity genes

were identified and used to build a prognostic risk model with a random survival

forest (RSF) algorithm. This model was combined with TNM staging into a

nomogram for clinical applicability. We further revealed the distinct immune

microenvironment features, somatic mutations, and chemotherapy responses

between risk subgroups. Gene expression was validated via RT-qPCR.

Results: Spatial characterization uncovered substantial ITH, evidenced by sharp

shifts in PAM50 subtypes and immune infiltration. Two low-heterogeneity

biomarkers, CYP4B1 and GBP1, were identified to develop a robust prognostic

signature with consistent predictive performance across 3- to 9-year survival

endpoints (AUC > 0.6). The high-risk subgroup exhibited reduced immune

infiltration, reduced immune checkpoint molecule expression, and poor

immunotherapy response rates. Integration of the risk signature with TNM

staging created a clinically practical nomogram with superior predictive

accuracy (C-index >0.67). Therapeutic vulnerability profiling identified six

targeted agents showing increased efficacy in high-risk patients. Dysregulation

of signature genes was demonstrated in two TNBC cell lines.
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Conclusions: This study established a transcriptomic heterogeneity-resilient

prognostic model for TNBC, enabling precise survival stratification and

immune microenvironment assessment. The integrative nomogram and risk-

guided therapeutic predictions address clinical challenges in TNBC

management, advancing personalized treatment strategies.
KEYWORDS

immunotherapy, immune infiltration, intra-tumor heterogeneity, prognosis, triple-
negative breast cancer, tumor microenvironment
1 Introduction

Triple-negative breast cancer (TNBC), a highly heterogeneous

breast cancer subtype, lacks estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor receptor 2

(HER2), making it unresponsive to hormonal therapies or targeted

treatments. This results in limited clinical therapeutic options and

poor prognosis (1). Although TNBC represents only 15%-20% of all

breast cancer cases, it exhibits a highly aggressive nature, with patients

showing significantly lower five-year survival rates compared to other

subtypes, along with elevated risks of local recurrence and distant

metastasis (2). Developing accurate prognostic prediction models for

TNBC could enable clinicians to perform personalized assessments of

disease progression and survival outcomes while optimizing treatment

strategies. Currently, conventional histopathology-based prognostic

systems still dominate clinical practice. However, histopathological

evaluations rely mainly on microscopic morphological observations,

which are inherently subjective and prone to variability based on

pathologists’ experience. Furthermore, conventional systems typically

rely on limited macroscopic indicators such as tumor size and lymph

node metastasis, which are insufficient to elucidate molecular

mechanisms driving tumor progression or quantify complex

immune infiltration and stromal reactions within the tumor

microenvironment (TME). Consequently, they fail to distinguish

patient subgroups with morphologically similar features but

divergent prognostic outcomes.

In recent years, the leapfrog development of high-throughput

sequencing technologies has driven continuous innovation in TNBC

molecular classification systems and genetic prognostic models. The

previous Lehmann classification primarily aimed to achieve

molecular-level categorization and identify biological mechanisms,

rather than being specifically optimized for precise individual

prognosis prediction (3). Although the tumor-infiltrating

lymphocytes (TILs) can reflect prognosis, they represent only a

portion of the immune microenvironment, failing to directly

capture the intrinsic characteristics of tumor cells (4). Compared

with traditional prognostic models, transcriptome-based models

achieve higher-precision risk stratification and personalized

treatment prediction through comprehensive analysis of tumor

molecular characteristics and functional states, while revealing
02
therapeutic targets undetectable by conventional morphological

methods (5, 6). However, existing studies universally face a critical

bottleneck: high intra-tumoral heterogeneity (ITH). This

heterogeneity stems not only from immune-stromal interactions

within the microenvironment, but also from dynamic evolution of

driver mutations or epigenetic dysregulation. Its complexity and

dynamic nature significantly undermine the stability and

generalization capability of current prognostic models. Even

variability in ribonucleic acid (RNA) degradation during sample

processing introduces noise signals at the transcriptomic level,

causing conventionally identified differentially expressed genes to

carry substantial confounding factors rather than true biological

signals. While single-cell RNA sequencing (scRNA-seq) and spatial

transcriptomics offer new perspectives for resolving cellular

subpopulation heterogeneity, their high costs and technical

complexity limit applications in large clinical cohorts. Therefore,

developing computational frameworks capable of dissociating

heterogeneity interference from routine transcriptomic data has

become the core challenge for constructing reliable prognostic models.

The multi-region bulk sequencing approach offers technical

advantages for studying tumor heterogeneity by enabling the

capture of spatial transcriptomic variation features through multi-

region sampling and sequencing of tumors. Compared to single-site

sampling methods, this technique effectively mitigates sampling

bias and more reliably reveals comprehensive transcriptomic

characteristics. We analyzed bulk transcriptomic datasets from

TNBC patients with multi-region sampling to evaluate how

spatial heterogeneity influences biological signal enrichment.

Through the evaluation of transcriptomic heterogeneity, we

identified spatially stable prognostic biomarkers and constructed a

robust TNBC prognostic model resistant to transcriptomic

heterogeneity. This model demonstrated consistent long-term

prognostic predictive accuracy across The Cancer Genome Atlas

(TCGA) and Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) datasets while exhibiting strong

immunoinfiltration prediction capability (7, 8). To enhance

clinical applicability, we developed a dynamic nomogram

integrating transcriptomic profiles with Tumor-Node-Metastasis

(TNM) staging, enabling generation of visual risk stratification

reports. From a translational medicine perspective, the value of
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this study lies in establishing a TNBC-specific low-heterogeneity

prognostic and immune response prediction system, which will

advance innovative clinical practice.
2 Methods

2.1 Data collection and processing

Multi-region bulk RNA sequencing data of TNBC patients from a

previous study was included, encompassing 32 tumor samples from 10

patients (9). This dataset underwent DESeq2 normalization followed

by Variance Stabilizing Transformation (VST) to facilitate the

identification of low-ITH genes with stable expression patterns (10).

The METABRIC TNBC dataset (n = 320) was extracted as the training

cohort for prognostic modeling (7). TNBC samples (n = 122) and 113

normal samples from the TCGA breast invasive carcinoma cohort were

used for differential expression analysis and served as the prognostic

validation cohort (8). The IMvigor210 immunotherapy cohort (n =

348) was utilized for predicting immunotherapy response (11). Somatic

mutation data from TNBC cases were obtained from the TCGA

database (8). Single-cell dataset GSE148673 (n = 5) (12) and spatial

transcriptomic dataset GSE148673 (13) were included in the analysis.
2.2 Heterogeneity assessment

Mutant-Allele Tumor Heterogeneity (MATH) was employed to

quantify genomic heterogeneity (14). single-region ITH was

assessed using the DEPTH2 score (15). A dual-dimensional

strategy combining variance analysis and clustering consistency

was adopted to evaluate gene heterogeneity in TNBC (16–18). For

variance analysis, gene expression data were decomposed using a

linear mixed-effects model (via the nlme R package), partitioning

variance into within-tumor variance (W) and between-tumor

variance (B). The Intra-Tumoral Variability Score (ITVS) was

calculated as: ITVS = W/(W + B). This metric (ranging from 0 to

1) reflects the dominance of intra-tumoral heterogeneity when

approaching 1. Hierarchical clustering was iteratively performed

with the cluster numbers increasing from 1 to the total sample size

(N). The patient grouping odds ratio (PGOR) was computed at each

clustering level as the proportion of correctly grouped patients. The

area under the PGOR curve (AUPC) was quantified via numerical

integration, and the clustering consistency score (CCS) was defined

as: CCS = 1 − AUPC/(N − 1). Higher CCS (ranging from 0 to 1)

indicates lower ITH. The integrated heterogeneity score (IHS)

(ranging from 0 to 1) was determined as the geometric mean of

ITVS and CCS. A lower IHS correlates with reduced gene-level ITH.
2.3 Immune microenvironment and
functional analysis

The StromalScore and ImmuneScore were determined through

the ESTIMATE (Estimation of STromal and Immune cells in
Frontiers in Immunology 03
MAlignant Tumors using Expression data) algorithm (19).

Additionally, absolute proportions of 22 immune cell subtypes

were quantified using CIBERSORT-abs (20). The IOBR package

was employed to calculate 15 tumor-intrinsic and 20 TME

signatures (21). Functional interpretation was performed

through Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analyses to identify key biological

processes (22).
2.4 Construction and validation of
prognosis model

The limma package was used for the screening of differentially

expressed genes (DEGs). Using a false discovery rate (FDR) < 0.05

and a lenient cutoff of |log2FC| > 0.137 (equivalent to >10%

expression change), this strategy ensures statistical rigor while

preserving potential functionally relevant genes. Prognosis-

associated DEGs were filtered based on univariate Cox regression

and proportional hazards (PH) assumption to build a preliminary

gene library. To address transcriptional heterogeneity, protein-

coding genes were stratified into low-ITH subgroups using an

IHS cut-off of 0.5. Model genes were identified by intersecting

low-ITH genes with prognosis-associated DEGs. During model

construction, the random survival forest (RSF) algorithm was

applied using the METABRIC cohort as the training set. The RSF

model was configured with 1000 decision trees and a node size

of 36.
2.5 Nomogram development

Clinical parameters and molecular features significantly associated

with overall survival were selected via univariate Cox regression.

Independent prognostic factors were further identified by performing

multivariate Cox proportional hazards analysis. For clinical utility, the R

package “rms” was used to construct a nomogram prediction model

based on independent prognostic factors.
2.6 Drug sensitivity prediction

The pRRophetic algorithm was employed to integrate tumor

cell line drug screening data with gene expression profiles and to

establish a gene expression-drug sensitivity predictive model (23).
2.7 Cell culture

The MCF-10A, MCF-10AT, MDA-MB-231, and MDA-MB-

453 cell lines (all from ATCC) were used in experiments. Cells were

cultured in McCoy’s 5A medium (Gibco) supplemented with 10%

fetal bovine serum (Gibco) and 1% penicillin-streptomycin. All

cultures were maintained at 37°C with 5% CO2 in a standard

incubator, with medium replacement every two days.
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2.8 RT-qPCR

Following total RNA extraction using TRIzol reagent

(Invitrogen), reverse transcription was performed with the

PrimeScript RT Reagent Kit (TaKaRa). RT-qPCR analysis was

conducted with SYBR Green methodology. The thermal cycling

protocol comprised: initial denaturation at 95 °C for 30 seconds,

followed by 40 amplification cycles (95 °C for 5 seconds and 60 °C

for 30 seconds), with subsequent melt curve analysis. Relative gene

expression was calculated using the 2^(-DDCt) method and

normalized to b-actin as the endogenous control. Three

independent biological replicates were implemented. The PCR

amplification primer sequences were as follows: CYP4B1,

forward: 5’-TGTGCTGAAGCCCTATGTGG-3’, reverse: 5’-

CCGGTGTCTCCTCTTCCAAA-3’; GBP1, forward: 5’-AGAG

AGGACCCTCGCTCTTA-3 ’ , reverse : 5 ’- ACATGCCT

TTCGTCGTCTCA -3’; b-actin, forward: 5′-TCCATCATGA
AGTGTGACGT-3 ′ , reverse : 5-GAGCAATGATCTTGA

TCTTCAT-3′.
2.9 Statistical analysis

Statistical analyses were conducted in R (v4.3.3) and GraphPad

Prism 8.0. Non-normally distributed continuous variables were

analyzed using Mann-Whitney U or Kruskal-Wallis tests, while

categorical variables were assessed via Fisher’s exact test. One-way

ANOVA was used to compare means among three or more

independent groups. Survival differences were visualized using

Kaplan-Meier curves and compared via log-rank test. Cox

proportional hazards regression was used to identify prognostic

factors, with hazard ratios (HRs) and corresponding 95%

confidence intervals (CIs) calculated. For prediction performance

evaluation, receiver operating characteristic (ROC) curves were

constructed, and the time-dependent discriminative ability of the

model was quantified using the area under the curve (AUC). The

model’s discrimination was further assessed by the concordance

index (C-index). Bootstrap validation with 1000 resampling

iterations was performed to evaluate the robustness of the results.

Spearman’s rank correlation (nonparametric) and Pearson’s

product-moment correlation (parametric) were used for

correlation analysis between variables. A significance threshold of

P < 0.05 was applied unless otherwise specified.
3 Results

3.1 Genetic and transcriptomic
heterogeneity profiles in TNBC

First, we used MATH and DEPTH2 scores to quantify ITH at

genomic and transcriptomic levels, respectively. Both metrics

consistently revealed elevated heterogeneity in TNBC compared to

non-TNBC (Figures 1A, B; MATH: P = 0.00018; DEPTH2: P <

2×10⁻¹6), aligning with TNBC’s aggressive biology. However, their
Frontiers in Immunology 04
prognostic utility differed: high MATH significantly predicted poorer

overall survival (Figure 1C, log-rank P = 0.017), while DEPTH2

showed only borderline significance (Figure 1D, log-rank P = 0.055).

Tumor-stage progression impacted both heterogeneity measures

similarly. MATH increased significantly from Stage I to Stage II

(Figure 1G, P = 0.047), plateauing in later stages, potentially due to

early clonal expansion followed by stabilization of dominant

subclones or cooperative populations in advanced TNBC. The

DEPTH2 mirrored this trend, with differences between Stages I and

II approaching significance (Figure 1H, P = 0.051), suggesting

concurrent genomic and transcriptomic heterogeneity shifts during

early progression. Notably, neither score varied significantly by age

(Figures 1E, F), treatment status or type (Figures 1I–L), or race

(Figures 1M, N), indicating that intrinsic tumor biology, rather than

extrinsic factors, drives ITH in TNBC. The lack of treatment effect

implies conventional therapies may inadequately remodel

clonal architecture.
3.2 TNBC demonstrates profound IPH and
ITH

Given that single-region ITH estimation is susceptible to

sampling bias and may not accurately represent the actual ITH

level (24), we further utilized multi-region samples for ITH

quantification. At the individual patient level, unsupervised

clustering revealed that multiple tumor regions from the same

TNBC patient tended to cluster together, highlighting significant

inter-patient heterogeneity (IPH) (Figure 2A). Principal component

analysis (PCA) dimensionality reduction of whole transcriptomic

profiles further confirmed that samples from distinct regions exhibit

closer clustering associations with patient identity (Figure 2B).

PAM50 subtyping analysis underscored strong ITH in TNBC

(Figure 2C). In a representative case (P2), region P2A exhibited

mixed features of Luminal B (17.3%), basal-like (49.9%), and HER2-

enriched (32.8%) subtypes. In contrast, matched regions (P2C and

P2D) displayed sharp increases in basal-like dominance (74.5% and

87.1%, respectively), with the complete loss of the Luminal

B subtype.
3.3 TME heterogeneity in TNBC

The CIBERSORT-abs algorithm was applied to quantify

immune landscape features across 10 multi-region TNBC cases.

Results revealed marked fluctuations in immune cell infiltration

patterns between patients and across different tumor regions within

the same individual (Figure 3A). Notably, effector immune cells

were not universally detectable, demonstrating pronounced spatial

distribution disparities. For instance, CD8+ T cells were highly

enriched in region P7D but completely absent in region P7B from

the same patient. Similar spatial imbalances were observed in

activated NK cells and M1/M2 macrophage subpopulations

(Figure 3B). Tumor heterogeneity heatmap analysis (Figure 3C)

uncovered distinct cell death signatures: ferroptosis signaling was
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activated in region P8A but significantly suppressed in region P8B

of the same tumor. This regional variation likely arises from the

metabolic reprogramming differences between tumor subclones,

where some regions upregulate ACSL4 to promote lipid

peroxidation, while others activate GPX4 to sustain antioxidant

defenses (25). Additionally, the TME heterogeneity mapping

(Figure 3D) highlighted that spatially divergent immune pathway

activity was downregulated in regions P1A and P1B but strongly

activated in P1C and P1D, which reflects region-specific

modulation of immune signaling networks.
3.4 Gene heterogeneity in multi-region
TNBC RNA-seq

We then elucidated the heterogeneity of protein-coding genes in

TNBC and its biological implications. Figure 4A illustrates the

distribution patterns of three variability metrics: within-tumor

variance, between-tumor variance, and ITVS. The skewed

distribution of within-tumor variance (median 0.82) and ITVS

(median 0.81) highlights significant intra-tumor gene heterogeneity

in TNBC: 8.1% of genes exhibited extreme within-tumor variance

(variance = 1), while 8.3% lacked inter-patient discriminative power
Frontiers in Immunology 05
(between-tumor variance = 0). Notably, the extreme ITVS = 1 values

observed in 8% of genes statistically confirm the multi-clonal

coexistence within individual TNBC tumors. The scatter plot in

Figure 4B further reveals that genes with ITVS < 0.25 are

exceedingly rare (only 2 genes), a phenomenon attributed to the

combined effect of ITH and IPH in TNBC. For the clustering

analysis, we used the CCS approach. The calculation of this score is

based on the principle that genes with low ITH should consistently

cluster samples from the same patient. An IHS, calculated as the

geometric mean of ITVS and CCS (range 0-1), was established, with

lower IHS values indicating reduced gene-level heterogeneity. Applying

an IHS threshold of 0.5 to 14,071 protein-coding genes, only 2.98%

(419 genes) fell into the low-ITH group (Figure 4C). A heatmap of the

top 10 IHS-ranked genes from each group revealed distinct patterns:

low-ITH genes exhibited cross-regional stability, while high-

heterogeneity genes displayed pronounced spatial intra-tumor

variability (Figure 4D). Functional enrichment analysis (Figures 4E,

F) showed that high-ITH genes were strongly associated with immune-

related pathways, including cytokine-receptor interactions and

chemokine signaling, suggesting roles in TME reprogramming.

Conversely, low-ITH genes were enriched in ribosomal biogenesis

and energy metabolism, reflecting conserved roles in core cellular

processes. This bifurcation in expression strategies highlights TNBC’s
FIGURE 1

Association of MATH and DEPTH2 scores with clinical parameters. (A, B) Kaplan-Meier survival curves for MATH (A) and DEPTH2 score (B)
subgroups. (C, D) MATH (C) and DEPTH2 scores (D) in TNBC versus non-TNBC groups. (E–N) MATH and DEPTH2 score distribution in TNBC
stratified by clinical features: Age stratification (E, F), tumor stage (G, H), treatment status (I, J), treatment type (K, L), and race (M, N).
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dual survival tactics: maintaining stable expression of metabolic genes

for basic cellular functions while preserving heterogeneity in immune-

related pathways to enhance adaptability.
3.5 DGEs between TNBC and normal
breast tissues

Tumor-associated DEGs hold particular biological significance

compared to those in healthy tissue, as they may reveal molecular-

level dysregulation mechanisms driving tumorigenesis,

development, and malignant phenotypes (26). DEGs are more

likely to affect patient survival rates. This study compared gene

expression profiles between TNBC and normal breast tissues using

transcriptomic data from the TCGA database (Figure 5A). We

identified 18,252 significantly DEGs based on screening criteria

(|log2FC| > 0.137, FDR < 0.05). Heatmap visualization of the top 50
Frontiers in Immunology 06
most significant DEGs revealed distinct clustering patterns in the

TNBC group (Figure 5B), including upregulated MMP1 and

COL1A1. The elevated expression of these genes points to their

potential contribution to tumor invasion and metastasis via

extracellular matrix remodeling (27). GO enrichment analysis

revealed associations with cell proliferation and cycle regulation,

including terms such as DNA replication and chromosomal region

(Figure 5C). KEGG pathway analysis identified enrichment of cell

cycle-related genes and ECM-receptor interaction pathways

(Figure 5D), which may mediate the invasive potential of tumors.
3.6 Construction and validation of a low-
ITH prognostic model

By analyzing transcriptomic heterogeneity, this study established a

prognostic stratification model for TNBC patients with low ITH. To
FIGURE 2

TNBC exhibits strong IPH and ITH. (A) The heatmap shows the unsupervised hierarchical clustering of TNBC samples (rows) in the multi-regional
cohort according to the top 500 variable expression genes (columns). (B) PCA of transcriptome profiles across multi-regional TNBC samples.
(C) Stacked bar plot showing PAM50 subtype proportions in 10 patients.
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address cohort heterogeneity, we selected genes with consistent HR

directions in the TCGA and METABRIC datasets. Venn diagram

analysis of 418 low-ITH genes (IHS: 0-0.5) and 24 prognosis-related

differentially expressed genes (Figure 6A) identified two core regulators,

CYP4B1 and GBP1 (Both genes met the Cox model’s PH assumption;

Supplementary Figure S1). RSF algorithm assessed gene importance,

assigning weight scores of 0.024 and 0.02 to CYP4B1 and GBP1,
Frontiers in Immunology 07
respectively (Figure 6B). A risk prediction model was constructed:

Patient risk score = (0.024 × CYP4B1 expression) + (0.02 × GBP1

expression). In theMETABRIC cohort, TNBC patients in the high-risk

group exhibited significantly shorter overall survival compared to the

low-risk group, a finding validated in the TCGA-TNBC dataset

(Figures 6C, D). Time-dependent ROC curve analysis demonstrated

robust predictive performance in METABRIC (3-year: 0.612, 5-year:
FIGURE 3

Heterogeneity of the TNBC tumor immune microenvironment. (A) Bar plot of immune cell infiltration composition calculated using the CIBERSORT-
abs algorithm. (B) Regional distribution of key effector cell subsets: Infiltration levels of CD8+ T cells, activated NK cells, and M1/M2 macrophages.
(C) Heatmap of tumor-intrinsic heterogeneity: Rows represent tumor-intrinsic feature scores and columns denote tumor regions. (D) Heatmap of
microenvironmental features: Rows include immune signature scores and columns denote tumor regions.
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0.661, 7-year: 0.684, 9-year: 0.678) and TCGA validation (3-year: 0.605,

5-year: 0.647, 7-year: 0.695, 9-year: 0.663), demonstrating cross-

platform applicability of the model (Figures 6E–H).
3.7 Development of a nomogram
integrating risk score and TNM stage

Analysis of TNBC patient data in the METABRIC cohort

revealed that the risk score stratification effectively distinguished

subgroups with significant prognostic differences: 48% of TNBC-

related deaths occurred in the high-risk group (vs. 27% in the low-

risk group), and recurrence rates were elevated in high-risk patients

(Figure 7A). Notably, while no statistically significant differences

were observed between the two groups in TNM staging, histological

grade, primary tumor laterality, or treatment history (radiotherapy/

chemotherapy), the proportion of postmenopausal patients was

significantly higher in the high-risk group (70% vs. 58%, P = 0.035),

suggesting that hormonal status may influence prognosis through

non-canonical mechanisms (Figure 7A).

We then evaluated the prognostic predictive power of the risk

score, TNM stage, and pathological grade. Univariate Cox

regression analysis identified significant associations between
Frontiers in Immunology 08
overall survival and the risk score (HR = 1.041, 95% CI: 1.029-

1.053) and clinical stage (HR = 1.708, 95% CI: 1.286-2.268), both

with p<0.001 (Figure 7B). However, pathological grade was not

statistically significant in univariate Cox analysis. Crucially, in the

multivariate Cox model, the risk score and clinical stage retained

independent prognostic value (Figure 7C), indicating their

synergistic predictive utility. Based on these findings, a

nomogram integrating the risk score and clinical stage was

developed (Figure 7D). This visual tool quantifies the

contribution weight of each variable, enabling clinicians to rapidly

calculate 3-, 5-, 7-, and 9-year overall survival probabilities. Model

validation demonstrated robust performance, with the C-index

consistently exceeding 0.67 during the 3- to 9-year follow-up

period (Figure 7E), confirming sustained predictive accuracy over

time. Time-calibration curves (Figure 7F) further validated model

precision, showing strong alignment between predicted and

observed survival rates at 3, 5, 7, and 9 years.
3.8 Immune infiltration in risk subgroups

This study revealed that high-risk patients exhibit an immune-

suppressive state compared to low-risk patients. Using the
FIGURE 4

Quantification of gene-level ITH and pathway enrichment analysis. (A) Histograms of within-tumor, between-tumor variance and ITVS distribution.
(B) Scatterplot of gene-level within-tumor/between-tumor variance and ITVS. (C) Gene distribution in high- and low-IHS groups. (D) Heatmap of
expression for top 10 highest and lowest IHS genes. (E, F) KEGG pathway enrichment analysis in low- (E) and high-IHS (F) groups.
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ESTIMATE algorithm, we found that the ESTIMATEScore and

ImmuneScore were significantly lower in the high-risk group

compared to the low-risk group, while the StromalScore showed

no statistical difference (Figure 8A). This suggests that the reduced

immune activity in high-risk patients primarily arises from altered

immune cell composition rather than stromal components. Further

immune infiltration quantification via the CIBERSORT algorithm

(Figure 8B) showed reduced infiltration levels of anti-tumor

immune subpopulations in the high-risk group. Specifically, M1

macrophages, dendritic cells, plasma cells, monocytes, and CD4+

memory T cells were markedly decreased (all P < 0.05). Notably,
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CD8+ T cells, natural killer cells, M2 macrophages, and regulatory

T cells showed no statistically significant differences.

Analysis of immune checkpoint expression profiles (Figure 8C)

revealed significant downregulation of key regulators (CD27,

CTLA4, and PDCD1) in the high-risk group. However, the

expression of TNFSF14 and TNFRSF25 were not statistically

significant, highlighting heterogeneity in checkpoint regulation.

Concurrently, the reduced tumor mutational burden (TMB) in

high-risk patients may further impair antigen presentation

efficiency (Figure 8D). In the IMvigor210 cohort, we observed

increased resistance to immune checkpoint blockade therapy in
FIGURE 5

DEGs and functional enrichment in TCGA TNBC samples. (A) The volcano plot displays the differential analysis results of tumor versus normal tissues
from TCGA TNBC RNA-seq data (FDR < 0.05). (B) Heatmap shows the expression patterns of top 50 DEGs. (C) Analysis of the biological roles of
DEGs (|logFC| > 1, adjusted P < 0.05) using GO terms from biological processes (BP), cellular components (CC), and molecular functions (MF).
(D) The KEGG bubble plot displays the top 10 enriched pathways of DEGs (|logFC| > 1, adjusted P < 0.05).
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the high-risk group. The combined proportion of progressive

disease (PD) and stable disease (SD) cases reached 82% in the

high-risk group, surpassing the 72% in the low-risk group

(Figure 8E). Patients who achieved complete or partial responses
Frontiers in Immunology 10
(CR/PR) had significantly lower median risk scores than those with

PD/SD (Figures 8F, G). These findings collectively suggest that the

risk scoring system effectively identifies immunotherapy non-

responders, offering critical insights for clinical decision-making.
FIGURE 6

Construction and validation of the low-ITH prognostic model in TNBC. (A) Venn diagram indicating overlap between prognostic DEGs (n = 24) and
low-ITH genes (n=418). (B) RSF importance scores for model genes CYP4B1 (0.024) and GBP1 (0.02). (C, D) Survival curves for risk groups in TNBC
samples from METABRIC and TCGA datasets. (E–H) ROC curves showing AUC values for RSF model predicting 3-/5-/7-/9-year survival in TNBC
samples from METABRIC and TCGA datasets.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1611917
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2025.1611917
3.9 Mutational landscape of risk subgroups

This study integrated genomic data from 105 TCGA TNBC

tumor samples (63 high-risk, 42 low-risk) to characterize mutation
Frontiers in Immunology 11
patterns and risk interactions. Figure 9A shows that 56 out of 63

high-risk samples (88.89%) harbored at least one genetic alteration,

with TP53 mutations being the most frequent (75%), followed by

TTN (17%) and PIK3CA (14%), dominated by missense mutations.
FIGURE 7

Integrative prognostic nomogram combining risk score and TNM stage. (A) Distribution of survival status, recurrence, tumor laterality, stage,
histologic grade, treatment, and menopausal status in risk groups. (B, C) Univariate forest plot (B) and multivariate forest plot (C) demonstrate the
impact of risk score on overall survival. (D) Nomogram integrates risk score and TNM stage for predicting overall survival in TNBC patients. (E) Time-
dependent C-index for nomogram at 3/5/7/9 years. (F) The calibration curve shows that the predicted probabilities from the nomogram have high
consistency with the actual observed probabilities.
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All low-risk samples displayed genetic alterations, with TP53

mutations occurred in 93% of cases, alongside high-frequency

mutations in TTN (33%) and MUC16 (21%) (Figure 9B). Co-

occurrence and exclusivity analysis (Figures 9C, D) revealed

significant associations: USH2A and MUC16 exhibited strong co-

occurrence (P < 0.05), suggesting synergistic oncogenic pathways,

while TP53 and MUC16 displayed mutual exclusivity.
3.10 Drug sensitivity screening for high-risk
patients

Given the poor prognosis and immunotherapy resistance in

high-risk patients, the pRRophetic platform identified six
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anticancer agents with significant negative correlations to risk

scores (R < −0.02) and lower IC50 values in the high-risk group:

Bryostatin.1, AKT inhibitor VIII, Imatinib, Bexarotene, Lapatinib,

and Bicalutamide (Figures 10A, B). These findings suggest that risk

score-guided drug selection may optimize personalized therapy for

high-risk patients.
3.11 Expression patterns of CYP4B1 and
GBP1 in TNBC

Single-cell and spatial transcriptomic analyses of TNBC

tissues were conducted through web-based platforms (https://

grswsci.top/). Single-cell sequencing resolved nine distinct
FIGURE 8

Immune characteristics of risk groups. (A) Boxplots of ESTIMATE/immune/stromal scores in risk subgroups. (B) The boxplot illustrates the differences
in immune cells between risk groups, as calculated by CIBERSORT. (C) Boxplots of immune checkpoint expression between risk groups. (D) Boxplots
of tumor mutational burden (TMB) between risk groups. (E) Bar plot of clinical response rates between risk groups (CR, complete response; PR,
partial response; SD, stable disease; PD, disease progression). (F, G) Boxplots of risk scores across treatment response subgroups. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001, ns, not significant.
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functionally-defined cell clusters (Figure 11A), with the epithelial

subpopulation demonstrating marked CYP4B1 enrichment

(Figure 11B). Further gene expression profiling (Figure 11C)

revealed that GBP1 exhibited significantly elevated expression

levels in malignant cell populations compared to normal

epithelial cells.

Spatial transcriptomics was performed on two representative

TNBC samples from the GSE210616 dataset. Spatial regionalization

delineated tissue areas containing malignant cells (proportion > 0)

as malignant regions, while regions exclusively composed of normal

cells were designated as normal areas (Figures 12A, B). CYP4B1

exhibited significantly elevated expression in non-malignant

regions, whereas the GBP1 displayed specific enrichment in

tumor malignant zones (Figures 12C, D). Barplots validated this

heterogeneous expression pattern for both genes across TNBC

specimens (Figure 12E).
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Boxplot analysis revealed dysregulated expression of CYP4B1 and

GBP1 in TCGA-derived TNBC samples (Figure 12F). To corroborate

these findings, RT-qPCR validation of CYP4B1 and GBP1 expression

was conducted (Figure 12G). Furthermore, proteomic data from

TCGA breast cancer also validated the expression trends of CYP4B1

and GBP1 (Supplementary Figure S2). Compared with normal

mammary MCF-10A cells, CYP4B1 showed marked downregulation

in premalignant MCF-10AT cells and aggressive TNBC cell models

(MDA-MB-231 and MDA-MB-453). Notably, GBP1 demonstrated

pronounced upregulation in both malignant cell lines.
4 Discussion

This study revealed the complex characteristics of ITH in TNBC

and its impact on clinical outcomes. Our findings not only deepen
FIGURE 9

Genomic alteration profiles. (A, B) High-frequency mutated genes in 105 TNBC samples in high-risk group (A) and low-risk group (B). (C, D) Co-
occurrence and mutual exclusivity heatmaps of top 20 genes in high-risk group (C) and low-risk group (D).
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the understanding of TNBC’s biological behavior but also offer new

perspectives for developing precision medicine strategies.

The stage-specific evolution of genetic heterogeneity in TNBC

was confirmed in this study. MATH scores showed significant

increasing trends in stages I-II, while no marked differences were

observed in stages III-IV. This phenomenon could be attributed to

limited sample size on one hand and aligns with the “bottleneck

effect”model of tumor evolution proposed by Sottoriva et al. (28) on

the other. Elevated genetic heterogeneity in early-stage tumors may

reflect Darwinian selection processes under microenvironmental

pressure, whereas ITH tends to stabilize when dominant clones take

over. Notably, conventional therapeutic approaches failed to

significantly alter MATH scores, suggesting that cytotoxic agents

or radiotherapy primarily eliminates sensitive clones while

inadequately suppressing adaptive evolution of subclones (29).

The DEPTH2 scores at the transcriptome level demonstrated

clinical patterns similar to those of MATH, yet showed slightly

weaker prognostic discrimination. This phenomenon may stem

from a decoupling mechanism between genomic mutations and

gene expression regulation (30). Some driver mutations may be

buffered at the RNA expression level, potentially explaining why

genetic heterogeneity carries greater prognostic significance.

However, the highly significant differences in DEPTH2 scores

between TNBC and non-TNBC groups highlight its potential

value as a supplementary marker for TNBC molecular subtyping,

warranting further validation through expanded sample studies.

Using multi-regional TNBC samples, this study revealed the

spatial hierarchy of tumor heterogeneity. The dramatic shifts in

PAM50 subtypes across tumor regions may represent the
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dominance of evolutionarily selected “fittest phenotypes” within

specific microenvironments. In immune landscape analysis, CD8+

T cells exhibited an unbalanced distribution pattern, which could be

explained by aberrant tumor vascularization affecting immune cell

chemotaxis and subclone-specific antigen variation driving

localized immune editing (31, 32). Additionally, heterogeneous

ferroptosis pathway activity suggests that hypoxia gradients might

regulate ACSL4/GPX4 balance via HIF-1a, creating regional

divergences in ferroptosis susceptibility (33).

Given the high ITH in TNBC and the vulnerability of

conventional biomarkers to ITH-induced predictive instability,

this study proposed a “low-ITH gene priority” modeling strategy.

We successfully identified CYP4B1 and GBP1 as core biomarkers

with IHS < 0.5 and significant prognostic relevance. Compared to

high-ITH genes (IHS > 0.5), these genes demonstrated cross-

regionally stable expression patterns, maintaining reliable

detection across spatiotemporal sampling condit ions.

Mechanistically, CYP4B1 (a cytochrome P450 family member)

may mediate metabolic processes in the TME (34), while GBP1

(an interferon-induced protein) participates in cancer cell growth

and promotes metastasis in TNBC (35). Minimal overlap was

observed between low-ITH and differentially expressed prognostic

genes (only 2/419), underscoring the necessity of combining

heterogeneity screening for precise biomarker identification. The

prognostic risk model achieved robust predictive performance in

METABRIC and TCGA cohorts (3-, 5-, 7-, and 9-year AUC > 0.6),

validating the feasibility of low-ITH genes for outcome prediction.

This model overcomes TNM staging limitations by stratifying

patients with identical TNM classifications into prognostically
FIGURE 10

Drug sensitivity and risk score. (A) Boxplots of IC50 values for six drugs in low-risk and high-risk groups. (B) The scatter plot shows the correlation
between IC50 and risk score. ***P < 0.001, ****P < 0.0001.
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distinct subgroups. Multivariate Cox regression confirmed the risk

score’s independent prognostic value, while its combination with

TNM staging in a nomogram (C-index > 0.67), providing a clinical

decision-making framework.

The immune cell infiltration profile revealed the biological basis

of risk stratification, with high-risk groups exhibited exhaustion of

anti-tumor immune responses. Specifically, tumor-associated

immune cells displayed marked phenotypic polarization

imbalance, with significantly reduced proportions of pro-

inflammatory M1 macrophages. Further analysis uncovered
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atypical checkpoint regulation patterns in immune evasion among

high-risk patients. Unlike the classical “cold tumor” model

characterized by PD-L1/CTLA4 overexpression (36), this

subgroup showed concurrent downregulation of checkpoint

molecules (CTLA4, PDCD1), suggesting aberrant activation of

specific immune-exhausted subtypes. Data from the IMvigor210

cohort supported this observat ion, showing reduced

immunotherapy response rates in high-risk patients, indicating

that the risk score could serve as a novel predictive biomarker for

immunotherapy resistance.
FIGURE 11

Single-cell atlas and feature gene expression. (A) UMAP visualization of cell types and gene expression patterns in GSE148673 dataset. (B, C) Bar
charts showing the expression of CYP4B1 (B) and GBP1 (C) in different cells.
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5 Conclusion

This study systematically evaluates the multidimensional

features of TNBC heterogeneity. By prioritizing low-ITH genes,
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we developed a prognostic model with temporal stability,

uncovering intrinsic links between risk scores and immune

microenvironment remodeling. The low-ITH model and

nomogram provide clinically applicable tools for TNBC outcome
FIGURE 12

Spatial transcriptomics and RT-qPCR analyses reveal dysregulated expression of CYP4B1 and GBP1. (A, B) Spatial demarcation of malignant and non-
malignant regions. (C, D) Spatial expression patterns of CYP4B1 and GBP1. (E) Bar graph quantifying CYP4B1 and GBP1 expression levels between
malignant and non-malignant regions. (F) Dysregulated expression of CYP4B1 and GBP1 in TCGA TNBC cases. (G) RT-qPCR validation of CYP4B1
and GBP1 expression dysregulation in two TNBC cell lines. ***P < 0.001, ns, not significant.
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prediction and personalized treatment. These findings deepen the

understanding of TNBC heterogeneity and establish novel

frameworks for precision subtyping in TNBC.
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SUPPLEMENTARY FIGURE 1

(A, B) The Cox model’s PH assumption of CYP4B1 (A) and GBP1 (B).

SUPPLEMENTARY FIGURE 2

(A, B) The density plots display the protein expression levels of CYP4B1 (A) and
GBP1 (B) in the normal group and the breast cancer group from

TCGA database.
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