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Background: Triple-negative breast cancer (TNBC), a highly heterogeneous breast
cancer subtype, poses significant challenges to human health. Intra-tumor
heterogeneity (ITH) limits the reliability of conventional prognostic models.
Methods: Using multi-region RNA-seq, we quantified TNBC transcriptomic
heterogeneity through an integrative heterogeneity score (IHS). After evaluating
inter-patient heterogeneity (IPH) and ITH, prognostic and low-heterogeneity genes
were identified and used to build a prognostic risk model with a random survival
forest (RSF) algorithm. This model was combined with TNM staging into a
nomogram for clinical applicability. We further revealed the distinct immune
microenvironment features, somatic mutations, and chemotherapy responses
between risk subgroups. Gene expression was validated via RT-gPCR.

Results: Spatial characterization uncovered substantial ITH, evidenced by sharp
shifts in PAM50 subtypes and immune infiltration. Two low-heterogeneity
biomarkers, CYP4B1 and GBP1, were identified to develop a robust prognostic
signature with consistent predictive performance across 3- to 9-year survival
endpoints (AUC > 0.6). The high-risk subgroup exhibited reduced immune
infiltration, reduced immune checkpoint molecule expression, and poor
immunotherapy response rates. Integration of the risk signature with TNM
staging created a clinically practical nomogram with superior predictive
accuracy (C-index >0.67). Therapeutic vulnerability profiling identified six
targeted agents showing increased efficacy in high-risk patients. Dysregulation
of signature genes was demonstrated in two TNBC cell lines.
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Conclusions: This study established a transcriptomic heterogeneity-resilient
prognostic model for TNBC, enabling precise survival stratification and
immune microenvironment assessment. The integrative nomogram and risk-
guided therapeutic predictions address clinical challenges in TNBC
management, advancing personalized treatment strategies.

immunotherapy, immune infiltration, intra-tumor heterogeneity, prognosis, triple-
negative breast cancer, tumor microenvironment

1 Introduction

Triple-negative breast cancer (TNBC), a highly heterogeneous
breast cancer subtype, lacks estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2
(HER2), making it unresponsive to hormonal therapies or targeted
treatments. This results in limited clinical therapeutic options and
poor prognosis (1). Although TNBC represents only 15%-20% of all
breast cancer cases, it exhibits a highly aggressive nature, with patients
showing significantly lower five-year survival rates compared to other
subtypes, along with elevated risks of local recurrence and distant
metastasis (2). Developing accurate prognostic prediction models for
TNBC could enable clinicians to perform personalized assessments of
disease progression and survival outcomes while optimizing treatment
strategies. Currently, conventional histopathology-based prognostic
systems still dominate clinical practice. However, histopathological
evaluations rely mainly on microscopic morphological observations,
which are inherently subjective and prone to variability based on
pathologists’ experience. Furthermore, conventional systems typically
rely on limited macroscopic indicators such as tumor size and lymph
node metastasis, which are insufficient to elucidate molecular
mechanisms driving tumor progression or quantify complex
immune infiltration and stromal reactions within the tumor
microenvironment (TME). Consequently, they fail to distinguish
patient subgroups with morphologically similar features but
divergent prognostic outcomes.

In recent years, the leapfrog development of high-throughput
sequencing technologies has driven continuous innovation in TNBC
molecular classification systems and genetic prognostic models. The
previous Lehmann classification primarily aimed to achieve
molecular-level categorization and identify biological mechanisms,
rather than being specifically optimized for precise individual
prognosis prediction (3). Although the tumor-infiltrating
lymphocytes (TILs) can reflect prognosis, they represent only a
portion of the immune microenvironment, failing to directly
capture the intrinsic characteristics of tumor cells (4). Compared
with traditional prognostic models, transcriptome-based models
achieve higher-precision risk stratification and personalized
treatment prediction through comprehensive analysis of tumor
molecular characteristics and functional states, while revealing
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therapeutic targets undetectable by conventional morphological
methods (5, 6). However, existing studies universally face a critical
bottleneck: high intra-tumoral heterogeneity (ITH). This
heterogeneity stems not only from immune-stromal interactions
within the microenvironment, but also from dynamic evolution of
driver mutations or epigenetic dysregulation. Its complexity and
dynamic nature significantly undermine the stability and
generalization capability of current prognostic models. Even
variability in ribonucleic acid (RNA) degradation during sample
processing introduces noise signals at the transcriptomic level,
causing conventionally identified differentially expressed genes to
carry substantial confounding factors rather than true biological
signals. While single-cell RNA sequencing (scRNA-seq) and spatial
transcriptomics offer new perspectives for resolving cellular
subpopulation heterogeneity, their high costs and technical
complexity limit applications in large clinical cohorts. Therefore,
developing computational frameworks capable of dissociating
heterogeneity interference from routine transcriptomic data has
become the core challenge for constructing reliable prognostic models.

The multi-region bulk sequencing approach offers technical
advantages for studying tumor heterogeneity by enabling the
capture of spatial transcriptomic variation features through multi-
region sampling and sequencing of tumors. Compared to single-site
sampling methods, this technique effectively mitigates sampling
bias and more reliably reveals comprehensive transcriptomic
characteristics. We analyzed bulk transcriptomic datasets from
TNBC patients with multi-region sampling to evaluate how
spatial heterogeneity influences biological signal enrichment.
Through the evaluation of transcriptomic heterogeneity, we
identified spatially stable prognostic biomarkers and constructed a
robust TNBC prognostic model resistant to transcriptomic
heterogeneity. This model demonstrated consistent long-term
prognostic predictive accuracy across The Cancer Genome Atlas
(TCGA) and Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) datasets while exhibiting strong
immunoinfiltration prediction capability (7, 8). To enhance
clinical applicability, we developed a dynamic nomogram
integrating transcriptomic profiles with Tumor-Node-Metastasis
(TNM) staging, enabling generation of visual risk stratification
reports. From a translational medicine perspective, the value of
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this study lies in establishing a TNBC-specific low-heterogeneity
prognostic and immune response prediction system, which will
advance innovative clinical practice.

2 Methods
2.1 Data collection and processing

Multi-region bulk RNA sequencing data of TNBC patients from a
previous study was included, encompassing 32 tumor samples from 10
patients (9). This dataset underwent DESeq2 normalization followed
by Variance Stabilizing Transformation (VST) to facilitate the
identification of low-ITH genes with stable expression patterns (10).
The METABRIC TNBC dataset (n = 320) was extracted as the training
cohort for prognostic modeling (7). TNBC samples (n = 122) and 113
normal samples from the TCGA breast invasive carcinoma cohort were
used for differential expression analysis and served as the prognostic
validation cohort (8). The IMvigor210 immunotherapy cohort (n =
348) was utilized for predicting immunotherapy response (11). Somatic
mutation data from TNBC cases were obtained from the TCGA
database (8). Single-cell dataset GSE148673 (n = 5) (12) and spatial
transcriptomic dataset GSE148673 (13) were included in the analysis.

2.2 Heterogeneity assessment

Mutant-Allele Tumor Heterogeneity (MATH) was employed to
quantify genomic heterogeneity (14). single-region ITH was
assessed using the DEPTH2 score (15). A dual-dimensional
strategy combining variance analysis and clustering consistency
was adopted to evaluate gene heterogeneity in TNBC (16-18). For
variance analysis, gene expression data were decomposed using a
linear mixed-effects model (via the nlme R package), partitioning
variance into within-tumor variance (W) and between-tumor
variance (B). The Intra-Tumoral Variability Score (ITVS) was
calculated as: ITVS = W/(W + B). This metric (ranging from 0 to
1) reflects the dominance of intra-tumoral heterogeneity when
approaching 1. Hierarchical clustering was iteratively performed
with the cluster numbers increasing from 1 to the total sample size
(N). The patient grouping odds ratio (PGOR) was computed at each
clustering level as the proportion of correctly grouped patients. The
area under the PGOR curve (AUPC) was quantified via numerical
integration, and the clustering consistency score (CCS) was defined
as: CCS = 1 — AUPC/(N - 1). Higher CCS (ranging from 0 to 1)
indicates lower ITH. The integrated heterogeneity score (IHS)
(ranging from 0 to 1) was determined as the geometric mean of
ITVS and CCS. A lower IHS correlates with reduced gene-level ITH.

2.3 Immune microenvironment and
functional analysis

The StromalScore and ImmuneScore were determined through
the ESTIMATE (Estimation of STromal and Immune cells in
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MAlignant Tumors using Expression data) algorithm (19).
Additionally, absolute proportions of 22 immune cell subtypes
were quantified using CIBERSORT-abs (20). The IOBR package
was employed to calculate 15 tumor-intrinsic and 20 TME
signatures (21). Functional interpretation was performed
through Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses to identify key biological
processes (22).

2.4 Construction and validation of
prognosis model

The limma package was used for the screening of differentially
expressed genes (DEGs). Using a false discovery rate (FDR) < 0.05
and a lenient cutoff of |log,FC| > 0.137 (equivalent to >10%
expression change), this strategy ensures statistical rigor while
preserving potential functionally relevant genes. Prognosis-
associated DEGs were filtered based on univariate Cox regression
and proportional hazards (PH) assumption to build a preliminary
gene library. To address transcriptional heterogeneity, protein-
coding genes were stratified into low-ITH subgroups using an
IHS cut-off of 0.5. Model genes were identified by intersecting
low-ITH genes with prognosis-associated DEGs. During model
construction, the random survival forest (RSF) algorithm was
applied using the METABRIC cohort as the training set. The RSF
model was configured with 1000 decision trees and a node size
of 36.

2.5 Nomogram development

Clinical parameters and molecular features significantly associated
with overall survival were selected via univariate Cox regression.
Independent prognostic factors were further identified by performing
multivariate Cox proportional hazards analysis. For clinical utility, the R
package “rms” was used to construct a nomogram prediction model
based on independent prognostic factors.

2.6 Drug sensitivity prediction

The pRRophetic algorithm was employed to integrate tumor
cell line drug screening data with gene expression profiles and to
establish a gene expression-drug sensitivity predictive model (23).

2.7 Cell culture

The MCF-10A, MCF-10AT, MDA-MB-231, and MDA-MB-
453 cell lines (all from ATCC) were used in experiments. Cells were
cultured in McCoy’s 5A medium (Gibco) supplemented with 10%
fetal bovine serum (Gibco) and 1% penicillin-streptomycin. All
cultures were maintained at 37°C with 5% CO, in a standard
incubator, with medium replacement every two days.
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2.8 RT-gPCR

Following total RNA extraction using TRIzol reagent
(Invitrogen), reverse transcription was performed with the
PrimeScript RT Reagent Kit (TaKaRa). RT-qPCR analysis was
conducted with SYBR Green methodology. The thermal cycling
protocol comprised: initial denaturation at 95 °C for 30 seconds,
followed by 40 amplification cycles (95 °C for 5 seconds and 60 °C
for 30 seconds), with subsequent melt curve analysis. Relative gene
expression was calculated using the 2A(-AACt) method and
normalized to PB-actin as the endogenous control. Three
independent biological replicates were implemented. The PCR
amplification primer sequences were as follows: CYP4BI,
forward: 5-TGTGCTGAAGCCCTATGTGG-3’, reverse: 5-
CCGGTGTCTCCTCTTCCAAA-3’; GBPI1, forward: 5-AGAG
AGGACCCTCGCTCTTA-3’, reverse: 5- ACATGCCT
TTCGTCGTCTCA -3’; B-actin, forward: 5-TCCATCATGA
AGTGTGACGT-3’, reverse: 5-GAGCAATGATCTTGA
TCTTCAT-3".

2.9 Statistical analysis

Statistical analyses were conducted in R (v4.3.3) and GraphPad
Prism 8.0. Non-normally distributed continuous variables were
analyzed using Mann-Whitney U or Kruskal-Wallis tests, while
categorical variables were assessed via Fisher’s exact test. One-way
ANOVA was used to compare means among three or more
independent groups. Survival differences were visualized using
Kaplan-Meier curves and compared via log-rank test. Cox
proportional hazards regression was used to identify prognostic
factors, with hazard ratios (HRs) and corresponding 95%
confidence intervals (CIs) calculated. For prediction performance
evaluation, receiver operating characteristic (ROC) curves were
constructed, and the time-dependent discriminative ability of the
model was quantified using the area under the curve (AUC). The
model’s discrimination was further assessed by the concordance
index (C-index). Bootstrap validation with 1000 resampling
iterations was performed to evaluate the robustness of the results.
Spearman’s rank correlation (nonparametric) and Pearson’s
product-moment correlation (parametric) were used for
correlation analysis between variables. A significance threshold of
P < 0.05 was applied unless otherwise specified.

3 Results

3.1 Genetic and transcriptomic
heterogeneity profiles in TNBC

First, we used MATH and DEPTH2 scores to quantify ITH at
genomic and transcriptomic levels, respectively. Both metrics
consistently revealed elevated heterogeneity in TNBC compared to
non-TNBC (Figures 1A, B; MATH: P = 0.00018; DEPTH2: P <
2x10719), aligning with TNBC’s aggressive biology. However, their
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prognostic utility differed: high MATH significantly predicted poorer
overall survival (Figure 1C, log-rank P = 0.017), while DEPTH2
showed only borderline significance (Figure 1D, log-rank P = 0.055).
Tumor-stage progression impacted both heterogeneity measures
similarly. MATH increased significantly from Stage I to Stage II
(Figure 1G, P = 0.047), plateauing in later stages, potentially due to
early clonal expansion followed by stabilization of dominant
subclones or cooperative populations in advanced TNBC. The
DEPTH2 mirrored this trend, with differences between Stages I and
IT approaching significance (Figure 1H, P = 0.051), suggesting
concurrent genomic and transcriptomic heterogeneity shifts during
early progression. Notably, neither score varied significantly by age
(Figures 1E, F), treatment status or type (Figures 1I-L), or race
(Figures 1M, N), indicating that intrinsic tumor biology, rather than
extrinsic factors, drives ITH in TNBC. The lack of treatment effect
implies conventional therapies may inadequately remodel
clonal architecture.

3.2 TNBC demonstrates profound IPH and
ITH

Given that single-region ITH estimation is susceptible to
sampling bias and may not accurately represent the actual ITH
level (24), we further utilized multi-region samples for ITH
quantification. At the individual patient level, unsupervised
clustering revealed that multiple tumor regions from the same
TNBC patient tended to cluster together, highlighting significant
inter-patient heterogeneity (IPH) (Figure 2A). Principal component
analysis (PCA) dimensionality reduction of whole transcriptomic
profiles further confirmed that samples from distinct regions exhibit
closer clustering associations with patient identity (Figure 2B).
PAM50 subtyping analysis underscored strong ITH in TNBC
(Figure 2C). In a representative case (P2), region P2A exhibited
mixed features of Luminal B (17.3%), basal-like (49.9%), and HER2-
enriched (32.8%) subtypes. In contrast, matched regions (P2C and
P2D) displayed sharp increases in basal-like dominance (74.5% and
87.1%, respectively), with the complete loss of the Luminal
B subtype.

3.3 TME heterogeneity in TNBC

The CIBERSORT-abs algorithm was applied to quantify
immune landscape features across 10 multi-region TNBC cases.
Results revealed marked fluctuations in immune cell infiltration
patterns between patients and across different tumor regions within
the same individual (Figure 3A). Notably, effector immune cells
were not universally detectable, demonstrating pronounced spatial
distribution disparities. For instance, CD8+ T cells were highly
enriched in region P7D but completely absent in region P7B from
the same patient. Similar spatial imbalances were observed in
activated NK cells and M1/M2 macrophage subpopulations
(Figure 3B). Tumor heterogeneity heatmap analysis (Figure 3C)
uncovered distinct cell death signatures: ferroptosis signaling was
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activated in region P8A but significantly suppressed in region P8B
of the same tumor. This regional variation likely arises from the
metabolic reprogramming differences between tumor subclones,
where some regions upregulate ACSL4 to promote lipid
peroxidation, while others activate GPX4 to sustain antioxidant
defenses (25). Additionally, the TME heterogeneity mapping
(Figure 3D) highlighted that spatially divergent immune pathway
activity was downregulated in regions P1A and P1B but strongly
activated in P1C and P1D, which reflects region-specific
modulation of immune signaling networks.

3.4 Gene heterogeneity in multi-region
TNBC RNA-seq

We then elucidated the heterogeneity of protein-coding genes in
TNBC and its biological implications. Figure 4A illustrates the
distribution patterns of three variability metrics: within-tumor
variance, between-tumor variance, and ITVS. The skewed
distribution of within-tumor variance (median 0.82) and ITVS
(median 0.81) highlights significant intra-tumor gene heterogeneity
in TNBC: 8.1% of genes exhibited extreme within-tumor variance
(variance = 1), while 8.3% lacked inter-patient discriminative power
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(between-tumor variance = 0). Notably, the extreme ITVS = 1 values
observed in 8% of genes statistically confirm the multi-clonal
coexistence within individual TNBC tumors. The scatter plot in
Figure 4B further reveals that genes with ITVS < 0.25 are
exceedingly rare (only 2 genes), a phenomenon attributed to the
combined effect of ITH and IPH in TNBC. For the clustering
analysis, we used the CCS approach. The calculation of this score is
based on the principle that genes with low ITH should consistently
cluster samples from the same patient. An IHS, calculated as the
geometric mean of ITVS and CCS (range 0-1), was established, with
lower THS values indicating reduced gene-level heterogeneity. Applying
an IHS threshold of 0.5 to 14,071 protein-coding genes, only 2.98%
(419 genes) fell into the low-ITH group (Figure 4C). A heatmap of the
top 10 THS-ranked genes from each group revealed distinct patterns:
low-ITH genes exhibited cross-regional stability, while high-
heterogeneity genes displayed pronounced spatial intra-tumor
variability (Figure 4D). Functional enrichment analysis (Figures 4E,
F) showed that high-ITH genes were strongly associated with immune-
related pathways, including cytokine-receptor interactions and
chemokine signaling, suggesting roles in TME reprogramming.
Conversely, low-ITH genes were enriched in ribosomal biogenesis
and energy metabolism, reflecting conserved roles in core cellular
processes. This bifurcation in expression strategies highlights TNBC’s
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dual survival tactics: maintaining stable expression of metabolic genes
for basic cellular functions while preserving heterogeneity in immune-
related pathways to enhance adaptability.

3.5 DGEs between TNBC and normal
breast tissues

Tumor-associated DEGs hold particular biological significance
compared to those in healthy tissue, as they may reveal molecular-
level dysregulation mechanisms driving tumorigenesis,
development, and malignant phenotypes (26). DEGs are more
likely to affect patient survival rates. This study compared gene
expression profiles between TNBC and normal breast tissues using
transcriptomic data from the TCGA database (Figure 5A). We
identified 18,252 significantly DEGs based on screening criteria
(|log2FC]| > 0.137, FDR < 0.05). Heatmap visualization of the top 50
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most significant DEGs revealed distinct clustering patterns in the
TNBC group (Figure 5B), including upregulated MMP1 and
COLI1AL. The elevated expression of these genes points to their
potential contribution to tumor invasion and metastasis via
extracellular matrix remodeling (27). GO enrichment analysis
revealed associations with cell proliferation and cycle regulation,
including terms such as DNA replication and chromosomal region
(Figure 5C). KEGG pathway analysis identified enrichment of cell
cycle-related genes and ECM-receptor interaction pathways
(Figure 5D), which may mediate the invasive potential of tumors.

3.6 Construction and validation of a low-
ITH prognostic model

By analyzing transcriptomic heterogeneity, this study established a
prognostic stratification model for TNBC patients with low ITH. To
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FIGURE 3

Heterogeneity of the TNBC tumor immune microenvironment. (A) Bar plot of immune cell infiltration composition calculated using the CIBERSORT-
abs algorithm. (B) Regional distribution of key effector cell subsets: Infiltration levels of CD8+ T cells, activated NK cells, and M1/M2 macrophages.
(C) Heatmap of tumor-intrinsic heterogeneity: Rows represent tumor-intrinsic feature scores and columns denote tumor regions. (D) Heatmap of
microenvironmental features: Rows include immune signature scores and columns denote tumor regions.

address cohort heterogeneity, we selected genes with consistent HR
directions in the TCGA and METABRIC datasets. Venn diagram
analysis of 418 low-ITH genes (IHS: 0-0.5) and 24 prognosis-related
differentially expressed genes (Figure 6A) identified two core regulators,
CYP4B1 and GBP1 (Both genes met the Cox model’s PH assumption;
Supplementary Figure S1). RSF algorithm assessed gene importance,
assigning weight scores of 0.024 and 0.02 to CYP4B1 and GBPI,
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respectively (Figure 6B). A risk prediction model was constructed:
Patient risk score = (0.024 x CYP4B1 expression) + (0.02 x GBP1
expression). In the METABRIC cohort, TNBC patients in the high-risk
group exhibited significantly shorter overall survival compared to the
low-risk group, a finding validated in the TCGA-TNBC dataset
(Figures 6C, D). Time-dependent ROC curve analysis demonstrated
robust predictive performance in METABRIC (3-year: 0.612, 5-year:
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FIGURE 4

Quantification of gene-level ITH and pathway enrichment analysis. (A) Histograms of within-tumor, between-tumor variance and ITVS distribution.
(B) Scatterplot of gene-level within-tumor/between-tumor variance and ITVS. (C) Gene distribution in high- and low-IHS groups. (D) Heatmap of
expression for top 10 highest and lowest IHS genes. (E, F) KEGG pathway enrichment analysis in low- (E) and high-IHS (F) groups.

0.661, 7-year: 0.684, 9-year: 0.678) and TCGA validation (3-year: 0.605,
5-year: 0.647, 7-year: 0.695, 9-year: 0.663), demonstrating cross-
platform applicability of the model (Figures 6E-H).

3.7 Development of a nomogram
integrating risk score and TNM stage

Analysis of TNBC patient data in the METABRIC cohort
revealed that the risk score stratification effectively distinguished
subgroups with significant prognostic differences: 48% of TNBC-
related deaths occurred in the high-risk group (vs. 27% in the low-
risk group), and recurrence rates were elevated in high-risk patients
(Figure 7A). Notably, while no statistically significant differences
were observed between the two groups in TNM staging, histological
grade, primary tumor laterality, or treatment history (radiotherapy/
chemotherapy), the proportion of postmenopausal patients was
significantly higher in the high-risk group (70% vs. 58%, P = 0.035),
suggesting that hormonal status may influence prognosis through
non-canonical mechanisms (Figure 7A).

We then evaluated the prognostic predictive power of the risk
score, TNM stage, and pathological grade. Univariate Cox
regression analysis identified significant associations between

Frontiers in Immunology

overall survival and the risk score (HR = 1.041, 95% CI: 1.029-
1.053) and clinical stage (HR = 1.708, 95% CI: 1.286-2.268), both
with p<0.001 (Figure 7B). However, pathological grade was not
statistically significant in univariate Cox analysis. Crucially, in the
multivariate Cox model, the risk score and clinical stage retained
independent prognostic value (Figure 7C), indicating their
synergistic predictive utility. Based on these findings, a
nomogram integrating the risk score and clinical stage was
developed (Figure 7D). This visual tool quantifies the
contribution weight of each variable, enabling clinicians to rapidly
calculate 3-, 5-, 7-, and 9-year overall survival probabilities. Model
validation demonstrated robust performance, with the C-index
consistently exceeding 0.67 during the 3- to 9-year follow-up
period (Figure 7E), confirming sustained predictive accuracy over
time. Time-calibration curves (Figure 7F) further validated model
precision, showing strong alignment between predicted and
observed survival rates at 3, 5, 7, and 9 years.

3.8 Immune infiltration in risk subgroups

This study revealed that high-risk patients exhibit an immune-
suppressive state compared to low-risk patients. Using the

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1611917
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2025.1611917

Shen et al.
A 1 c BP cc MF
e LR
ol » 300
1]
3
75 —~log10(adj.P.Val) 3 2007
100 S
3 75 100 A
> 50 £ I
o 25
3 s - SGL_ UL L L L1 Ll 1 l.L.l
g ~log10(ad P.Val) $SETLFIELISES
2 .25 SEF L L ESFELLELFELE
ki . 50 5855888638282 238
.75 T8 8388588 Se8gX3S
* 100 S5O FT s fsE
S35 55558853585
> g 5§ 5§ £ L 8o X S <
9 £ 5355 § /8¢9 g I
& s 55 8 5 °» 5 Q
ISy SN ) S F >
£ S & QO k< S 5
< g S = o L T2
s £33 g 0§ &
3 88 s I Ko
I8} ¥ g 2 ) < S5 /
5 8 5§ & 58
5 g &5
T S P~
£
‘g.} o
< GO term
B . .
Top 50 Differentially Expressed Genes D Top10 KEGG Pathways
Cell cycle ]
Cytokine—cytokine receptor | .
interaction .
p.adjust
Oocyte meiosis | @) 0002
o 0.004
PPAR signaling pathway{ @ 0006
772 Group 0008
Normal - i ion- :
1 ETNRG ECM-receptor interaction Q
Progest diated oocyt count
0 rogesterone-mediated oocyte |
maturation @ O 1w
-1 Viral protein interaction O
with cytokine and cytokine{1 @ O =
-2 receptor O 25
IL-17 signaling pathway{ @ O 30
O s
Regulation of lipolysis in | e
adipocytes
Tyrosine metabolism @
0.020.040.060.08
GeneRatio
FIGURE 5
DEGs and functional enrichment in TCGA TNBC samples. (A) The volcano plot displays the differential analysis results of tumor versus normal tissues
from TCGA TNBC RNA-seq data (FDR < 0.05). (B) Heatmap shows the expression patterns of top 50 DEGs. (C) Analysis of the biological roles of
DEGs (|logFC| > 1, adjusted P < 0.05) using GO terms from biological processes (BP), cellular components (CC), and molecular functions (MF).
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ESTIMATE algorithm, we found that the ESTIMATEScore and
ImmuneScore were significantly lower in the high-risk group
compared to the low-risk group, while the StromalScore showed
no statistical difference (Figure 8A). This suggests that the reduced
immune activity in high-risk patients primarily arises from altered
immune cell composition rather than stromal components. Further
immune infiltration quantification via the CIBERSORT algorithm
(Figure 8B) showed reduced infiltration levels of anti-tumor
immune subpopulations in the high-risk group. Specifically, M1
macrophages, dendritic cells, plasma cells, monocytes, and CD4+
memory T cells were markedly decreased (all P < 0.05). Notably,
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CD8+ T cells, natural killer cells, M2 macrophages, and regulatory
T cells showed no statistically significant differences.

Analysis of immune checkpoint expression profiles (Figure 8C)
revealed significant downregulation of key regulators (CD27,
CTLA4, and PDCD1) in the high-risk group. However, the
expression of TNFSF14 and TNFRSF25 were not statistically
significant, highlighting heterogeneity in checkpoint regulation.
Concurrently, the reduced tumor mutational burden (TMB) in
high-risk patients may further impair antigen presentation
efficiency (Figure 8D). In the IMvigor210 cohort, we observed
increased resistance to immune checkpoint blockade therapy in
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(CR/PR) had significantly lower median risk scores than those with
PD/SD (Figures 8F, G). These findings collectively suggest that the
risk scoring system effectively identifies immunotherapy non-

the high-risk group. The combined proportion of progressive
disease (PD) and stable disease (SD) cases reached 82% in the
high-risk group, surpassing the 72% in the low-risk group

(Figure 8E). Patients who achieved complete or partial responses  responders, offering critical insights for clinical decision-making.
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FIGURE 7

Integrative prognostic nomogram combining risk score and TNM stage. (A) Distribution of survival status, recurrence, tumor laterality, stage,
histologic grade, treatment, and menopausal status in risk groups. (B, C) Univariate forest plot (B) and multivariate forest plot (C) demonstrate the
impact of risk score on overall survival. (D) Nomogram integrates risk score and TNM stage for predicting overall survival in TNBC patients. (E) Time-
dependent C-index for nomogram at 3/5/7/9 years. (F) The calibration curve shows that the predicted probabilities from the nomogram have high
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consistency with the actual observed probabilities.

3.9 Mutational landscape of risk subgroups

This study integrated genomic data from 105 TCGA TNBC
tumor samples (63 high-risk, 42 low-risk) to characterize mutation
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patterns and risk interactions. Figure 9A shows that 56 out of 63

high-risk samples (88.89%) harbored at least one genetic alteration,

11

with TP53 mutations being the most frequent (75%), followed by
TTN (17%) and PIK3CA (14%), dominated by missense mutations.
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All low-risk samples displayed genetic alterations, with TP53
mutations occurred in 93% of cases, alongside high-frequency

mutations in TTN (33%) and MUC16 (21%) (Fi

occurrence and exclusivity analysis (Figures 9C, D) revealed
significant associations: USH2A and MUCI16 exhibited strong co-
occurrence (P < 0.05), suggesting synergistic oncogenic pathways,

gure 9B). Co-

high-risk patients.

anticancer agents with significant negative correlations to risk
scores (R < —0.02) and lower IC50 values in the high-risk group:
Bryostatin.1, AKT inhibitor VIII, Imatinib, Bexarotene, Lapatinib,
and Bicalutamide (Figures 10A, B). These findings suggest that risk
score-guided drug selection may optimize personalized therapy for

while TP53 and MUCI16 displayed mutual exclusivity.

3.10 Drug sensitivity screening for high-risk

patients

Given the poor prognosis and immunotherapy resistance in
high-risk patients, the pRRophetic platform identified six
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3.11 Expression patterns of CYP4B1 and
GBP1 in TNBC

Single-cell and spatial transcriptomic analyses of TNBC
tissues were conducted through web-based platforms (https://
grswsci.top/). Single-cell sequencing resolved nine distinct
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Genomic alteration profiles. (A, B) High-frequency mutated genes in 105 TNBC samples in high-risk group (A) and low-risk group (B). (C, D) Co-
occurrence and mutual exclusivity heatmaps of top 20 genes in high-risk group (C) and low-risk group (D).

functionally-defined cell clusters (Figure 11A), with the epithelial
subpopulation demonstrating marked CYP4B1 enrichment
(Figure 11B). Further gene expression profiling (Figure 11C)
revealed that GBP1 exhibited significantly elevated expression
levels in malignant cell populations compared to normal
epithelial cells.

Spatial transcriptomics was performed on two representative
TNBC samples from the GSE210616 dataset. Spatial regionalization
delineated tissue areas containing malignant cells (proportion > 0)
as malignant regions, while regions exclusively composed of normal
cells were designated as normal areas (Figures 12A, B). CYP4B1
exhibited significantly elevated expression in non-malignant
regions, whereas the GBP1 displayed specific enrichment in
tumor malignant zones (Figures 12C, D). Barplots validated this
heterogeneous expression pattern for both genes across TNBC
specimens (Figure 12E).
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Boxplot analysis revealed dysregulated expression of CYP4B1 and
GBP1 in TCGA-derived TNBC samples (Figure 12F). To corroborate
these findings, RT-qPCR validation of CYP4B1 and GBP1 expression
was conducted (Figure 12G). Furthermore, proteomic data from
TCGA breast cancer also validated the expression trends of CYP4B1
and GBP1 (Supplementary Figure S2). Compared with normal
mammary MCF-10A cells, CYP4B1 showed marked downregulation
in premalignant MCF-10AT cells and aggressive TNBC cell models
(MDA-MB-231 and MDA-MB-453). Notably, GBP1 demonstrated
pronounced upregulation in both malignant cell lines.

4 Discussion

This study revealed the complex characteristics of ITH in TNBC
and its impact on clinical outcomes. Our findings not only deepen

13 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1611917
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Shen et al.

10.3389/fimmu.2025.1611917

Bryostatin.1 Imatinib Lapatinib Bexarotene AKT.inhibitor.VIII Bicalutamide
B 52 s
0.75 | — 48
5.0
51
40
= = = ~50 P =
g1 3 Ras 3 2 3
S S50 [ [ <] 48
z z z z 235 z
z H H H z H
H H 240 H H H
& 125 340 & 45 3 3
3.0 44
48 35
-1.50 40 25
Low-risk  High-risk Low-risk  High-risk Low-risk High-risk Low-risk  High-risk Low-risk  High-risk Low-risk  High-risk
Bryostatin.1 Imatinib Lapatinib Bexarotene AKT.inhibitor.VIll Bicalutamide

-08:

p=-0.26,p=21e-06 p=-034,p=31e-10 50{ p=-0.21,p=0.00016
5.1

\

-
>

Senstivity (IC50)
Senstivity (IC50)
e S
Senstivity (IC50)
5

»
o

p=-0.25p=4.8e-06 p=-022,p=7.1e-05

\

o

o
S
o

Senstivity (IC50)
Senstivity (IC50)
o

8
p=-0.27, p=8.4e-07
6

\

Py

Senstivity (IC50)

°
IS

»
>
Py

40 80 100 40 80 100 40 80 100

60 60 60
Risk score Risk score Risk score

FIGURE 10

4
40 80 100 40 80 100 40 80 100

60 60 60
Risk score Risk score Risk score

Drug sensitivity and risk score. (A) Boxplots of IC50 values for six drugs in low-risk and high-risk groups. (B) The scatter plot shows the correlation

between IC50 and risk score. ***P < 0.001, ****P < 0.0001.

the understanding of TNBC’s biological behavior but also offer new
perspectives for developing precision medicine strategies.

The stage-specific evolution of genetic heterogeneity in TNBC
was confirmed in this study. MATH scores showed significant
increasing trends in stages I-II, while no marked differences were
observed in stages III-IV. This phenomenon could be attributed to
limited sample size on one hand and aligns with the “bottleneck
effect” model of tumor evolution proposed by Sottoriva et al. (28) on
the other. Elevated genetic heterogeneity in early-stage tumors may
reflect Darwinian selection processes under microenvironmental
pressure, whereas ITH tends to stabilize when dominant clones take
over. Notably, conventional therapeutic approaches failed to
significantly alter MATH scores, suggesting that cytotoxic agents
or radiotherapy primarily eliminates sensitive clones while
inadequately suppressing adaptive evolution of subclones (29).
The DEPTH2 scores at the transcriptome level demonstrated
clinical patterns similar to those of MATH, yet showed slightly
weaker prognostic discrimination. This phenomenon may stem
from a decoupling mechanism between genomic mutations and
gene expression regulation (30). Some driver mutations may be
buffered at the RNA expression level, potentially explaining why
genetic heterogeneity carries greater prognostic significance.
However, the highly significant differences in DEPTH2 scores
between TNBC and non-TNBC groups highlight its potential
value as a supplementary marker for TNBC molecular subtyping,
warranting further validation through expanded sample studies.

Using multi-regional TNBC samples, this study revealed the
spatial hierarchy of tumor heterogeneity. The dramatic shifts in
PAMS50 subtypes across tumor regions may represent the
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dominance of evolutionarily selected “fittest phenotypes” within
specific microenvironments. In immune landscape analysis, CD8+
T cells exhibited an unbalanced distribution pattern, which could be
explained by aberrant tumor vascularization affecting immune cell
chemotaxis and subclone-specific antigen variation driving
localized immune editing (31, 32). Additionally, heterogeneous
ferroptosis pathway activity suggests that hypoxia gradients might
regulate ACSL4/GPX4 balance via HIF-1la, creating regional
divergences in ferroptosis susceptibility (33).

Given the high ITH in TNBC and the vulnerability of
conventional biomarkers to ITH-induced predictive instability,
this study proposed a “low-ITH gene priority” modeling strategy.
We successfully identified CYP4B1 and GBP1 as core biomarkers
with THS < 0.5 and significant prognostic relevance. Compared to
high-ITH genes (IHS > 0.5), these genes demonstrated cross-
regionally stable expression patterns, maintaining reliable
detection across spatiotemporal sampling conditions.
Mechanistically, CYP4B1 (a cytochrome P450 family member)
may mediate metabolic processes in the TME (34), while GBP1
(an interferon-induced protein) participates in cancer cell growth
and promotes metastasis in TNBC (35). Minimal overlap was
observed between low-ITH and differentially expressed prognostic
genes (only 2/419), underscoring the necessity of combining
heterogeneity screening for precise biomarker identification. The
prognostic risk model achieved robust predictive performance in
METABRIC and TCGA cohorts (3-, 5-, 7-, and 9-year AUC > 0.6),
validating the feasibility of low-ITH genes for outcome prediction.
This model overcomes TNM staging limitations by stratifying
patients with identical TNM classifications into prognostically
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Single-cell atlas and feature gene expression. (A) UMAP visualization of cell types and gene expression patterns in GSE148673 dataset. (B, C) Bar

charts showing the expression of CYP4B1 (B) and GBP1 (C) in different cells.

distinct subgroups. Multivariate Cox regression confirmed the risk
score’s independent prognostic value, while its combination with
TNM staging in a nomogram (C-index > 0.67), providing a clinical
decision-making framework.

The immune cell infiltration profile revealed the biological basis
of risk stratification, with high-risk groups exhibited exhaustion of
anti-tumor immune responses. Specifically, tumor-associated
immune cells displayed marked phenotypic polarization
imbalance, with significantly reduced proportions of pro-
inflammatory M1 macrophages. Further analysis uncovered
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atypical checkpoint regulation patterns in immune evasion among
high-risk patients. Unlike the classical “cold tumor” model
characterized by PD-L1/CTLA4 overexpression (36), this
subgroup showed concurrent downregulation of checkpoint
molecules (CTLA4, PDCDI1), suggesting aberrant activation of
specific immune-exhausted subtypes. Data from the IMvigor210
cohort supported this observation, showing reduced
immunotherapy response rates in high-risk patients, indicating
that the risk score could serve as a novel predictive biomarker for

immunotherapy resistance.
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Spatial transcriptomics and RT-gPCR analyses reveal dysregulated expression of CYP4B1 and GBP1. (A, B) Spatial demarcation of malignant and non-
malignant regions. (C, D) Spatial expression patterns of CYP4B1 and GBP1. (E) Bar graph quantifying CYP4B1 and GBP1 expression levels between
malignant and non-malignant regions. (F) Dysregulated expression of CYP4B1 and GBP1 in TCGA TNBC cases. (G) RT-gPCR validation of CYP4B1
and GBP1 expression dysregulation in two TNBC cell lines. ***P < 0.001, ns, not significant.

5 Conclusion

This study systematically evaluates the multidimensional
features of TNBC heterogeneity. By prioritizing low-ITH genes,
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we developed a prognostic model with temporal stability,
uncovering intrinsic links between risk scores and immune
microenvironment remodeling. The low-ITH model and
nomogram provide clinically applicable tools for TNBC outcome
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prediction and personalized treatment. These findings deepen the
understanding of TNBC heterogeneity and establish novel
frameworks for precision subtyping in TNBC.
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