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Background: Rheumatoid arthritis (RA) is a rheumatic disease charactered by
severe bone destruction. Evidence suggests that fatty acid metabolism (FAM)-
related proteins can regulate inflammation of synoviocytes in RA. However, the
fundamental roles of FAM regulators in RA remain to be elucidated.

Methods: We selected the GSE93272 dataset sourced from the Gene Expression
Omnibus (GEO) for the classification of FAM-associated molecular subtypes and
immune microenvironments in RA. Subsequently, bone marrow-derived
macrophages (BMMs) with or without receptor activator of nuclear factor
kappa-B ligand (RANKL) intervention were harvested for RNA sequencing
(RNA-seq) to verify FAM hub gene expressions.

Results: Difference analysis between RA samples and controls screened 53
significant FAM regulators. Random forest algorithm for RA risk prediction was
utilized to identify ten diagnostic FAM regulators (hub genes). A nomogram
incorporating hub genes was developed, and decision curve analysis suggested
its potential utility in clinical practice. Additionally, consensus clustering analysis
of these hub genes categorized RA patients to different FAM clusters (cluster A
and cluster B). To quantify FAM clusters, principal component analysis (PCA) was
adopted to count FAM score of every sample. ClusterB may be more linked with
osteoclastogenesis in RA characterized by RXRA, IL17RA, and TBXAZ2R.
Additionally, cases in cluster A were associated with the immunity of activated
CD4 T cell, activated CD8 T cell, eosinophil, Gamma delta T cell, immature
dendritic cell, MDSC, macrophage, regulatory T cell, and Type 2 T helper cell,
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while cluster B was linked to CD56dim natural Killer cell, Natural killer T cell, T
follicular helper cell, Type 1 T helper cellimmunity, which has a higher FAM score.
Remarkably, RNA-seq analysis confirmed the expression trend of SREBF1, FASN,
CD36, SCD1 and SCD2, consistent with bioinformatics predictions.

Conclusions: This scoring system of FAM subtypes provided promising markers
and immunotherapeutic strategies for future RA treatment.

rheumatoid arthritis, fatty acid metabolism, subtype classification, immune cell
infiltration, RNA sequencing

Introduction

Rheumatoid arthritis (RA) is a rheumatic disease that is caused by
autoimmune inflammatory factors, leading to increased susceptibility
of joint swelling and stiffness, as well as pain, synovitis and cartilage
damage (1). According to the current report, about 30% of RA patients
develop osteoporosis in their spine or hip (2). Studies indicate that
people suffering from RA account for 0.5% to 1.0% in the general
population (3). To date, despite effective therapies, sustained remission
in RA remains challenging, especially in difficult-to-treat cases, and
approximately one-third of patients don’t respond to the
recommended treatment for RA with existing medicinal products (4,
5). RA significantly threatens patients’ health and quality of life,
potentially leading to disability and decreased life expectancy, which
raises healthcare costs and financial burdens on families and society (6).
As research related to RA continues to be conducted in depth, there is
increasing evidence that RA is a complicated disease featured by
substantial heterogeneity and genetic variability (7). Thus, from a
genetic perspective, preliminary identification of high-risk patients
for developing RA is indispensable and of great importance, as it will
profoundly influence the management of RA epidemiology.

The differentiation of macrophages into osteoclasts induced by
cytokines such as RANKL is the core pathological basis of bone
destruction in RA, and cell metabolic reprogramming is a key link in
the differentiation process of macrophages into osteoclasts (8). It has
been reported that fatty acid metabolism (FAM) is an influential
metabolic alteration in CD8 T cells from RA patients (9). Fatty acids
act as a promising treatment choice for autoimmune disorders such as
RA, which play an important role in regulating immune and non-
immune pathways, potentially slowing the development of RA
autoimmunity both systemically and locally (10). The rheumatoid
synovial cells have the ability to derive fatty acids from both
intracellular and extracellular environments, and alters FAM in
immune regulation and activation of macrophages (11). Moreover,
FAM-related proteins have been reported to regulate inflammation of
fibroblast-like synoviocytes in RA, suggesting that FAM-related proteins
hold potential as targets for use of diagnosing and treating RA (12, 13).
Therefore, FAM is integral to the pathological processes of RA through
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the regulation of FAM-related gene expression. However, the precise
functions of FAM modulators in RA remain inadequately elucidated.

In this study, the GSE93272 dataset was utilized to investigate
the involvement of FAM regulators in identifying molecular
subtypes and uncovering potential diagnostic biomarkers of RA.
We devised gene signature for RA susceptibility, incorporating 10
key FAM regulators including SREBF1, SCD, PPARG, PPARA,
INSR, FASN, CD36, ACADVL, ACADM, ACACA, and our
findings revealed significant clinical benefits for patients utilizing
this model. We uncovered two distinct FAM clusters strongly
associated with significant immune cell infiltration, suggesting
their potential diagnostic value in RA and guiding treatment
decisions. Furthermore, we explored the relationships between
FAM clusters and IL17RA, TBXA2R, and RXRA, which are
closely related to osteoclast differentiation. The study’s design
process flowchart is depicted in Figure 1.

Methods
Inclusion of eligible dataset

We retrieved the GEO platform (http://www.ncbi.nlm.nih.gov/
geo/) for eligible RA data from whole blood. We used “Rheumatoid
arthritis”, “Homo sapiens”, and “Expression profiling by array” as
search keywords, and suitable datasets were screened based on the
following criteria: the dataset includes a minimum of 80 samples
comprised of downloadable raw data and series matrix files, with at
least 40 samples each in the control and RA groups. After careful
screening, we selected the dataset GSE93272 (14), which fully meet
our criteria with 232 RA cases and 43 controls.

Annotation and analysis for FAM-related
expression profile

We adopted annotation package (R4.1.2) from Bioconductor
(http://bioconductor.org/) to transform microarray probes into
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Microarray dataset GSE93272
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FIGURE 1
Flow chart of the study design.

gene symbols. Then, the data was standardized through quantile
normalization, including 232 RA samples and 43 controls. The
FAM-related genes were retrieved and identified using the
GeneCards database (https://www.genecards.org/) with “fatty acid
metabolism” as a keyword. Totally 104 FAM-related genes (shown
in Supplementary Table 1) were screened with a relevance score 250
(15) for the subsequent analysis. We used Limma package to
identify differentially expressed FAM regulators between controls
and RA patients. We screened the significant FAM regulators
according to screening thresholds of |log, fold change (FC)|>0
and P-Value<0.05 (16). Then, the R package “clusterProfiler” was
used to perform GO and KEGG enrichment analysis to explore the
underlying mechanism of the FAM regulators implicated in RA.
Moreover, we constructed the protein-protein interaction (PPI)
network of these FAM regulators by the STRING database (https://
string-db.org/), conducted network topology analysis and screened
the top ten targets as FAM hub genes in terms of degree through
Cytoscape software (v3.8.0).

Model construction

Two machine learning algorithms including random forest (RF)
and support vector machine (SVM) models were adopted to predict
the occurrence of RA. The vital FAM modulators were screened in
virtue of the R package “RandomForest” when their significance
scores (Mean Decrease Gini) were greater than 2. In the SVM
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model, the variable n signifies the count of FAM hub genes, with
each data point depicted as a dot within an n-dimensional space.
We then selected an optimal hyperplane that distinctly separated
the control and RA groups (17). Subsequently, the “rms” R package
was employed to develop a nomogram model for predicting the
prevalence of RA patients based on the identified candidate FAM
regulators. Calibration curves assessed the accuracy of the
prediction values against actual outcomes. Decision curve analysis
(DCA) was conducted to generate a clinical impact curve and
evaluate whether model-based decisions were advantageous for
patients (18).

Subgroup classification

Through consensus clustering with resampling, each member
and its corresponding subcluster number were identified,
demonstrating the validity of the clusters (18). Using the
“ConsensusClusterPlus” R package, different FAM patterns were
identified based on FAM hub genes (19).

GO enrichment analyses of DEGs between
different FAM subtypes

Differentially expressed genes (DEGs) between different FAM
clusters were identified using the Limma package, applying a
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threshold of adjusted P-Value <0.05 and |log,FC| >0.585. GO
analysis was then conducted with the “clusterProfiler” R package
to explore the involvement of DEGs in the process of RA (20).

FAM score calculation

To quantify the FAM clusters, principal component analysis
(PCA) was adopted to assess the FAM score for each sample. This
score was calculated using the following formula: FAM score =
PCl;, where PC1 represents principal component 1, and i indicates
distinct FAM gene expression (21).

Immune infiltration analysis

Single sample gene set enrichment analysis (ssGSEA) was used
to quantify the levels of immune infiltration in RA group. Initially,
the gene expression levels in the samples were ranked through
sequencing using ssGSEA. Subsequently, we examined the input
dataset for FAM hub genes and compiled their expression levels.
From this analysis, we determined the quantity of immune cells
present in each sample (22).

Experimental animals

The Ethics Committee of Laboratory Animals in Guangdong
Provincial Hospital of Chinese Medicine approved all studies.
Female Sprague-Dawley(SD) rats, aged 8 weeks and weighing
200-220g, were purchased from the Experimental Animal Center
of Guangzhou University of Chinese Medicine (Guangzhou,
China). They were maintained under standard environmental
conditions (22 * 2°C, 50% humidity, and a 12-h light/dark cycle)
with unrestricted access to food and water. The rats were euthanized
under isoflurane anesthesia.

Ethics statement

All animal experiments were approved by the Ethics Committee
of Laboratory Animals in Guangdong Provincial Hospital of
Chinese Medicine (No. 2023081) and conducted in accordance
with the relevant guidelines. The study was carried out in
compliance with the ARRIVE guidelines.

RNA-seq analysis of bone marrow-derived
macrophages with or without RANKL
induction to verify differential expression of
FAM genes

To isolate BMMs, we flushed long bones from 8-week-old rats
using warm, serum-free alpha-minimum essential medium (ot-
MEM). The isolated BMMs were cultured with M-CSF (100 ng/
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mL) for 2 days to recruit macrophages, followed by the addition of
RANKL (50 ng/mL) to induce osteoclast differentiation. RNA-seq
analysis was then performed to examine the differential expression
of FAM-related genes between groups with and without RANKL
induction during osteoclast differentiation. Libraries from different
samples were pooled according to quantitative assessments, and the
final data were used for sequencing. DEGs were identified by
comparing control and RANKL-induced samples using the
Limma R package. FAM modulators were subsequently identified,
and their expression profiles were established based on the data.
The criteria for detecting FAM DEGs were set at P < 0.05.

Statistical analysis

To evaluate the relationships among significant FAM genes,
linear regression analyses were used. Group comparisons in the
bioinformatics analysis were conducted with Kruskal-Wallis tests,
and corrected t-tests were applied to assess RNA-seq data. All
parametric tests were two-tailed, with P<0.05 deemed statistically
significant. Results are shown as mean * standard deviation.

Results

Retrieval of the 53 RA-related FAM genes

We totally screened 53 distinct FAM regulators through
difference analysis of gene expression profiles between RA group
and the controls (Figure 2A). Our analysis revealed that GO
enrichment predominantly identified entries related to biological
processes (notably fatty acid metabolic process), cellular
components (specifically peroxisomal matrix), and molecular
function (including lipid transporter activity) (Figure 2B).
Moreover, KEGG pathway enrichment analysis uncovered that
PPAR signaling pathway and fatty acid metabolism were notably
significant pathways (Figure 2C). The PPI network of 53 distinct
FAM regulators was plotted in Figure 2D. We ultimately screened
10 FAM hub genes (SREBF1, SCD, PPARG, PPARA, INSR, FASN,
CD36, ACADVL, ACADM, ACACA), which were shown in
Figure 2E. We observed that the expressions of ACADM, CD36,
PPARG were upregulated in RA samples in comparison with
controls, but the other FAM hub genes showed opposite
outcomes (Figures 2F-0).

Correlation among FAM hub genes in RA

To elucidate the potential correlations among significant FAM
genes in RA patients, Pearson correlation analysis was conducted
utilizing R statistical software. FAM hub genes in RA exhibited
different relationships with each other (Figure 3A). Thereafter, the
remarkable correlations with R>|0.25| were selected for
visualization. Significantly positive relationships were observed
between the gene expressions of ACACA-PPARA, ACADVL-
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FIGURE 2

Identification of the 53 FAM modulators in RA. (A) Expression heat map of the 53 FAM modulators in controls and RA cases. (B, C) GO and KEGG
enrichment analysis based on the 53 FAM modulators. (D) PPI network of 53 distinct FAM regulators. (E) The top 10 FAM hub genes in terms of
degree. (F-O) Differential expression boxplot of 10 FAM hub genes between controls and RA cases. *p < 0.05, **p < 0.01, and ***p < 0.001.

INSR, ACADVL-PPARA in RA cases (Figures 3B-D), but gene RF and SVM model construction

expressions of ACADM-ACADVL, ACADM-INSR, ACADM-

SREBF1, CD36-FASN in RA cases showed significantly negative The RF model was validated to have the smaller residual according
relationships (Figures 3E-H). to reverse cumulative distribution of residual (Figure 4A) and boxplots
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significantly positive correlations in the gene expression levels of ACACA-PPARA, ACADVL-INSR, ACADVL-PPARA in RA cases (B-D), while the gene
expression levels of ACADM-ACADVL, ACADM-INSR, ACADM-SREBF1, CD36-FASN in RA cases exhibited significantly negative correlation (E-H).

of residual (Figure 4B). Most of the model samples have relatively small
residuals, which indicates that the RF model is superior to the SVM
model. Moreover, we utilized ROC curves to evaluate the models, and
according to their AUC values, we discovered that the RF model
exhibited higher accuracy than the SVM model (Figure 4C). As a result,
we came to the conclusion that the RF model is the best one for
predicting the occurrence of RA. Finally, we presented these 10 FAM
hub genes based on their importance score (mean decrease Gini) and
selected candidate genes with importance score>2, including SREBF1,
SCD, PPARG, PPARA, INSR, FASN, CD36, ACADVL, ACADM,
ACACA (Figure 4D).

Construction of nomogram model

To predict the prevalence of RA patients, a nomogram model was
constructed using the “rms” package in R based on 10 candidate FAM
regulators (Figure 5A). The calibration curves indicated high prediction
accuracy of the nomogram model (Figure 5B), and the DCA curve
suggested potential benefits for RA patient judgments using this model
(Figure 5C). Furthermore, the clinical impact curve demonstrated
remarkable predictive capacity of the nomogram model (Figure 5D).

Identification of different FAM clusters

Two FAM clusters (clusterA and clusterB) were identified on
the basis of the ten FAM hub genes in virtue of the R package
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“ConsensusClusterPlus” (Figures 6A-D). Cluster A consisted of 159
samples, while cluster B included 73 samples. Subsequently, the heat
map and boxplot clearly showed the differential expression levels of
the 10 important FAM regulators between the two clusters. We
observed that clusterA exhibited higher expression levels of CD36
and ACADM compared to clusterB, whereas SREBF1, PPARA,
FASN, and ACADVL showed higher expression levels in clusterB
than in clusterA. The expression levels of SCD, PPARG, INSR, and
ACACA did not exhibit any noticeable variances between the two
clusters (Figures 6E, F). The 10 FAM regulators were able to
distinguish between the two FAM clusters based on the PCA
results (Figure 6G). We identified 74 DEGs associated with FAM
between the two FAM patterns. To gain further insight into the role
of these DEGs in RA, we conducted GO enrichment analysis
(Figure 6H). We observed that GO:0002181 (cytoplasmic
translation), GO:0003735 (structural constituent of ribosome) and
GO:0005840 (ribosome) were the mainly enriched entries.

We then explored the relationship between immune cells and 10
important FAM regulators by using ssGSEA to assess the
abundance of immune cells in RA samples. We observed a
positive association between INSR and multiple immune cells
(Figure 7A). We compared the differences in immune cell
infiltration between patients with high and low INSR expressions.
Our results showed that patients with high INSR expression had
significantly increased immune cell infiltration compared to those
with low INSR expression (Figure 7B). Furthermore, we found that
clusterA cases were associated with activated CD4 T cell, activated
CD8 T cell, eosinophil, Gamma delta T cell, immature dendritic cell,
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MDSC, macrophage, regulatory T cell, and Type 2 T helper cell
immunity; while clusterB was linked to CD56dim natural killer cell,
Natural killer T cell, T follicular helper cell, Type 1 T helper cell
immunity (Figure 7C).

FAM gene signature construction with two
gene clusters

Based on the 74 FAM-associated DEGs, we used a consensus
clustering technique to classify RA cases into different genomic
subtypes in order to understand FAM patterns. We identified two
distinct FAM gene clusters (gene clusters A and B) that aligned with
the sectionalization of FAM patterns (Figures 8A-D). The
expression levels of the 74 FAM-related DEGs in gene cluster A
and gene cluster B were depicted in Figure 8E. Similarities in
immune cell infiltration levels and expressions of 10 significant
FAM modulators between gene clusterA and gene clusterB also
mirrored those in the FAM clusters (Figures 8F, G). These results
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once again confirmed the accuracy of our sectionalization using the
consensus clustering method.

Role of specific genes from FAM clusters
for RA identification

The Sankey diagram (Figure 9A) illustrated the connection between
FAM scores, FAM clusters, and FAM gene clusters. PCA methods were
employed to measure the FAM clusters by determining the FAM scores
for each sample across the two distinct FAM clusters. In comparison to
clusterA, we observed that clusterB showed a higher FAM score
(Figure 9B). To explore the associations between FAM clusters and
RA, we assessed the relationships between FAM clusters and three
specific genes including IL17RA, TBXA2R, and RXRA, which have close
association with osteoclast differentiation. We found that clusterB
exhibited higher levels of ILI7RA, TBXA2R, and RXRA expression
than clusterA, indicating that clusterB may be strongly connected with
RA defined by osteoclast differentiation (Figure 9C).
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Establishment of the nomogram model. (A) The nomogram model was established on the basis of the 10 FAM hub genes. (B) The calibration curve
was utilized to evaluate the predictive accuracy of the nomogram model. (C) Decisions on the basis of this nomogram model may be beneficial to
RA patients. (D) The clinical impact curve was used to assess clinical impact of the nomogram model

RNA-seq validation of FAM hub genes

The expression heat map (Figure 10A) showed the differential
expression profiles during osteoclast differentiation. Specifically, the
FAM modulator CD36 exhibited increased expression levels in
RANKL-induced group compared with controls, while the FAM
modulators SREBF1, FASN, SCD1 and SCD2 exhibited decreased
expression levels in RANKL-induced group compared with controls
(Figure 10B), which verified the bioinformatics results.

Discussion

RA is a common autoimmune disorder characterized by
polyarticular stiffness, synovitis, and progressive bone destruction,
which may lead to irreversible disability if not managed early and
effectively (23). Therefore, optimistic prognosis is strongly
attributed to prompt diagnosis and effective management of RA
(24). Recent studies suggest that FAM plays a key regulatory role in
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the inflammatory process of fibroblast-like synoviocytes, a critical
cell type in RA pathogenesis (25). However, the function and
importance of FAM regulators in RA remains largely unclear.

In this study, we systematically explored the expression and
functional significance of FAM regulators in RA. Through
differential expression analysis between RA and healthy samples,
we identifled 53 differentially expressed FAM-related genes and
further screened 10 hub FAM regulators based on network degree
values. These genes (SREBF1, SCD, PPARG, PPARA, INSR, FASN,
CD36, ACADVL, ACADM, ACACA) were integrated into a
predictive nomogram model based on a constructed RF model for
forecasting RA occurrence, which demonstrated favorable
performance in risk assessment and clinical decision-making
through DCA evaluation.

More importantly, previous studies have revealed that these
FAM hub genes are intricately involved in regulating bone
metabolism balance in RA. For instance, sterol regulatory element
binding protein 1 (SREBP1) and stearoyl-CoA desaturase (SCD),
peroxisome proliferator activated receptor gamma (PPARG),
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peroxisome proliferator activated receptor alpha (PPARA) serving
as lipogenic genes have been reported to regulate FAM progress in
RA (26, 27). SREBFI participates in reducing the activation of
PI3K/AKT/NE-xB signaling pathway, which alleviates joint
inflammation and bone destruction in RA model mice (28). Since
increased energy consumption triggered by inflammation in RA
leads to deficient FAM-related anabolic metabolism, the regulations
of PPARG and SCD1 could rescue FAM homeostasis (29). PPARA
agonist has been used to enhance anti-inflammatory activity in RA
(30). Medium-chain acyl-CoA dehydrogenase (ACADM) has been
reported to regulate fatty acid oxidation and promote lipolysis (31).
Our present study indicated that acetyl-CoA carboxylase 1
(ACACA) and very long-chain specific acyl-CoA dehydrogenase
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underlying the effect of the 74 FAM-related DEGs on the occurrence

(ACADVL), as the enzymes of fatty acid oxidation, were down-
regulated in RA patients, as reported previously (32). High
expression of cluster of differentiation 36 (CD36) has been
reported to trigger inflammatory response in RA (33).
Importantly, our present study has confirmed that CD36 as FAM
regulators exhibited higher expression levels both in bioinformatics
and in vitro transcriptomic validation, which in turn promote
inflammatory process in RA. Abnormal expression of fatty acid
synthase (FASN) results in lipid overaccumulation, which
stimulates reactive oxygen species production and activates PI3K/
mTOR/NF-xB signaling pathway, thereby facilitating the
progression of inflammatory responses and bone erosion in RA
(34). The limited fatty acid synthesis contributes to affecting RA by
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Single sample gene set enrichment analysis. (A) Correlation between immune cell infiltration and the 10 FAM hub genes. (B) Difference in the
abundance of infiltrating immune cells between high and low INSR protein expression groups. (C) Differential immune cell infiltration between

clusterA and clusterB. *p < 0.05, **p < 0.01, and ***p < 0.001.

regulating FASN transcription subsequent to PPARG activation
(35). Growing evidence has confirmed that insulin receptor (INSR)
participates in regulating immune response implicated in RA (36).
Above all, the dysregulations reflect the disrupted balance between
fatty acid synthesis and inflammation in RA, and these mentioned
FAM regulators may play a crucial role in the onset and progression
of RA.

Beyond molecular alterations, we identified FAM patterns based
on these hub genes that were significantly relative to abundant
macrophage infiltration, which was strongly associated with
osteoclastogenesis (Figure 7C). Numerous studies have highlighted
the critical role of FAM in regulating osteoclast formation and
function, primarily through interaction with specific receptors on
osteoclasts, thereby affecting intracellular signaling pathways and
gene expression associated with osteoclast activity (37-39). Existing
study illustrates that the osteoclastogenesis of monocyte/macrophage
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lineage is crucial in the pathological development of RA (40). Cells of
monocyte/macrophage lineage have a critical function in regulating
immune balance and the development of RA (41). Monocyte/
macrophage lineage differentiates into multinucleate osteoclasts,
modulating osteoclastogenesis in bone metabolism (42). RXRA,
IL17RA, and TBXA2R are strongly associated with
osteoclastogenesis. RXRA plays a vital role in vitamin D pathway,
which is involved in regulating osteoclastogenesis in bone
homeostasis (43). The immunological and skeletal systems share
numerous regulatory components, including the IL-17a receptor
(IL17RA), whose deletion reduces the amount of osteoclast
precursors and enhances bone mass (44). Existing study has
confirmed that thromboxane A2 (TxA2) can directly induce
osteoclastic differentiation (45). Our previous study has confirmed
that TxA2 plays an important role in RA pathology through
regulating synovial cell proliferation; TBXA2R, as the receptor of
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TxA2, could bind to TxA2 to activate the NF-xB signaling pathway
and positively regulate osteoclastogenesis, whose blockage might
prevent the inflammatory process from causing bone loss and bone
deterioration (46). In the present study, we classified two different
FAM clusters (clusterA and clusterB) on the basis of the 10 significant
FAM regulators. ClusterB showed higher expressions of RXRA,
IL17RA, and TBXAZ2R, indicating that clusterB may be associated
with osteoclastogenesis characterized by RXRA, IL17RA, and
TBXA2R. Furthermore, PCA techniques were employed to
ascertain the FAM scores of individual samples between the two
different FAM clusters in order to quantify the FAM signatures. We
observed that compared with clusterA, clusterB displayed a higher
FAM score.

To experimentally validate our bioinformatics findings, we
utilized RANKL-induced BMMs to trigger osteoclast
differentiation. Our RNA-seq-based validation showed that FAM
gene CD36 showed upregulated expression levels in RANKL-
induced group compared with controls, while the FAM
modulators SREBF1, FASN, SCD1 and SCD2 exhibited decreased
expression levels in RANKL-induced group compared with
controls, which validated the bioinformatics results and previous
studies. This in vitro validation not only supports our model but
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also confirms the functional relevance of these FAM regulators in
osteoclastogenesis. Our research findings provide strong evidence
for the involvement of FAM regulators in RA and shed new light on
their role in the development of RA. This reinforces the notion that
FAM modulators play a critical role in the progression of RA. In
other words, focusing on these FAM-related targets could be a
promising treatment strategy for managing the equilibrium between
bone formation and resorption in RA. To the best of our knowledge,
this study is the first to systematically characterize the immune
landscape and identify molecular subtypes of RA based on FAM-
related signatures.

However, several limitations should be acknowledged in this
study. Although we systematically analyzed the association between
FAM regulators and immune cell infiltration, and preliminarily
validated the expression of key FAM-related genes through in vitro
transcriptomic validation, the precise molecular mechanisms by
which these regulators modulate RA progression remain to be
elucidated. Moreover, the current findings are largely based on
bioinformatics analyses; thus, in-depth in vivo, in vitro, and clinical
investigations including additional disease cohorts with systemic
inflammatory profiles are required to further evaluate the specificity
of the FAM scoring model.
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RNA-seq validation of significant FAM modulators. (A) Expression heat map of RANKL-induced samples and controls, assessed by RNA-seq. (B) The
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FASN, SCD1 and SCD2 exhibited decreased expression levels in RANKL-induced samples compared with controls. All results are expressed as means
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Conclusion regulators, we verified two FAM signatures and discovered that

clusterB may be more linked with osteoclastogenesis in RA

Our present study generally identified 53 distinct FAM regulators ~ characterized by RXRA, ILI7RA, and TBXA2R. Importantly, this

and established a nomogram model of 10 FAM hub genes that  study firstly displays immune landscapes and diagnostic subtypes
accurately predicted the occurrence of RA. Then, using the 10 FAM  associated with FAM progress in RA.
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