
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Steven O'Reilly,
Consultant, Sunderland, United Kingdom

REVIEWED BY

Jason Dale Turner,
University of Birmingham, United Kingdom
Hui Zhang,
Fujian Medical University, China

*CORRESPONDENCE

Xiaodong Wu

wuxiaodong@gzucm.edu.cn

Runyue Huang;

ryhuang@gzucm.edu.cn

Maojie Wang

maojiewang@gzucm.edu.cn

RECEIVED 14 April 2025

ACCEPTED 20 June 2025

PUBLISHED 24 July 2025
CORRECTED 07 November 2025

CITATION

Zhang P, Wen Y, Li X, Yang Y, Liang Y, Zhan C,
Mei L, Du H, Chen X, Wang M, Huang R and
Wu X (2025) Molecular subtype and RNA
transcriptomics validation for rheumatoid
arthritis characterized by fatty acid
metabolism-related immune landscape.
Front. Immunol. 16:1611000.
doi: 10.3389/fimmu.2025.1611000

COPYRIGHT

© 2025 Zhang, Wen, Li, Yang, Liang, Zhan, Mei,
Du, Chen, Wang, Huang and Wu. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 24 July 2025

DOI 10.3389/fimmu.2025.1611000
Molecular subtype and RNA
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Background: Rheumatoid arthritis (RA) is a rheumatic disease charactered by

severe bone destruction. Evidence suggests that fatty acid metabolism (FAM)-

related proteins can regulate inflammation of synoviocytes in RA. However, the

fundamental roles of FAM regulators in RA remain to be elucidated.

Methods:We selected the GSE93272 dataset sourced from the Gene Expression

Omnibus (GEO) for the classification of FAM-associated molecular subtypes and

immune microenvironments in RA. Subsequently, bone marrow-derived

macrophages (BMMs) with or without receptor activator of nuclear factor

kappa-B ligand (RANKL) intervention were harvested for RNA sequencing

(RNA-seq) to verify FAM hub gene expressions.

Results: Difference analysis between RA samples and controls screened 53

significant FAM regulators. Random forest algorithm for RA risk prediction was

utilized to identify ten diagnostic FAM regulators (hub genes). A nomogram

incorporating hub genes was developed, and decision curve analysis suggested

its potential utility in clinical practice. Additionally, consensus clustering analysis

of these hub genes categorized RA patients to different FAM clusters (cluster A

and cluster B). To quantify FAM clusters, principal component analysis (PCA) was

adopted to count FAM score of every sample. ClusterB may be more linked with

osteoclastogenesis in RA characterized by RXRA, IL17RA, and TBXA2R.

Additionally, cases in cluster A were associated with the immunity of activated

CD4 T cell, activated CD8 T cell, eosinophil, Gamma delta T cell, immature

dendritic cell, MDSC, macrophage, regulatory T cell, and Type 2 T helper cell,
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while cluster B was linked to CD56dim natural killer cell, Natural killer T cell, T

follicular helper cell, Type 1 T helper cell immunity, which has a higher FAM score.

Remarkably, RNA-seq analysis confirmed the expression trend of SREBF1, FASN,

CD36, SCD1 and SCD2, consistent with bioinformatics predictions.

Conclusions: This scoring system of FAM subtypes provided promising markers

and immunotherapeutic strategies for future RA treatment.
KEYWORDS

rheumatoid arthritis, fatty acid metabolism, subtype classification, immune cell
infiltration, RNA sequencing
Introduction

Rheumatoid arthritis (RA) is a rheumatic disease that is caused by

autoimmune inflammatory factors, leading to increased susceptibility

of joint swelling and stiffness, as well as pain, synovitis and cartilage

damage (1). According to the current report, about 30% of RA patients

develop osteoporosis in their spine or hip (2). Studies indicate that

people suffering from RA account for 0.5% to 1.0% in the general

population (3). To date, despite effective therapies, sustained remission

in RA remains challenging, especially in difficult-to-treat cases, and

approximately one-third of patients don’t respond to the

recommended treatment for RA with existing medicinal products (4,

5). RA significantly threatens patients’ health and quality of life,

potentially leading to disability and decreased life expectancy, which

raises healthcare costs and financial burdens on families and society (6).

As research related to RA continues to be conducted in depth, there is

increasing evidence that RA is a complicated disease featured by

substantial heterogeneity and genetic variability (7). Thus, from a

genetic perspective, preliminary identification of high-risk patients

for developing RA is indispensable and of great importance, as it will

profoundly influence the management of RA epidemiology.

The differentiation of macrophages into osteoclasts induced by

cytokines such as RANKL is the core pathological basis of bone

destruction in RA, and cell metabolic reprogramming is a key link in

the differentiation process of macrophages into osteoclasts (8). It has

been reported that fatty acid metabolism (FAM) is an influential

metabolic alteration in CD8 T cells from RA patients (9). Fatty acids

act as a promising treatment choice for autoimmune disorders such as

RA, which play an important role in regulating immune and non-

immune pathways, potentially slowing the development of RA

autoimmunity both systemically and locally (10). The rheumatoid

synovial cells have the ability to derive fatty acids from both

intracellular and extracellular environments, and alters FAM in

immune regulation and activation of macrophages (11). Moreover,

FAM-related proteins have been reported to regulate inflammation of

fibroblast-like synoviocytes in RA, suggesting that FAM-related proteins

hold potential as targets for use of diagnosing and treating RA (12, 13).

Therefore, FAM is integral to the pathological processes of RA through
02
the regulation of FAM-related gene expression. However, the precise

functions of FAM modulators in RA remain inadequately elucidated.

In this study, the GSE93272 dataset was utilized to investigate

the involvement of FAM regulators in identifying molecular

subtypes and uncovering potential diagnostic biomarkers of RA.

We devised gene signature for RA susceptibility, incorporating 10

key FAM regulators including SREBF1, SCD, PPARG, PPARA,

INSR, FASN, CD36, ACADVL, ACADM, ACACA, and our

findings revealed significant clinical benefits for patients utilizing

this model. We uncovered two distinct FAM clusters strongly

associated with significant immune cell infiltration, suggesting

their potential diagnostic value in RA and guiding treatment

decisions. Furthermore, we explored the relationships between

FAM clusters and IL17RA, TBXA2R, and RXRA, which are

closely related to osteoclast differentiation. The study’s design

process flowchart is depicted in Figure 1.
Methods

Inclusion of eligible dataset

We retrieved the GEO platform (http://www.ncbi.nlm.nih.gov/

geo/) for eligible RA data from whole blood. We used “Rheumatoid

arthritis”, “Homo sapiens”, and “Expression profiling by array” as

search keywords, and suitable datasets were screened based on the

following criteria: the dataset includes a minimum of 80 samples

comprised of downloadable raw data and series matrix files, with at

least 40 samples each in the control and RA groups. After careful

screening, we selected the dataset GSE93272 (14), which fully meet

our criteria with 232 RA cases and 43 controls.
Annotation and analysis for FAM-related
expression profile

We adopted annotation package (R4.1.2) from Bioconductor

(http://bioconductor.org/) to transform microarray probes into
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http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://bioconductor.org/
https://doi.org/10.3389/fimmu.2025.1611000
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1611000
gene symbols. Then, the data was standardized through quantile

normalization, including 232 RA samples and 43 controls. The

FAM-related genes were retrieved and identified using the

GeneCards database (https://www.genecards.org/) with “fatty acid

metabolism” as a keyword. Totally 104 FAM-related genes (shown

in Supplementary Table 1) were screened with a relevance score ≥50

(15) for the subsequent analysis. We used Limma package to

identify differentially expressed FAM regulators between controls

and RA patients. We screened the significant FAM regulators

according to screening thresholds of |log2 fold change (FC)|>0

and P-Value<0.05 (16). Then, the R package “clusterProfiler” was

used to perform GO and KEGG enrichment analysis to explore the

underlying mechanism of the FAM regulators implicated in RA.

Moreover, we constructed the protein-protein interaction (PPI)

network of these FAM regulators by the STRING database (https://

string-db.org/), conducted network topology analysis and screened

the top ten targets as FAM hub genes in terms of degree through

Cytoscape software (v3.8.0).
Model construction

Two machine learning algorithms including random forest (RF)

and support vector machine (SVM) models were adopted to predict

the occurrence of RA. The vital FAM modulators were screened in

virtue of the R package “RandomForest” when their significance

scores (Mean Decrease Gini) were greater than 2. In the SVM
Frontiers in Immunology 03
model, the variable n signifies the count of FAM hub genes, with

each data point depicted as a dot within an n-dimensional space.

We then selected an optimal hyperplane that distinctly separated

the control and RA groups (17). Subsequently, the “rms” R package

was employed to develop a nomogram model for predicting the

prevalence of RA patients based on the identified candidate FAM

regulators. Calibration curves assessed the accuracy of the

prediction values against actual outcomes. Decision curve analysis

(DCA) was conducted to generate a clinical impact curve and

evaluate whether model-based decisions were advantageous for

patients (18).
Subgroup classification

Through consensus clustering with resampling, each member

and its corresponding subcluster number were identified,

demonstrating the validity of the clusters (18). Using the

“ConsensusClusterPlus” R package, different FAM patterns were

identified based on FAM hub genes (19).
GO enrichment analyses of DEGs between
different FAM subtypes

Differentially expressed genes (DEGs) between different FAM

clusters were identified using the Limma package, applying a
FIGURE 1

Flow chart of the study design.
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threshold of adjusted P-Value <0.05 and |log2FC| >0.585. GO

analysis was then conducted with the “clusterProfiler” R package

to explore the involvement of DEGs in the process of RA (20).
FAM score calculation

To quantify the FAM clusters, principal component analysis

(PCA) was adopted to assess the FAM score for each sample. This

score was calculated using the following formula: FAM score =

PC1i, where PC1 represents principal component 1, and i indicates

distinct FAM gene expression (21).
Immune infiltration analysis

Single sample gene set enrichment analysis (ssGSEA) was used

to quantify the levels of immune infiltration in RA group. Initially,

the gene expression levels in the samples were ranked through

sequencing using ssGSEA. Subsequently, we examined the input

dataset for FAM hub genes and compiled their expression levels.

From this analysis, we determined the quantity of immune cells

present in each sample (22).
Experimental animals

The Ethics Committee of Laboratory Animals in Guangdong

Provincial Hospital of Chinese Medicine approved all studies.

Female Sprague–Dawley(SD) rats, aged 8 weeks and weighing

200–220g, were purchased from the Experimental Animal Center

of Guangzhou University of Chinese Medicine (Guangzhou,

China). They were maintained under standard environmental

conditions (22 ± 2°C, 50% humidity, and a 12-h light/dark cycle)

with unrestricted access to food and water. The rats were euthanized

under isoflurane anesthesia.
Ethics statement

All animal experiments were approved by the Ethics Committee

of Laboratory Animals in Guangdong Provincial Hospital of

Chinese Medicine (No. 2023081) and conducted in accordance

with the relevant guidelines. The study was carried out in

compliance with the ARRIVE guidelines.
RNA-seq analysis of bone marrow-derived
macrophages with or without RANKL
induction to verify differential expression of
FAM genes

To isolate BMMs, we flushed long bones from 8-week-old rats

using warm, serum-free alpha-minimum essential medium (a-
MEM). The isolated BMMs were cultured with M-CSF (100 ng/
Frontiers in Immunology 04
mL) for 2 days to recruit macrophages, followed by the addition of

RANKL (50 ng/mL) to induce osteoclast differentiation. RNA-seq

analysis was then performed to examine the differential expression

of FAM-related genes between groups with and without RANKL

induction during osteoclast differentiation. Libraries from different

samples were pooled according to quantitative assessments, and the

final data were used for sequencing. DEGs were identified by

comparing control and RANKL-induced samples using the

Limma R package. FAM modulators were subsequently identified,

and their expression profiles were established based on the data.

The criteria for detecting FAM DEGs were set at P < 0.05.
Statistical analysis

To evaluate the relationships among significant FAM genes,

linear regression analyses were used. Group comparisons in the

bioinformatics analysis were conducted with Kruskal-Wallis tests,

and corrected t-tests were applied to assess RNA-seq data. All

parametric tests were two-tailed, with P<0.05 deemed statistically

significant. Results are shown as mean ± standard deviation.
Results

Retrieval of the 53 RA-related FAM genes

We totally screened 53 distinct FAM regulators through

difference analysis of gene expression profiles between RA group

and the controls (Figure 2A). Our analysis revealed that GO

enrichment predominantly identified entries related to biological

processes (notably fatty acid metabolic process), cellular

components (specifically peroxisomal matrix), and molecular

function (including lipid transporter activity) (Figure 2B).

Moreover, KEGG pathway enrichment analysis uncovered that

PPAR signaling pathway and fatty acid metabolism were notably

significant pathways (Figure 2C). The PPI network of 53 distinct

FAM regulators was plotted in Figure 2D. We ultimately screened

10 FAM hub genes (SREBF1, SCD, PPARG, PPARA, INSR, FASN,

CD36, ACADVL, ACADM, ACACA), which were shown in

Figure 2E. We observed that the expressions of ACADM, CD36,

PPARG were upregulated in RA samples in comparison with

controls, but the other FAM hub genes showed opposite

outcomes (Figures 2F–O).
Correlation among FAM hub genes in RA

To elucidate the potential correlations among significant FAM

genes in RA patients, Pearson correlation analysis was conducted

utilizing R statistical software. FAM hub genes in RA exhibited

different relationships with each other (Figure 3A). Thereafter, the

remarkable correlations with R>|0.25| were selected for

visualization. Significantly positive relationships were observed

between the gene expressions of ACACA-PPARA, ACADVL-
frontiersin.org
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INSR, ACADVL-PPARA in RA cases (Figures 3B–D), but gene

expressions of ACADM-ACADVL, ACADM-INSR, ACADM-

SREBF1, CD36-FASN in RA cases showed significantly negative

relationships (Figures 3E–H).
Frontiers in Immunology 05
RF and SVM model construction

The RF model was validated to have the smaller residual according

to reverse cumulative distribution of residual (Figure 4A) and boxplots
FIGURE 2

Identification of the 53 FAM modulators in RA. (A) Expression heat map of the 53 FAM modulators in controls and RA cases. (B, C) GO and KEGG
enrichment analysis based on the 53 FAM modulators. (D) PPI network of 53 distinct FAM regulators. (E) The top 10 FAM hub genes in terms of
degree. (F-O) Differential expression boxplot of 10 FAM hub genes between controls and RA cases. *p < 0.05, **p < 0.01, and ***p < 0.001.
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of residual (Figure 4B). Most of the model samples have relatively small

residuals, which indicates that the RF model is superior to the SVM

model. Moreover, we utilized ROC curves to evaluate the models, and

according to their AUC values, we discovered that the RF model

exhibited higher accuracy than the SVMmodel (Figure 4C). As a result,

we came to the conclusion that the RF model is the best one for

predicting the occurrence of RA. Finally, we presented these 10 FAM

hub genes based on their importance score (mean decrease Gini) and

selected candidate genes with importance score>2, including SREBF1,

SCD, PPARG, PPARA, INSR, FASN, CD36, ACADVL, ACADM,

ACACA (Figure 4D).
Construction of nomogram model

To predict the prevalence of RA patients, a nomogram model was

constructed using the “rms” package in R based on 10 candidate FAM

regulators (Figure 5A). The calibration curves indicated high prediction

accuracy of the nomogram model (Figure 5B), and the DCA curve

suggested potential benefits for RA patient judgments using this model

(Figure 5C). Furthermore, the clinical impact curve demonstrated

remarkable predictive capacity of the nomogram model (Figure 5D).
Identification of different FAM clusters

Two FAM clusters (clusterA and clusterB) were identified on

the basis of the ten FAM hub genes in virtue of the R package
Frontiers in Immunology 06
“ConsensusClusterPlus” (Figures 6A–D). Cluster A consisted of 159

samples, while cluster B included 73 samples. Subsequently, the heat

map and boxplot clearly showed the differential expression levels of

the 10 important FAM regulators between the two clusters. We

observed that clusterA exhibited higher expression levels of CD36

and ACADM compared to clusterB, whereas SREBF1, PPARA,

FASN, and ACADVL showed higher expression levels in clusterB

than in clusterA. The expression levels of SCD, PPARG, INSR, and

ACACA did not exhibit any noticeable variances between the two

clusters (Figures 6E, F). The 10 FAM regulators were able to

distinguish between the two FAM clusters based on the PCA

results (Figure 6G). We identified 74 DEGs associated with FAM

between the two FAM patterns. To gain further insight into the role

of these DEGs in RA, we conducted GO enrichment analysis

(Figure 6H). We observed that GO:0002181 (cytoplasmic

translation), GO:0003735 (structural constituent of ribosome) and

GO:0005840 (ribosome) were the mainly enriched entries.

We then explored the relationship between immune cells and 10

important FAM regulators by using ssGSEA to assess the

abundance of immune cells in RA samples. We observed a

positive association between INSR and multiple immune cells

(Figure 7A). We compared the differences in immune cell

infiltration between patients with high and low INSR expressions.

Our results showed that patients with high INSR expression had

significantly increased immune cell infiltration compared to those

with low INSR expression (Figure 7B). Furthermore, we found that

clusterA cases were associated with activated CD4 T cell, activated

CD8 T cell, eosinophil, Gamma delta T cell, immature dendritic cell,
FIGURE 3

Correlation among FAM modulators in RA. (A) Correlation circos plot of different correlations between different FAM hub genes. There existed
significantly positive correlations in the gene expression levels of ACACA-PPARA, ACADVL-INSR, ACADVL-PPARA in RA cases (B-D), while the gene
expression levels of ACADM-ACADVL, ACADM-INSR, ACADM-SREBF1, CD36-FASN in RA cases exhibited significantly negative correlation (E-H).
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MDSC, macrophage, regulatory T cell, and Type 2 T helper cell

immunity; while clusterB was linked to CD56dim natural killer cell,

Natural killer T cell, T follicular helper cell, Type 1 T helper cell

immunity (Figure 7C).
FAM gene signature construction with two
gene clusters

Based on the 74 FAM-associated DEGs, we used a consensus

clustering technique to classify RA cases into different genomic

subtypes in order to understand FAM patterns. We identified two

distinct FAM gene clusters (gene clusters A and B) that aligned with

the sectionalization of FAM patterns (Figures 8A–D). The

expression levels of the 74 FAM-related DEGs in gene cluster A

and gene cluster B were depicted in Figure 8E. Similarities in

immune cell infiltration levels and expressions of 10 significant

FAM modulators between gene clusterA and gene clusterB also

mirrored those in the FAM clusters (Figures 8F, G). These results
Frontiers in Immunology 07
once again confirmed the accuracy of our sectionalization using the

consensus clustering method.
Role of specific genes from FAM clusters
for RA identification

The Sankey diagram (Figure 9A) illustrated the connection between

FAM scores, FAM clusters, and FAM gene clusters. PCAmethods were

employed to measure the FAM clusters by determining the FAM scores

for each sample across the two distinct FAM clusters. In comparison to

clusterA, we observed that clusterB showed a higher FAM score

(Figure 9B). To explore the associations between FAM clusters and

RA, we assessed the relationships between FAM clusters and three

specific genes including IL17RA, TBXA2R, and RXRA, which have close

association with osteoclast differentiation. We found that clusterB

exhibited higher levels of IL17RA, TBXA2R, and RXRA expression

than clusterA, indicating that clusterB may be strongly connected with

RA defined by osteoclast differentiation (Figure 9C).
FIGURE 4

Establishment of the RF and SVM models. (A) Reverse cumulative distribution of residual was constructed to display the residual distribution of RF
and SVM models. (B) Boxplots of residual was constructed to display the residual distribution of RF and SVM models. (C) ROC curves indicated the
accuracy of the RF and SVM models. (D) The importance score of the 10 FAM hub genes on the basis of the RF model.
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RNA-seq validation of FAM hub genes

The expression heat map (Figure 10A) showed the differential

expression profiles during osteoclast differentiation. Specifically, the

FAM modulator CD36 exhibited increased expression levels in

RANKL-induced group compared with controls, while the FAM

modulators SREBF1, FASN, SCD1 and SCD2 exhibited decreased

expression levels in RANKL-induced group compared with controls

(Figure 10B), which verified the bioinformatics results.
Discussion

RA is a common autoimmune disorder characterized by

polyarticular stiffness, synovitis, and progressive bone destruction,

which may lead to irreversible disability if not managed early and

effectively (23). Therefore, optimistic prognosis is strongly

attributed to prompt diagnosis and effective management of RA

(24). Recent studies suggest that FAM plays a key regulatory role in
Frontiers in Immunology 08
the inflammatory process of fibroblast-like synoviocytes, a critical

cell type in RA pathogenesis (25). However, the function and

importance of FAM regulators in RA remains largely unclear.

In this study, we systematically explored the expression and

functional significance of FAM regulators in RA. Through

differential expression analysis between RA and healthy samples,

we identified 53 differentially expressed FAM-related genes and

further screened 10 hub FAM regulators based on network degree

values. These genes (SREBF1, SCD, PPARG, PPARA, INSR, FASN,

CD36, ACADVL, ACADM, ACACA) were integrated into a

predictive nomogram model based on a constructed RF model for

forecasting RA occurrence, which demonstrated favorable

performance in risk assessment and clinical decision-making

through DCA evaluation.

More importantly, previous studies have revealed that these

FAM hub genes are intricately involved in regulating bone

metabolism balance in RA. For instance, sterol regulatory element

binding protein 1 (SREBP1) and stearoyl-CoA desaturase (SCD),

peroxisome proliferator activated receptor gamma (PPARG),
FIGURE 5

Establishment of the nomogram model. (A) The nomogram model was established on the basis of the 10 FAM hub genes. (B) The calibration curve
was utilized to evaluate the predictive accuracy of the nomogram model. (C) Decisions on the basis of this nomogram model may be beneficial to
RA patients. (D) The clinical impact curve was used to assess clinical impact of the nomogram model.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1611000
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1611000
peroxisome proliferator activated receptor alpha (PPARA) serving

as lipogenic genes have been reported to regulate FAM progress in

RA (26, 27). SREBF1 participates in reducing the activation of

PI3K/AKT/NF-kB signaling pathway, which alleviates joint

inflammation and bone destruction in RA model mice (28). Since

increased energy consumption triggered by inflammation in RA

leads to deficient FAM-related anabolic metabolism, the regulations

of PPARG and SCD1 could rescue FAM homeostasis (29). PPARA

agonist has been used to enhance anti-inflammatory activity in RA

(30). Medium-chain acyl-CoA dehydrogenase (ACADM) has been

reported to regulate fatty acid oxidation and promote lipolysis (31).

Our present study indicated that acetyl-CoA carboxylase 1

(ACACA) and very long-chain specific acyl-CoA dehydrogenase
Frontiers in Immunology 09
(ACADVL), as the enzymes of fatty acid oxidation, were down-

regulated in RA patients, as reported previously (32). High

expression of cluster of differentiation 36 (CD36) has been

reported to trigger inflammatory response in RA (33).

Importantly, our present study has confirmed that CD36 as FAM

regulators exhibited higher expression levels both in bioinformatics

and in vitro transcriptomic validation, which in turn promote

inflammatory process in RA. Abnormal expression of fatty acid

synthase (FASN) results in lipid overaccumulation, which

stimulates reactive oxygen species production and activates PI3K/

mTOR/NF-kB signaling pathway, thereby facilitating the

progression of inflammatory responses and bone erosion in RA

(34). The limited fatty acid synthesis contributes to affecting RA by
FIGURE 6

Consensus clustering of the 10 FAM hub genes in RA. (A-D) Consensus matrices of the 10 FAM hub genes for k = 2–5. (E) Expression heat map of
the 10 FAM hub genes in clusterA and clusterB. (F) Differential expression boxplots of the 10 FAM hub genes in clusterA and clusterB. (G) Principal
component analysis for the expression profiles of the 10 FAM hub genes that shows a remarkable difference in transcriptomes between the two FAM
patterns. (H) GO enrichment analysis that explores the potential mechanism underlying the effect of the 74 FAM-related DEGs on the occurrence
and development of RA. **p < 0.01, and ***p < 0.001.
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regulating FASN transcription subsequent to PPARG activation

(35). Growing evidence has confirmed that insulin receptor (INSR)

participates in regulating immune response implicated in RA (36).

Above all, the dysregulations reflect the disrupted balance between

fatty acid synthesis and inflammation in RA, and these mentioned

FAM regulators may play a crucial role in the onset and progression

of RA.

Beyond molecular alterations, we identified FAM patterns based

on these hub genes that were significantly relative to abundant

macrophage infiltration, which was strongly associated with

osteoclastogenesis (Figure 7C). Numerous studies have highlighted

the critical role of FAM in regulating osteoclast formation and

function, primarily through interaction with specific receptors on

osteoclasts, thereby affecting intracellular signaling pathways and

gene expression associated with osteoclast activity (37–39). Existing

study illustrates that the osteoclastogenesis of monocyte/macrophage
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lineage is crucial in the pathological development of RA (40). Cells of

monocyte/macrophage lineage have a critical function in regulating

immune balance and the development of RA (41). Monocyte/

macrophage lineage differentiates into multinucleate osteoclasts,

modulating osteoclastogenesis in bone metabolism (42). RXRA,

IL17RA, and TBXA2R are s t rong ly assoc ia ted wi th

osteoclastogenesis. RXRA plays a vital role in vitamin D pathway,

which is involved in regulating osteoclastogenesis in bone

homeostasis (43). The immunological and skeletal systems share

numerous regulatory components, including the IL-17a receptor

(IL17RA), whose deletion reduces the amount of osteoclast

precursors and enhances bone mass (44). Existing study has

confirmed that thromboxane A2 (TxA2) can directly induce

osteoclastic differentiation (45). Our previous study has confirmed

that TxA2 plays an important role in RA pathology through

regulating synovial cell proliferation; TBXA2R, as the receptor of
FIGURE 7

Single sample gene set enrichment analysis. (A) Correlation between immune cell infiltration and the 10 FAM hub genes. (B) Difference in the
abundance of infiltrating immune cells between high and low INSR protein expression groups. (C) Differential immune cell infiltration between
clusterA and clusterB. *p < 0.05, **p < 0.01, and ***p < 0.001.
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TxA2, could bind to TxA2 to activate the NF-kB signaling pathway

and positively regulate osteoclastogenesis, whose blockage might

prevent the inflammatory process from causing bone loss and bone

deterioration (46). In the present study, we classified two different

FAM clusters (clusterA and clusterB) on the basis of the 10 significant

FAM regulators. ClusterB showed higher expressions of RXRA,

IL17RA, and TBXA2R, indicating that clusterB may be associated

with osteoclastogenesis characterized by RXRA, IL17RA, and

TBXA2R. Furthermore, PCA techniques were employed to

ascertain the FAM scores of individual samples between the two

different FAM clusters in order to quantify the FAM signatures. We

observed that compared with clusterA, clusterB displayed a higher

FAM score.

To experimentally validate our bioinformatics findings, we

uti l ized RANKL-induced BMMs to trigger osteoclast

differentiation. Our RNA-seq-based validation showed that FAM

gene CD36 showed upregulated expression levels in RANKL-

induced group compared with controls, while the FAM

modulators SREBF1, FASN, SCD1 and SCD2 exhibited decreased

expression levels in RANKL-induced group compared with

controls, which validated the bioinformatics results and previous

studies. This in vitro validation not only supports our model but
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also confirms the functional relevance of these FAM regulators in

osteoclastogenesis. Our research findings provide strong evidence

for the involvement of FAM regulators in RA and shed new light on

their role in the development of RA. This reinforces the notion that

FAM modulators play a critical role in the progression of RA. In

other words, focusing on these FAM-related targets could be a

promising treatment strategy for managing the equilibrium between

bone formation and resorption in RA. To the best of our knowledge,

this study is the first to systematically characterize the immune

landscape and identify molecular subtypes of RA based on FAM-

related signatures.

However, several limitations should be acknowledged in this

study. Although we systematically analyzed the association between

FAM regulators and immune cell infiltration, and preliminarily

validated the expression of key FAM-related genes through in vitro

transcriptomic validation, the precise molecular mechanisms by

which these regulators modulate RA progression remain to be

elucidated. Moreover, the current findings are largely based on

bioinformatics analyses; thus, in-depth in vivo, in vitro, and clinical

investigations including additional disease cohorts with systemic

inflammatory profiles are required to further evaluate the specificity

of the FAM scoring model.
FIGURE 8

Consensus clustering of the 74 FAM-associated DEGs in RA. (A-D) Consensus matrices of the 74 FAM-associated DEGs for k = 2–5. (E) Expression
heat map of the 74 FAM-associated DEGs in gene clusterA and gene clusterB. (F) Differential expression boxplots of the 10 FAM hub genes in
gene clusterA and gene clusterB. (G) Differential immune cell infiltration between gene clusterA and gene clusterB. *p < 0.05, **p < 0.01, and
***p < 0.001.
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Conclusion

Our present study generally identified 53 distinct FAM regulators

and established a nomogram model of 10 FAM hub genes that

accurately predicted the occurrence of RA. Then, using the 10 FAM
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regulators, we verified two FAM signatures and discovered that

clusterB may be more linked with osteoclastogenesis in RA

characterized by RXRA, IL17RA, and TBXA2R. Importantly, this

study firstly displays immune landscapes and diagnostic subtypes

associated with FAM progress in RA.
FIGURE 10

RNA-seq validation of significant FAM modulators. (A) Expression heat map of RANKL-induced samples and controls, assessed by RNA-seq. (B) The
FAM modulator CD36 exhibited increased expression levels in RANKL-induced samples compared with controls, while the FAM modulators SREBF1,
FASN, SCD1 and SCD2 exhibited decreased expression levels in RANKL-induced samples compared with controls. All results are expressed as means
± standard deviations. **p < 0.01, ****p < 0.0001.
FIGURE 9

Role of FAM patterns in distinguishing RA. (A) Sankey diagram showing the relationship between FAM patterns, FAM gene patterns, and FAM scores.
(B) Differences in FAM score between clusterA and clusterB. (C) Differential expression levels of osteoclast differentiation-related genes IL17RA,
TBXA2R, and RXRA between clusterA and clusterB. **p < 0.01, and ***p < 0.001.
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