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The immune system protects the body against dangers that include pathogens,

damage and cancer. Modern cancer therapies have sought to bolster immune

responses against cancer using immunotherapy, which may include various forms

of immune checkpoint therapy (ICT) in addition to methods of adoptive cell

transfer (ACT), which is often associated with transfer of chimeric antigen receptor

(CAR) T cells. Despite favorable outcomes in some patients and some cancers,

as many as 60-80% of patients fail to benefit from ICT due to primary or adaptive

resistance. This highlights the need for deeper understanding of how cancers

suppress the immune system. Solid tumors, which make up approximately 90%

of all cancers, are characterized by an immunosuppressive tumormicroenvironment

(TME). A hallmark of the TME is dysfunctional vascularization and impaired

perfusion, which hinder effective drug delivery and promote hypoxia-induced

metabolic reprograming in both cancer and immune cells. As the TME imposes

intense metabolic stress through nutrient competition and lactate-driven

acidification – both of which activates immunosuppressive pathways, targeting

the TME itself may be beneficial in enhancing the efficacy of immunotherapy.

Here we will briefly discuss the potential of targeting the metabolism of the

TME as a means to promote normalized tumor vascularization and/or enhance

anti-tumor immune responses.
KEYWORDS

metabolism, cancer, T cells, macrophages, immunotherapy, tumor microenvironment,

angiogenesis
1 Introduction

Cancer is a group of more than 100 diseases acquired by cellular defects, resulting in

several hallmark features, such as uncontrolled cell growth, resistance to apoptosis,

immune evasion, as well as metabolic dysregulation and metastasis (1). Approximately

90% of all cancers form tumors, which are composed of cancer cells, stromal cells and
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tissue-resident and infiltrating immune cells (2). The composition

of the tumor, which includes all cellular and acellular factors is

referred to as the tumor microenvironment (TME) (3–5). Cancers

can arise in virtually all tissues of the body and is driven by a wide

range of different inherited and acquired mutations, resulting in

immense heterogeneity (6–8). At their core cancers are

characterized by the loss of proliferative control, typically caused

by the inactivation of tumor suppressor genes or the

hyperactivation of oncogenes. Due to their role in regulating

growth and cell cycle progression loss-of-function mutations in

tumor suppressor genes results in loss of proliferative control,

whereas activation of oncogenes promote uncontrolled growth

(9–11). Most commonly, cancer is caused by mutations in genes

encoding p53, PIK3CA, FAT4 and KRAS, with p53 mutations being

observed in more than 50% of cancers (12, 13). Moreover, single-

cell sequencing and spatial transcriptomics have further revealed

that heterogeneity exists within the tumor itself (14–16).

The rapid rate of proliferation of cancer cells has been exploited

therapeutically for decades. Chemotherapeutic drugs and

radiotherapy preferentially target rapidly proliferating cells by

either inducing DNA damage or by blocking central pathways

involved in DNA replication (17). The rapid growth coupled with

dysfunctional DNA repair boosts the accumulation of mutations,

and thus accelerates the rate of cancer evolution. This makes the

treatment of cancer especially challenging, as cancer cells not only

develop resistance to chemotherapeutic drugs but can also adapt to

harsh environmental conditions in the TME, such as hypoxia and

nutrient deprivation, further enhancing their survival (18, 19).

Although sequencing of cancer cells is increasingly used to

predict treatment efficacy, primary and acquired therapy

resistance still prevents efficient treatment of cancer in many

patients (20). Moreover, as most cancer drugs work by targeting

rapid proliferation, this also affects healthy cells with a high

proliferation rate, often resulting in hair loss, gastrointestinal

distress and immune suppression, among others (17). Together,

this highlights the need for additional cancer targeting strategies.

The ability to acquire resistance to treatment indicates that a single

target is most likely insufficient to efficiently to adequately treat

cancer patients. The identification of non-redundant pathways

may result in a synergistic effect, thus requiring lower doses and

potentially reducing adverse effects. This has been proven safe and

effective in treatment of hypertension, and in vivo models suggest

this also has the potential in cancer immunotherapies (21–23).
2 The immune system

The immune system is a complex, interactive network of defense

and surveillance mechanisms, comprising physical barriers such as

the skin and mucosal surfaces, as well as specialized lymphoid organs,

immune cells and molecules. Together, these components work in

concert to protect the host from non-self, including pathogens. The

active immune system is divided into two core responses, namely the

innate and the adaptive immune systems, which are fundamentally

differentiated by their speed, precision, and capacity to resolve
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infections in addition to differ in their ability to develop

immunological memory (24, 25). The innate immune system serves

as the first line of defense, continuously surveilling the body for

general signs of infection or damage by recognizing conserved

molecular patterns - pathogen association molecular patterns

(PAMPs) or damage-associated molecular patterns (DAMPs) (26).

Upon detection of foreign or damaged self, cells of the innate immune

system are rapidly activated and recruited from the circulation within

minutes to hours, eliciting a response that can be sustained for several

days (25). Although the innate immune system lacks immunological

memory, professional antigen-presenting cells (APCs) can also

induce activation of the adaptive immune system, composed of B

and T lymphocytes that can maintain memory to specific pathogens

lasting decades (25, 27–29). This task is mainly performed by type 1

macrophages (M1), dendritic cells (DCs), and B lymphocytes. APCs

capture antigens, process them, and present resulting antigenic

peptide fragments via their major histocompatibility complex class

II (MHC II) molecules, expressed on their surface to activate adaptive

immune cells in lymphoid tissues (25, 30, 31). While MHC II

molecules are exclusively expressed by APCs, all nucleated cells

express MHC class I (MHC I) molecules, which present

endogenous antigenic peptides to enable immune surveillance and

thereby the elimination of infected or abnormal cells (30, 31). For T

cells, antigenic peptide-MHC complexes are recognized by the T cell

antigen receptor (TCR), which can discriminate between self- and

non-self-molecules with remarkable specificity (31–33). Forming an

essential part of the TCR is the CD3 complex, functioning as an

intracellular signaling hub that translates extracellular antigen

recognition into downstream signaling events that drive T cell

activation to differentiation, effector function, and clonal

expansion (33).

T cells are broadly classified into two helper and cytotoxic T

cells, designated CD4+ helper (Th) and CD8+ cytotoxic T cells

(CTLs), respectively (24). CD4+ T cells recognize antigens

presented on MHC II molecules and play a central role in

regulating and coordinating immune responses. The CD4+ T cells

can be broadly categorized into CD4+ effector cells, orTh cells, and

regulatory T cells (Tregs). While CD4+ effector T cells are crucial

for clearing infection and repairing tissue damage, Tregs are

responsible for preventing excessive tissue damage and

autoimmunity, striking a balance to maintain a functional and

healthy immune environment (34–37). In contrast to CD4+ cells,

CD8+ CTLs recognize antigens presented on MHC I molecules, and

are responsible for directly eliminating target cells through the

release of effector cytokines or cytotoxic granules (38). Although

most effector T cells, including both CD4+ and CD8+ subsets, have

a transient lifespan, a small fraction differentiates into memory T

cells, thereby ensuring long-term immune surveillance against the

same antigen (39).
3 Cancer immunotherapy

The immune system’s intrinsic role in defending against non-

self has fueled the longstanding hypothesis that immune cells can
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recognize cancer cells as foreign and thereby be weaponized to

eliminate them. Indeed, the antigenic composition of tumors differs

significantly from that of their non-transformed tissue counterparts,

a distinction largely driven by their genetic instability – a core

hallmark of cancer (40–42). The concept of leveraging the immune

system to combat cancer, now known as immunotherapy, was first

systematically introduced in the 1890s by William B. Coley, who

documented several cases of spontaneous remission after

administering a cocktail of killed bacteria and their products to

stimulate the immune system in patients with inoperable cancer

(43). What began as a foundational discovery led to decades of

rigorous research in cancer immunology, ultimately positioning

immunotherapy as the fourth cornerstone of cancer treatment

alongside surgery, radiotherapy and chemotherapy (44).

Immunotherapy now encompasses a wide variety of treatments,

including immune checkpoint therapy (ICT), which will be the

focus of this review, adoptive cell transfer (ACT), such as chimeric

antigen receptor (CAR) T cells, as well as engineered antibodies

(reviewed extensively in (45)).

The concept of immunotherapy builds on the ability of

controlling aberrant antigen-induced immune cell activation (46).

T cell stimulation through the TCR/CD3 complex requires

concurrent perturbation of co-receptors. Whereas the initial

interaction of the TCR with the MHC molecule secure antigen-

specificity, co-receptor signaling is essential for tuning the

activation process. This tuning depends on a balance between

activating and inhibitory signals induced by perturbation of cell

surface receptors with distinct functions. This is exemplified by the

interplay between CD28 and the cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4) molecules, which compete for binding of CD80

and CD86 expressed on APCs (33). Whereas stimulation of the

CD28 molecule provides a positive signal, CTLA-4 engagement

delivers an inhibitory signal, thereby modulating the magnitude of

initial T cell activation (33, 47). Additionally, programmed cell

death receptor 1 (PD-1), also referred to as CD279, is activated by

PD ligand-1 or 2 (PD-L1/2) and downregulates T cell activity. In

line with this, PD-1 stimulation has an important role in regulating

immunological tolerance and is vital in preventing autoimmunity

and collateral tissue damage (48–51). Additionally, inflammatory

cytokines elicited by the inflammatory process are essential

signaling molecules that drive a productive T cell response and

facilitate memory formation by shaping the activation of specific

differentiation pathways within the cell (52–54).

It is now well established that cancer cells can trigger immune

responses. This phenomenon is demonstrated by the utilization of

tumor-infiltrating lymphocyte (TIL) therapy, where T cells are

isolated from resected tumors,expanded ex vivo, then transferred

back to the patient (55, 56). However, they also evolve mechanisms

enabling them to evade immune detection and destruction, making

immune evasion a defining hallmark of cancer (57–59). During

cancer evolution, these mechanisms are continuously sculpted

under the selective pressure of immunosurveillance, a

phenomenon known as immunoediting (59). In this process, as

patrolling immune cells selectively eliminate highly immunogenic

cancer cells, they simultaneously impose a selection pressure that
Frontiers in Immunology 03
favors the survival and expansion of rare subclones with immune-

evasive traits. Over time, these subclones can adapt, proliferate, and

ultimately become immune-resistant (59). Consequently, from the

earliest stages of tumor development, the immune system edits

tumor immunogenicity, leading to the emergence of an

immunoedited tumor dominated by cancer cell variants that have

successfully evaded immune control.

Immune evasion can occur through multiple, non-mutually

exclusive mechanisms (reviewed in (59) and (60)), with loss of

tumor antigen presentation being one of the most well-

characterized, allowing cancer cells to effectively hide in plain

sight. This can result from defects in the machinery responsible

for antigen processing and presentation, such as downregulation or

loss of MHC I molecules on the cell surface, a phenomenon

observed in 40-90% of cancers which shields cancer cells from

recognition and elimination by CTLs (61, 62). In blood cancers, this

“invisibility cloak” has been successfully targeted through the

development of monoclonal antibodies or CAR T cells, another

form of ACT, that recognize and bind tumor-specific surface

antigens independently of the MHC I receptor (63). However,

these approaches have shown limited efficacy against solid

tumors, which, as mentioned, account for approximately 90% of

all cancers (2).

In addition to avoiding detection from the immune system,

cancers can also suppress the effector functions of anti-tumorigenic

immune cells. A key example is the co-option of the PD-1 pathway

by cancer cells (48, 49, 51). In addition to activated T cells, PD-1

expression is also detected on B cells and natural killer (NK) cells. In

all three cell types, PD-1 expression is normally decreased when an

inflammatory response is resolved during acute antigen clearance

(50, 64). However, in cases of persistent antigen exposure, such as

cancer and chronic infections, PD-1 expression remains elevated,

which contributes to T cell exhaustion (48, 51, 65, 66). The two PD-

1 ligands, PD-L1 and PD-L2, exhibit distinct expression patterns.

While PD-L2 is predominantly expressed on APCs in lymphoid

tissues, PD-L1 is broadly expressed across hematopoietic (e.g., T

cells, B cells, macrophages) and non-hematopoietic cells (e.g.,

endothelial cells) (51, 67). PD-L1 is upregulated by pro-

inflammatory cytokines, particularly interferon-g (IFN-g), as a

feedback mechanism to tune down immune activity (50, 68).

However, in many solid tumors, PD-L1 expression is aberrantly

elevated within the TME due to constitutive oncogenic signaling or

as an adaptive response to inflammatory cues (51, 65).

To restore T cell activity in anti-tumor immune responses,

antibodies targeting co-inhibitory receptors and their ligands have

been developed (48, 51, 69, 70). These include, but are not limited

to, immune checkpoint inhibitors targeting the CTLA-4 and PD-1

pathways, which have demonstrated clinical efficacy in certain

cancers and patient subsets (70). However, as many as 60-80% of

patients with solid tumors either fail to respond or experience only

transient benefits from ICT, highlighting the diverse mechanisms

tumors employ to evade the immune system (71, 72). In solid

tumors, many of these mechanisms are driven by the TME, a

complex and dynamic ecosystem encompassing cellular, physical

and chemical components that are continuously restructured and
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manipulated throughout tumor progression. In addition to cancer

cells, the cellular constituents of the TME include diverse non-

malignant stromal cells along with tissue-resident and infiltrating

immune cell populations that can be reprogrammed to support

tumor growth (5, 73–75). In addition to cellular components, non-

cellular components – such as the extracellular matrix (ECM),

metabolites, soluble signaling molecules, and the surrounding

hypoxic and acidic milieu – play important roles in tumor

progression and therapy resistance (5, 73–75). Targeting the TME

and its diverse components to enhance immunotherapy holds

significant therapeutic promise, as many of its defining features

are conserved across a range of tumor types (5, 75). In this review,

we will provide a brief overview of key immunosuppressive

hallmarks of the TME and discuss their potential as therapeutic

targets to enhance immunotherapy in cancer, with a particular

focus on ICT.
4 Cellular metabolism and metabolic
reprogramming

Over the last decades it has become clear that extracellular

metabolites are crucial for optimal T cell activation. Nutrients and

their metabolites exhibit significant interplay with the three core

activation signals while also independently influencing the

functional polarization of T cells. Consequently, metabolic inputs

have been proposed as a novel dimension necessary for licensing the

T cell immune response (reviewed in (76) and (77)). The

connection between cellular function and metabolic phenotype in

health and disease is therefore becoming increasingly evident across

multiple fields, including immunology, cancer, and tumor

angiogenesis (41, 52, 78–83). While energy and biomass

production remain critical, recent insights explain how

metabolism affects diverse processes such as activation,

proliferation, migration and differentiation.

Although metabolic reprograming has only recently emerged as

important in these processes, it has been known in cancer cells for

close to a century. As early as in the 1920’s, Otto Warburg

discovered that cancer cells, despite the presence of oxygen,

preferentially rely on glycolysis and lactate production rather than

mitochondrial respiration, a metabolic reprogramming now known

as “The Warburg effect” (Figure 1) (84, 85). Cancer cells frequently

upregulate glucose transporters and key enzymes in the glycolytic

pathway, including Glucose transporter type 1 (GLUT1),

Hexokinase 2 (HK2), 6-phosphofructokinase 2/fructose 2,6-

bisphosphatase 3 (PFKFB3), pyruvate kinase muscle form 2

(PKM2) and lactate dehydrogenase A (LDHA) (86). Together,

these proteins facilitate a rapid turnover of glucose and a

subsequent increase in lactate production. Although this

metabolic phenotype was originally believed to be caused by a

mitochondrial defect in cancer cells, it is now recognized that the

mitochondria remain functional and possess remarkable metabolic

plasticity. This flexibility enables them to dynamically utilize a wide

range of substrates, including glutamine and fatty acids to fuel

diverse cellular processes (Figure 1) (87–89).
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This metabolic plasticity may also provide resistance to

metabolic inhibitors, as demonstrated by Boudreau et al. (90),

where the glycolytic pancreatic cancer cell line MIA PaCa-2

adopted an oxidative phenotype after long-term exposure to an

inhibitor of lactate production. In line with this, glutamine reliance,

a phenomenon sometimes referred to as “glutamine addiction”, is

observed in several cancer cell lines (83, 87, 88, 91, 92). Although

most cells are capable of synthesizing glutamine, rapidly

proliferating cells rely on additional extracellular sources, so it is

sometimes referred to as a conditionally essential amino acid (88,

91, 93). Interestingly, glutamine deprivation has been shown to

reduce the rate of glycolysis by regulating both the expression and

activity of key glycolytic enzymes (94, 95). Furthermore, the

expression of the enzyme glutaminase 1 (GLS1), which is

responsible for the deamidation of glutamine to glutamate, is

upregulated in many cancer cell lines and correlates with

decreased survival in patients (96). Indeed, Reinfeld et al. (97)

showed that myeloid cells and T cells have a higher capacity for

glucose uptake than cancer cells, while cancer cells have a higher

capacity for glutamine uptake. The enzymes isocitrate

dehydrogenase (IDH) 1 and 2 are also important in the TCA

cycle, as they catalyze the formation of a-ketoglutarate from

isocitrate (98). This supports redox homeostasis and lipid

synthesis, along with providing a-ketoglutarate which can

regulate epigenetics or be used as a backbone for glutamate and

glutamine synthesis (98–100). In cancers, mutations in IDH1 or

IDH2 can result in the formation of D-2-hydroxyglutarate (2-HG)

(98). Some cancer cells also rely on fatty acid oxidation, a trait

which is associated with upregulated expression of the

mitochondrial fatty acid transporter carnitine palmitoyl

transferase 1 (CPT1) in certain tumors (89).

Metabolic plasticity and reprogramming are important for both

cancer and immune cells. An increasing body of evidence

demonstrates that, in some contexts, healthy cells - including

immune cells and endothelial cells - can adopt similar metabolic

phenotypes (101–103). Indeed, immune cells, including

macrophages and T cells, undergo metabolic reprogramming

upon activation (81). Macrophages, which are traditionally

classified into pro-inflammatory M1 or anti-inflammatory,

wound-healing M2 subtypes, adapt to a glycolytic and oxidative

metabolic program, respectively (Figure 2) (104–109). Similar to

cancer cells, M1 macrophages upregulate PFKFB3 to boost the rate

of glycolysis (104). In line with this, deletion or inhibition of

PFKFB3 in macrophages is shown to result in reduced secretion

of pro-inflammatory cytokines, including IL-1b, IL-6 and tumor

necrosis factor following stimulation with lipopolysaccharide.

Moreover, mice with a myeloid-specific PFKFB3 deficiency

exhibit increased survival in a murine sepsis model, as well as

increased lymphangiogenesis following myocardial infarction (110,

111). Additionally, the tricarboxylic acid (TCA) cycle is used by M1

macrophages to produce succinate, which stabilizes hypoxia-

inducible factor 1 a (HIF-1a), and citrate, which serves as a

precursor for fatty acid synthesis and the antimicrobial metabolite

itaconate (112, 113). In contrast, M2 macrophages utilize glutamine

and fatty acids as substrates for the TCA cycle, fueling adenosine
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triphosphate (ATP) production through oxidative phosphorylation

(114). Additionally, they metabolize tryptophane via the enzyme

Indoleamine 2,3-dioxygenase (IDO) to generate the anti-

inflammatory metabolite kynurenine (115, 116). IDO1 activity

suppresses T-cell activity by depleting tryptophan, which is

required for Th1 and CD8+ T-cell-mediated immunity, while

kynurenine binds to the aryl hydrocarbon receptor (AHR), which

directly activates Treg differentiation and activity, resulting in

reduced anti-tumor responses (116–118).

Metabolic reprogramming is also important for T cells, with

different T cell subsets adopting distinct metabolic adaptations

(Figure 3) (103, 119, 120). In their naïve state, T cells primarily

rely on oxidative phosphorylation to produce ATP, maintaining a

relatively low metabolic rate prior to activation. However, upon

activation through perturbations of the TCR/CD3 complex in

conjunction with CD28, their metabolic rate rapidly increases

(121, 122). This process is aided by the presence of abundant

mRNA encoding key glycolytic enzymes, particularly HK2, along

with the availability of idle ribosomes, enabling the rapid

production of proteins upon upregulation (121). Additionally,

activation of Akt, also known as protein kinase B, quickly

upregulates the cytosolic localization of GLUT1 required to

increase glucose uptake (123). Chang et al. (124) demonstrated
Frontiers in Immunology 05
the metabolic plasticity of T cells by replacing glucose with

galactose. Despite their inability to metabolize galactose through

glycolysis, T-cell proliferation is reportedly unaffected by replacing

glucose with galactose, however glucose deprivation resulted in

decreased production of the cytokine interferon-g (IFN-g), as idle
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) bound the

IFN-g mRNA and prevented its translation (124) In addition to

glucose, T cells also require glutamine to become fully activated, and

glutamine deprivation or inhibition of GLS1 reduces both

proliferation and cytokine secretion in CD4+ T cells (125–128).

In fact, we recently demonstrated that, similar to cancer cells,

glutamine deprivation in CD4+ T cells also regulate glycolysis

(129). Furthermore, CD4+ T cell subsets also adapt to distinct

metabolic profiles (Figure 3), as previously reviewed in detail (130)),

highlighting the close relationship between metabolism and

functionality in T cells.

Metabolism in endothelial cells has also been extensively

studied due to their critical role in angiogenesis. Importantly,

deciphering metabolism in these cells has led to the identification

of therapeutic targets with the potential to regulate angiogenesis

(reviewed in (131)). It is known that glycolysis may account for up

to 85% of the ATP production in endothelial cells despite sufficient

levels of circulating oxygen (102). Notably, the rate of glycolysis can
FIGURE 1

The Warburg effect and glutamine metabolism drives energetic and biosynthetic pathways. The Warburg effect (84, 85) metabolizes glucose into
lactate despite the presence of oxygen, as well as providing important glycolytic metabolites which support redox homeostasis through the pentose
phosphate pathway (PPP) and the carbohydrate backbones for DNA and RNA synthesis. Glutamine addiction (blue) describes the reliance on
glutamine to provide precursor for amino acid synthesis, fueling the TCA cycle for regeneration of NADPH and generation of reduced glutathione
(GSH). Figure was made using BioRender.
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be upregulated in response to pro-angiogenic and inflammatory

factors (102, 132–135). In fact, upregulation of glycolysis through

increased expression of PFKFB3 is a strong driver of tip cell

formation in vessel sprouting (102, 135). However, the

proliferating tip and stalk cells, which are the building blocks of

sprouting angiogenesis, rely not only on glycolysis, but also on fatty

acid oxidation to produce dNTPs for DNA synthesis, and on

glutamine metabolism to fuel the TCA cycle, thereby driving

vessel propagation (Figure 4) (93, 101, 136).

Despite the differences in metabolic profiles, most of the

regulatory mechanisms are shared and conserved across cell

types. Among these are mammalian target of rapamycin complex

1 and 2 (mTORC 1 and 2), HIF-1a and c-MYC (137–140). mTOR

is a serine/threonine kinase that functions as part of two distinct

complexes: mTORC1 and mTORC2. mTORC1 is an important

regulator of anabolic metabolism, including protein and lipid

synthesis, while also supporting catabolic processes by enhancing

glycolysis through stabilization of HIF-1a and inducing enzymes

responsible for glutaminolysis via the transcriptional activity of c-

MYC (141). mTORC2 is associated with cell survival and fine-

tuning of metabolic activity. It promotes fatty acid oxidation by
Frontiers in Immunology 06
regulating the transcription factor Forkhead box 01 (FOXO1) and

enhance glycolysis through activation of Akt (142).

Stabilization of HIF-1a induces glycolytic metabolism through

upregulating expression of GLUT1, HK, PFKFB3, PKM2, LDHA

and Monocarboxylate transporter 4 (MCT4) (104, 143–146).

Although HIF-1a is primarily stabilized by the absence of

oxygen, several mechanisms can also promote its stabilization in

the presence of oxygen, including the regulation by mTORC1 (141,

142). In cancer, HIF-1a stabilization is associated with a dismal

prognosis for patients (147, 148). However, it also plays an

important role in the functional activation of immune cells,

highlighting its dual role in both promoting cancer cell growth

and supporting anti-tumor immunity [reviewed in detail (149)].
5 The tumor microenvironment drives
immune suppression

The TME is generally poorly vascularized, with dysfunctional

and leaky blood vessels resulting in decreased availability of

nutrients, hypoxia and acidification that collectively contribute to
FIGURE 2

Macrophage metabolism is closely linked with effector function. Macrophages can polarize into pro-inflammatory (M1-like) and anti-inflammatory
(M2-like) phenotypes. M1 macrophages are characterized by a high reliance on glycolysis and a less oxidative phenotype. Additionally, M1
macrophages utilize the TCA cycle to produce citrate and succinate to drive stabilization of HIF-1a to aid pro-inflammatory effector functions. The
anti-inflammatory, wound-healing M2-like macrophages are less glycolytic and more oxidative, utilizing glutamine and fatty acid oxidation (FAO).
Figure was made using BioRender.
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immune suppression through several mechanisms (Figure 5).

Whereas hypoxia is associated with increasing tumor mass,

acidification is associated with reprogrammed cancer cells

producing lactate. Tumor hypoxia induces stabilization of HIF-1a
which, as mentioned, drives glycolysis and is hence responsible for

the lactate production (4, 5, 74, 75, 97, 150). Lactate accumulation is

known to restrict T-cell proliferation by disrupting the redox

homeostasis and inhibiting GAPDH activity (151). Interestingly,

T cells produce acidic niches within lymph nodes to restrict their

own effector functions to avoid hyperactivation, demonstrating the

physiological importance of lactate (152). In addition to

acidification, lactate is known to induce histone modification

referred to as lactylation, which is associated with enhanced

polarization of M2 cells, suppressed T cell effector functions and

increased Treg differentiation, thereby supporting an anti-immune

and pro-tumorigenic phenotype (153–155). In line with this,

reduced lactylation has been associated with a favorable outcome

in patients with solid tumors (153, 156). In addition to regulating

glycolysis, HIF-1a stabilization can also act immunosuppressive by

inducing the expression of PD-L1 in DCs, macrophages and

myeloid derived suppressor cells (149). The lactate-induced

acidification has also been shown to reduce the efficacy of

immune checkpoint inhibition by influencing the binding

properties of antibodies targeting PD-L1 (157). The hypoxia-
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lactate axis also contributes to the formation of dysfunctional

blood vessels, together favoring tumor metastasis and repression

of immune cell infiltration (158, 159).

Tumor hypoxia also induces expression of CD39 and CD73,

which together catalyzes the formation of adenosine from

adenosine monophosphate (AMP) and ATP. Adenosine exerts its

effects through ligation of the 4 subtypes of purinergic adenosine

receptors (A1, A2A, A2B, and A3) (160, 161). The ARs differ in

their affinity for adenosine, but are all coupled to various cellular

signaling pathways through G-protein coupled receptors (GPCRs).

To this end, A2AR and A2BR are upregulated in response to

hypoxia and anergic signaling in T cells and induce immune

suppression by activating adenylate cyclases (ACs), that initiate

the synthesis of intracellular cyclic AMP (cAMP), which in turn

activates the cAMP-dependent protein kinase A (PKA) (161). PKA

is a holoenzyme consisting of a regulatory (R) subunit dimer and

two catalytic (C) subunits. While the R subunits are encoded by four

separate genes (PRKAR1A and -B, PRKAR2A and -B), the catalytic

subunits are primarily encoded by two major genes, PRKACA and

PRKACB, which give rise to several tissue- and cell-specific splice

variants, including immune cell-specific Cb2 (162, 163). In addition

to Cb2, the splice variants Ca1 and Cb1 are expressed in immune

cells. The prevailing dogma is that PKA activation suppresses both

early and late phases of T cell activation, including proliferation and
FIGURE 3

CD4+ T cell differentiation is correlated with distinct metabolic programs. Naïve CD4+ T cells (green) have a relatively low metabolic rate driven
mainly by oxidative phosphorylation (OXPHOS). Upon activation the naïve CD4+ T cells differentiate into various subsets of effector CD4+ T cells
(Th) (red) which utilize distinct metabolic programs characterized by differential reliance on glycolysis (Glc) glutamine metabolism (Gln) fatty acid
oxidation (FAO) and fatty acid synthesis (FAS). Alternatively, CD4+ T cells can differentiate into regulatory T cells (Tregs), which are less glycolytic and
rely more on FAO to fuel ATP production compared to the effector CD4+ T cells. Figure was made using BioRender.
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clonal expansion, the latter mediated by downregulation of IL-2

production (164, 165). In line with its inhibitory role, PKA also

promotes differentiation into Tregs and Th2, which favors

the tumor, while repressing effector functions of Th1, Th17 and

CD8+ T cells (166, 167). Additionally, Tregs can directly induce

PKA activation by transporting cAMP into target T cells through

the gap-junction protein connexin 43 (Cx43) (168). As a result, in

the TME, PKA activation drives T cell exhaustion, in conjunction

with upregulation of PD-1 and CTLA-4 expression (72). Recently,

we showed that deletion of the immune-specific PKA Cb2
significantly suppressed tumor growth and enhanced survival in a

murine metastatic cancer model (169). This was associated with

increased infiltration of pro-inflammatory Th1, Th9 and Th17 cells

into the tumors (169). Moreover, in 2020, Na et al. demonstrated

that knockout of PKA Cb in macrophages prevents M2 polarization

and that liposomal delivery of PKA inhibitors to tumor-infiltrating

macrophages enhances the therapeutic efficacy of anti-CTLA-4

antibodies, effectively counteracting breast cancer tumor growth

and metastatic potential in mice (170). Together this suggest that

Cb may convey signals supporting a proinflammatory phenotype.

In support of this, mice that are ablated for Cb2 are prone to

develop autoimmunity, a phenotype also reflected in upregulation

of proinflammatory immune cells (171).

In addition to the hypoxia-lactate-adenosine axis, some cancer

mutations result in metabolic phenotypes that contribute to an

immunosuppressive TME. Cancer cells with IDH1 or IDH2

mutations cause accumulation of 2-HG, which supports the
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cancer cells by maintaining a stem-like phenotype, while

suppressing T-cell- and macrophage-mediated immune activity

(172). 2-HG is taken up by CD8+ T cells, where it destabilizes

HIF-1a and acts as an inhibitor of LDH, resulting in reduced

chemotaxis, cytotoxic activity and production of IFN-g (172–174).
6 Targeting the tumor
microenvironment

As the TME exerts broad immunosuppressive characteristics,

targeting the TME also offers the potential for new therapies. As

mentioned, the hypoxia-lactate axis and the hypoxia-adenosine-

PKA axis are known to inhibit the immune system. Thus, targeting

hypoxia directly by hyperbaric oxygen (HBO) treatment has been

proposed (175). Although this approach is reported to enhance

immune activity and reduce growth of pulmonary tumors in a

mouse model (176) a recent meta-analysis found overall weak

evidence that HBO treatment alone improves long-term survival

(176) and its use in humans remains limited due to the lack of high-

quality studies (177). Although HBO treatment might not be

effective as a cancer treatment, targeting the downstream effects

of hypoxia on metabolism, PKA activity and angiogenesis may still

have therapeutic benefits. Moreover, targeting IDH1 and IDH2

have been explored. This is due to the fact that the cancer-specific

mutation of IDH has potential to be targeted without affecting the

non-mutated IDH isoforms in healthy cells (178).
FIGURE 4

Endothelial cell metabolism drives migration and proliferation in vessel sprouting. The highly migratory endothelial tip cell is characterized by a
higher rate of glycolysis driven by expression of PFKFB3, while the stalk cells rely on a combination of glycolysis, fatty acid oxidation (FAO) and
glutaminolysis to provide building blocks required for rapid biomass proliferation. Figure was made using BioRender.
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6.1 Targeting tumor vascularization

The hypoxia-angiogenesis-axis has also been explored as a

therapeutic strategy, which has led to the approval of monoclonal

antibodies targeting VEGF for use in some cancers, including renal

and colorectal cancer (179, 180). When used in combination with

chemotherapy, VEGF blockade has been shown to increase

progression free survival in many types of cancer (181). The

combination of anti-angiogenic drugs with ICT has been

proposed as a strategy to increase immune cell infiltration and

improve therapeutic efficacy (182). It is also hypothesized that

rather than blocking angiogenesis, it might be more beneficial to

normalize the tumor vasculature to enhance vascular integrity and

improve tumor perfusion (3). However, although VEGF is the main

driver of angiogenesis, it is well established that additional, not yet

fully understood mechanisms can also contribute to this process

(131). These VEGF-independent pathways may aid resistance to

VEGF-targeted therapies, highlighting the need to identify and

target alternative pro-angiogenic signals.

The Notch pathway, which is known for regulating angiogenic

and inflammatory pathways in endothelial cells, is of interest in

targeting pathological angiogenesis [reviewed in ref (183)]. Notch

signaling is induced when one of the four Notch receptors (1–4) is
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activated by binding to a ligand from the Delta-like (DLL1, DLL4)

or Jagged (Jag1, Jag2) families (183). The Notch pathway is

traditionally viewed as anti-angiogenic, and its inhibition leads to

increased angiogenesis (102). However, we recently demonstrated

that blocking Jag1 resulted in an upregulation of DLL4, which we

and others, have reported reduces expression of VEGFR2 (184–

186). Jag1 blockade was further associated with a reduction in M2-

like macrophages, which might be also enhance the immune

function in the TME as well (185).

Targeting endothelial cell metabolism has been proposed as a

strategy to bypass resistance mechanisms, an approach that Treps

et al. (131, 187) describe as “targeting the engine of angiogenesis”.

In accordance with this, targeting endothelial glycolysis, glutamine

metabolism and fatty acid metabolism have been explored as

therapeutic strategies for pathological angiogenesis (187).

Inhibition of endothelial glycolysis through PFKFB3 blockade

has been shown to reduce pathological angiogenesis in several

disease models, including tumor neovascularization (132, 135,

188). Both pharmacological inhibition and partial deletion of

endothelial PFKFB3 reduced tumor vascularization and

metastasis, while also increasing vessel stability, which aided drug

delivery and enhanced the effect of chemotherapy in a murine liver

cancer model (132). Additionally, it was demonstrated that
FIGURE 5

Hypoxia in the TME drives immunosuppression through the hypoxia-lactate axis and the hypoxia-adenosine-PKA axis. The TME is characterized by
the presence of hypoxia. This drives the production of lactate, which induces polarization of anti-inflammatory M2 macrophages and Tregs. Hypoxia
also induces expression of CD39 and CD73 and stepwise production of adenosine, which stimulates adenosine receptors (AR) that produce
endogenous cAMP in CD4+ effector cells (Teff) and cytotoxic lymphocytes (CTL). Cyclic AMP is also produced by Tregs which transfer this to Teffs
and CTLs through the junction protein connexin 43 (Cx43). In both situations, endogenous cAMP will induce PKA activation leading to inhibition of
proinflammatory function of Teff and CTL. Figure was made using BioRender.
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endothelial PFKFB3 and lactate enhanced polarization of M2-like

macrophages in a murine ischemia model, suggesting a potential

role in modulating immune responses in cancer as well (189).

Lactate accumulation also directly influences angiogenesis by

stabilizing HIF-1a and promoting vascularization, while

simultaneously reducing vessel integrity through the activation of

inflammatory pathways. Moreover, prolonged exposure to lactate

drives endothelial dysfunction in the TME (74, 190, 191). Although

inhibition of PFKFB3 has also been demonstrated to reduce cancer

cell proliferation, the concentrations of the PFKFB3 inhibitor 3-

(pyridin-3-yl)-1-(pyridin-4-yl)prop-2-en-1-one (3PO) required to

achieve this effect were shown to simultaneously reduce vessel

integrity and facilitate metastasis (191–193). Moreover, as there

are numerous reports of off-target effects associated with 3PO,

further studies are needed to determine the safety and feasibility

of targeting PFKFB3 in the context of tumor vascularization (133,

194–196).

Glutamine metabolism also presents a promising target in

tumor vascularization, as its importance is shared between the

endothelium and the tumor (83, 93, 96, 136, 197). GLS1

inhibition has been shown to be highly effective in reducing

endothelial cell proliferation as it provides an important

precursor for a-ketoglutarate and the amino acid asparagine (93,

136). This approach holds potential for a synergistic effect because,

as mentioned, cancer cells rely on glutamine to fuel the TCA cycle

(96). Although GLS1 inhibition also reduces proliferation and

cytokine secretion from CD4+ T cells, this may be circumvented

by using the GLS1 inhibitor telaglenalstat (CB839). Although

CB839 has been shown to have an inhibitory capacity (IC50) in

the nanomolar range in sensitive cancers, it appears to inhibit

proliferation without inducing apoptosis in endothelial cells in the

micromolar range, while we have showed that proliferation of CD4

+ T cells is not significantly reduced by concentrations up to 5

micromolar (125, 126). Moreover, CB839 also appears to induce an

M1-like phenotype in macrophages, which may further enhance the

anti-cancer response of the immune system (198). Additionally,

glutamine deprivation or GLS1 inhibition represses glycolysis and

lactate production in several cancer cells through upregulation of

thioredoxin interacting protein (TXNIP) and phosphorylation of

PFKFB3, potentially reducing lactate-induced differentiation of M2

macrophages (94, 95). Further studies will be needed to assess the

potential synergistic effects of GLS1 inhibition and immunotherapy.

Fatty acid oxidation is another important pathway in

proliferating endothelial cells. As demonstrated by Schoors et al.

(101), endothelial cells use fatty acids to produce nucleotides for

DNA synthesis, and inhibition of the mitochondrial fatty acid

transporter CPT1A reduces proliferation. CPT1A is upregulated

in certain cancers and is associated with resistance to induction of

apoptosis (199, 200). Moreover, CPT1A is important for driving

Treg differentiation (199, 200). CPT1A also seems to drive an anti-

inflammatory phenotype, as deletion of CPT1A resulted in

increased lung damage in a murine LPS-induced sepsis model

(201) while inducing CPT1A expression in the RAW264.7

macrophage cell line reduced expression of iNOS and impaired

phagocytotic capacity (202). In line with this, targeting CPT1A has
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been shown to enhance the effect of PD-1 blockade in a murine lung

cancer model (199).

Adenosine, produced in response to tumor hypoxia, is another

key driver of angiogenesis, promoting HIF-1a stabilization and

VEGF production through ligation of the A2AR (203, 204).

Stimulation of A2AR enhances glycolysis in endothelial cells,

making the hypoxia-adenosine axis a promising target for

modulating both the immunosuppressive and the pro-angiogenic

features of the TME (204). The PKA pathway also plays a crucial

role in angiogenesis by regulating endothelial cell proliferation,

migration and modulating VEGF signaling (203, 205). Another

cAMP effector, exchange protein directly activated by cAMP

(Epac), contributes to the regulation of angiogenesis by inhibiting

g-secretase, an enzyme required for the intracellular cleavage Notch

and thereby activation of the Notch pathway. In line with this,

inhibition of Epac has been shown to reduce pathological

angiogenesis by enhancing Notch activation and suppressing

VEGF signaling (206).
6.2 Targeting lactate production in the
TME

Due to the central role of lactate in the TME, targeting its

production and transport have been proposed as potential

therapeutic strategies (207). Given the extensive study of

glycolysis and lactate production (74, 82, 190, 208), a myriad of

inhibitors has been developed against key glycolytic enzymes,

including LDH, HK, PFKFB3, and PKM2 in addition to the

lactate transporters MCT1 and MCT4 (82, 195, 209–211).

When the glucose analog 2-deoxy-D-glucose (2-DG) inhibits

HK, glycolysis is completely blocked. Although 2-DG has been

shown to reduce proliferation in various cancer cells, its therapeutic

potential is limited due to low specificity and hence off-target effects

and toxicity – including immune suppression and gastrointestinal

distress – together highlighting the need for more precise

approaches (212–214).

PFKFB3, which is upregulated in many cancers, has been

proposed as a more cancer-specific therapeutic target. This has

resulted in extensive research into developing PFKFB3 inhibitors

[reviewed in detail in (215)]. Although PFKFB3 is not directly

involved in glycolysis, PFKFB3 inhibition reduces lactate

production and proliferation in several cancer cell lines (209, 216).

However, PFKFB3 expression is also important in immune cells,

including M1 macrophages and effector T cells (109, 217). In line

with this, treatment with the PFKFB3 inhibitor 3PO alleviated

inflammation and reduced mortality in murine sepsis models

(110). Paradoxically, PFKFB3 expression is reported to correlate

with pro-invasive and pro-inflammatory activity in rheumatoid

arthritis patients (218, 219), while selective inhibition of endothelial

PFKFB3 reduces polarization of M2 macrophages (189). These

contradictory findings stress the need for more research to explore

how PFKFB3 inhibition may affect the cancer-immune interaction.

Direct targeting of LDH prevents the production of lactate and

results in accumulation of pyruvate and NADH (208). This has
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been shown to induce oxidative stress and inhibit tumor

progression in glycolytic cancers. However, cancer cells can

circumvent this effect by rewiring their metabolism towards an

oxidative phenotype, indicating that targeting LDH alone is

insufficient (90, 220). Still, as reducing lactate levels in the TME

might enhance the anti-tumor activity of the immune system,

targeting LDHA still holds therapeutic potential. Notably, Renner

et al. and Babl et al. (210, 221) showed that blocking lactate

secretion enhanced the efficacy of anti-PD-L1 treatment by

alleviating the immunosuppressive effects of lactate on T cells.

Moreover, it was recently shown that the lactate-induced

acidification of the TME also negatively affects the interaction

between PD-L1 and anti-PD-L1 antibodies (157). Pilon-Thomas

et al. (222) demonstrated that buffering the pH within the TME

using sodium bicarbonate enhanced the anti-tumor activity of TILs,

indicating that targeting the hypoxia-lactate axis may enhance the

efficacy of several forms of immunotherapy.
6.3 Targeting the hypoxia-adenosine-PKA
axis

As mentioned, the hypoxia in the TME induces expression of

the ectonucleotidases CD39 and CD73, resulting in conversion of

ATP to adenosine, which facilitates immune suppression through

binding to the adenosine receptors A2AR and A2BR (160, 161). In

turn, activation of A2AR and A2BR leads to AC-induced cAMP

production and activation of PKA and Epac (223). Endogenous

cAMP production is also induced by numerous other receptors,

including b-adrenergic receptors, dopamine receptors, and

prostaglandin receptors (PGER) such as PGE2R (223). Activation

of PKA is known to suppress the nuclear factor of k-light chain of

activated B cells (NFkB) and STAT1 pathways in macrophages,

resulting in a shift towards M2 macrophage polarization (72, 170,

224). In T cells, PKA phosphorylates C-terminal Src kinase (Csk),

that phosphorylates lymphocyte-specific protein tyrosine kinase

(Lck) on tyrosine 505, preventing downstream activation of T-cell

signaling, including the NFkB and NFAT pathways (164, 225). This

further results in decreased differentiation of CD4+ T cells to Th1

and Th17 cells, while increasing differentiation of Tregs (166, 167).

The PKA pathway thus serves as an immune checkpoint, which

offers potential as a therapeutic target.

Targeting the adenosine axis through the CD73-CD39-AR

pathway has been proposed as a novel approach to

immunotherapy, either alone or in combination with existing

treatments such as PD-L1 blockade (160, 161). In mouse models,

blocking CD39 has been demonstrated to reduce the tumor burden

and increase infiltration of immune cells, including DCs and NK

cells (161, 226). It is further reported that CD73 blockade, which has

also been shown to increase the efficacy of both anti-CTLA-4 and

anti-PD-L1 therapies, enhances the efficacy of radiotherapy by

promoting the anti-tumor activity of the immune system (227)

(228). In line with this, blocking A2AR also boosts anti-tumor

activity (229). As these targets are bound to the extracellular side of

the cell membrane, they can be targeted not only by small-molecule
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inhibitors, but also by using therapeutic antibodies, and multiple

drug candidates have already entered phase I clinical trials (161).

The expression of both CD39 and CD73 is enhanced by tumor-

derived lactate, indicating that targeting lactate may potentiate

immunotherapy through the adenosine-PKA axis (230). Indeed,

Sun et al. (231) demonstrated that LDH blockade using oxamate

enhanced the efficacy of CAR T cell therapy in a murine model for

glioblastoma by suppressing the expression of both CD39 and

CD73, highlighting the fact that targeting the TME can enhance

several forms of immunotherapy.

Although PKA can also be directly targeted using small-

molecule inhibitors, its widespread expression across most tissues

poses a substantial challenge due to the high risk of off-target effects.

This can be addressed by selectively targeting specific PKA subunits.

As previously mentioned, Na et al. (170) demonstrated that the

PKA subunit Cb drives pro-tumoral function in macrophages.

Notably, immune cells express a unique subunit, Cb2, which may

serve as a target in the PKA axis that will not induce systemic

toxicity (171). In support of this, we recently demonstrated that

tumor growth and metastasis was reduced in a murine model for

metastatic breast cancer ablated for Cb2, which was further

associated with increased overall survival (169). Given that

current PKA inhibitors broadly suppress all PKA activity, there is

a clear need to develop novel, isoform-specific inhibitors that

selectively target the Cb variants.
7 The complexity of using metabolic
inhibitors in therapeutic applications

Developing a drug is a lengthy and complex process typically

involving several stages that include early drug identification and

optimization followed by preclinical development and application

for regulatory approval to initiate clinical trials (232). Once

regulatory approval is granted, the compound enters clinical

testing in humans, which is conducted in at least three phases.

Phase I focuses on evaluating safety and determining appropriate

dosage; Phase II assesses efficacy and monitors for adverse side

effects; and Phase III involves large-scale trials to confirm the

efficacy and safety in a broader patient population and compares

the new treatment to current standard-of-care therapies (232).

During this process more than 90% of preclinical drug candidates

are disqualified for further development (233). Due to the

complexity of metabolism, redundancies in metabolic pathways

and the fact that various cells share vital metabolic features, most

drugs developed to target metabolic enzymes show low efficacy or

will have side effects. An example is the glutamine antagonist 6

−diazo−5−oxo−L−norleucine (DON). DON, which is a non-

proteogenic amino acid that blocks glutamine metabolism in all

cells, resulting in severe adverse effects in patients due to distinct

roles of glutamine in different cells and tissues (234, 235). Because of

this, research on novel glutaminase inhibitors have led to the

identification of several compounds including inhibitors BPTES

which is an allosteric inhibitor with a low µM IC50 (236) and CB839,

which is effective in the low nM range (237). Both BPTES and
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CB839 are glutaminase isoform type 1 specific with different

mechanisms of action where CB839 appears to be well-tolerated

with few side effects by patients and it is currently in several clinical

trials for the treatment of various diseases including different

cancers (238). (Table 1, https://clinicaltrials.gov/).

Furthermore, it has become clear that efficacy of drugs targeting

metabolism may be limited due to the inherent flexibility,

compensation and redundancies in metabolic pathways (90). As a

result, even inhibitors with nanomolar affinity for their target may

show limited therapeutic effect when used as monotherapies.

Several examples illustrate this challenge. For instance, drugs

targeting glycolytic enzymes downstream of hexokinase can be

bypassed through the pentose phosphate pathway (PPP) where

glucose 6-phosphate is shunted into the PPP and re-enters

glycolysis as intermediates, effectively circumventing vital

metabolic steps in the glycolytic pathway (239). Similarly,

pyruvate from glycolysis can enter the TCA cycle via different

routes depending on oxygen levels, allowing cells to maintain

energy production under both aerobic and anaerobic conditions.

Another example comes from the fact that pyruvate can enter the

TCA cycle via different routes depending on oxygen levels in both

an oxidative and energy-dependent fashion (240). In addition to

this, drugs targeting LDH may simply shift metabolism towards a

more oxidative phenotype and in that way be inefficient in

inhibiting energy extraction in rapidly proliferating cells (90).

Moreover, inhibiting glutaminase in glutamine consuming cells,

may be compensated for by increased combustion of glucose,

during which lack of carbons from glutamine is compensated for

by glucose (88, 241). Finally, drug sensitive cancer cell lines can also

develop resistance to metabolic inhibitors by rewiring their

metabolic programs (90, 242–246). Together, these examples

highlights the limitations of metabolic inhibitors when used alone
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and underscore the need for combination therapies. this stresses the

complexity of metabolic inhibitors used as mono therapeutics. Due

to this the use of metabolic inhibitors in conjunction with other

treatments is emerging.

The rationale behind combinatorial strategies in cancer

treatment includes targeting more than one metabolic process/

pathway simultaneously reducing the required dose of individual

agents and minimizing the risk of tumor immune evasion. Using

the combination of drugs targeting metabolic pathways that support

an immunosuppressive TME with ICT has been shown to further

boost the anti-tumor responses of the immune system in preclinical

models. In line with this, the IDH inhibitor ivosidenib is currently

being tested as a candidate for combination therapy across several

clinical trials in combination with PD-1 blockade (Table 1). There

are also several non-metabolic drug candidates targeting cell surface

receptors such as A2A and A2B, which have entered clinical trials in

combination with PD-1 blockade, and while early reports indicate

some adverse effects, including autoimmunity, these are considered

manageable (247). The evidence supporting the use of inhibitors

targeting glycolysis or glutamine metabolism in combination with

ICT in patients is currently lacking, and hence need further

exploration. At present, LDH inhibitors such as FX11, GNE-140,

NCI-737, Galloflavin have also been postulated to be used to

prevent tumor immune evasion when used in conjunction with

PD-1 blockade (248–251). The same, but less convincing, is the case

with CB839 in conjunction with PD-1 (96). In a mouse melanoma

models, CB839 on its own has little effect, but when combined with

anti−PD−1 but also anti−CTLA−4, it significantly suppressed

tumor growth and increased infiltration of CD4+ and CD8+ T

−cells (252). However, a phase I/II study of the safety and efficacy of

CB839 in combination with the PD-1 inhibitor nivolumab in

patients with metastatic melanoma, renal cell carcinoma, and
TABLE 1 Brief selection of inhibitors in clinical trials.

Target Compound Implication Combination Phase Trial ID

IDO1 epacadostat Metastatic melanoma Pembrolizumab III NCT02752074

GLS1 CB839 – – I NCT04607512

GLS1 CB839
Melanoma, clear cell renal cell carcinoma, non-small cell lung
cancer

Nivolumab I NCT02771626

GLS1 CB839 Advanced stage non-small cell lung cancer Sapanisertib I/Ib NCT04250545

GLS1 CB839 – Famotidine I NCT04540965

PFKFB3 PFK-158 Advanced solid malignancies – I NCT02044861

IDH Ivosidenib Glioma with advanced solid tumors Nivolumab II NCT04056910

IDH Ivosidenib Nonresectable or Metastatic Cholangiocarcinoma
Nivolumab +
Ipilimumab

I/II NCT05921760

A2A CPI-444 Non-small cell lung cancer Atezolizumab I/IIb NCT03337698

A2A AZD4635 Metastatic castration-resistant prostate cancer Durvalumab II NCT04495179

CD73 Oleclumab non-small-cell lung cancer Osimertinib I NCT03381274

CD39 IPH5201 Advanced solid tumors
Durvalumab +/-
Oleclumab

I NCT04261075
Extracted from https://clinicaltrials.gov/).
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non-small-cell lung cancer was well tolerated, but did not show

increased efficacy (253). The reason for this is not known. However,

the patients were not stratified based on metabolic phenotyping. As

the metabolic landscape is highly variable across patients and

tumors (254–256), future clinical trials should attempt to

incorporate metabolic profiling to determine whether specific

metabolic phenotypes correlate with improved outcomes of

combination therapies.

Another obstacle in developing drugs targeting metabolism is

that drugs may fail to reproduce the beneficial effect seen in

preclinical models, and thus, be screened out in early clinical

trials (232, 233). A striking example of this is the ECHO-301

trial, a phase III clinical trial where the IDO1 inhibitor

epacadostat in combination with anti-PD1 treatment failed to

provide a significantly improved patient outcome (257). However,

Muller et al. (258) argues that there are several points that were

inadequately discussed, which may explain the outcome, including

uncertainty of whether IDO1 activity was sufficiently inhibited

within the tumor, pathways bypassing IDO1 were not considered

and the choice of immunotherapy over DNA damaging therapy,

highlighting the need for increased understanding of metabolism

within the TME. The lack of effect of a metabolic drug targeting the

TME in clinical trials may be attributed to the fact that most

inhibitors are screened in single cell cultures and homogenous

tumor models. The latter may encompass human tumors in patient

derived xenografts (PDX) animal models that may not encapsulate

the complexity of tumors in the individual patient. In line with these

tumors are frequently sequenced to determine patient-specific

features to determine prognosis and treatment strategy. However,

downstream of genetic mutations patient-specific metabolic profiles

may require differential treatments despite that patients may harbor

related tumors and identical oncogenic mutations. Because of this, it

may be necessary to also determine metabolic phenotypes to better

utilize metabolic inhibitors. Metabolic phenotypes in e.g. the TME

have until now been difficult to determine. However, with

extracellular flux analysis using Seahorse technology coupled with

Flow cytometry has opened for more opportunities and more

accurately in profiling tumor metabolic phenotypes from biopsies

(259). Seahorse technology has been used to determine the

metabolic phenotype of a wide array of cell types, mitochondria,

3D cell culture spheroids and now recently intact tissue biopsies

(260). Seahorse profile analysis when combined with bioinformatics

and artificial intelligence may in the future be useful and potential

instrumental in determining combinations of drugs and treatment

regimens for patient-specific targeting.
10 Concluding remarks

ICT is considered a game-changer in modern cancer treatment.

However, favorable responses are observed in only 20-40% of

patients with solid tumors (71, 72). Moreover, even when

effective, current treatment strategies are often associated with a

wide range of adverse effects, including liver, kidney and

cardiovascular toxicity, and ICT may trigger autoimmune
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responses (261). These limitations highlight the need for

additional therapeutic targets that can enhance anti-tumor

efficacy while minimizing the side effects. Identifying targets

capable of inducing synergistic or multifaceted responses might

reduce the required treatment doses, thereby limit off-target toxicity

while enhancing tumor clearance.

We have briefly summarized how hypoxia-driven metabolic

processes in the TME contribute to the reprogramming of

infiltrating immune cells and the development of a dysfunctional

tumor vasculature- both of which aids cancer immune evasion and

hinder effective drug delivery to the tumor. Although these factors

currently pose a barrier to efficient cancer therapy, advancing our

understanding of these mechanisms may enable the development of

new treatment strategies for solid tumors. Given the central role of

the tumor vasculature in the TME, anti-angiogenic drugs are being

used in cancer therapy, and it is hypothesized that their

combination with ICT may further enhance anti-tumor immune

activity (262–264). However, although angiogenesis can be blocked

by targeting the VEGF pathway, resistance to VEGF blockade is

common (185, 187). Moreover, the combined blockade of VEGF

and ICT is also correlated with adverse effects, including an

increased risk of cardiovascular disease, highlighting the need for

alternative therapeutic targets (265, 266). In this context, targeting

metabolism in the TME might offer an alternative strategy for

combination therapy. However, this approach requires the

identification of metabolic targets - such as enzymes and

pathways - that can be safely targeted, ideally offering synergistic

effects when combined with existing therapies. Notably, the

PFKFB3 inhibitor 3PO was shown to increase vessel integrity and

enhance tumor perfusion, resulting in decreased hypoxia and

increased drug delivery (132). As hypoxia results in upregulation

of CD39 and CD73, increased tumor perfusion may also abrogate

PKA-mediated immune suppression through reducing adenosine

production in the TME (161). However, as PFKFB3 and glycolysis

are also important in immune cell activation, it remains unclear if

this would ultimately enhance or impair the efficacy of ICT (52, 104,

110, 111, 218). However, inhibition of LDH has been shown to

reduce tumor growth in immunocompetent mice, but not in RAG

knockout mice, indicating that inhibition of glycolysis may be

beneficial in combination with ICT (249). Moreover, blocking

lactate transport by targeting MCT1 and MCT4 has been

associated with enhanced efficacy of PD-L1 blockade (210, 221).

While this may partly stem from effects on reducing lactate-induced

inhibition of T cells, reducing tumor acidification may also increase

antibody affinity within the TME (210, 267). Glycolysis can further

be targeted indirectly by disrupting glutamine metabolism via

inhibition of the transcription factor MondoA (94). Although

glutaminolysis is required for adequate T cell proliferation and

cytokine secretion (126, 129), the GLS1 inhibitor CB839 - which is

currently approved for phase 1B clinical trials - has shown minimal

effects on CD4+ T cells at higher doses than those required for

growth inhibition in cancer cells (125). Moreover, CB839 reduces

endothelial cell proliferation without cytotoxic effects, as well as

promoting M1-like macrophage polarization, suggesting its

potential for combination with ICT to further boost anti-tumor
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immune responses (198). Additionally, these strategies may also be

combined with drugs targeting cancer-specific mutations, including

mutated IDH1 and IDH2, which are also known contributors of

TME-induced immunosuppression.

This body of evidence suggests that targeting the metabolism of

the TME might have synergistic effects by alleviating multiple

aspects of TME-induced vascular dysfunction and immune

suppression. Although this review has focused on ICT, there is

evidence that these concepts are applicable to ACT as well. Future

studies are needed to elucidate the synergistic potential for

combining metabolic inhibition with ICT.
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230. Alvarado-Ortiz E, Sarabia-Sá NM. Hypoxic link between cancer cells and the
immune system: The role of adenosine and lactate. Oncol Res. (2025) 33:1803–18.
doi: 10.32604/or.2025.065953

231. Sun T, Liu B, Li Y, Wu J, Cao Y, Yang S, et al. Oxamate enhances the efficacy of
CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8
lactylation. J Exp Clin Cancer Res. (2023) 42:253. doi: 10.1186/s13046-023-02815-w

232. Singh N, Vayer P, Tanwar S, Poyet J-L, Tsaioun K, Villoutreix BO. Drug
discovery and development: introduction to the general public and patient groups.
Front Drug Discov. (2023) 3. doi: 10.3389/fddsv.2023.1201419

233. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and
how to improve it? Acta Pharm Sin B. (2022) 12:3049–62. doi: 10.1016/
j.apsb.2022.02.002

234. Rahman A, Smith FP, Luc P-VT, Woolley PV. Phase I study and clinical
pharmacology of 6-diazo-5-oxo-L-norleucine (DON). Investigational New Drugs.
(1985) 3:369–74. doi: 10.1007/BF00170760

235. Earhart RH, Amato DJ, Chang AY, Borden EC, Shiraki M, Dowd ME, et al.
Phase II trial of 6-diazo-5-oxo-L-norleucine versus aclacinomycin-A in advanced
sarcomas and mesotheliomas. Invest New Drugs. (1990) 8:113–9. doi: 10.1007/
bf00216936

236. DeLaBarre B, Gross S, Fang C, Gao Y, Jha A, Jiang F, et al. Full-length human
glutaminase in complex with an allosteric inhibitor. Biochemistry. (2011) 50:10764–70.
doi: 10.1021/bi201613d

237. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, et al.
Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer.
Mol Cancer Ther. (2014) 13:890–901. doi: 10.1158/1535-7163.MCT-13-0870

238. Vogl DT, Younes A, Stewart K, Orford KW, Bennett M, Siegel D, et al. Phase 1
study of CB-839, a first-in-class, glutaminase inhibitor in patients with multiple
mye loma and l ymphoma . B lood . ( 2015 ) 126 :3059 . do i : 10 . 1182 /
blood.V126.23.3059.3059

239. Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E,
et al. The return of metabolism: biochemistry and physiology of the pentose phosphate
pathway. Biol Rev Camb Philos Soc. (2015) 90:927–63. doi: 10.1111/brv.12140

240. Diers AR, Broniowska KA, Chang C-F, Hogg N. Pyruvate fuels mitochondrial
respiration and proliferation of breast cancer cells: effect of monocarboxylate
transporter inhibition. Biochem J. (2012) 444:561–71. doi: 10.1042/BJ20120294
Frontiers in Immunology 19
241. Mazat J-P, Ransac S. The fate of glutamine in human metabolism. The interplay
with glucose in proliferating cells. Metabolites. (2019) 9:81. doi: 10.3390/
metabo9050081

242. Sumi C, Okamoto A, Tanaka H, Kusunoki M, Shoji T, Uba T, et al. Suppression
of mitochondrial oxygen metabolism mediated by the transcription factor HIF-1
alleviates propofol-induced cell toxicity. Sci Rep. (2018) 8:8987–. doi: 10.1038/
s41598-018-27220-8

243. Hossain F, Sorrentino C, Ucar DA, Peng Y, Matossian M, Wyczechowska D,
et al. Notch signaling regulates mitochondrial metabolism and NF-kB activity in triple-
negative breast cancer cells via IKKa-dependent non-canonical pathways. Front Oncol.
(2018) 8. doi: 10.3389/fonc.2018.00575

244. Jung K-H, Lee EJ, Park JW, Lee JH, Moon SH, Cho YS, et al. EGF receptor
stimulation shifts breast cancer cell glucose metabolism toward glycolytic flux through
PI3 kinase signaling. PloS One . (2019) 14:e0221294–e. doi: 10.1371/
journal.pone.0221294
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