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Introduction: Bovine tuberculosis (BTB), caused by Mycobacterium bovis, is a
chronic infectious disease of major veterinary and public health concern. It
affects a broad range of domestic and wild animals, including water buffalo, and
poses a risk to humans due to its zoonotic nature. The economic consequences
of BTB, arising from production losses and trade restrictions, further underline its
global importance. While cattle immune responses to BTB are well characterized,
the immune mechanisms in buffalo remain poorly understood, despite their
increasing role as livestock in endemic regions. Given that buffaloes and cattle,
although closely related, display notable immunological differences, comparative
studies are essential. This study aimed to investigate and compare antigen-
specific cytokine responses in CD4* T lymphocytes from buffaloes and cattle
exposed to or infected with M. bovis.

Methods: A multicolor flow cytometry assay was established to enable high-
resolution analysis of cytokine-expressing CD4" T cells. Blood samples were
obtained from 35 buffaloes (17 IGRA-positive from BTB outbreak farms and 18
IGRA-negative, including animals from both outbreak and Officially
Tuberculosis-Free [OTF] herds) and 10 cattle (6 IGRA-positive from a BTB
outbreak farm and 4 IGRA-negative from an OTF herd). Following six hours of
in vitro stimulation with PPD-B or PBS, intracellular cytokine staining was
performed. This approach allowed simultaneous quantification of single and
polyfunctional CD4* T cell subsets producing IFN-y, TNF-a, and IL-17A. Data
were analyzed using factor analysis of mixed data (FAMD) to explore species- and
infection-related immune response patterns.
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Results: The multicolor flow cytometry approach successfully identified distinct
cytokine-producing CD4* T cell populations in both species. Overlapping
immune profiles were observed between buffaloes and cattle; however,
specific subsets—including IL-17A%, IFN-yIL-17A*, and TNF-oIL-17A" cells—
contributed to interspecies differences. Importantly, the frequency of IFN-y" and
TNF-o* producing CD4* T cells correlated with IGRA test status, enabling
discrimination between infected/exposed and non-infected animals. These
results demonstrate the ability of cytokine expression patterns to reflect both
infection status and host species.

Discussion: The findings indicate that buffaloes and cattle share broadly similar
antigen-specific cytokine responses, although subtle differences in CD4* T cell
subsets exist. The study highlights the value of multicolor flow cytometry as a
high-resolution tool for dissecting immune responses in veterinary immunology.
These insights enhance understanding of buffalo immune mechanisms against

BTB and may contribute to improved disease control strategies.

flow cytometry, tuberculosis, cytokines, polyfunctional lymphocytes, cattle, buffalo

1 Introduction

Bovine tuberculosis (BTB), caused by Mycobacterium
tuberculosis complex (MTBC), primarily M. bovis and M. caprae,
remains a significant economic and public health concern,
particularly in developing countries and endemic wildlife areas.
MTBC infection affects a wide range of animals, including
ruminants such as cattle and buffaloes (1-3). Although both
species belong to the Bovidae family, they exhibit notable
anatomical and physiological differences, including variation in
disease susceptibility (4-6).

The immune response to mycobacterial infections involves a
coordinated effort between innate and adaptive immune cells.
Among this, CD4" T lymphocytes are key players in defending
against tuberculosis (TB), mainly by producing interferon-gamma
(IFN-7y), a cytokine critical for activating macrophages and controlling
infection by MTBC (7, 8). Additionally, CD4" T cells secrete other
important cytokines such as interleukin-2 (IL - 2), tumor necrosis
factor-alpha (TNF-ou), and interleukin-17 (IL - 17) which help recruit
immune cells to the infection site and supports the development of
specialized CD4" T cell subsets capable of performing effector
functions (9). Polyfunctional CD4" T cells, which can
simultaneously produce multiple cytokines, have been found in
peripheral blood of individuals with TB (10). However, the role of
these polyfunctional CD4" T cells play controlling the infection
remains unclear, with studies showing conflicting results. Some
reports have found a higher frequency of triple-producing CD4" T
cells (IFN-y, IL - 2, and TNF-0)) in patients with active TB disease in
comparison to patients with latent TB-infection. While, single (IFN-v)
or dual-producing CD4" T cells (IL - 2, IFN-y) were higher in cured
TB patients and patients with latent TB (10). On the other hand, some
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authors have reported that smear-negative TB patients had higher
frequencies of polyfunctional CD4" T than smear-positive TB
patients, and therefore the presence of polyfunctional CD4" T are
associated with a progressive T cell dysfunction and high
mycobacterial loads (11).

Research on polyfunctional CD4" T cells in cattle is limited.
However, one study reported a higher frequency of triple producing
CD4" T (IFN-y, IL - 2, TNF-0t) in naturally BTB-infected cattle
compared to uninfected animals. These cells exhibited a T-effector
memory phenotype and expressed more cytokine than single
producing CD4" T cells, suggesting an association with active disease
(12). Moreover, polyfunctional CD4" T cells have been proposed as
potential correlates of protection in TB vaccine studies (13). A higher
frequency of triple producing CD4" T cells has been associated with a
protective response to mycobacterial infections in murine, bovine and
non-human primate TB models using BCG and new TB vaccine
candidates (13, 14). Despite these findings, the role of polyfunctional
CD4" T in mycobacterial immunity remains unclear in both humans
and animals. Interestingly, CD4" and Y3 T cells have been identified as
the primary producers of IL - 22 and IL - 17A in lymphocytes from
Mycobacterium bovis-infected cattle, underscoring the potential
significance of IL - 17A-producing T cells in the immune response
to BTB. This finding highlights their possible role in promoting
inflammatory processes and contributing to protective immunity in
infected cattle (15). Furthermore, a study by Elnaggar M. et al,
characterized of and ¥0 T cell subsets expressing IL - 17A in
ruminants and swine, reinforcing the importance of IL - 17A-
producing T cells as key players in the immune response to
mycobacterial infections (16). Together, these studies provide
valuable insight into the complex interplay between T cell subsets
and cytokine production in response to M. bovis infection.
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Buffaloes plays a pivotal role in the economy of many countries;
due to its rusticity and versatility these animals are being increasingly
recognized as a production and commercial option under harsh
climate conditions (17). Buffaloes can be affected by the same diseases
as cattle; although it seems that BTB in buffalo progress at lower pace
in comparison to cattle, with animals having no gross lesions in the
first year of infection (18). Since few studies have investigated the
immune response to Mycobacterium bovis in buffaloes and cattle (19,
20) our study focused on the role of polyfunctional CD4" T cells
producing IFN-y, TNF-a, and IL - 17A in both healthy and naturally
infected Mediterranean water buffalo (Bubalis bubalis). To deepen
our understanding of species-specific immune responses, we
conducted a comparative analysis with cattle. These findings offer
valuable insights into the pathogenesis of bovine tuberculosis (BTB)
and may inform the development of tailored diagnostic tools,
vaccines, and control strategies for both species. Finally, the
identification of key differences in immune responses between
buffaloes and cattle may help reduce disease burden and cross-
species transmission in regions where both species coexist.

2 Materials and methods
2.1 Animals and study design

Italian Mediterranean buffaloes used in this study were analyzed
as part of the officially mandated TB surveillance program in Italy,
following national (DM 592/95; D Lgs 196/1999; Regulation (EU)
2016/429 ‘Animal Health Law’, which replaced Commission
Regulation EC 1226/2002; O. M. 9 August 2012, and subsequent
amendments) and regional (DGRC 108 104/2022) regulations. The
bovine tuberculosis (BTB) status of animals was determined using
ante-mortem single intradermal tuberculin (SIT) test and IFN-y
release assay (IGRA), in accordance with official guidelines. IFN-y
test was carried out by Istituto Zooprofilattico Sperimentale del
Mezzogiorno (IZSME) Italy (see 2.2). SIT and IGRA positive
reactors were slaughtered in accordance with national and
regional legislation and then the presence of TB-like lesions was
evaluated. The organs were sent to the IZSME for investigation of
the presence of M. bovis using PCR for M. bovis DNA detection and
culture isolation of MTBC mycobacteria, according to the World
Organization for Animal Health (WOAH) Terrestrial Manual (21).
Buffaloes from the BTB outbreak farms (except one) were negative
for lesions and PCR for the detection of M. bovis DNA. Whereas all
cattle from the BTB outbreak farms were positive for BTB-like
lesions and PCR of M. bovis.

A total of 35 buffaloes and 10 cattle were enrolled in the study
and classified according to their IGRA test results: positives animals
(17 buffaloes and 6 cattle) and negatives animals (18 buffaloes and 4
cattle). Naturally exposed buffaloes were selected from two herds
with confirmed BTB outbreaks by the isolation of M. bovis.
Naturally BTB-infected cattle were selected from a herd with
confirmed BTB outbreaks, while uninfected animals were sourced
from Officially Tuberculosis-Free (OTF) herds in the Campania
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region (Italy). OTF herds were selected based on negative results
from the annual SIT test and IGRA test screenings conducted over
the last six years.

The IGRA positive buffaloes had a mean age of 2.25 + 1.48
years, while the negative had a mean age of 7.35 + 0.49 years. Cattle
were selected from one BTB positive farm and one OTF herd. IGRA
positive cattle had a mean age of 6.04 + 0.05 and negative of 5.95 +
0.07 years.

Additionally, buffaloes were divided into three groups based
on results of the IGRA test and the status of the herd. Group A)
IGRA positive animals from BTB outbreak farm (n=17); Group B)
IGRA negative animals from BTB outbreak farm (n=13);
Group C) IGRA negative animals from OTF farm (n=5).
This approach allowed us to analyze cytokine production in
IGRA negative buffaloes that had been in contact with IGRA
positive animals, helping to identify potential differences in
immune responses.

2.2 Interferon gamma test (IGRA)

The IFN-y test was performed using blood samples collected
from the jugular vein in lithium-heparin vacutainer tubes (BD
Biosciences) and transported to the laboratory within 8 h of
collection. Two aliquots of blood (1 mL) per animal were
incubated with 10 pg/mL of avian and bovine purified protein
derivative, respectively (PPD-A and PPD-B BOVIGAM ' TB kit
Thermo-Fisher Scientific). Additionally, two aliquots of blood (1
mL) per animal were stimulated with pokeweed mitogen (PWM,
final concentration 1 pg/mL, Thermo-Fisher Scientific) as positive
control, and phosphate buffered saline (PBS) as baseline and
negative control. The samples were incubated for 16 - 24 hours
at 37°C in a humidified atmosphere. IFN-y levels were quantified
using the BOVIGAM ' test, following the manufacturer’s
instructions (Life Technologies, Thermo-Fisher Scientific). A
sample was considered positive when the differences of the optical
density (OD) of PPDB-PPDA and PPDB-PBS were 20.1 OD (22).
IGRA results from all animals used in this study are reported in
Supplementary Figure S1.

2.3 Whole blood stimulation for flow
cytometry assay

Blood samples were processed within 24 hours of collection. The
protocol for blood stimulation was carried out as described by De
Matteis et al., with some modifications (19). One milliliter of blood
was dispensed into 5 mL polystyrene round bottom tubes (Sarstedt)
and stimulated with PPD-B, PWM and PBS (same concentrations
used for the IGRA test). PWM and PBS were used as positive and
negative controls respectively. All tubes were incubated at 37°C for
2 hin a humidified atmosphere with 5% CO,. After 2 h of incubation,
brefeldin A (10 pg, Thermo-Fisher Scientific) was added and the
samples were incubated for further 4 h.
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2.4 Flow cytometry assay

To assess the cross-reactivity of anti-bovine TNF-o and IL -
17A antibodies with buffalo antigens, a preliminary study was
conducted using Peripheral Blood Mononuclear Cells (PBMCs).
PBMCs were isolated from EDTA-anticoagulated blood via density
gradient centrifugation using LymphoprepTM (1.077 g/mL; AXIS-
SHIELD), following the manufacturer’s instructions. The isolated
cells were washed with PBS (without Ca**/Mg>"), centrifugated at
300 x g for 10 minutes, counted, and cultured in complete RPMI
medium at a concentration of 1x10° cells/mL. Then, cells were
stimulated for 4 hours with PMA (phorbol 12-myristate 13-acetate;
Cell Stimulation Reagent with Brefeldin A, Bio-Rad). Following
stimulation, cells were washed twice with PBS, resuspended in 125
UL of fixation/permeabilization buffer (Cytoﬁx/CytopermTM, BD
Biosciences), and incubated at 4°C for 20 minutes. After two washes
with 800 UL of Perm/Wash buffer (PWB), the cells were centrifuged
at 600 x g for 10 minutes. The permeabilized cells were then
resuspended in 100 UL of PWB and incubated at 4°C for 30
minutes with 0.75 pg/5 UL of anti-TNF-o or anti-IL-17A
monoclonal antibodies. Subsequently, 1 mL of PWB was added to
the cells, followed by centrifugation at 600 x g for 5 minutes. The
resulting pellet was resuspended in 50 UL of a 1:200 dilution of goat
anti-mouse IgG1 FITC-conjugated secondary antibody (Bio-Rad)
and incubated for 15 minutes at 4°C in the dark. After a final wash
with PWB, the stained cells were collected using a CytoFLEX flow
cytometer and analyzed with CytExpert v2.4 software
(Beckman Coulter).

For the study, a four-color panel was developed to evaluate the
intracellular cytokine expression of IFN-y, IL - 17A and TNF-o
within CD4" T lymphocytes (Supplementary Table S1).

100 pL of stimulated whole blood (section 2.3) was lysed with 1
mL of Tris-buffered ammonium chloride solution (0.87% w/v, pH
7.3) for 10 min, washed once with 2 mL of cold PBS and then
incubated at 4°C for 30 min with anti-bovine CD4" labeled in-house
with PE-Cy7 (Lynx technology, Bio-Rad). After staining, the
leukocytes were washed with 2 mL of cold PBS and centrifuged at
300 x g for 5 min. The pellets were resuspended in 125 pL of PWB
(Cy‘[oﬁx/Cy’(opermTM solution, BD Biosciences) and incubated at
4°C for 20 min. After two cycles of washing with 800 puL of PWB
and centrifugations at 600 x g for 10 min, the permeabilized cells
were incubated at 4 °C for 30 min with the following in-house
labeled (Lynx technology, Bio-Rad) antibodies: anti-TNF-o. FITC,
anti-IL-17A PE, and anti-IFN-y AF647. After a wash with 800 uL of
PWB and centrifugation at 600 x g for 5 min, the cells were
resuspended in the same buffer and collected on a CytoFLEX flow
cytometer (Beckman Coulter). An average of 5,000 events were
collected within the gate of CD4" cells. Kaluza software (Beckman
Coulter) was used to analyze flow cytometry data. Gating strategy
was applied to identify CD4" T cell subsets based on cytokine co-
expression profiles. Single cytokine-producing cells refer to CD4" T
cells that express only one cytokine (IFN-y, TNF-a, or IL - 17A)
without co-expression of the others, whereas dual cytokine-
producing cells co-express two cytokines (IFN-y'IL-17A*, IFN-
Y'INF-of, TNF-0.'IL-17A%). The analysis of the frequency of
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reactive cells was performed after the subtraction of cells
stimulated with PBS.

2.5 Statistical analysis

The data analysis was conducted on R (version 4.4.1) using R
studio (version 2024.04.2). The Factor analysis of mixed data (FAMD)
was performed using the FactoMineR, factoextra, ggplot2 and tidyverse
packages. Comparisons between groups (IGRA positive vs IGRA
negative animals) and (buffaloes vs cattle) were analyzed using
Wilcoxon text with Bonferroni correction using the tidyverse, rstatix,
and ggpubr packages. The spider plots graphs were generated with the
mean scaled data using the ggradar package. Pearson correlation
analysis was performed to analyze the relationship between IGRA
results (OD PPDB - OD PBS) and the different cell subsets using the
Hmisc package. Finally, box plots were designed using GraphPad
Prism 8 with data expressed as mean + SD in all parameters.

3 Results
3.1 Flow cytometric evaluation of cytokines

The cross-reactivity of anti-bovine TNF-o and IL - 17A
monoclonal antibodies in water buffalo was preliminarily assessed
through cytokine staining in PMA-stimulated PBMCs from both
species, which revealed similar expression patterns (Supplementary
Figure S2) (23).

In this study, a 6-hour whole blood stimulation assay was
performed to assess the production of single (IFN-y", IL - 17A%,
TNF-0.") and dual-producing (IFN-yIL-17A", IEN-y"TNF-a,
TNF-a"IL-17A") CD4" lymphocytes in buffalo and cattle.
Furthermore, the gating strategy allowed for the identification of
the following CD4" T cell subsets, organized for clarity and diagnostic
relevance: IFN-y"'TNF-0."8, IFN-y'IL-17A"°8, IFN-y***TNF-o.*,
IFN-y"*8IL-17A", TNF-o.'IL-17A"%, and TNF-0"*¥IL-17A". This
approach helped resolve overlapping populations and better
interpret the functional identity of each subset within the same
multiparametric dataset.

The gating strategy and the Fluorescence Minus One (FMO)
controls for cytokines analysis are shown in Supplementary Figure S3.

The cytokine staining patterns observed in buffalo and cattle
following PBS and PPD-B stimulation are presented in Figures 1, 2.
PWM stimulation was used as a positive control to assess the overall
capacity of CD4" T cells to produce cytokines. PWM induced a
strong cytokine response in both buffalo and cattle, with markedly
increased frequencies of IFN-y", TNF-o", and IL - 17A* CD4" T
cells compared to unstimulated controls. This robust cytokine
production confirms the functionality and responsiveness of T
cells in the tested animals and validates the flow cytometry assay
for detecting cytokine-expressing subsets. The consistent responses
across species also support the cross-reactivity of the monoclonal
antibodies used. Results from PWM stimulation, used as positive
control, are provided in Supplementary Figure S4.
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FIGURE 1

Single cytokine-producing CD4* lymphocytes (IFN-y*, IL - 17A*, TNF-a*) in buffalo and cattle after stimulation with PBS and PPD-B. Gates were
drawn based on the Florescence Minus One control (FMO) for each cytokine in buffalo and in cattle.

3.2 Frequencies of single and dual
cytokine-producing CD4™" T cells in buffalo
and cattle

The frequencies of single and dual cytokine-producing CD4" T
lymphocytes were investigated in buffalo and cattle in relation to
positive or negative result of the IGRA test. To explore the
relationship between the variables, a factor analysis of mixed data
(FAMD) was performed. This principal component method
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allowed us to analyze both quantitative (cell frequencies) and
qualitative variables (animal type, IGRA test result) (24). Overall,
the FAMD plot shows the first two principal dimensions (Dim1 and
Dim?2), which together explain 54.3% of the variance in the dataset
(Diml: 33% and Dim2: 21.3%, respectively). Dim1 is represented
mostly by the contribution of IFN-y", TNF-o*, IFN-y" TNF-o/",
IFN-y" IL-17A"® and TNF-at" IL-17A" CD4" T cells, whereas IL -
17A%, IFN-y" IL-17A", IFN-y* IL-17A"°8, IFN-y"*®¢ TNF-o.*, TNEF-
o IL-17A" CD4" lymphocytes contribute most strongly to Dim2
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FIGURE 2

Dual cytokine-producing CD4* lymphocytes (IFN-y*TNF-o*, IFN-y*IL-17A*, TNF-o*IL-17A%) and CD4" subsets (IFN-y"IL17A™, IFN-y*TFN-o.",
IFN-y"9TNF-o*, IFN-y"*9IL17A", TNF-a"IL17A™9, TNF-o"*9IL17A"), in buffalo and cattle after stimulation with PBS and PPD-B. Quadrants were drawn
based on the Florescence Minus One control (FMO) for each cytokine in buffalo and in cattle.

(Supplementary Table S2). It is important to note that in FAMD,
variables can contribute to multiple dimensions, as each dimension
reflects a different latent structure or pattern of variation within the
dataset. For example, IFN-Y'IL-17A"* CD4" cells occupy the
fourth position in terms of contribution to both Dim1 and Dim2,
indicating their relevance across distinct aspects of immune
variability. The left panel of the FAMD plot shows that although
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there is some overlap in the frequencies of the cell subsets, Dim2
helps differentiate between cattle and buffalo. The size of the ellipse
shows that cattle data exhibit greater variability along Dim2,
whereas buffalo responses show less internal variation. The right
panel shows that Dim1 clearly separates IGRA negative from IGRA
positive animals indicating differences in immune profiles based on
infection status. These results suggest that Dim1 primarily captures
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IFN-y-dominant responses, while Dim?2 reflects IL - 17A-associated
immune variability, further highlighting the complexity and
multidimensional nature of the cytokine response in both
species (Figure 3).

We compared the frequencies of single and dual cytokine-
producing CD4" T cell between IGRA positive and IGRA
negative buffaloes (Figure 4A) and cattle (Figure 4B), respectively.
The analysis revealed significantly higher frequencies of IFN-y*,
IFN-y" TNF-a, IFN-y'TL-17A* and IFN-y'IL-17A™8 CD4" T cell
subsets in IGRA positive buffalo compared to IGRA negative
buffalos (Figure 4A). In cattle, although a similar trend was
observed, no significant differences were detected between IGRA
positive and IGRA negative cattle (Figure 4B) (Supplementary
Table S3). The spider plots in Figure 5 shows similar patterns in
the frequencies of cytokines-positive CD4" T cell subsets between
buffalo and cattle, with higher number of cells in IGRA positive
animals in comparison to IGRA negative ones.

Our results suggest that the frequency of single and dual
cytokine-producing CD4" T cells varied according to the IGRA
test result. In fact, correlation analysis between IGRA test results
and the proportions of cytokine-producing CD4" T cells following
PPD-B stimulation revealed strong positive correlations in buffalo
for the IENY*, TNF-o", IFNY"TNF-o" and IENY'IL-17A"® subsets
(r = 0.8486, 0.6318, 0.8351, and 0.8612, respectively). Whereas, in
cattle correlations were observed for the IFNY" and IFNY*IL-17A"®
subsets (r = 0.6955 and 0.6647, respectively) (Figure 6).

To determine whether the frequencies of single and dual
cytokine-producing CD4" T cells were different between buffaloes
and cattle a comparative analysis was conducted. No significant
differences were observed between IGRA negative buffaloes and
cattle (Figure 7A), nor between IGRA positive buffaloes and cattle
(Figure 7B) (Supplementary Table S4). However, the spider plots
reveal distinct differences in the frequencies of cytokine-positive
CD4" lymphocyte subsets between cattle and buffalo. Notably,
subsets such as IFN-y'IL-17A", IFN-y"“¢IL-17A", TNF-o/"IL-
17A%, IL - 17A" and TNF-0"*®IL-17A" within CD4" T cells, are
consistently more frequent in cattle than in buffalo, regardless of
IGRA test status (Figure 8). These patterns highlight species-specific
differences in immune response profiles.

As stated in the material & methods section, all animals (cattle
and buffalo) were from farms with a BTB outbreak or from a OTF
farm. However, we also analyzed a group of buffaloes negative to
IGRA test from the BTB outbreak farm. Therefore, we classified the
animals in three groups according to their IGRA test result, Group
A: IGRA positive buffaloes from a BTB farm; Group B: IGRA
negative buffaloes from a BTB farm; and Group C: IGRA test
negative buffaloes from a OTF farm.

The FAMD analysis explain a combined variation of 58.4%
(Dim1: 32.8% and Dim2: 25.6%, respectively). Dim1 is represented
mostly by the contribution of IFN-y", TNF-o*, IFN-Y"TNF-o.,
IFN-Y'IL-17A"%® and TNF-0/'IL-17A"® CD4" cells. Whereas IL -
17A%, IEN-y"**TNF-o", IFN-y"*8IL-17A", TNF-0"'IL-17A", TNF-
0"*8IL-17A" CD4" T cells have the highest contribution to Dim2
(Supplementary Table S5). The farm panel shows that there is a
separation between BTB and OTF farms along Diml, suggesting
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that this dimension captures key differences between farms. The
right panel of groups revealed three distinct clustering patterns.
Group A (IGRA positive animals) is well separated from Group B
and C (IGRA negative animals), particularly along Diml.
Interestingly, Groups B and C formed distinct clusters with
partial overlap in the center-left area of the plot, suggesting a
partial immunological difference that may be related to the herd
type (BTB outbreak vs. OTF) (Figure 9).

Further comparative analysis demonstrated significant higher
cell frequencies of IFN-y*, TNF-a", IFN-Y"TNF-o", IFN-y'IL-
17A"® and TNF-0'IL-17A"%8 CD4" T subsets in the Group A
compared with Groups B and C (Figure 10). The comparative
analysis showed that the frequency of cytokine-positive CD4" T
lymphocytes was generally comparable among IGRA-negative
buffaloes; however, a modest but statistically significant increase
in TNF-o" and TNF-o."TL-17A" CD4" T cell subsets was observed
in animals from farm C compared to farm B (Figure 9). This finding
may reflect farm-specific environmental or management factors
influencing baseline immune responses.

When comparing IGRA-positive buffaloes (Group A) with
IGRA-negative animals (Groups B and C), clear differences in
cytokine-producing CD4" T cell subsets were evident, consistent
with the patterns of IGRA response (Supplementary Figure S1).

These results suggest that immune response variation is not
solely a reflection of environmental exposure but likely indicates
active immune engagement triggered by M. bovis infection, as
marked by IGRA positivity. This supports the interpretation that
functional immune activation, rather than passive pathogen
exposure, underlies the observed cellular differences.

4 Discussion

Bovine tuberculosis (BTB) is a complex disease involving
multiple host species, including humans, domestic and wild
animals. In endemic regions, zoonotic tuberculosis cases are
frequently reported, posing a significant public health concern
(25). Additionally, BTB has a major economic impact on the
livestock industry due to production losses, trade restrictions, and
cost associated with national eradication programs (26). Despite
extensive control efforts, BTB remains widespread across all
continents except Antarctica, highlighting the need for
interdisciplinary approaches to optimize disease management (27).

Buffaloes play a crucial role in livestock production,
contributing to milk, meat, leather, and agricultural labor.
Although they are susceptible to the same diseases as cattle,
differences in physiology and behavior influence their disease
susceptibility. For instance, buffaloes experience lower tick
infestations than cattle (28), yet their wallowing behavior
increases exposure to environmental pathogens, including
parasites and non-tuberculous mycobacteria (29). Despite these
known behavioral differences, the immunological mechanisms
underlying the buffalo’s response to infectious diseases, including
BTB, remain largely uncharacterized. The study herein addresses
this gap in part by evaluating cytokine responses in buffaloes
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FAMD factor map based on single and dual cytokine-producing CD4" T cells in buffalo and cattle. The left panel shows clustering by animal type
(cattle in red, buffalo in blue), and the right panel by IGRA test result (positive in green, negative in purple). Ellipses represent 95% confidence
intervals. Dim1 and Dim2 explain 33% and 21.3% of the variance, respectively, indicating distinct immunological profiles by species and IGRA test
results. A total of 17 IGRA-positive and 5 IGRA-negative buffaloes, as well as 6 IGRA-positive and 4 IGRA-negative cattle, were included in the

analysis.

naturally exposed to BTB and comparing them to cattle with a
particular focus on polyfunctional CD4" T cell response.

Disease progression in BTB-infected buffaloes is generally
slower than in cattle, which may be attributed to genetic and
physiological factors (18, 30). One notable challenge in buffaloes
is the difficulty in interpreting tuberculin skin test results due to
their thicker skin and greater exposure to environmental
Mycobacteria, which may interfere with diagnostic accuracy (31).
Understanding species-specific immune responses is essential for
improving diagnostic strategies and eradication efforts for both
domestic and wildlife species.

This study aimed to assess an assay for detecting polyfunctional
CD4" T cells expressing IFN-y, TNF-o,, and IL - 17A in buffaloes
naturally exposed to M. bovis. By analyzing the frequency of single
and dual cytokine-producing CD4" T subsets, we sought to
compare immune responses between buffaloes and cattle.
Previous studies have shown that different commercial anti-
bovine mAbs are cross-reactive to buffalo leukocytes (19, 23). Our
findings confirm that the anti-bovine monoclonal antibodies used
in this study effectively cross-react with buffalo cells. This technical
validation is crucial for future research into immune responses in
buffaloes, a species often overlooked in TB studies.

In this study, we observed a higher frequency of antigen-specific
IFN-y-producing CD4" lymphocytes in IGRA-positive buffaloes
compared to IGRA-negative animals, reinforcing the association
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between IFN-vy responses and M. bovis infection status. This aligns
with the well-established role of IFN-y in TB immunity, where
CDA4" T cells contribute to bacterial control and host survival during
both acute and chronic infections. These findings are consistent
with our previous work (19), which demonstrated a significant
increase in IFN-y" CD4" T cells in infected buffaloes compared to
uninfected animals across different stimuli. This reinforces the
utility of IFN-y responses as a reliable immunological marker in
BTB-endemic settings, not only in cattle but also in buffaloes.

Similarly, IGRA-positive cattle exhibited increased IFN-y-
producing CD4" T lymphocytes, although differences compared
to IGRA-negative animals were not statistically significant. It seems
that this is related to sample size or individual variability in immune
responses. Nevertheless, given that a high frequency of IFN-y
producing CD4™ T lymphocytes is a hallmark of active TB, our
results suggest that this marker remains relevant for both buffaloes
and cattle in BTB-endemic settings (32).

TNF-o is another cytokine that plays a crucial role in
controlling mycobacterial infections, particularly during chronic
TB. A previous study reported higher levels of PPD-B-specific TNF-
o in infected animals compared to uninfected ones (33). In contrast,
in the present study of naturally exposed buffaloes, we did not
observe significant differences in TNF-o expression between IGRA-
positive and IGRA-negative animals. This discrepancy may be
attributed to differences in stimulation protocols—24 hours for
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Frequencies (%) of single and dual-producing CD4* T subsets of IFN-y, TNF-a. and IL - 17A in IGRA negative and positive animals. (A) Boxplots of the
defined single and dual-producing CD4" T subsets in buffalo. (B) Boxplots of the defined single and dual-producing CD4" T subsets in cattle.
Frequencies (%) of reactive cells are displayed after subtraction of cells stimulated with PBS. A total of 17 IGRA-positive and 5 IGRA-negative
buffaloes, as well as 6 IGRA-positive and 4 IGRA-negative cattle, were included in the analysis. Results were compared using Wilcoxon test with

Bonferroni correction. *P < 0.05; **P < 0.001.
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ELISA assays in the previous study versus six hours for flow
cytometry here—or to the distinct sources of TNF-0. measured
(plasma versus intracellular production by CD4" T cells). Another
difference may be due to the timing of infection, as early stages may
not yet trigger strong TNF-o responses.

In this study, it is important to recognize that only one buffalo
originating from a herd with confirmed M. bovis infection, was
classified as infected based on the presence of macroscopic lesions
and PCR positivity. The remaining buffaloes, although were IGRA-
positive from BTB-affected herds, showed no visible lesions or
bacteriological confirmation. This likely reflects early stages of
infection, which may influence cytokine profiles. In contrast, cattle
with visible lesions exhibited higher cytokine levels among IGRA-
positive animals, although these differences were not statistically
significant, potentially due to sample size limitations (33).

These findings underscore the challenges of distinguishing
infection stages using current diagnostic tools and highlight the
need to interpret cytokine responses cautiously, particularly when
definitive confirmation of infection is lacking.

In line with established BTB control programs, animals from
infected herds that test positive by IGRA are routinely considered
infected, despite known limitations in diagnostic sensitivity and
specificity. It is worth noting that IGRA can detect infection as early
as 15 days post-exposure, a phase in which macroscopic lesions are
generally absent and bacteriological confirmation is difficult (34).
However, the possibility of nonspecific immune responses in IGRA-
positive animals cannot be entirely excluded. As a result,
interpreting immune profiles based solely on IGRA status may
introduce bias, especially if immune responses differ between recent
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exposure and established infection. This limitation should be
considered when evaluating immunological data and disease
progression in naturally exposed populations.

In humans, elevated frequencies of TNF-o-producing CD4" T
cells have been associated with active disease stages (35), and
increased IFN-y'TNF-o." CD4" T lymphocytes have been
reported in TB patients compared to healthy household contacts
(36). Similar findings have also been observed on naturally infected
cattle (12). Our results align with these findings, demonstrating a
higher proportion of IFN-y"TNF-0." co-producing CD4" T cells in
animals classified as IGRA-positive. This suggests that the
simultaneous expression of IFN-y and TNF-a, rather than TNF-o
production alone, may provide useful insight into immune
activation and potentially help distinguish disease stages in
ruminants. However, it is important to note that the concept of
latent TB in cattle and buffaloes remains controversial, largely due
to the lack of reliable, stage-specific diagnostic markers (37).
Current diagnostic tools do not differentiate between infection
stages, resulting in the culling of all test-positive animals (38). In
this context, flow cytometry-based approaches capable of evaluating
polyfunctional T cell responses could offer more refined diagnostic
insights and support improved disease management strategies (39).

Additionally, IL-17A and Th17 responses are known to contribute
to protective immunity against TB (40). Infected cattle and buffaloes
have been shown to produce higher levels of PPD-B-specific IL-17A
compared to uninfected animals (14, 33) it was reported that IFN-yand
IL-17A synergistically enhance intracellular mycobacterial control by
promoting phagolysosomal fusion (41). Further, dual producing IFN-
Y'IL-17A" CD4" T cells have been identified as key markers of
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FIGURE 7

Frequencies (%) of single and dual cytokine-producing CD4* T subsets of IFN-y, TNF-o: and IL - 17A in buffalo and cattle. (A) Boxplots of the defined
single and dual producing CD4" T subsets in IGRA negative animals. (B) Boxplots of the defined single and dual producing CD4" T subsets in IGRA
positive animals. Frequencies (%) of reactive cells are displayed after subtraction of cells stimulated with PBS. A total of 17 IGRA-positive and 5 IGRA-
negative buffaloes, as well as 6 IGRA-positive and 4 IGRA-negative cattle, were included in the analysis. Results were compared using Wilcoxon test
with Bonferroni correction. No statistical differences were found as showed in Supplementary Table S4.
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cellular sources and dynamics during natural BTB infection warrant

When comparing buffalo and cattle, overall frequencies of CD4"
T cells did not differ significantly between species. However, certain

Frequencies (%) of single and dual cytokine-producing CD4" T subsets in buffaloes from BTB (Group A and B) and OTF farms (Group C). Group

A= IGRA-positive from BTB farm; Group B= IGRA-negative from BTB farm; and Group C= IGRA-negative from OTF farm. Frequencies (%) of reactive
cells are displayed after subtraction of cells stimulated with PBS. A total of 17 IGRA-positive from BTB outbreak farm (group A), 13 IGRA-negative
animals from BTB outbreak farm (group B) and 5 IGRA-negative animals from OTF farm (group C) were included in the analysis. Empty dots
represent individual outliers. Results were compared using two-way ANOVA with Sidak multiple comparison test. *P < 0.05; **P < 0.001;

***P < 0.0001.
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cytokine-expressing subsets were more prevalent in cattle than in
buffaloes, particularly in IGRA positive animals. This could reflect
intrinsic differences in immune responses or variations in disease
progression. Future studies should include larger sample sizes,
particularly for cattle, to determine whether species-specific
immune profiles exist.

In addition, the results from the FAMD analysis offer valuable
insights into the differentiation of buffalo groups based on their IGRA
test status and farm origin. The separation of IGRA-positive animals
observed in the FAMD analysis highlights distinct immunological or
physiological profiles that may reflect different stages of immune
activation or exposure to M. bovis. When analyzing the three groups
of buffaloes based on IGRA status and farm origin, clear
immunological differences were evident. IGRA-positive buffaloes
from BTB-infected farms (Group A) displayed significantly higher
frequencies of IFN-y", TNF-o." and IFN-y"TNF-o" polyfunctional
CD4" T cell subsets compared to both IGRA-negative groups.
Interestingly, although overall cytokine expression among IGRA-
negative animals was comparable, buffaloes from the OTF herd
(Group C) exhibited slightly elevated TNF-or" and TNF-0;'TL-17A"%
CD4" T cell subsets relative to IGRA-negative buffaloes from the BTB
farm (Group B). This subtle variation suggests that environmental or
farm-specific factors may influence baseline immune profiles, even in
uninfected animals. However, the marked increase in cytokine-
producing CD4" T cells in IGRA-positive animals reinforces the
association between functional T cell activation and likely
M. bovis exposure.

In conclusion, our study introduced a novel approach for
detecting cytokine co-expression in CD4" T lymphocytes,
providing new insights into the immune response of buffaloes
and cattle naturally exposed to BTB. Notably, specific
polyfunctional CD4" T cell subsets, particularly IFN-y"TNF-o.",
IFN-y'IL-17A"%, and other IFN-y-associated profiles, correlated
with IGRA status, distinguishing exposed from unexposed animals.
These findings highlight the potential of IFN-y-based T cell
profiling to complement existing BTB diagnostic strategies
in ruminants.

However, it is important to interpret these results considering
the challenges in confirming infection status, as animals from BTB-
infected herds may represent different stages of infection, and
nonspecific IGRA responses cannot be entirely ruled out.
Nonetheless, our data support the utility of multiparametric flow
cytometry as a sensitive tool for characterizing complex cellular
immune responses in comparative veterinary immunology.

These insights contribute to understanding BTB pathogenesis
and may guide the development of improved diagnostic tools,
vaccines, and tailored control strategies. In particular, identifying
polyfunctional CD4" T cell subsets co-expressing [FN-yand TNF-o
offers promising biomarker candidates to enhance diagnostic
specificity, especially for distinguishing between exposure and
active infection stages. Moreover, recognizing species-specific
immune variations provides a basis for designing more effective,
targeted vaccines and refining BTB management approaches
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according to the distinct disease dynamics in buffaloes and cattle.
However, further research is needed to confirm the functional
significance of these immune responses, clarify their role in
disease monitoring, and explore their potential application in
vaccine development, including investigations of additional T cell
subsets and immune markers. Such advances may ultimately
contribute to more effective BTB control and eradication efforts
across species.
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