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To date, immune checkpoint inhibitors (ICIs) have emerged as a leading

treatment for metastatic cancer, significantly improving patient survival while

causing relatively few side effects. However, the objective response rate for ICIs

remains low approximately 30% in urothelial carcinoma (UC), underscoring the

urgent need for predictive response biomarkers. Several state-of-the-art

signatures have been revealed in top-tier journals, highlighting the importance

of this field. As the number of genes (~20,000) far exceeds the sample sizes of

typical training sets (generally ≤ 300), we first developed feature selection

procedures to reduce the number of features to a few hundred. We then

trained multiple machine learning classifiers using the selected genes and the

IMvigor210 dataset, which includes RNA-seq and clinical data from ~298 patients

with metastatic UC (mUC). Notably, our predictor LogitDA, using the identified

49-gene signature, achieved a prediction AUC of 0.75 in an independent dataset,

PCD4989g(mUC). Moreover, our signature outperformed six state-of-the-art

signatures, PD-L1 IHC, and five tumor microenvironment signatures, including

IFN-g, T-effector, and T-cell exhaustion signatures. When we integrated each of

the six known signatures with our own, our signature still surpassed the

integrated ones in terms of prediction AUC and accuracy in the PCD4989g

(mUC) dataset. From our signature, we identified key prognostic biomarkers, with

the top five markers LYRM1, RFC4, CENPL, SPAG5, and CACYBP (Benjamini-

Hochberg adjusted P < 0.0025) in the IMvigor210 dataset. Finally, we performed

pathway analyses using Reactome (MSigDB) and KEGG, to reveal some immune-

related pathways enriched such as MHC class II antigen presentation.
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Introduction

Metastasis accounts for nearly 90% of cancer-related deaths and

remains a major challenge in effective cancer treatment. Immune

checkpoint inhibitors (ICIs) have improved outcomes in several

metastatic cancers. In metastatic urothelial carcinoma (mUC) (1–

3), the PD-L1 inhibitor atezolizumab has shown durable clinical

efficacy (4). Atezolizumab, a humanized monoclonal antibody,

binds PD-L1 and blocks its interaction with PD-1 and B7.1,

thereby restoring tumor-specific T-cell immunity. However, only

about 20% of mUC patients achieve objective responses (5, 6),

highlighting the need for reliable biomarkers to predict treatment

benefit before therapy initiation (7).

Banchereau et al. reported that tumor mutation burden (TMB)

and PD-L1 expression had limited predictive power across the

IMvigor210 (mUC), POPLAR, and IMmotion150 (RCC) cohorts,

whereas RNA-seq-based models captured their effects more

accurately (6). They further demonstrated that cancer-specific

models outperform pan-cancer approaches. Guided by this

principle, we developed an mUC-specific transcriptomic signature

predictive of response to atezolizumab, aiming to stratify patients

most likely to benefit from ICI therapy.

Data-driven machine learning (ML) models often fail to

generalize response predictions to independent datasets (8). To

address this problem, we applied transfer learning to enhance

feature selection and classifier training. Because the number of

genes far exceeds the number of ICI-treated samples, effective

feature reduction is critical. We incorporated unsupervised

domain adaptation (DA) to reduce ~17,000 genes to a few

hundred, prioritizing those with similar statistical distributions

across training and test datasets (9–11). This ensured that

selected features retained predictive power across domains.

Following feature selection, we performed cross-validation of

four classifiers, logit, lasso, support vector machine (SVM), and

random forest, using the IMvigor210 and IMmotion150 datasets to

identify the most consistent predictor. As illustrated in Figure 1A,

LogitDA, a logistic regression-based model, consistently achieved

the highest prediction accuracy across both cohorts. Consequently,

LogitDA and its derived gene signature were selected for

independent validation in the PCD4989g(mUC) dataset.

We further compared our 49-gene mUC signature with six

established immunotherapy response predictors, including PD-L1

IHC and five tumor microenvironment (TME)-associated gene

signatures: the IFN-g signature (1), T-cell dysfunction signature

(12), T-effector (tGE8) signature (2), T-cell–inflamed GEP (13),

TIDE T-exhaust signature (12), and CD8T signature (14). The IFN-

g and T-cell-inflamed GEP each comprise 18 genes linked to antigen

presentation, chemokine signaling, and adaptive immune

resistance, and have shown pan-cancer predictive value for anti-

PD-(L)1 therapy. The tGE8 signature, composed of IFNG, CXCL9,

CD8A, GZMA, GZMB, CXCL10, PRF1, and TBX21, correlates with

PD-L1 expression and is elevated in responders (2, 15). The TIDE

model identified 50 genes associated with T-cell exhaustion (12),

while the CD8T signature (CD8A, CD8B, GZMA, GZMB, PRF1)

reflects CD8+ T-cell activity (14).
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We found that our 49-gene signature for mUC outperformed all

six known signatures in terms of prediction AUC and accuracy in

an independent test dataset PCD4989g(mUC). We then evaluated

whether integrating each of these six signatures with our own could

improve predictive performance. However, we found that our

signature still outperformed the integrated signatures in response

prediction in mUC. We further showed that combining our

signature and tumor mutation burden (TMB), a widely

recognized genomic biomarker of ICI response, significantly

improved prediction performance for atezolizumab-treated

patients in the IMvigor210 cohort, compared to using TMB

alone. Finally, we identified several prognostic markers within our

gene signature that were able to stratify overall survival in patients

with mUC. Taken together, our method, LogitDA, identified a

robust gene signature for mUC that not only outperformed well-

established biomarkers in response prediction, but also

complemented them to improve the accuracy of immunotherapy

outcome prediction.
Materials and methods

Data sets

We obtained gene expression profiles and clinical data of

patients with mUC and renal cell carcinoma (RCC), respectively,

from previously published studies (2, 6). These datasets include

clinical response information for 298 patients enrolled in a single-

arm phase II clinical trial evaluating atezolizumab as a first-line

treatment for primarily mUC patients (IMvigor210) (16), and 77

RCC patients from a randomized phase II trial of atezolizumab vs.

atezolizumab+bevacizumab vs. sunitinib in front line RCC

(IMmotion150, NCT01984242) (17). To see which of the four

classifiers studied can make consistent response prediction to

atezolizumab, we used the IMmotion150 and the IMvigor210

datasets as the training datasets in the cross-validation study.

In addition, we obtained data from a phase I clinical trial of

atezolizumab (PCD4989g, NCT01375842) (18) through a data

request to Genentech (South San Francisco, USA). This dataset

includes whole-transcriptome profiles and clinical information

from 94 patients with mUC and was used as an independent test

dataset. Details regarding the availability of raw data are

provided in the Data Availability section. Each dataset

contains over 30,000 transcripts with corresponding expression

values in raw counts.

Clinical responses in the IMvigor210, PCD4989g, and

IMmotion150 datasets were assessed according to the Response

Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1) (19),

and were classified as complete response (CR), partial response

(PR), stable disease (SD), or progressive disease (PD). For

downstream analyses, patients were grouped into responders (CR/

PR) and non-responders (SD/PD), respectively.

Among the 348 patients in the IMvigor210 trial, clinical

response data were available for 298 patients, the majority of

whom were diagnosed with mUC, although some also had liver,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1607222
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Langfelder et al. 10.3389/fimmu.2025.1607222
lung, or other cancers. In total, the IMvigor210 (IMmotion150)

cohort included 298 (77) patients, with 68 (15) responders and 230

(62) non-responders. The PCD4989g (mUC) test dataset included

94 patients, with 22 responders and 72 non-responders.
RNA-seq data processing and
normalization

Whole transcriptomic profiles of IMvigor210 (PCD4989g) were

downloaded in raw read (FASTQ) format; the reads were aligned

and quantified to gene-level counts by kallisto (20). After applying

DEseq2 to identify differentially expressed (DE) genes, we

normalized the counts to log2 (TPM + 1) (21) for each sample of

training and test sets.
Frontiers in Immunology 03
Standardization of training and test data

To reduce the influence of systematic technical differences

between training and test data sets, we applied independent

standardization (denoted as ST) to IMvigor210 and PCD4989g

(mUC), that scaled each gene to mean 0 and variance 1 separately in

training and test data, given the proportions of the two outcomes

CR/PR and SD/PD are similar between the two datasets.
Feature selection

For feature selection, we have implemented the following

procedures. (1) We identified differentially expressed (DE) genes

of responders versus non-responders by DEseq2 (22), excluding
FIGURE 1

The overall scheme, and predictive performance of our signature versus the six known ones in independent mUC dataset. (A) The flowchart of our
scheme, where the DE genes of IMvigor210 were selected by FDR < 0.10. (B) The scheme of training and test of logit-based predictors with our
signature and the six known ones. The datasets and signatures used to train and testing the logit model, and the number of samples in each dataset
are shown. (C) The area under the receiver operating characteristic curve (AUC) for PCD(mUC) is displayed. The random expectation (AUC = 0.5) is
shown in dotted lines.
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non-informative genes (HIST and LOC). (2) Next, we calculated the

ratio of between-group to within-group sums of squares (BW-ratio)

(23) for the DE genes, where the two groups refer to responders and

non-responders. and (3) Finally, we applied unsupervised domain

adaptation (DA) (10) to sift genes which passed step (2). Details of

the feature selection procedures are in Supplementary Materials.
Training the four classifiers by 5-fold CV

After completing the feature selection procedures, we used the

IMvigor210 dataset to train the parameters of four classifiers,

logistic regression, lasso regression, random forest (RF), and

support vector machine with the RBF kernel (SVM(RBF)), via 5-

fold cross-validation. For LogitDA, the parameters p of the top-p

genes, aDA of DA and the penalty constant l of logit regression

were optimized by grid search with 5-fold CV and 100 repeats to

result in the associated predictors. Specifically, p is evaluated from

the union of [15(5)200]) and [210(10)500], where the former

denotes the set of numbers from 15 with step size 5 to 200 for

IMvigor210, and aDA in [0.2, 0.8] (step size = 0.1). Further details of

the training procedures for each classifier are provided in the

Supplementary Materials.
Statistical analysis and tools

We used the DEseq2 and dgof packages in R software to identify

DE genes between responders and non-responders. A log-rank test

was applied to reveal genes that can separate patients into favorable

or poor OS within IMvigor210. For the remaining analyses,

including logistic ridge regression, support vector machine,

random forest classification, and visualization (e.g., volcano

plots), we used R software.
Results

Within-study cross validations
demonstrated that LogitDA consistently
predicted responses in atezolizumab-
treated patients

After applying the feature selection procedures, we performed

5-fold cross-validation (CV) with 100 repeats on the IMvigor210

training dataset using four classifiers, LogitDA, lasso regression,

random forest, and support vector machine with the RBF kernel

(SVM(RBF)). To determine which classifier provided the most

robust predictions across cancer types in atezolizumab-treated

patients, we also performed a 5-fold CV study using the

IMmotion150 (mRCC) dataset.

In the IMvigor210 dataset, lasso and LogitDA achieved the

highest CV AUCs (accuracy) of 0.78 and 0.77 (0.71 and 0.73),

respectively, followed by SVM(RBF) and random forest. AUC (area
Frontiers in Immunology 04
under the receiver operating characteristic curve) was used as the

primary metric for classifier performance evaluation. In the

IMmotion150 cohort, LogitDA and SVM(RBF) were the top two

predictors, each attaining a cross-validated AUC of 0.95.

Detailed CV results of both datasets, including AUC, accuracy,

true positives (TPs), true negatives (TNs), and other metrics, are

provided in Supplementary Table S1. Based on the results from both

datasets, we selected LogitDA and the 49-gene signature it identified

for further investigation.
Our signature outperformed the six well-
known signatures in ICI-treated patients
with mUC

Let IMvigor-PCD(mUC) denote the setting in which a classifier

is trained on the IMvigor210 dataset and its prediction performance

evaluated on the PCD4989g(mUC) dataset. In this section, using

IMvigor-PCD(mUC), we compared the performance of our gene

signature with six state-of-the-art signatures, PD-L1 (IHC), IFN-g
(1), tGE8 (2), T exhaust (12), T inflamed (13), and CD8T (14), as

introduced in the Introduction. We first conducted 5-fold cross-

validation with 100 repeats for each signature using logistic

regression combined with our optimization algorithm to derive

the corresponding predictors. In the IMvigor210 dataset, our

signature achieved the highest cross-validated AUC of 0.77,

followed by IFN-g (0.70), T inflamed (0.69), tGE8 (0.68), and T

exhaust (0.62); both CD8T and PD-L1 yielded cross-validated

AUCs below 0.60.

Next, we applied the trained predictors to the independent test

set, PCD(mUC). Our transcriptomic signature outperformed the six

established signatures, achieving the highest prediction AUC of

0.75, followed by T inflamed (0.70), IFN-g (0.67), tGE8 (0.65), and

the remaining signatures (0.59 and lower), as shown in Table 1. In

terms of prediction accuracy, our signature also ranked highest at

0.71, followed by IFN-g (0.67), with the others performing at 0.64 or

lower. Since the PCD(mUC) dataset does not include tumor

mutation burden (TMB) information, we were unable to evaluate

the predictive power of TMB. Detailed metrics, including prediction

AUC, accuracy, true positives (TPs), true negatives (TNs), false

positives (FPs), and false negatives (FNs), are provided in Table 1.

An overview of the training and testing scheme for LogitDA and

logistic regression-based predictors, along with their corresponding

prediction AUCs in PCD(mUC), is illustrated in Figure 1.
Our signature outperformed the six
integrated signatures in response
prediction to atezolizumab in mUC

After demonstrating that our signature outperformed the six

state-of-the-art signatures individually, we investigated whether

combining any of these signatures with ours could further

improve predictive performance. As shown in Table 2, our
frontiersin.org
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signature achieved the highest prediction AUC (0.75) and accuracy

(0.71) in the mUC test set. Specifically, integrating PD-L1 (IHC)

and the CD8T signature with ours resulted in prediction AUCs of

0.69 and 0.73, and accuracies of 0.65 and 0.68, respectively.

Interestingly, combining PD-L1 with our signature (denoted as
Frontiers in Immunology 05
PD-L1+ours) led to a reduction in both AUC and accuracy

compared to using our signature alone. Nevertheless, the

combination CD8T+ours achieved the highest number of true

positives (13) among all integrated signatures, while our signature

yielded 12 true positives prediction.
TABLE 2 Our signature surpassed the integrated signatures in response prediction to Atezolizumab using IMvigor210-PCD(mUC).

Signatures
Parameter Cross-validation result Prediction result

p la AUC (SE) AUC accuracy F1- score TPs TNs FPs FNs

Ours (49)b 49 0.14
0.77

(0.00c)
0.75 0.71 0.47 12 55 17 10

PD-L1+oursd 50 0.17
0.78
(0.01)

0.69 0.65 0.35 7 42 15 11

tGE8+ourse 56 0.17
0.78
(0.01)

0.71 0.66 0.41 11 51 21 11

IFN-g+oursf 66 0.19
0.77
(0.01)

0.71 0.66 0.41 11 51 21 11

T inflamed
+oursf

65 0.18
0.77
(0.01)

0.72 0.66 0.43 12 50 22 10

CD8T+ours 54 0.18
0.77
(0.01)

0.73 0.68 0.46 13 51 21 9

T exhaust+ours 99 0.27
0.75
(0.01)

0.71 0.71 0.34 7 60 12 15
fron
al is the penalty constant of logistic ridge regression.
bLogitDA with the optimized aDA = 0.2 and l= 0. 15 resulted in the 49-gene model.
cSE equaled to “0.00” after rounded to the 3rd digit.
dAfter excluding samples with PD-L1 (IHC) missing, the sample size of IMvigor210 and PCD(mUC) were 297 and 75, respectively.
eThe tGE8 signature having CXCL9 overlapped with our signature.
fOf the IFN-g and Cristescu signaturees, CXCL9 overlapped with our signature, and HLA-E was missing in the IMvigor210-PCD(mUC) datasets.
TABLE 1 Our signature for mUC outperformed the six known ones in response prediction to Atezolizumab using IMvigor210-PCD(mUC).

Signatures
Parameter CV result Prediction result

la AUC (SE) AUC accuracy F1-score TPs TNs FPs FNs

Ours (49)b 0.14
0.77

(0.00c)
0.75 0.71 0.47 12 55 17 10

PD-L1d 1.07
0.57

(0.001)
0.55 0.40 0.40 15 15 42 3

tGE8 (8) 0.05
0.68
(0.01)

0.65 0.61 0.39 12 45 27 10

IFN-g (18)e 0.05
0.70
(0.01)

0.67 0.67 0.46 13 50 22 9

T inflamed (17)e 0.04
0.69
(0.02)

0.70 0.64 0.43 13 47 25 9

CD8T (5) 1.04
0.58
(0.01)

0.59 0.61 0.39 12 45 27 10

T exhaust (50) 0.15
0.62
(0.02)

0.56 0.55 0.28 8 44 28 14
al is the penalty constant of logistic ridge regression.
bLogitDA with the optimized aDA = 0.2 and l= 0. 15 resulted in the 49-gene model.
cSE equals to “0.00” after rounded to the 3rd digit.
dAfter excluding samples with PD-L1 (IHC) missing, the sample size of IMvigor210 and PCD(mUC) were 297 and 75, respectively.
eIn the IFN-g and T inflamed signatures, HLA-E was missing in IMvigor-PCD(mUC).
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Differentially-expressed GABRA3, MAST1,
CXCL9, NUF2, and LURAP1 were
associated with response to Atezolizumab
in patients with mUC

From the volcano plot of our 49-gene signature for IMvigor210-

PCD(mUC) (Supplementary Figure S1), we identified several genes

significantly associated with response to atezolizumab in patients

with mUC. We found that GABRA3, MAST1, CXCL9, and NUF2

were the most over-expressed genes, with log2 fold changes of 1.26,

1.24, 1.12, and 0.90, Benjamini-Hochberg adjusted p-values of

6.0×10-4, 8.8×10-7, 0.0025, and 1.4×10-6, respectively). Conversely,

LURAP1 was the most underexpressed gene with a log2 fold change

of -0.88 and adjusted P =1.5×10-5.

We checked these four over-expressed genes against existing

literature, and found the following. Gene GABRA3 has been

associated with TMB and shown to promote antitumor immunity

in hepatocellular carcinoma based on multi-omics analysis (24).

Recent studies have also reported that manipulating GABAergic

signaling could limit anti-tumor immunity (25, 26). Since response

to immune checkpoint blockade (ICB), such as PD-L1 inhibition, is

known to correlate with the extent of tumor immune infiltration, we

further investigated immune-related functions of the identified

genes. Several reports indicate that CXCL9 is associated with

immune cell infiltration (27) and is required for effective

antitumor responses following ICB treatment (28).

In addition, Zheng B et al. demonstrated that NUF2 positively

correlates with tumor-infiltrating immune cells, including CD8+ T

cells and dendritic cells, in clear renal cell carcinoma (29). Notably,

our finding that under expression of LURAP1 is associated with

better response to atezolizumab is consistent with previous evidence

from TCGA bladder cancer data, where hypermethylation of five

CpG sites in LURAP1 (resulting in reduced expression) was linked

to improved overall survival (30).
Prognostic biomarkers of overall survival
identified for mUC

To identify prognostic markers for overall survival (OS), we

conducted log-rank tests on the 49 genes included in the LogitDA

predictor for the IMvigor210-PCD(mUC) setting. We identified 18

genes as significant prognostic biomarkers, each with a Benjamini–

Hochberg adjusted P value (FDR) < 0.01 (log-rank test;

Supplementary Table S2). The top five ranked biomarkers were

LYRM1, RFC4, CENPL, SPAG5, and CACYBP, all with adjusted P

values < 0.0025. Kaplan–Meier survival curves for these five genes

are shown in Figures 2A–E.
Pathway analysis and functional roles of
some signature genes

To elucidate the biological processes captured by our signature,

we performed pathway analyses using Reactome (MSigDB) and
Frontiers in Immunology 06
KEGG. Reactome analysis revealed significant enrichment of MHC

class II antigen presentation (P = 0.013) and aberrant mitotic exit

regulation (P = 0.029) among the 29 upregulated genes,

with marginal enrichment of adaptive chemokine receptor

binding (P = 0.08) and immune system pathways (P = 0.09).

The 20 downregulated genes were enriched in the cell cycle

pathway (P = 0.02). KEGG analysis further identified enrichment

in cell cycle, DNA replication, HTLV-1 infection, and DNA repair

pathways (adjusted P = 1.9 × 10-16 - 0.005). Details are provided in

Supplementary Table S3.

We next examined the functional roles of high-weight and

differentially expressed signature genes. Literature evidence

supports the ir involvement in tumor immunity and

immunotherapy response. CXCL9, an IFN-g-inducible chemokine

that recruits CXCR3+ effector T and NK cells, is central to anti-

tumor immunity (28, 31). In mUC (IMvigor210), elevated CXCL9/

IFNG/GBP5 expression correlates with favorable anti-PD-L1

response (32), consistent with the IFN-g→CXCL9 axis. NUF2

expression positively correlates with tumor-infiltrating CD8+ T

cells and dendritic cells in clear renal cell carcinoma, while

POLA2 has been identified as a positive biomarker for PD-L1

blockade response in mUC. LURAP1, an adaptor activating the

canonical NF-kB pathway, promotes PD-L1 expression and

immune evasion; its underexpression in responders aligns with

enhanced ICB efficacy (33). CDCA3/5/8, implicated in immune-

related pathways (34), were negatively associated with ICI response

in our study, consistent with their reported roles in suppressing

CD8+ T-cell infiltration. Additionally, SLC6A1 and GABRA3,

differentially expressed between responders and non-responders,

participate in the GABAergic pathway, whose aberrant activation

has been linked to immune suppression in the tumor

microenvironment (25, 26).
Ablation study

In this section, we evaluated the contribution of domain

adaptation (DA) to the predictive performance of LogitDA. We

trained logistic regression models using features selected from the

first two feature selection steps, namely excluding the DA filtering

step. All model parameters except for aDA were optimized using 5-

fold cross-validation on the IMvigor210 dataset. The resulting

predictor, denoted as LogitDA–DA (i.e., without DA), included

150 genes. When applied in the IMvigor-PCD(mUC) setting, this

model yielded a prediction AUC of 0.63. In comparison, LogitDA

(with DA) achieved a 12% improvement in AUC, demonstrating

the benefit of incorporating DA.
Discussion

In this study, we developed a feature selection pipeline and a

machine learning–based predictor, LogitDA, for identifying a

transcriptomic signature of response to PD-L1 inhibition in

mUC. We demonstrated that LogitDA robustly predicted patient
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1607222
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Langfelder et al. 10.3389/fimmu.2025.1607222
response to atezolizumab and identified an effective gene signature

associated with treatment outcome. Using LogitDA, we further

showed that the identified mUC-specific signature outperformed

PD-L1 (IHC) as well as five established tumor microenvironment

(TME)-associated signatures in terms of both prediction AUC

and accuracy.

Furthermore, we integrated our mUC-specific signature with

each of the six established immune-related signatures and found
Frontiers in Immunology 07
that our signature achieved the highest predictive performance,

with a prediction AUC of 0.75, outperforming all integrated

combinations. These findings suggest that our method is able to

identify an effective transcriptomic signature from ICI-treated

patients with mUC, and may provide a useful tool for stratifying

patients likely to benefit from atezolizumab therapy.

In this study, we developed LogitDA, a feature selection and

machine learning–based predictor, to identify a transcriptomic
FIGURE 2

Kaplan–Meier plots of prognostic biomarkers for overall survival (OS) in the mUC cohort (IMvigor210). Panels (A–E) show survival curves stratified by
gene expression levels of (A) LYRM, (B) RFC4, (C) CENPL, (D) SPAG5, and (E) CACYBP, respectively. For each gene, patients were classified into high
(≥ median) and low (< median) expression groups within the cohort.
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signature of response to PD-L1 inhibition in metastatic urothelial

carcinoma (mUC). LogitDA robustly predicted response to

atezolizumab and yielded an mUC-specific gene signature that

outperformed PD-L1 (IHC) and five established tumor

microenvironment (TME)–associated signatures in both AUC

and accuracy. When integrated with these immune-related

signatures, our signature achieved the highest predictive

performance (AUC = 0.75). These results demonstrate that

LogitDA effectively identifies clinically relevant transcriptomic

predictors and may aid in stratifying mUC patients likely to

benefit from atezolizumab.

TMB is a well-established genomic biomarker of response to

immune checkpoint inhibitors (ICIs) across several cancer types,

e.g., melanoma. Elevated TMB levels are thought to increase

neoantigen load, thereby enhancing T cell infiltration and the

efficacy of immunotherapy. Unfortunately, the test dataset we

assessed did not comprise TMB levels. Thus, we studied the CV

result of TMB alone and the combined TMB+ours signature using

IMvigor210. The leave-one-out cross-validation AUCs for TMB

alone and TMB+ours for mUC were 0.44 and 0.78, respectively.

Importantly, we found that the combined TMB+ours signature

correctly reclassified 28 non-responders previously misclassified as

responders by TMB alone (R2NR), and correctly reclassified 12

responders from previously predicted non-responders by TMB

alone (NR2R) for mUC, as summarized in Supplementary Table

S4. These results suggest that integrating our signature with TMB

can improve the prediction of ICI response in patients with mUC.

Using CIBERSORT (35), we deconvoluted the bulk RNA-seq

data from the IMvigor210 cohort to estimate immune cell

composition. Among the inferred cell types, plasma cells and M1

macrophages were significantly positively associated with patient

response to atezolizumab (P < 0.05, FDR < 14%; Welch’s t-test). To

further explore the immunological relevance of our signature for

mUC, we compared our genes against the LM22 reference marker

gene expression matrix of CIBERSORT. We found thatMAST1 and

CXCL9 were overlapping genes, and their overexpression was

positively correlated with atezolizumab response (IMvigor210).

We acknowledge that the binary classification of responders

(Rs) and non-responders (NRs) may limit the clinical granularity of

the LogitDA predictor. To evaluate this, we compared the

distributions of signature scores among CR/PR, SD, and PD

groups using the Mann-Whitney test. The scores of SD were

intermediate between those of CR/PR and PD. However, the

difference between SD and PD was not significant (P = 0.85),

whereas both CR/PR vs. SD and CR/PR vs. PD comparisons were

highly significant (P < 2 × 10-11). These results support the

appropriateness of binary classification for patient response in the

IMvigor210 cohort.

Our methods can be applied to predict ICI treatment response

in patients with other cancer types, provided that gene expression

data and response outcomes are available for both training and test

sets. Furthermore, these datasets are not overly heterogeneous (see
Frontiers in Immunology 08
also future research directions). Langfelder et al. demonstrated that

LogitDA (36), trained on IMmotion150 (a mRCC cohort),

identified a 27-gene signature that achieved a prediction AUC

(accuracy) of 0.72 (0.83) in PCD4989g (mRCC) (Supplementary

Table S5).

To evaluate the clinical generalizability of our signature, we

applied it to four independent, unseen datasets GSE176307 (bladder

cancer (BLCA), n = 89), GSE111636 (BLCA, n = 11), GSE91061

(Melanoma, n = 49), and IMmotion150 (mRCC, n =77), yielding

prediction accuracies of 61%, 73%, 67%, and 62%, respectively

(Supplementary Table S6). These results may indicate that the

signature captures key immune pathways and genes associated

with ICI response. However, its predictive performance in

external cohorts may depend on the similarity of their 49-gene

expression profiles to those of the PCD4989g (mUC) reference set.

Given their translational potential, the 49 signature genes could

be developed into a cost-effective diagnostic microarray to evaluate

response to ICI therapy in patients with advanced or metastatic UC

prior to treatment initiation. To assess the temporal dynamics of

patient response and guide adaptive therapy, we analyzed

conditional survival curves by condSURV package in R (Q1-Q3

expression levels; Supplementary Figure S2) for the top five

prognostic biomarkers. Responders and non-responders began to

diverge at 3–4 months, reached maximal separation at 18–21

months, and plateaued thereafter. These results indicate that

biomarker discrimination peaks during the mid-term follow-up,

providing the greatest clinical utility for monitoring response and

informing therapy adjustment within the first 18–21 months.

Several promising gene signatures predicting ICI response have

been uncovered by machine learning approaches similar to ours.

Shen et al. analyzed glycolysis-related genes (37). They derived an

18-gene signature that achieved a time-dependent ROC AUC of

0.71 in IMvigor210 at 20 months. Notably, several identified genes

were significantly associated with response to anti-PD-(L)1 therapy

across IMvigor210 and four cohorts. Boll et al. integrated six

independent cohorts, encompassing multi-omic data, immune

signatures, and others (38). They derived a random forest model,

reaching an AUC of 0.76 in a validation set (n = 205) combining

IMvigor210 with other cohorts.

We further evaluated three recently reported ICI-response

signatures (39–41) using the IMvigor210 (mUC) cohort. The

NCOA3/HSP90a/EZH2/CXCL9 axis identified in colorectal

cancer by Liu et al. impaired anti-PD-L1 efficacy via CXCL9

suppression; applying this signature (NCOA3, HSP90AA1, EZH2

up, CXCL9 down) for non-responders yielded an accuracy of 0.73.

Ke et al. reported PD-1/CD69 co-expression in effector-memory

CD8+ T cells as predictive of TLS formation and ICI benefit;

classifying mUC patients with both PDCD1 and CD69 above the

median as responders achieved 0.57 accuracy. Xu et al. defined a

disulfidptosis-related signature (DFRS) associated with poor

survival in several cancers but not in bladder cancer (P = 0.177,

Fig. 4 (41)); similarly, DFRS failed to stratify IMvigor210 patients
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(P = 0.092, log-rank) and achieved 0.54 accuracy when high-DFRS

cases were predicted as responders.

Recent studies on immunotherapy response prediction in

urothelial carcinoma (UC) have explored biomarkers across

genetic, proteomic, and transcriptomic levels from tumor, blood,

and urine samples. Major research directions include: (1)

Combinatorial biomarkers and computational models,

particularly ML-based approaches. Yoshida et al. reported that

co-expression of LAG-3 and FGL1 was linked to poor PD-(L)1

response and survival, suggesting potential benefit from combined

anti-LAG-3/PD-(L)1 therapy (42). (2) DNA damage repair (DDR)

alterations, such as mutations in RB1, ATM, BRCA1/2, and ERCC2,

which predict ICI benefit or post-chemotherapy responsiveness (43,

44). In a phase II trial, durvalumab plus olaparib failed to improve

PFS in unselected mUC patients (n = 154), but higher response rates

were observed in those with homologous recombination repair

mutations (45). (3) Integration of bulk and single-cell RNA-seq,

and increasingly multi-omics data, to identify ICI-associated gene

signatures (46–48).

The current optimization method of LogitDA focuses primarily

on maximizing cross-validated AUC within the training set. In

future work, we plan to apply LogitDA to other cancer types, where

the training and test datasets may exhibit greater heterogeneity than

those used in this study. Therefore, an important research direction

will be to define and quantify the degree of heterogeneity or

“distance” between training and test datasets, and to incorporate

this measure into stricter criteria for transferring features

across studies. Another direction of future investigation is the

development of data augmentation techniques to address the class

imbalance problem, as the number of responders to ICI treatments

is much lower than that of non-responders. Finally, we aim to

integrate single-cell RNA-seq with bulk RNA-seq data in mUC;

this may elucidate which cell type proportions, and which genes

in which cell types are involved in response to ICIs such

as atezolizumab.
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