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To date, immune checkpoint inhibitors (ICls) have emerged as a leading
treatment for metastatic cancer, significantly improving patient survival while
causing relatively few side effects. However, the objective response rate for ICls
remains low approximately 30% in urothelial carcinoma (UC), underscoring the
urgent need for predictive response biomarkers. Several state-of-the-art
signatures have been revealed in top-tier journals, highlighting the importance
of this field. As the number of genes (~20,000) far exceeds the sample sizes of
typical training sets (generally < 300), we first developed feature selection
procedures to reduce the number of features to a few hundred. We then
trained multiple machine learning classifiers using the selected genes and the
IMvigor210 dataset, which includes RNA-seq and clinical data from ~298 patients
with metastatic UC (mUC). Notably, our predictor LogitDA, using the identified
49-gene signature, achieved a prediction AUC of 0.75 in an independent dataset,
PCD4989g(mUC). Moreover, our signature outperformed six state-of-the-art
signatures, PD-L1 IHC, and five tumor microenvironment signatures, including
IFN-v, T-effector, and T-cell exhaustion signatures. When we integrated each of
the six known signatures with our own, our signature still surpassed the
integrated ones in terms of prediction AUC and accuracy in the PCD4989g
(mUC) dataset. From our signature, we identified key prognostic biomarkers, with
the top five markers LYRM1, RFC4, CENPL, SPAGS5, and CACYBP (Benjamini-
Hochberg adjusted P < 0.0025) in the IMvigor210 dataset. Finally, we performed
pathway analyses using Reactome (MSigDB) and KEGG, to reveal some immune-
related pathways enriched such as MHC class Il antigen presentation.
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Introduction

Metastasis accounts for nearly 90% of cancer-related deaths and
remains a major challenge in effective cancer treatment. Immune
checkpoint inhibitors (ICIs) have improved outcomes in several
metastatic cancers. In metastatic urothelial carcinoma (mUC) (1-
3), the PD-L1 inhibitor atezolizumab has shown durable clinical
efficacy (4). Atezolizumab, a humanized monoclonal antibody,
binds PD-L1 and blocks its interaction with PD-1 and B7.1,
thereby restoring tumor-specific T-cell immunity. However, only
about 20% of mUC patients achieve objective responses (5, 6),
highlighting the need for reliable biomarkers to predict treatment
benefit before therapy initiation (7).

Banchereau et al. reported that tumor mutation burden (TMB)
and PD-L1 expression had limited predictive power across the
IMvigor210 (mUC), POPLAR, and IMmotion150 (RCC) cohorts,
whereas RNA-seq-based models captured their effects more
accurately (6). They further demonstrated that cancer-specific
models outperform pan-cancer approaches. Guided by this
principle, we developed an mUC-specific transcriptomic signature
predictive of response to atezolizumab, aiming to stratify patients
most likely to benefit from ICI therapy.

Data-driven machine learning (ML) models often fail to
generalize response predictions to independent datasets (8). To
address this problem, we applied transfer learning to enhance
feature selection and classifier training. Because the number of
genes far exceeds the number of ICI-treated samples, effective
feature reduction is critical. We incorporated unsupervised
domain adaptation (DA) to reduce ~17,000 genes to a few
hundred, prioritizing those with similar statistical distributions
across training and test datasets (9-11). This ensured that
selected features retained predictive power across domains.

Following feature selection, we performed cross-validation of
four classifiers, logit, lasso, support vector machine (SVM), and
random forest, using the IMvigor210 and IMmotion150 datasets to
identify the most consistent predictor. As illustrated in Figure 1A,
LogitDA, a logistic regression-based model, consistently achieved
the highest prediction accuracy across both cohorts. Consequently,
LogitDA and its derived gene signature were selected for
independent validation in the PCD4989g(mUC) dataset.

We further compared our 49-gene mUC signature with six
established immunotherapy response predictors, including PD-L1
IHC and five tumor microenvironment (TME)-associated gene
signatures: the IFN-y signature (1), T-cell dysfunction signature
(12), T-effector (tGE8) signature (2), T-cell-inflamed GEP (13),
TIDE T-exhaust signature (12), and CD8T signature (14). The IFN-
yand T-cell-inflamed GEP each comprise 18 genes linked to antigen
presentation, chemokine signaling, and adaptive immune
resistance, and have shown pan-cancer predictive value for anti-
PD-(L)1 therapy. The tGES8 signature, composed of IFNG, CXCL9,
CD8A, GZMA, GZMB, CXCL10, PRF1, and TBX21, correlates with
PD-LI1 expression and is elevated in responders (2, 15). The TIDE
model identified 50 genes associated with T-cell exhaustion (12),
while the CDS8T signature (CD8A, CD8B, GZMA, GZMB, PRFI)
reflects CD8" T-cell activity (14).
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We found that our 49-gene signature for mUC outperformed all
six known signatures in terms of prediction AUC and accuracy in
an independent test dataset PCD4989g(mUC). We then evaluated
whether integrating each of these six signatures with our own could
improve predictive performance. However, we found that our
signature still outperformed the integrated signatures in response
prediction in mUC. We further showed that combining our
signature and tumor mutation burden (TMB), a widely
recognized genomic biomarker of ICI response, significantly
improved prediction performance for atezolizumab-treated
patients in the IMvigor210 cohort, compared to using TMB
alone. Finally, we identified several prognostic markers within our
gene signature that were able to stratify overall survival in patients
with mUC. Taken together, our method, LogitDA, identified a
robust gene signature for mUC that not only outperformed well-
established biomarkers in response prediction, but also
complemented them to improve the accuracy of immunotherapy
outcome prediction.

Materials and methods
Data sets

We obtained gene expression profiles and clinical data of
patients with mUC and renal cell carcinoma (RCC), respectively,
from previously published studies (2, 6). These datasets include
clinical response information for 298 patients enrolled in a single-
arm phase II clinical trial evaluating atezolizumab as a first-line
treatment for primarily mUC patients (IMvigor210) (16), and 77
RCC patients from a randomized phase II trial of atezolizumab vs.
atezolizumab+bevacizumab vs. sunitinib in front line RCC
(IMmotion150, NCT01984242) (17). To see which of the four
classifiers studied can make consistent response prediction to
atezolizumab, we used the IMmotion150 and the IMvigor210
datasets as the training datasets in the cross-validation study.

In addition, we obtained data from a phase I clinical trial of
atezolizumab (PCD4989g, NCT01375842) (18) through a data
request to Genentech (South San Francisco, USA). This dataset
includes whole-transcriptome profiles and clinical information
from 94 patients with mUC and was used as an independent test
dataset. Details regarding the availability of raw data are
provided in the Data Availability section. Each dataset
contains over 30,000 transcripts with corresponding expression
values in raw counts.

Clinical responses in the IMvigor210, PCD4989g, and
IMmotionl50 datasets were assessed according to the Response
Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1) (19),
and were classified as complete response (CR), partial response
(PR), stable disease (SD), or progressive disease (PD). For
downstream analyses, patients were grouped into responders (CR/
PR) and non-responders (SD/PD), respectively.

Among the 348 patients in the IMvigor210 trial, clinical
response data were available for 298 patients, the majority of
whom were diagnosed with mUC, although some also had liver,
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FIGURE 1

1.0

The overall scheme, and predictive performance of our signature versus the six known ones in independent mUC dataset. (A) The flowchart of our
scheme, where the DE genes of IMvigor210 were selected by FDR < 0.10. (B) The scheme of training and test of logit-based predictors with our
signature and the six known ones. The datasets and signatures used to train and testing the logit model, and the number of samples in each dataset
are shown. (C) The area under the receiver operating characteristic curve (AUC) for PCD(mUC) is displayed. The random expectation (AUC = 0.5) is

shown in dotted lines.

lung, or other cancers. In total, the IMvigor210 (IMmotion150)
cohort included 298 (77) patients, with 68 (15) responders and 230
(62) non-responders. The PCD4989g (mUC) test dataset included
94 patients, with 22 responders and 72 non-responders.

RNA-seq data processing and
normalization

Whole transcriptomic profiles of IMvigor210 (PCD4989g) were
downloaded in raw read (FASTQ) format; the reads were aligned
and quantified to gene-level counts by kallisto (20). After applying
DEseq2 to identify differentially expressed (DE) genes, we
normalized the counts to log, (TPM + 1) (21) for each sample of
training and test sets.

Frontiers in Immunology

Standardization of training and test data

To reduce the influence of systematic technical differences
between training and test data sets, we applied independent
standardization (denoted as ST) to IMvigor210 and PCD4989g
(mUC), that scaled each gene to mean 0 and variance 1 separately in
training and test data, given the proportions of the two outcomes
CR/PR and SD/PD are similar between the two datasets.

Feature selection
For feature selection, we have implemented the following

procedures. (1) We identified differentially expressed (DE) genes
of responders versus non-responders by DEseq2 (22), excluding
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non-informative genes (HIST and LOC). (2) Next, we calculated the
ratio of between-group to within-group sums of squares (BW-ratio)
(23) for the DE genes, where the two groups refer to responders and
non-responders. and (3) Finally, we applied unsupervised domain
adaptation (DA) (10) to sift genes which passed step (2). Details of
the feature selection procedures are in Supplementary Materials.

Training the four classifiers by 5-fold CV

After completing the feature selection procedures, we used the
IMvigor210 dataset to train the parameters of four classifiers,
logistic regression, lasso regression, random forest (RF), and
support vector machine with the RBF kernel (SVM(RBE)), via 5-
fold cross-validation. For LogitDA, the parameters p of the top-p
genes, 0pa of DA and the penalty constant A of logit regression
were optimized by grid search with 5-fold CV and 100 repeats to
result in the associated predictors. Specifically, p is evaluated from
the union of [15(5)200]) and [210(10)500], where the former
denotes the set of numbers from 15 with step size 5 to 200 for
IMvigor210, and 04 in [0.2, 0.8] (step size = 0.1). Further details of
the training procedures for each classifier are provided in the
Supplementary Materials.

Statistical analysis and tools

We used the DEseq2 and dgof packages in R software to identify
DE genes between responders and non-responders. A log-rank test
was applied to reveal genes that can separate patients into favorable
or poor OS within IMvigor210. For the remaining analyses,
including logistic ridge regression, support vector machine,
random forest classification, and visualization (e.g., volcano
plots), we used R software.

Results

Within-study cross validations
demonstrated that LogitDA consistently
predicted responses in atezolizumab-
treated patients

After applying the feature selection procedures, we performed
5-fold cross-validation (CV) with 100 repeats on the IMvigor210
training dataset using four classifiers, LogitDA, lasso regression,
random forest, and support vector machine with the RBF kernel
(SVM(RBF)). To determine which classifier provided the most
robust predictions across cancer types in atezolizumab-treated
patients, we also performed a 5-fold CV study using the
IMmotion150 (mRCC) dataset.

In the IMvigor210 dataset, lasso and LogitDA achieved the
highest CV AUCs (accuracy) of 0.78 and 0.77 (0.71 and 0.73),
respectively, followed by SVM(RBF) and random forest. AUC (area
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under the receiver operating characteristic curve) was used as the
primary metric for classifier performance evaluation. In the
IMmotion150 cohort, LogitDA and SVM(RBF) were the top two
predictors, each attaining a cross-validated AUC of 0.95.

Detailed CV results of both datasets, including AUC, accuracy,
true positives (TPs), true negatives (TNs), and other metrics, are
provided in Supplementary Table S1. Based on the results from both
datasets, we selected LogitDA and the 49-gene signature it identified
for further investigation.

Our signature outperformed the six well-
known signatures in ICl-treated patients
with mUC

Let IMvigor-PCD(mUC) denote the setting in which a classifier
is trained on the IMvigor210 dataset and its prediction performance
evaluated on the PCD4989g(mUC) dataset. In this section, using
IMvigor-PCD(mUC), we compared the performance of our gene
signature with six state-of-the-art signatures, PD-L1 (IHC), IFN-y
(1), tGE8 (2), T exhaust (12), T inflamed (13), and CD8T (14), as
introduced in the Introduction. We first conducted 5-fold cross-
validation with 100 repeats for each signature using logistic
regression combined with our optimization algorithm to derive
the corresponding predictors. In the IMvigor210 dataset, our
signature achieved the highest cross-validated AUC of 0.77,
followed by IFN-y (0.70), T inflamed (0.69), tGE8 (0.68), and T
exhaust (0.62); both CD8T and PD-L1 yielded cross-validated
AUC:s below 0.60.

Next, we applied the trained predictors to the independent test
set, PCD(mUC). Our transcriptomic signature outperformed the six
established signatures, achieving the highest prediction AUC of
0.75, followed by T inflamed (0.70), IFN-y (0.67), tGE8 (0.65), and
the remaining signatures (0.59 and lower), as shown in Table 1. In
terms of prediction accuracy, our signature also ranked highest at
0.71, followed by IFN-y (0.67), with the others performing at 0.64 or
lower. Since the PCD(mUC) dataset does not include tumor
mutation burden (TMB) information, we were unable to evaluate
the predictive power of TMB. Detailed metrics, including prediction
AUG, accuracy, true positives (TPs), true negatives (TNs), false
positives (FPs), and false negatives (FNs), are provided in Table 1.
An overview of the training and testing scheme for LogitDA and
logistic regression-based predictors, along with their corresponding
prediction AUCs in PCD(mUC), is illustrated in Figure 1.

Our signature outperformed the six
integrated signatures in response
prediction to atezolizumab in mUC

After demonstrating that our signature outperformed the six
state-of-the-art signatures individually, we investigated whether
combining any of these signatures with ours could further
improve predictive performance. As shown in Table 2, our
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TABLE 1 Our signature for mUC outperformed the six known ones in response prediction to Atezolizumab using IMvigor210-PCD(mUC).

Parameter CV result Prediction result
Signatures
A2 AUC (SE) AUC accuracy Fl-score TPs TNs
7
Ours (49)° 0.14 0 . 0.75 071 0.47 12 55 17 10
(0.00°)
0.57
pD-L1¢ 1.07 055 0.40 0.40 15 15 42 3
(0.001)
0.68
tGES (8) 0.05 0.65 0.61 039 12 45 27 10
(0.01)
IEN-y (18)° 0.05 070 0.67 0.67 0.46 13 50 22 9
v : (0.01) : : i
. . 0.69
T inflamed (17) 0.04 0.70 0.64 0.43 13 47 25 9
(0.02)
0.58
CDST (5) 1.04 0.59 0.61 039 12 45 27 10
(0.01)
0.62
T exhaust (50) 0.15 0.56 055 028 8 44 28 14
(0.02)

) is the penalty constant of logistic ridge regression.

"LogitDA with the optimized 0, = 0.2 and A= 0. 15 resulted in the 49-gene model.

“SE equals to “0.00” after rounded to the 3™ digit.

dAfter excluding samples with PD-L1 (IHC) missing, the sample size of IMvigor210 and PCD(mUC) were 297 and 75, respectively.
“In the IFN-y and T inflamed signatures, HLA-E was missing in IMvigor-PCD(mUC).

signature achieved the highest prediction AUC (0.75) and accuracy =~ PD-Ll+ours) led to a reduction in both AUC and accuracy
(0.71) in the mUC test set. Specifically, integrating PD-L1 (IHC)  compared to using our signature alone. Nevertheless, the
and the CD8T signature with ours resulted in prediction AUCs of = combination CD8T+ours achieved the highest number of true
0.69 and 0.73, and accuracies of 0.65 and 0.68, respectively.  positives (13) among all integrated signatures, while our signature
Interestingly, combining PD-L1 with our signature (denoted as  yielded 12 true positives prediction.

TABLE 2 Our signature surpassed the integrated signatures in response prediction to Atezolizumab using IMvigor210-PCD(mUC).

Parameter Cross-validation result Prediction result
Signatures
AUC (SE) AUC accuracy Fi1-score TPs TNs
Ours (49)° 49 0.14 077 0.75 0.71 0.47 12 55 17 10
: (0.00% : ' ’
B 078
PD-L1+ours 50 0.17 0.69 0.65 0.35 7 42 15 11
(0.01)
. 078
tGE8-+ours 56 0.17 0.71 0.66 0.41 11 51 21 11
(0.01)
IFN-y+ours’ 66 0.19 077 0.71 0.66 0.41 11 51 21 11
¥ : (0.01) : : :
T infl .
m a"fd 65 0.18 077 0.72 0.66 0.43 12 50 2 10
+ours (0.01)
0.77
CD8T+ours 54 0.18 0.73 0.68 0.46 13 51 21 9
(0.01)
0.75
T exhaust+ours 99 0.27 ©01) 0.71 0.71 0.34 7 60 12 15

“2 is the penalty constant of logistic ridge regression.

"LogitDA with the optimized 0ip, = 0.2 and A= 0. 15 resulted in the 49-gene model.

“SE equaled to “0.00” after rounded to the 3™ digit.

dAfter excluding samples with PD-L1 (IHC) missing, the sample size of IMvigor210 and PCD(mUC) were 297 and 75, respectively.

“The tGE8 signature having CXCL9 overlapped with our signature.

fOf the TFN-y and Cristescu signaturees, CXCL9 overlapped with our signature, and HLA-E was missing in the IMvigor210-PCD(mUC) datasets.
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Differentially-expressed GABRA3, MAST1,
CXCL9, NUF2, and LURAP1 were
associated with response to Atezolizumab
in patients with mUC

From the volcano plot of our 49-gene signature for IMvigor210-
PCD(mUC) (Supplementary Figure S1), we identified several genes
significantly associated with response to atezolizumab in patients
with mUC. We found that GABRA3, MAST1, CXCL9, and NUF2
were the most over-expressed genes, with log, fold changes of 1.26,
1.24, 1.12, and 0.90, Benjamini-Hochberg adjusted p-values of
6.0x10™, 8.8x107, 0.0025, and 1.4x10°°, respectively). Conversely,
LURAPI was the most underexpressed gene with a log, fold change
of -0.88 and adjusted P =1.5x10".

We checked these four over-expressed genes against existing
literature, and found the following. Gene GABRA3 has been
associated with TMB and shown to promote antitumor immunity
in hepatocellular carcinoma based on multi-omics analysis (24).
Recent studies have also reported that manipulating GABAergic
signaling could limit anti-tumor immunity (25, 26). Since response
to immune checkpoint blockade (ICB), such as PD-L1 inhibition, is
known to correlate with the extent of tumor immune infiltration, we
further investigated immune-related functions of the identified
genes. Several reports indicate that CXCL9 is associated with
immune cell infiltration (27) and is required for effective
antitumor responses following ICB treatment (28).

In addition, Zheng B et al. demonstrated that NUF2 positively
correlates with tumor-infiltrating immune cells, including CD8" T
cells and dendritic cells, in clear renal cell carcinoma (29). Notably,
our finding that under expression of LURAPI is associated with
better response to atezolizumab is consistent with previous evidence
from TCGA bladder cancer data, where hypermethylation of five
CpG sites in LURAPI (resulting in reduced expression) was linked
to improved overall survival (30).

Prognostic biomarkers of overall survival
identified for mUC

To identify prognostic markers for overall survival (OS), we
conducted log-rank tests on the 49 genes included in the LogitDA
predictor for the IMvigor210-PCD(mUC) setting. We identified 18
genes as significant prognostic biomarkers, each with a Benjamini-
Hochberg adjusted P value (FDR) < 0.01 (log-rank test;
Supplementary Table S2). The top five ranked biomarkers were
LYRM]1, RFC4, CENPL, SPAG5, and CACYBP, all with adjusted P
values < 0.0025. Kaplan-Meier survival curves for these five genes
are shown in Figures 2A-E.

Pathway analysis and functional roles of
some signature genes

To elucidate the biological processes captured by our signature,
we performed pathway analyses using Reactome (MSigDB) and
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KEGG. Reactome analysis revealed significant enrichment of MHC
class I antigen presentation (P = 0.013) and aberrant mitotic exit
regulation (P = 0.029) among the 29 upregulated genes,
with marginal enrichment of adaptive chemokine receptor
binding (P = 0.08) and immune system pathways (P = 0.09).
The 20 downregulated genes were enriched in the cell cycle
pathway (P = 0.02). KEGG analysis further identified enrichment
in cell cycle, DNA replication, HTLV-1 infection, and DNA repair
pathways (adjusted P = 1.9 x 10™'° - 0.005). Details are provided in
Supplementary Table S3.

We next examined the functional roles of high-weight and
differentially expressed signature genes. Literature evidence
supports their involvement in tumor immunity and
immunotherapy response. CXCL9, an IFN-y-inducible chemokine
that recruits CXCR3" effector T and NK cells, is central to anti-
tumor immunity (28, 31). In mUC (IMvigor210), elevated CXCL9/
IFNG/GBP5 expression correlates with favorable anti-PD-L1
response (32), consistent with the IFN-y—>CXCL9 axis. NUF2
expression positively correlates with tumor-infiltrating CD8" T
cells and dendritic cells in clear renal cell carcinoma, while
POLA2 has been identified as a positive biomarker for PD-L1
blockade response in mUC. LURAPI, an adaptor activating the
canonical NF-xB pathway, promotes PD-L1 expression and
immune evasion; its underexpression in responders aligns with
enhanced ICB efficacy (33). CDCA3/5/8, implicated in immune-
related pathways (34), were negatively associated with ICI response
in our study, consistent with their reported roles in suppressing
CD8" T-cell infiltration. Additionally, SLC6A1 and GABRA3,
differentially expressed between responders and non-responders,
participate in the GABAergic pathway, whose aberrant activation
has been linked to immune suppression in the tumor
microenvironment (25, 26).

Ablation study

In this section, we evaluated the contribution of domain
adaptation (DA) to the predictive performance of LogitDA. We
trained logistic regression models using features selected from the
first two feature selection steps, namely excluding the DA filtering
step. All model parameters except for 0DA were optimized using 5-
fold cross-validation on the IMvigor210 dataset. The resulting
predictor, denoted as LogitDA-DA (i.e., without DA), included
150 genes. When applied in the IMvigor-PCD(mUC) setting, this
model yielded a prediction AUC of 0.63. In comparison, LogitDA
(with DA) achieved a 12% improvement in AUC, demonstrating
the benefit of incorporating DA.

Discussion

In this study, we developed a feature selection pipeline and a
machine learning-based predictor, LogitDA, for identifying a
transcriptomic signature of response to PD-L1 inhibition in
mUC. We demonstrated that LogitDA robustly predicted patient
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Kaplan—Meier plots of prognostic biomarkers for overall survival (OS) in the mUC cohort (IMvigor210). Panels (A—E) show survival curves stratified by
gene expression levels of (A) LYRM, (B) RFC4, (C) CENPL, (D) SPAG5, and (E) CACYBP, respectively. For each gene, patients were classified into high

(> median) and low (< median) expression groups within the cohort.

response to atezolizumab and identified an effective gene signature
associated with treatment outcome. Using LogitDA, we further
showed that the identified mUC-specific signature outperformed
PD-L1 (IHC) as well as five established tumor microenvironment
(TME)-associated signatures in terms of both prediction AUC
and accuracy.

Furthermore, we integrated our mUC-specific signature with
each of the six established immune-related signatures and found
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that our signature achieved the highest predictive performance,
with a prediction AUC of 0.75, outperforming all integrated
combinations. These findings suggest that our method is able to
identify an effective transcriptomic signature from ICI-treated
patients with mUC, and may provide a useful tool for stratifying
patients likely to benefit from atezolizumab therapy.

In this study, we developed LogitDA, a feature selection and
machine learning-based predictor, to identify a transcriptomic
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signature of response to PD-L1 inhibition in metastatic urothelial
carcinoma (mUC). LogitDA robustly predicted response to
atezolizumab and yielded an mUC-specific gene signature that
outperformed PD-L1 (IHC) and five established tumor
microenvironment (TME)-associated signatures in both AUC
and accuracy. When integrated with these immune-related
signatures, our signature achieved the highest predictive
performance (AUC = 0.75). These results demonstrate that
LogitDA effectively identifies clinically relevant transcriptomic
predictors and may aid in stratifying mUC patients likely to
benefit from atezolizumab.

TMB is a well-established genomic biomarker of response to
immune checkpoint inhibitors (ICIs) across several cancer types,
e.g., melanoma. Elevated TMB levels are thought to increase
neoantigen load, thereby enhancing T cell infiltration and the
efficacy of immunotherapy. Unfortunately, the test dataset we
assessed did not comprise TMB levels. Thus, we studied the CV
result of TMB alone and the combined TMB+ours signature using
IMvigor210. The leave-one-out cross-validation AUCs for TMB
alone and TMB+ours for mUC were 0.44 and 0.78, respectively.
Importantly, we found that the combined TMB+ours signature
correctly reclassified 28 non-responders previously misclassified as
responders by TMB alone (R2NR), and correctly reclassified 12
responders from previously predicted non-responders by TMB
alone (NR2R) for mUC, as summarized in Supplementary Table
S4. These results suggest that integrating our signature with TMB
can improve the prediction of ICI response in patients with mUC.

Using CIBERSORT (35), we deconvoluted the bulk RNA-seq
data from the IMvigor210 cohort to estimate immune cell
composition. Among the inferred cell types, plasma cells and M1
macrophages were significantly positively associated with patient
response to atezolizumab (P < 0.05, FDR < 14%; Welch’s t-test). To
further explore the immunological relevance of our signature for
mUC, we compared our genes against the LM22 reference marker
gene expression matrix of CIBERSORT. We found that MASTI and
CXCL9 were overlapping genes, and their overexpression was
positively correlated with atezolizumab response (IMvigor210).

We acknowledge that the binary classification of responders
(Rs) and non-responders (NRs) may limit the clinical granularity of
the LogitDA predictor. To evaluate this, we compared the
distributions of signature scores among CR/PR, SD, and PD
groups using the Mann-Whitney test. The scores of SD were
intermediate between those of CR/PR and PD. However, the
difference between SD and PD was not significant (P = 0.85),
whereas both CR/PR vs. SD and CR/PR vs. PD comparisons were
highly significant (P < 2 x 10™""). These results support the
appropriateness of binary classification for patient response in the
IMvigor210 cohort.

Our methods can be applied to predict ICI treatment response
in patients with other cancer types, provided that gene expression
data and response outcomes are available for both training and test
sets. Furthermore, these datasets are not overly heterogeneous (see
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also future research directions). Langfelder et al. demonstrated that
LogitDA (36), trained on IMmotionl150 (a mRCC cohort),
identified a 27-gene signature that achieved a prediction AUC
(accuracy) of 0.72 (0.83) in PCD4989g (mRCC) (Supplementary
Table S5).

To evaluate the clinical generalizability of our signature, we
applied it to four independent, unseen datasets GSE176307 (bladder
cancer (BLCA), n = 89), GSE111636 (BLCA, n = 11), GSE91061
(Melanoma, n = 49), and IMmotion150 (mRCC, n =77), yielding
prediction accuracies of 61%, 73%, 67%, and 62%, respectively
(Supplementary Table S6). These results may indicate that the
signature captures key immune pathways and genes associated
with ICI response. However, its predictive performance in
external cohorts may depend on the similarity of their 49-gene
expression profiles to those of the PCD4989g (mUC) reference set.

Given their translational potential, the 49 signature genes could
be developed into a cost-effective diagnostic microarray to evaluate
response to ICI therapy in patients with advanced or metastatic UC
prior to treatment initiation. To assess the temporal dynamics of
patient response and guide adaptive therapy, we analyzed
conditional survival curves by condSURV package in R (Q1-Q3
expression levels; Supplementary Figure S2) for the top five
prognostic biomarkers. Responders and non-responders began to
diverge at 3-4 months, reached maximal separation at 18-21
months, and plateaued thereafter. These results indicate that
biomarker discrimination peaks during the mid-term follow-up,
providing the greatest clinical utility for monitoring response and
informing therapy adjustment within the first 18-21 months.

Several promising gene signatures predicting ICI response have
been uncovered by machine learning approaches similar to ours.
Shen et al. analyzed glycolysis-related genes (37). They derived an
18-gene signature that achieved a time-dependent ROC AUC of
0.71 in IMvigor210 at 20 months. Notably, several identified genes
were significantly associated with response to anti-PD-(L)1 therapy
across IMvigor210 and four cohorts. Boll et al. integrated six
independent cohorts, encompassing multi-omic data, immune
signatures, and others (38). They derived a random forest model,
reaching an AUC of 0.76 in a validation set (n = 205) combining
IMvigor210 with other cohorts.

We further evaluated three recently reported ICI-response
signatures (39-41) using the IMvigor210 (mUC) cohort. The
NCOA3/HSP900/EZH2/CXCL9 axis identified in colorectal
cancer by Liu et al. impaired anti-PD-L1 efficacy via CXCL9
suppression; applying this signature (NCOA3, HSP90AA1, EZH2
up, CXCL9 down) for non-responders yielded an accuracy of 0.73.
Ke et al. reported PD-1/CD69 co-expression in effector-memory
CD8" T cells as predictive of TLS formation and ICI benefit;
classifying mUC patients with both PDCD1 and CD69 above the
median as responders achieved 0.57 accuracy. Xu et al. defined a
disulfidptosis-related signature (DFRS) associated with poor
survival in several cancers but not in bladder cancer (P = 0.177,
Fig. 4 (41)); similarly, DFRS failed to stratify IMvigor210 patients
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(P = 0.092, log-rank) and achieved 0.54 accuracy when high-DFRS
cases were predicted as responders.

Recent studies on immunotherapy response prediction in
urothelial carcinoma (UC) have explored biomarkers across
genetic, proteomic, and transcriptomic levels from tumor, blood,
and urine samples. Major research directions include: (1)
Combinatorial biomarkers and computational models,
particularly ML-based approaches. Yoshida et al. reported that
co-expression of LAG-3 and FGL1 was linked to poor PD-(L)1
response and survival, suggesting potential benefit from combined
anti-LAG-3/PD-(L)1 therapy (42). (2) DNA damage repair (DDR)
alterations, such as mutations in RB1, ATM, BRCA1/2, and ERCC2,
which predict ICI benefit or post-chemotherapy responsiveness (43,
44). In a phase II trial, durvalumab plus olaparib failed to improve
PFS in unselected mUC patients (n = 154), but higher response rates
were observed in those with homologous recombination repair
mutations (45). (3) Integration of bulk and single-cell RNA-seq,
and increasingly multi-omics data, to identify ICI-associated gene
signatures (46-48).

The current optimization method of LogitDA focuses primarily
on maximizing cross-validated AUC within the training set. In
future work, we plan to apply LogitDA to other cancer types, where
the training and test datasets may exhibit greater heterogeneity than
those used in this study. Therefore, an important research direction
will be to define and quantify the degree of heterogeneity or
“distance” between training and test datasets, and to incorporate
this measure into stricter criteria for transferring features
across studies. Another direction of future investigation is the
development of data augmentation techniques to address the class
imbalance problem, as the number of responders to ICI treatments
is much lower than that of non-responders. Finally, we aim to
integrate single-cell RNA-seq with bulk RNA-seq data in mUGC;
this may elucidate which cell type proportions, and which genes
in which cell types are involved in response to ICIs such
as atezolizumab.
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