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enhance the anti-tumor effect of
CD8 T cells and promote the
efficacy of immunotherapy
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Objective: This study aims to investigate the relationship between tumor cell

glutamine metabolism and CD8 T cells, with the goal of providing new insights to

improve immunotherapy for pancreatic cancer.

Methods: Using the The Cancer Genome Atlas – Pancreatic Adenocarcinoma

(TCGA-PAAD) cohort, we computed gene expression scores related to

glutamine metabolism and stratified patients into high- and low-score groups.

Prognosis and differences in immune cell anti-tumor activity were compared

between these groups. We further utilized single-cell RNA sequencing data to

quantitatively assess the expression of glutamine metabolism-related pathways

in tumor cells. Based on tumor-specific glutamine metabolism gene expression,

patients were again classified into high- and low-score groups. The immune

remodeling effects exerted by tumor cell glutamine metabolism on CD8 T cells

were subsequently investigated. To examine the impact of perturbing glutamine

metabolism within the tumor microenvironment on CD8 T cell phenotype and

the efficacy of PD-1 inhibitors, we conducted in vivo animal experiments.

Results: we analyzed the pancreatic cancer dataset in the cancer gene atlas

database. We found that tumor glutamine metabolism was negatively correlated

with patient prognosis and anti-tumor activity. Next, we defined two types of

CD8 effector T cells in single-cell RNA sequencing data, namely, effector

memory T cells (CD8-Tem) and terminally differentiated effector memory T

cells (CD8-Temra). Under the pressure of high glutamine metabolism in tumor

cells, the cytotoxicity of the CD8-Tem subset was reduced, and its immaturity

score increased, while the exhaustion score of the CD8-Temra subset increased.

Pseudotime analysis showed that CD8-Tn in the low-scoring group mainly

developed into CD8-Tem subset, and its immune activation pathway was

significantly upregulated. In addition, we found that the glutamine metabolism
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inhibitor JHU083 promoted the infiltration of CD4 and CD8 T cells and

T lymphocyte differentiation, and increased the efficacy of PD-1 inhibitors.

Glutamine inhibitors can inhibit the apoptosis of immune cells in the tumor

microenvironment, whi le promoting CD8 T cel ls act ivat ion and

cytotoxicity increase.

Conclusion: Inhibition of glutamine metabolism within the pancreatic cancer

microenvironment results in reduced apoptosis of immune cells, heightened

activation and cytotoxicity of CD8 T cells, and a substantial enhancement in the

therapeutic efficacy of immunotherapy.
KEYWORDS

pancreatic cancer, glutamine, CD8 T cells, immunotherapy, JHU083
1 Introduction

Pancreatic cancer is highly invasive, and patients have a poor

prognosis (1–5). Currently, the efficacy of immunotherapy is

unsatisfactory (6–16). T lymphocytes are the main immune cells

infiltrating the tumor microenvironment of pancreatic cancer (17).

CD8 T cells play a critical role in eliminating malignant cells and can

provide long-term protective immunity (18–20). In tumor tissues,

high abundance of CD8 effector T cells is positively correlated with

the prognosis of pancreatic cancer patients (21, 22). However, CD8 T

cells generally exhibit low infiltration and low cytotoxicity in

pancreatic cancer (23–25). Existing studies have shown that the

tumor microenvironment in which CD8 T cells reside is correlated

with their developmental trajectory and determines their immune

response. That is, the tumor microenvironment determines the anti-

tumor ability of CD8 T cells (26). The classical theory has long held

that tumor cells mainly obtain energy by taking up glucose in the

immune microenvironment, and high glucose metabolism of tumor

cells is a core factor that reshapes the metabolic microenvironment of

tumors and prevents CD8 T cells from exerting their anti-tumor

ability (27–29). Inhibition of glucose metabolism has long been

regarded as an important strategy for treating tumors. However,

effective inhibitors of glucose metabolism for tumor treatment have

not been proven clinically so far. Recently, Professor Kimryn

Rathmell ’s research found that in the tumor immune

microenvironment, tumor cells uptake more glutamine than

glucose. At the same time, they found that immune cells in the

tumor immune microenvironment are not lacking in glucose. In

contrast, the amount of glutamine uptake by a single tumor cell is

four times that of CD8 T cells (30). Therefore, it is possible that the

high metabolism of glutamine in tumor cells in the tumor immune

microenvironment leads to a change in the developmental trajectory

of CD8 T cells, resulting in a decrease in their anti-tumor effect.

Rapidly proliferating cells, such as tumor cells, exhibit unique

metabolic features to meet their high energy demands and

increasing synthesis requirements for structural materials such as

amino acids, nucleotides, and lipids, enabling sustained
02
proliferation (31–34). Studies have also found increased

expression levels of the glutamine transporter in various tumors

(35), such as solute carrier family 1 member 5 (SLC1A5). The Myc

oncogene can directly promote upregulation of SLC1A5 (36). These

unique metabolic features increase the demand of tumor cells for

glutamine (Gln) to promote synthetic metabolism. These findings

suggest that tumor cells in the tumor microenvironment are

dependent on glutamine. We may have overlooked the impact of

tumor cell glutamine metabolism reshaping the tumor metabolic

microenvironment on the phenotype of CD8 T cells.

Therefore, it is hypothesized that the anti-tumor effect of CD8T

cell subpopulations may be diminished when pancreatic cancer

remodels the tumor microenvironment through high glutamine

metabolism. Disrupting such aberrant pancreatic cancer metabolic

microenvironments may potentially enhance the infiltration and

cytotoxicity of CD8 T cells, thereby increasing the efficacy of

immune checkpoint inhibitors.It is worth noting that overcoming

the immunosuppressive microenvironment often requires

combination strategies. For example, accumulated evidence has

shown that exercise can modulate a variety of cytokines, affect

transcriptional pathways, and reprogram certain metabolic

processes, ultimately promoting anti-tumor immunity and

enhancing the efficacy of immune checkpoint inhibitors in cancer

patients (37). Nonetheless, successfully targeting metabolic

pathways or integrating adjunctive therapies remains challenging

due to the highly complex and heterogeneous nature of the tumor

microenvironment, which poses obstacles for designing selective

and effective treatment strategies (38).

2 Methods

2.1 Source and data cleaning of pancreatic
cancer tissue block sequencing data

The FPKM gene expression matrix of pancreatic cancer tissue

block RNA sequencing data, as well as the corresponding clinical

follow-up information, can be downloaded from the Cancer
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Genome Atlas database (index number TCGA-PAAD) (https://

portal.gdc.cancer.gov/). All patients were diagnosed with pancreatic

cancer through pathology. After excluding patients with missing

clinical follow-up information, we obtained transcriptomic

expression matrices of 176 patients and their corresponding

clinical pathological parameters. By comparing with the genome

annotation file GRCh38, we screened 18,965 protein coding genes

and included them in the next analysis after removing

duplicate probes.
2.2 Downstream analysis of pancreatic
cancer tissue RNA sequencing data

According to the genes related to glutamine metabolism

(ALDH18A1, GAPDH, GCLM, GLS, GOT1, MTHFS, OAT,

SLC1A5, SLC38A1, SLC38A5, SLC7A5), we used the “ssGSEA”

function in the “GSVA” package to calculate the expression scores

of glutamine metabolism-related genes in tumor cells of each

patient. Similarly, as cytotoxicity-related genes (GZMK, GZMH,

GZMB, PRF1, IFNG, EOMES, NKG7), immune cell exhaustion-

related genes (PDCD1, TIGIT, HAVCR2, LAG3, CTLA4), and

immaturity-related genes (LEF1, SELL, TCF7, CCR7) are

specifically expressed in immune cells, tissue block sequencing

data can also be used to calculate the cytotoxicity scores of

immune cell subgroups in each patient to evaluate the immune

phenotype of immune cells in the immune microenvironment.

After setting the median score of glutamine metabolism-related

gene expression in patients’ pancreatic tissue as the grouping

intercept value, 176 patients were divided into high and low score

groups, and the relationship between the two groups and prognosis

was explored.
2.3 The origin and data cleaning of single-
cell RNA sequencing data

The single-cell RNA sequencing data used in this study were

obtained from the Gene Expression Omnibus (GEO) with

accession number GSE155698 (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE155698) (39). Specifically, tumor

tissues from 12 pancreatic cancer patients were selected for

inclusion (4 patients were excluded due to fewer than 10 tumor

cells). Cells with gene counts of 50 or more were included in

downstream analysis if the same gene was expressed in at least 3

or more cells. Additionally, cells were excluded if their

mitochondrial gene ratio was greater than 4%, ribosomal gene

ratio was less than 2%, or hemoglobin gene ratio was greater than

10%. Finally, genes and cells meeting the aforementioned criteria

were used for downstream analysis.
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2.4 Clustering and biological annotation of
single-cell RNA sequencing data

The software R (version 4.1.2) was utilized for the analysis of

single-cell RNA sequencing data and tissue block sequencing data.

The gene expression matrix of all cells was normalized using the

built-in function “NormalizeData” from the Seurat package, with

the scaling factor set to 10,000. The “vst” algorithm from the

“FindVariableFeatures” function was employed to identify 3,000

highly variable genes. The expression matrix was then normalized

using the “ScalData” function, with all genes used as reference

genes. Principal component analysis was performed to identify

statistically significant principal components (P-value < 0.05). To

reduce data dimensionality, we used the t-distributed stochastic

neighbor embedding algorithm with the top 15 principal

components’ genes and performed clustering on all cells, with a

resolution of 0.1. Based on molecular markers summarized in

previous literature, we annotated the clustered cells as different

biological subgroups, including neutrophils (ITGAM, ITGAX),

epithelial cells (EPCAM, KRT18, KRT19), fibroblasts (TIMP1,

FN1, ACTA2), mast cells (FCER1A, KIT), acinar cells (CTRB1,

CELA3A, PLA2G1B), macrophages (CD68, CD163, LYZ), B cells

(CD38, TNFRSF17), and NK and T cells (KLRB1, PRF1, CD2,

CD3E, CD3D).

Identification of malignant epithelial cells: Since both malignant

and normal epithelial cells express similar molecular markers, it is

difficult to annotate the two subgroups based solely on differential

gene expression. As malignant tumor cells originate from normal

epithelial cells, the degree of malignancy often accompanies

variations in chromosome structure and number. Therefore, in

this study, we used the R package “infercnv” (https://github.com/

broadinstitute/inferCNV) to calculate copy number variations

(CNVs) in each of the 22 chromosomes of each cell based on its

transcriptome, thereby defining malignant tumor cells and normal

epithelial cells. The CNVs of each cell were sorted and classified by

the position of the genes on the chromosome, and a moving average

was applied to the relative expression values using a sliding window

of 100 genes per chromosome. The reference cells were set as 1000

fibroblasts and 1000 T cells. Based on the obtained CNV matrix, an

unsupervised clustering algorithm was used to divide all

unidentified cells into multiple subgroups with varying copy

numbers, with the subgroup with the lowest copy number and

closest to the reference cell line defined as normal epithelial cells,

and the rest defined as malignant tumor cells.

After extracting NK cell and T cell subpopulations, we used the

‘Harmony’ package to remove batch effects and reduce any

unnecessary biological or technical factors. Next, the same

standardization and dimension reduction procedures were applied

to the T cell subpopulations. The functions ‘FindNeighbors’ and

‘FindClusters’ were used to identify individual cell subpopulations,
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with a resolution set at 0.8. The biological background of each

subpopulation was annotated using known molecular markers.

CD4 T cell subpopulations included CD4Tn (TCF7, SELL, IL7R,

CCR7, LEF1, MAL), CD4Trg (FOXP3, PDCD1, CTLA4, TIGIT,

BATF), CD4Tm (S100A4, S100A10, ANXA1, IL7R, KLF2),

CD4Th17 (CCR6, IL2, DPP4, RORA, IFNGR1), and CD4Tfh

(CXCL13, GNG4, CD200, IGFL2, TOX2). CD8 T cell

subpopulations included CD8Tem (CD8 effector memory cells)

(GZMK, GZMH, DUSP2, ITM2C, CD74, EOMES, CST7),

CD8Trm (ZNF683, IL7R, ANXA1, CD55, GZMA, HOPX,

CXCR6, ITGA1), CD8Temra (CD8 terminally differentiated

effector memory cells) (GZMA, GZMH, GZMB, ZEB2, TBX21,

NKG7, PLEK, KLRD1), CD8Tc17 (SLC4A10, CEBPD, NCR3,

IFNGR1, RORA, LTK), and CD8Tn (CD8 naive T cells) (CCR7,

LEF1, TCF7, SELL). The NK cell subpopulations included

NK-FCGR3A (+) cells (NCAM1, CD160, FCGR3A) and

NK-FCGR3A (-) cells (NCAM1, CD160). Some T cell

subpopulations could not be mapped to known molecular

markers after clustering (40) and were therefore not

biologically annotated.
2.5 Patient grouping and pathway
enrichment score calculation

Based on the glutamine metabolism-related genes (ALDH18A1,

GAPDH, GCLM, GLS, GOT1, MTHFS, OAT, SLC1A5, SLC38A1,

SLC38A5, SLC7A5), we calculated the expression scores of

glutamine metabolism-related genes in tumor cells (GStumor)

and CD8 T cells (GSimmune) using the “ssGSEA” algorithm in

the “GSVA” package. After dividing the patients into high-score

and low-score groups based on the median of GStumor scores from

12 patients, we compared the differences in the scores of

cytotoxicity-related gene sets (GZMK, GZMH, GZMB, PRF1,

IFNG, EOMES, NKG7), exhaustion-related gene sets (PDCD1,

TIGIT, HAVCR2, LAG3, CTLA4), and naive-related gene sets

(LEF1, SELL, TCF7, CCR7) between the different GStumor

groups in CD8T subpopulations (CD8Tem and CD8-Temra).
2.6 Gene set enrichment analysis of
tumor-infiltrating CD8 T cells

Gene Set Enrichment Analysis (GSEA) is a statistical method

used to calculate the distribution trend of genes and determine their

contribution to a specified phenotype, based on the comparison of

sorted genes related to the phenotype and predefined gene sets.

Compared to GO and KEGG enrichment analysis, GSEA can avoid

the influence of subjective bias and retain more effective

information, while also allowing for quantitative assessment of

pathway activation. In this study, we downloaded multiple gene

sets, including C2: CP: KEGG, C2: CP: REACTOME, and C5: GO

(BP, MF, and CC) from the MsigDB website (https://www.gsea-

msigdb.org/gsea/msigdb/). We selected the CD8Tem and CD8-

Temra subsets, used the “FindAllMarkers” function to select
Frontiers in Immunology 04
differentially expressed genes that were upregulated and

downregulated in the CD8Tem subset of patients in the low-score

group, and calculated the fold change corresponding to these genes.

Finally, we used the “GSEA” function in the “clusterProfiler”

package to sort the gene sets according to fold change from high

to low and perform enrichment analysis, obtaining enrichment

scores for different pathways. The same method was used to process

the CD8-Temra subset. We used the “AUCell_exploreThresholds”

function to distinguish between high and low AUC values, which

automatically defines the threshold for the bimodal distribution to

determine the “activation” or “inactivation” status of cells in the

relevant pathway gene set, respectively.
2.7 Under the influence of tumor cell
glutamine metabolism, the developmental
trajectory of tumor-infiltrating CD8
effector T cells

To investigate the differences of tumor-infiltrating CD8 effector

T cells under different tumor cell glutamine metabolism pressures,

we calculated the cytotoxic scores and cell proportions of these

three CD8 T cell subsets (CD8-Tn, CD8-Tem, and CD8-Temra)

and their changes between the two patient groups and performed

pseudo-time gene dynamic analysis on the three CD8 T cell subsets

(CD8-Tn, CD8-Tem, and CD8-Temra) using the “Monocle2”

package in R. Monocle2 can use unsupervised machine learning

and reverse graph embedding algorithms based on single-cell

transcriptome expression matrices to place cells on different

branches of the developmental trajectory to simulate the

biological process of the cell population, forming a “one-root-

two-branches” cell development tree diagram, in which cells on

the same branch have the same gene expression features and

differentiation status. This pseudo-time analysis can infer the

differentiation trajectory of cells or the evolution process of cell

subtypes during development, and identify key genes and pathway

changes that affect branch formation. We extracted three objects,

including gene expression matrix, gene information, and cell

phenotype information, and constructed them into a

“CellDataSet” object. The “estimateSizeFactors” function can

standardize the transcriptome expression matrix. Using the

“FindAllMarkers” function, we screened for upregulated genes in

CD8-Tef (CD8-Tem and CD8-Temra) under these two metabolic

modes, and then used the “DDRTree” algorithm to project all cells

onto a two-dimensional plane and arrange them in order

of branching.
2.8 Establishment, grouping, and drug
intervention of a mouse model

A cell suspension of 0.1 ml at a concentration of 1×10^6/ml

Panc02 tumor cells (i.e., 1×10^5 cells per mouse) was inoculated

into the right groin area of each mouse. On day 6 post-inoculation,

the length and width of the subcutaneous tumors in the mice were
frontiersin.org
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observed and recorded, and the volume of the subcutaneous tumors

was calculated using the formula: V (mm^3) = length (mm) × width

(mm) × width (mm) × p/6. Twenty mice with subcutaneous tumors

of similar volumes were selected and randomly divided into four

groups (five mice per group):
Fron
1. Control group (VEH): orally administered with 100 mL of

0.9% saline solution per day and intraperitoneally injected

with 100 mL of 0.9% saline solution once every three days

for 20 consecutive days.

2. Glutamine metabolism inhibitor group (JHU083): orally

administered with 100 mL of JHU083 solution in saline

(1 mg/kg/d) per day and intraperitoneally injected with

100 mL of 0.9% saline solution once every three days for

20 consecutive days.

3. Immune checkpoint inhibitor group (Anti-PD-1):

intraperitoneally injected with 100 mL of PD-1

monoclonal antibody solution in saline (1 mg/kg/d) once

every three days and orally administered with 100 mL of

0.9% saline solution per day for 20 consecutive days.

4. Combination of glutamine metabolism inhibitor and

immune checkpoint inhibitor group (JHU083+Anti-PD-

1): orally administered with 100 mL of JHU083 solution in

saline (1 mg/kg/d) per day and intraperitoneally injected

with 100 mL of PD-1 monoclonal antibody solution in

saline (1 mg/kg/d) once every three days for 20

consecutive days.
The length and width of the tumors were measured every two

days, and the volume of the subcutaneous tumors was calculated

accordingly. All mice were euthanized after being fed for 27 days, and

subcutaneous tumor samples were harvested immediately after

euthanasia. To ensure humane euthanasia, mice were placed in a

CO2chamber with a flow rate set at 30% of the chamber volume per

minute, following approved welfare guidelines. The CO2concentration

was gradually increased to induce unconsciousness, followed by

respiratory and cardiac arrest.
2.9 Quantitative real-time polymerase
chain reaction

Approximately 50 mg tumor tissue was grind and crushed, add

an appropriate amount of Trizol lysis solution to it and lyse it

thoroughly on ice. The lysate was then transferred to an enzyme-

free EP tube and centrifuged at 4°C, 12,000 rpm/min for 10 min; the

supernatant obtained by centrifugation was then transferred to

another EP tube, chloroform was added, the supernatant and

chloroform were mixed and left to stand for 15 min, next

centrifuged at 4°C, 8,000 rpm/min for 15 min. Wash with 75%

ethanol solution, centrifuge for 15 min at 4°C at 12000 rpm/min,

add 20 ml DEPC water to the precipitate, wait for the precipitate to

dissolve, measure the mRNA concentration. mRNA was collected

and reverse transcribed into cDNA, which were amplified in

triplicate using SYBR Green PCR Master Mix (Guangzhou
tiers in Immunology 05
RiboBio Co), 10 pmol of primer (Supplementary Table S1), and

20 ng of cDNA per reaction with the StepOnePlus (Roche

LightCycler 96). Quantitation was performed using the

DDCt method.
2.10 Immunohistochemistry

All pathological diagnoses were made independently by 2 senior

physicians in the Department of Pathology, and controversial

diagnoses were assessed by a third physician and then decided by

joint consultation. The specific steps of staining were as follows.
1. Dewaxing and hydration: The slices were placed in the oven

at a temperature of 60°C for 90 min, then placed in xylene

for 30 min for dewaxing, then the slices were immersed in

ethanol (anhydrous ethanol, 95% ethanol, 75% ethanol) in

a gradient from high to low concentration for 5 min, and

finally rinsed repeatedly with double-distilled water for

5 min.

2. Antigen repair and peroxidase removal: The treated tissue

sections were placed in a repair cassette with 200 ml of

ethylene glycol tetraacetic acid (EDTA) solution, then

placed in an autoclave with double-distilled water, first

heated to vapour, then allowed to cool, and then rinsed

with double-distilled water. The sections were then placed

in 3% hydrogen peroxide solution (H2O2) for 10 min

incubation protected from light, allowed to cool and then

soaked 3 times with double distilled water for 5 min each

and rinsed with PBS for 5 min.

3. Addition of antibody, colour development, re-staining and

blocking: sections were added dropwise with antibody

(KI67, CD3 and CD8) diluted at 1:200 and refrigerated

overnight at 4°C. The next day the sections were washed

three times with PBS for 5 min each time. Second day, the

sections were washed three times with PBS for 5 min each

time, shaken dry, incubated with secondary antibody for 30

min, and washed three times with PBS for 5 min each time.

The reaction was terminated by adding a drop of DAB

staining solution to the sections and observing a positive

reaction under the microscope. After washing, the sections

were fractionated with ethanol hydrochloride solution,

then washed, dehydrated, sealed and labelled.

4. After the above steps were completed, the pathological

sections were observed under an inverted fluorescent

microscope. The expression levels of KI67, CD3 and CD8

proteins were measured with Image J software.
2.11 Flow cytometry

Immune cell populations were identified via flow cytometry

from respective dissociated whole tumor cell suspensions.
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(1) After mechanically cutting the tumor tissue, it was filtered

with 300 mesh filter cloth, centrifuged with 300 g for 5 min, and the

cell concentration was adjusted to 10*6/mL with PBS. (2) 1 µg

antibody (CD8a, CD3, cd49b, CD45, CD4, LIVE/DEAD) were add

into 100 µL cell suspension in the sterile EP tube. Dye at 4 °C for 30

min without light after mixing. (3) Adding 1000 mL PBS to wash the
mixture, the supernatant was removed after centrifuging with 300g

for 5min. (4) Cells were resuspended by 400 mL PBS and then

detected by ZE5 flow cytometry, flow cytometry data were analyzed

using FlowJo software.
2.12 Immunocyte apoptosis detection

(1) Take 100 mL of the immunocyte suspension separated from

“Flow cytometry (1)” and centrifuge at 300g for 5 minutes. Discard

the supernatant and resuspend the cells in 100 mL of binding buffer.

(2) Add 5 mL of Annexin V-FITC staining fluorescent dye and

incubate for 10 minutes at room temperature in the dark. (3) Add

10 mL of PI staining dye and incubate for 5 minutes at room

temperature in the dark. Add 400 mL of PBS and resuspend the cells.
Immediately detect the cells using a flow cytometer. (4) Analyze the

data using FlowJo software and a ZE5 flow cytometer.
2.13 Statistical analysis

The statistical analysis of the experimental data was performed

using R software (version 4.1.2) in accordance with the conventions

of medical academic papers. In this study, Kaplan-Meier survival

analysis was performed to compare overall survival (OS) among

different groups. In this study, overall survival (OS) was defined as the

time interval from the date of diagnosis (the starting point) to the date

of death from any cause (the endpoint). For patients who were still

alive or lost to follow-up by the time of analysis cutoff, their OS time

was censored at the date of the last known follow-up. All OS and

follow-up data were obtained from clinical follow-up records within

the TCGA database. If the data were normally distributed, t-test was

used for comparison. If not, Wilcoxon rank sum test was used

instead. P value less than 0.05 was considered statistically

significant. 0.05 ≤ P value < 0.10 as indicative of borderline

significance. Wilcoxon and t-tests were adjusted for using the

Benjamini–Hochberg method via the p.adjust function in R.
3 Result

3.1 The scoring of genes related to
glutamine metabolism in tumor tissue is
negatively correlated with patient
prognosis and anti-tumor immune
presentation

To distinguish between high and low metabolism of glutamine

and to clarify the relationship between glutamine metabolism levels
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and prognosis of pancreatic cancer patients, we scored the

expression of glutamine metabolism-related genes (ALDH18A1,

GAPDH, GCLM, GLS, GOT1, MTHFS, OAT, SLC1A5, SLC38A1,

SLC38A5, SLC7A5) in tumor cells of 176 patients in TCGA cohort,

and divided them into high and low scoring groups based on the

median value (Figure 1A). Hierarchical clustering results also

demonstrated the expression differences of glutamine

metabolism-related genes between these two patient groups,

indicating that unsupervised clustering algorithms can

significantly separate these 176 pancreatic cancer patients based

on glutamine metabolism-related genes (Figure 1B). Kaplan-Meier

curves showed that patients in the high scoring group had a worse

prognosis. In the high scoring group, the overall survival rates at 1,

3, and 5 years were 63.1%, 27.1%, and 22.6%, respectively. However,

in the low scoring group, the overall survival rates at 1, 3, and 5

years were 82.1%, 41.0%, and 27%, respectively, suggesting a

negative correlation between glutamine metabolism and

pancreatic cancer prognosis (Figure 1C). The baseline

characteristics of the patients are detailed in Supplementary

Table S3.

In order to investigate whether the metabolism of glutamine in

tumor cells affects the anti-tumor activity of immune cells in

pancreatic cancer, we used single-sample gene set enrichment

analysis (ssCSEA) to study the relationship between glutamine

metabolism in tumor cells and immune infiltration, cytotoxic

gene set (GZMK, GZMH, GZMB, PRF1, IFNG, EOMES, NKG7),

immune exhaustion gene set (PDCD1, TIGIT, HAVCR2, LAG3,

CTLA4), and immature-related gene set (LEF1, SELL, TCF7, CCR7)

in the pancreatic cancer microenvironment. Immune infiltration

analysis revealed a trend toward higher CD8+ T cell infiltration in

the tumor immune microenvironment of the low glutamine score

group compared to the high glutamine score group (P = 0.059)

(Figure 1D). In the low score group, the immune cell cytotoxicity-

related gene score was significantly higher than that in the high

score group (Figure 1E). By plotting the glutamine score and

immune cell cytotoxicity score of the two groups, we found that

there was a negative correlation between tumor cell glutamine

metabolism and immune cell cytotoxicity in the high score group

(Figure 1F). In terms of immune exhaustion score, we found that

the low score group was significantly higher than the high score

group (Figure 1G), which indicates a negative correlation between

tumor cell glutamine metabolism and immune cell exhaustion. To

determine whether the low immune cell exhaustion score in the

high glutamine score group is related to the level of immature

immune cells, we plotted the glutamine score and immature-related

gene set (LEF1, SELL, TCF7, CCR7) of the two groups, and found

that as the glutamine score increased in tumors with high glutamine

metabolism, the expression of immature immune cell genes

increased significantly (Figure 1I). This may suggest that the

decrease in immune cell cytotoxicity in the high glutamine

metabolism group of tumor cells is related to the level of

immature immune cells. The results of this study indicate that as

the glutamine metabolism in tumors increases, immune cells

become more immature, while the scores of immune cell

cytotoxicity and exhaustion decrease.
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FIGURE 1

The expression scores of glutamine metabolism-related genes in the tumor microenvironment of pancreatic cancer are closely correlated with
the anti-tumor activity of immune cells and the prognosis of patients. (A) The upper curve shows the distribution of glutamine metabolism-related
gene expression scores in tumor cells of all pancreatic cancer patients. The lower dot plot shows the survival status and survival time of all patients
sorted by tumor glutamine metabolism-related gene expression scores from low to high. (B) The heatmap shows the expression levels of glutamine
metabolism-related genes between two groups. Blue represents low metabolism group, and red represents high metabolism group. (C) This
Kaplan-Meier curve shows the difference in overall survival rate between different groups. (D) The box plot shows the degree of infiltration of
22 immune cells in the tumor microenvironment. (E, G) Differences in cell toxicity score and exhaustion score of CD8T cells between the two
groups. (F, H) Fitting curves of glutamine metabolism score of tumors in the two groups with cell toxicity score and exhaustion score. The
correlation coefficient and significance test were calculated and marked in the upper left corner. (I) Fitting curves of glutamine metabolism score of
tumor cells in the two groups with expression levels of immature-related genes. The correlation coefficient and significance test were calculated
and marked in the upper left corner.
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3.2 Identification of subpopulations and
patient stratification using single-cell
transcriptome sequencing data

To obtain a comprehensive single-cell gene expression atlas of

the pancreatic cancer immune microenvironment, we used the

program package ‘Seurat’ to identify differential genes and cell

types in 12 pancreatic cancer patients. A total of 39,719 qualified

cells were annotated as nine major cell subtypes and one undefined

cell subtype (Figure 2A). The major cell subtypes include

neutrophils (ITGAM, ITGAX), epithelial cells (EPCAM, KRT18,

KRT19), fibroblasts (TIMP1, FN1, ACTA2), mast cells (FCER1A,

KIT), acinar cells (CTRB1, CELA3A, PLA2G1B), macrophages

(CD68, CD163, LYZ), B cells (CD38, TNFRSF17), and NK/T cells

(KLRB1, PRF1, CD2, CD3E, CD3D) (Figure 2C). Tumor cells were

identified using the INFERCNV algorithm (https://github.com/

broadinstitute/inferCNV). As no known molecular markers were

mapped to the undefined cell subtype, it was not included in

this study.

In order to investigate the impact of tumor cell glutamine

metabolism on immune subpopulations in the immune

microenvironment of pancreatic cancer, we divided 12 patients

into a high-scoring group (P01, P6, P5, P16, P3, P11) and a low-

scoring group (P8, P2, P13, P15, P7, P8) based on the expression

scores of glutamine metabolism-related genes in tumor cell

subpopulations (Figure 2F). At the same time, we found that in

the low-scoring group of tumor cell glutamine metabolism, the

glutamine scores of T cells and NK cells were mostly higher than

those of tumor cell glutamine scores. In contrast, the opposite was

true in the high-scoring group of tumor cell glutamine metabolism

(Figures 2G, I). Interestingly, compared with the low-scoring group,

the high-scoring group had more tumor cells (24% vs 19%) and

fewer T cells and NK cells (21% vs 23%) (Figures 2H, J). This

suggests that in the immune microenvironment of pancreatic

cancer, high tumor cell glutamine metabolism will be

accompanied by low metabolism of immune cells and low

infiltration of T cells and NK cells.
3.3 In the immune microenvironment of
pancreatic cancer, the glutamine
metabolism of tumor cells can affect the
anti-tumor activity of CD8 T cells

To further investigate the effect of tumor cell glutamine

metabolism on CD8 effector T cells, we identified 8700 T cells

and NK cells into 12 known cell subpopulations and one undefined

cell subpopulation based on known molecular markers (Figures 3A,

B). CD4 T cell subpopulations included CD4Tn (TCF7, SELL, IL7R,

CCR7, LEF1, MAL), CD4Trg (FOXP3, PDCD1, CTLA4, TIGIT,

BATF), CD4Tm (S100A4, S100A10, ANXA1, IL7R, KLF2),

CD4Th17 (CCR6, IL2, DPP4, RORA, IFNGR1), and CD4Tfh

(CXCL13, GNG4, CD200, IGFL2, TOX2). CD8 T cell

subpopulations included CD8Tem (GZMK, GZMH, DUSP2,
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ITM2C, CD74, EOMES, CST7), CD8Trm (ZNF683, IL7R,

ANXA1, CD55, GZMA, HOPX, CXCR6, ITGA1), CD8Temra

(GZMA, GZMH, GZMB, ZEB2, TBX21, NKG7, PLEK, KLRD1),

CD8Tc17 (SLC4A10, CEBPD, NCR3, IFNGR1, RORA, LTK), and

CD8Tn (CCR7, LEF1, TCF7, SELL). NK cells included NK-

FCGR3A(+) cells (NCAM1, CD160, FCGR3A) and NK-

FCGR3A(-) cells (NCAM1, CD160). Both CD8Tem and

CD8Temra subpopulations belonged to CD8-Tef (Figures 3A, B).

Some T cells could not be mapped to known molecular markers

after grouping, so they were not biologically annotated. The two t-

SNE plots and pie charts show the composition ratio of T cell and

NK cell subpopulations in the two populations (Figure 3I).

3.3.1 Influence of tumor cells glutamine
metabolism on CD8 effector T cells cytotoxicity

To investigate the effect of tumor cell glutamine metabolism on

CD8 effector T cell cytotoxicity, we calculated a cytotoxicity score

for each T cell based on the expression levels of immune cell

cytotoxicity-related genes (GZMK, GZMH, GZMB, PRF1, IFNG,

EOMES, and NKG7). The cytotoxicity score of T cells in the high

glutamine metabolism group of tumor cells was significantly lower

than that in the low glutamine metabolism group, and the difference

was statistically significant (Wilcoxon test, p = 2.8 × 10−6). Further

study of CD8 effector T cells (CD8T-Tem and CD8T-Temra)

revealed that the immune cell cytotoxicity score of CD8T-Tem in

the high glutamine metabolism group was significantly lower than

that in the low glutamine metabolism group, and the difference was

statistically significant (Wilcoxon test, p = 4.7 × 10−5). However,

there was no statistically significant difference in the immune cell

cytotoxicity score of CD8T-Temra between the high and low

glutamine metabolism groups (Figure 3C). These findings suggest

that high tumor cell glutamine metabolism is associated with a

decrease in cytotoxicity of the CD8T-Tem subset, while there is no

apparent correlation between the cytotoxicity of the CD8T-Temra

subset and tumor cell glutamine metabolism.
3.3.2 Influence of tumor cells glutamine
metabolism on CD8 effector T cells exhaustion

In order to investigate the impact of tumor cell glutamine

metabolism on CD8 effector T cell exhaustion, we calculated an

exhaustion score for each T cell based on the expression levels of

immune exhaustion-related genes (PDCD1, TIGIT, HAVCR2,

LAG3, and CTLA4). In T cells, the immune exhaustion score of

the high glutamine metabolism group was significantly lower than

that of the low group, with a statistically significant difference

(Wilcoxon test, p = 2.2 × 10−16), but this difference was not

significant in CD8-Tem (Wilcoxon test, p = 0.081). In CD8-

Temra, the immune exhaustion score of the high glutamine

metabolism group was actually higher than that of the low group,

with a statistically significant difference (Wilcoxon test, p = 0.0046)

(Figure 3D). This suggests that high glutamine metabolism in

tumor cells is associated with exhaustion in the CD8-Temra

subset, but not with exhaustion in the CD8-Tem subset.
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FIGURE 2

Biological annotation of single-cell sequencing data. (A) The t-SNE plot displays all the cellular subpopulations present in the tumor
microenvironment of pancreatic cancer patients. Different colors represent different cell types. The cellular subpopulations are annotated as shown
in the figure. (B) The heatmap shows copy number variations of all genes on 22 chromosomes in normal epithelial cells and malignant epithelial
cells. All cells are classified into 7 groups using unsupervised clustering algorithm. The group with the lowest copy number variation is identified as
normal epithelial cells, while the rest are malignant epithelial cells. (C) The bubble plot shows the expression levels of molecular marker genes and
cell proportions in each cellular subpopulation. The color of the dot represents the average expression level of the gene, with red indicating high
expression and blue indicating low expression; the size of the dot represents the cell proportion. (D) This boxplot shows the difference in copy
number variation scores between the 7 epithelial cell subpopulations. (E) We demonstrate the difference in copy number variation scores between
the reference cell line, normal epithelial cells, and malignant epithelial cells (tumor cells) after biological annotation. (F) This scatterplot divides 12
pancreatic cancer patients into high- and low-metabolism groups based on the expression score of glutamine metabolism-related genes in tumor
cells. (G, H) The boxplot (G) displays the expression score of glutamine metabolism-related genes in tumor cells, T cells, and NK cells of 6 low-
metabolism group patients, while the pie chart (H) shows the composition ratio of all cell subpopulations in this group. (I, J) The boxplot (I) displays
the expression score of glutamine metabolism-related genes in tumor cells, T cells, and NK cells of 6 high-metabolism group patients, while the pie
chart (J) shows the composition ratio of all cell subpopulations in this group.
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FIGURE 3

Immune functional differences of CD8+ T cell subsets among different populations. (A) The t-SNE plot displays T cell and NK cell subpopulations
from the tumor microenvironment of pancreatic cancer patients. Different colors represent different cell types. Subpopulation annotations are
shown in the figure. (B) The bubble plot shows the expression levels and cell proportions of molecular markers in each cell subpopulation. The color
of the dots represents the average expression level of the gene, with red indicating high expression and blue indicating low expression. The size of
the dots represents the cell proportion. (C-E) These three sets of boxplots show the differences in cell cytotoxicity score, exhaustion score, and
naive score of the entire T cell subpopulation and its CD8-Tem and CD8-Temra subpopulations between two groups. (F) We show the fitting curve
between the tumor cell glutamine metabolism-related gene expression score of the two groups and the naive score of CD8-Tem and CD8-Temra
subpopulations. (G, H) We separately display the fitting curves between the naive score and exhaustion score and cell cytotoxicity score of four
subpopulations (CD8-Tem, CD8-Temra, NK-FCGR3A(-), and NK-FCGR3A(+)) in the high and low metabolism groups. (I) Two sets of t-SNE plots and
pie charts show the composition ratio of T cell and NK cell subpopulations in two groups. (J) The bar graph displays the pathway enrichment
differences between CD8-Tem and CD8-Temra subpopulations between the two groups. (K, L) The t-SNE plots on the left show the enrichment
levels of two pathways in all T cells and NK cells, and the bar graphs on the right show the activation ratio of the two pathways between CD8-Tem
and CD8-Temra subpopulations.
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3.3.3 Influence of tumor cells glutamine
metabolism on CD8 effector T cells maturity

In order to investigate the impact of tumor cell glutamine

metabolism on the development of CD8 effector T cells, we used

immature immune cell-related genes (LEF1, SELL, TCF7, CCR7) to

score the immaturity of each T cell. In the high glutamine

metabolism group of tumor cells, the immature scores of T cells

and CD8-Tem were significantly higher than those in the low score

group, with significant statistical differences (Wilcoxon test, p = 2.2 ×

10−16, p = 6.7 × 10−5), while there was no statistical difference in

immature scores between the two groups of CD8-Temra (Figure 3E).

We analyzed the fitting curves of tumor cell glutamine metabolism

score and immature scores of CD8-Tem and CD8-Temra subsets in

the two groups and found that in the high glutamine metabolism

group of tumor cells, the immature scores increased with the increase

of tumor cell glutamine metabolism score, and the difference in

CD8-Tem subset had statistical significance (R = 0.89, p = 0.018)

(Figure 3F). This indicates that the higher the level of tumor cell

glutamine metabolism, the more immature the CD8-Tem subset,

and the immaturity level of CD8-Temra subset may not be related to

tumor cell glutamine metabolism.
3.3.4 Is there correlation between CD8 effector T
cells cytotoxicity and between immaturity scores
and exhaustion scores?

The Figure 3G shows the fitted curves between the cytotoxicity

scores and the immaturity scores of four cell subpopulations (CD8-

Tem, CD8-Temra, NK-FCGR3A(-), and NK-FCGR3A(+)) of

tumor cells with high and low glutamine scores. The immune cell

cytotoxicity of CD8-Tem (high score group: R=-0.14, p=0.022; low

score group: R=-0.12, p=0.0031), NK-FCGR3A(-) (high score

group: R=-0.26, p=6.2×10−8; low score group: R=-0.24,

p=0.00012), and NK-FCGR3A(+) (high score group: R=-0.26,

p=2×10−5; low score group: R=-0.019, p=0.72) subpopulations

decreased as the immaturity scores increased, especially in the

high glutamine score group of tumor cells. However, there was no

significant correlation between the cytotoxicity of CD8-Temra

subpopulation and the immaturity scores. The Figure 3H shows

the fitted curves between the cytotoxicity scores of four

subpopulations (CD8-Tem, CD8-Temra, NK-FCGR3A(-), and

NK-FCGR3A(+)) of tumor cells with high and low glutamine

scores and the exhaustion scores. The two t-SNE plots and pie

charts show the composition ratio of T cell and NK cell

subpopulations in the two populations (Figure 3I). The immune

ce l l cytotoxic i ty of CD8-Temra and NK-FCGR3A(-)

subpopulations increased as the exhaustion scores increased,

while there was no significant correlation between the cytotoxicity

of CD8-Tem and NK-FCGR3A(+) subpopulations and the

exhaustion scores. Through the above research, we found that the

high metabolism of glutamine in tumor cells may reduce the

cytotoxicity of CD8-Tem cells by inhibiting their development

and inducing their immaturity. Additionally, the high metabolism

of glutamine in tumor cells may promote the exhaustion of CD8-

Temra subpopulation. In general, the high metabolism of glutamine
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in tumor cells is negatively correlated with the anti-tumor activity of

CT8 effector T cells.

3.3.5 Influence of tumor cells metabolism on
immune cell activation pathways

To further elucidate the mechanism underlying the anti-tumor

activity of CD8 effector T cells through the inhibition of tumor cell

glutamine metabolism, we used gene set enrichment analysis

(GSEA) to quantitatively calculate the pathway enrichment scores

of high and low scoring groups in CD8-Tem and CD8-Temra

subsets. In the low scoring group, the immune cell activation

pathways of CD8-Tem subset were significantly upregulated, such

as ab T cell activation, interferon-gamma pathway, tumor necrosis

factor pathway, cytokine production, lymphocyte and leukocyte

differentiation, etc. These immune cell activation pathways were

also significantly upregulated in the CD8-Temra subset in the low

scoring group (Figure 3J). In the low scoring group, the T cell

activation pathway (CD8-Tem subset) and lymphocyte

differentiation pathway (CD8-Tem and CD8-Temra subsets) were

significantly higher than those in the high scoring group

(Figures 3K, L). These studies demonstrate that when tumor cell

glutamine metabolism is reduced, the immune activation pathways

of CD8-Tem and CD8-Temra subsets are significantly upregulated.

3.3.6 Conclusions
In the microenvironment of pancreatic cancer, high glutamine

metabolism in tumor cells has different effects on different CD8Tef

subsets. High glutamine metabolism in tumor cells reduces the

cytotoxicity and differentiation of CD8-Tem subset, and increases

the CD8-Temra exhaustion score. In conclusion, high glutamine

metabolism in tumor cells ultimately reduces the anti-tumor

activity of CD8-Tef(CD8-Tem and CD8-Temra).
3.4 Under the influence of tumor cell
glutamine metabolism, CD8 effector T cells
have a distinct immune status

In order to study the developmental differences and dynamic

changes in genes and pathways of CD8-Tem and CD8-Temra

subsets in different levels of tumor cell glutamine metabolism, we

used the Monocle package to plot the developmental trajectory of

cells (CD8-Tem subset, CD8-Temra subset, and CD8Tn subset) and

observed changes in the immune status of CD8 effector T cell

subsets. Cells were sequentially arranged on the trajectory tree

according to a pseudotime of 0 to 10 (Figure 4A), with the early

part of the trajectory defined as stage 1. After stage 1, CD8 T cells

began to develop in different directions; some cells developed

towards stage 2 (fate 1), while others developed towards stages 3,

4, and 5 (fate 2) (Figure 4B). Each cell on the pseudotemporal

trajectory was scored for cytotoxicity and then mapped to the

trajectory tree according to color, showing the dynamic changes

in cytotoxicity of CD8T cell subsets between tumor cell high-

metabolism and low-metabolism groups (Figure 4C). We
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observed that the cytotoxicity of CD8T cell subsets in the low-

glutamine metabolism group of tumor cells was higher than that in

the high-glutamine metabolism group at all stages, especially in

stages 3, 4, and 5 (fate 2). We also visualized the distribution of

CD8-Tem, CD8-Temra, and CD8-Tn subsets on the trajectory tree

(Figures 5D, E). We calculated the cell proportions of these three T

cell subsets at five stages (Figure 4F). We observed that the
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proportion of CD8 T cells in the low-glutamine metabolism

group of tumor cells that developed towards fate 2 was

significantly higher than that in the high-glutamine metabolism

group. There was no significant relationship between the

development of CD8 T cells towards fate 1 and tumor cell

glutamine metabolism. Pseudotemporal analysis showed that the

development of CD8 T cells towards fate 2 mainly upregulated
FIGURE 4

The association between glutamine metabolism of pancreatic cancer cells and the developmental trajectory of CD8+ T cells. (A) Pseudotime
analysis of CD8-Tem, CD8-Tn, and CD8-Temra subpopulations. Arrows indicate the direction of cell differentiation. (B) CD8T cells ordered by
pseudotime were divided into five trajectory periods and indicated by different colors. (C) Each cell on the pseudotime trajectory was assigned
a cytotoxicity score and mapped to the trajectory tree according to color, demonstrating the dynamic changes of cytotoxicity in CD8T cell
subpopulations between high metabolic and low metabolic tumor cell groups. (D, E) The trajectory tree shows the distribution of three CD8T cell
subpopulations along the developmental trajectory. CD8-Tn is indicated by light blue, CD8-Temra by deep red, and CD8-Tem by orange-yellow.
(F) This histogram shows the cell distribution of CD8-Tn, CD8-Temra, and CD8-Tem subpopulations in five periods among different populations,
indicated by different colors for CD8T cell subpopulations. (G) The heatmap displays the dynamic changes of gene expression over pseudotime.
Representative genes of gene clusters 1 and 2 are listed on the left of the heatmap. Immune regulation-related pathways enriched are labeled on
the right of the heatmap. (H) The two-dimensional fitting curve shows the dynamic expression of immune-related genes during pseudotime in two
developmental pathways.
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FIGURE 5

Glutamine metabolism inhibitors (JHU083) exhibit anti-tumor effects and enhance the anti-tumor efficacy of PD-1 inhibitors. Different colors were
used to mark the groups: red, blue, green, and purple represent VEH, JHU083, antiPD-1, and JHU083+antiPD-1 groups, respectively. NS indicates
no statistical significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (A, B) The relative expression levels of SLC38A1 and GLS RNA in tumor
tissue after drug treatment. (C) Images of mouse tumor specimens collected 26 days after inoculation. (D) A bar chart showing the differences in
tumor volume among groups of mice collected 26 days after inoculation. (E) Tumor growth curves showing the growth rate of tumors in different
groups. Panc02 cells were inoculated on day 1 and drug treatment was started on day 7. Tumor volume was measured every 2 days. Significance
testing was performed using analysis of variance. (F) Immunohistochemical staining of Ki67, CD8, CD3, and CCR7. (G-J) Bar charts showing
quantitative analysis of immunohistochemical staining for Ki67, CD8, CD4, and CCR7.
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immune activation-related pathways, such as T cell activation

pathway, T cell differentiation and proliferation pathway, and T

cell apoptosis inhibition pathway, and many pro-immune-related

genes, such as CD28, EOMES, INFG, and TNFSF9, were also

upregulated. The development of CD8 T cells towards fate 1

mainly upregulated immune inhibition-related pathways, such as

immune cell apoptosis activation pathway, inhibition of immune

response, inhibition of lymphocyte proliferation, and inhibition of

T cell activation, and many genes related to proliferation and

immune inhibition, such as PRELID1, LILRB1, CDKN2D, and

HAVCR2, were also upregulated (Figures 4G, H). In general, the

differentiation status and immune function of CD8 T cells exhibit

significant heterogeneity between different pancreatic cancer cell

glutamine metabolism levels. When tumor cell glutamine

metabolism is weaker, CD8 T cells are more likely to acquire

stronger anti-tumor activity.
3.5 The glutamine metabolism inhibitor
JHU083 enhances the anti-tumor effect of
immune checkpoint inhibitors (PD-1
inhibitors)

3.5.1 Glutamine metabolism inhibitor JHU083
impact on mRNA expression levels of the
glutamine metabolism genes

After treatment with JHU083, the mRNA expression levels of

the genes SLC38A1 and GLS decreased significantly, indicating

successful inhibition of glutamine metabolism in subcutaneous

pancreatic cancer tissue (Figures 5A, B).

3.5.2 Glutamine metabolism inhibitor JHU083
impact on tumor volume

To investigate the therapeutic effect of the glutamine

metabolism inhibitor JHU083 on pancreatic cancer, we compared

the efficacy of four groups of mice treated with different drugs,

including the VEH group, JHU083 group, Anti-PD-1 group, and

JHU083+Anti-PD-1 group. Compared with the VEH group, both

the JHU083 group and the Anti-PD-1 group showed a significant

decrease in subcutaneous tumor volume. In addition, the JHU083

group showed a more significant decrease in subcutaneous tumor

volume than the Anti-PD-1 group. The combination of JHU083

and PD-1 inhibitor not only significantly inhibited tumor growth

but also demonstrated stronger efficacy than using JHU083 or Anti-

PD-1 alone (Figures 5C-E). These results suggest that JHU083 is

effective in treating pancreatic cancer and enhances the anti-tumor

effect of immune checkpoint inhibitors (PD-1 inhibitors).

3.5.3 Glutamine metabolism inhibitor JHU083
impact on tumor immune microenvironment

In order to clarify the effect of glutamine metabolism enzyme

inhibitor JHU083 on the immune microenvironment of pancreatic

cancer, we performed immunohistochemical staining on tumor

tissues, including Ki-61, CD8, CD4 and CCR7 (Figure 5F). We

found that the percentage of Ki-67 positive cells in the JHU083
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group, Anti-PD-1 group, and JHU083+Anti-PD-1 group was lower

than that in the VEH group, and the difference was statistically

significant. Meanwhile, the percentage of Ki-67 positive cells in the

JHU083 group was significantly lower than that in the Anti-PD-1

group. The percentage of Ki-67 positive cells in the JHU083+Anti-

PD-1 group was significantly lower than that in the JHU083 group

and the Anti-PD-1 group, and the difference was statistically

significant, indicating that both JHU083 and PD-1 inhibitors can

effectively inhibit the proliferation of pancreatic cancer cells. The

effect of JHU083 alone was better than that of PD-1 inhibitor alone,

and the inhibitory effect of the combination of the two drugs on

tumor cell growth was significantly enhanced compared to either

drug alone (Figure 5G). The CD8T cell density in the JHU083

group, Anti-PD-1 group, and JHU083+Anti-PD-1 group was

significantly higher than that in the VEH group, and the

difference was statistically significant. The CD8T cell density in

the JHU083 group was significantly higher than that in the Anti-

PD-1 group, and the CD8T cell density in the JHU083+Anti-PD-1

group was higher than that in either single-drug group (Figure 5H).

The CD4 T cell density in the JHU083 group, Anti-PD-1 group, and

JHU083+Anti-PD-1 group was significantly higher than that in the

VEH group, and the difference was statistically significant. The

CD8T cell density in the JHU083 group was significantly higher

than that in the Anti-PD-1 group, while the CD8T cell density in

the JHU083+Anti-PD-1 group was significantly higher than that in

the Anti-PD-1 group, with no significant difference from the

JHU083 group (Figure 5I). This indicates that JHU083 can

enhance the immune infiltration of both CD8T and CD4 T cells

in the pancreatic cancer microenvironment, while PD-1 inhibitors

can only enhance the immune infiltration of CD8 T cells. Compared

to JHU083 or PD-1 inhibitor alone, the combination of the two

drugs can enhance the infiltration of CD8 T cells in the pancreatic

cancer immune microenvironment. There was no statistically

significant difference in the CCR7+ cell density between the

JHU083 group and the JHU083+Anti-PD-1 group, but it was

significantly higher than that in the VEH group and the Anti-PD-

1 group, while there was no statistically significant difference in the

CCR7+ cell density between the VEH group and the Anti-PD-1

group (Figure 5J). This indicates that JHU083 can reduce the

proportion of immature T lymphocytes in the tumor immune

microenvironment, while PD-1 inhibitors have no such effect.

Overall, JHU083 alone has a clear anti-tumor effect on pancreatic

cancer and enhances the anti-tumor effect of PD-1 inhibitors.
3.6 The glutamine metabolism enzyme
inhibitor (JHU083) can inhibit the
apoptosis of immune cells in the tumor
immune microenvironment and enhance
the anti-tumor effect of CD8 T cells

In order to investigate the effect of the glutamine metabolism

inhibitor JHU083 on CD8 T cells infiltration and immune

phenotype in the immune microenvironment, we used flow

cytometry to perform immune typing of CD8 T cells in tumor
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FIGURE 6

In the pancreatic cancer microenvironment, the inhibition of glutamine metabolism can suppress the apoptosis of immune cells, increase immune
cell infiltration, reshape the CD8 T-cell immune phenotype, and enhance the immune therapy response. Different colors were used to mark the
groups: red, blue, green, and purple represent VEH, JHU083, antiPD-1, and JHU083+antiPD-1 groups, respectively. NS indicates no statistical
significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (A, C) show the flow cytometry of the tumor microenvironment of subcutaneous
tumors in each group of mice and the apoptosis of immune cells in the spleen, respectively. (B, D) show the statistical analysis of immune cell
apoptosis in the tumor microenvironment and spleen, respectively. (E) shows the flow cytometry cell sorting diagram, including T cells, CD8+ T
cells, and CD4+ T cells. (F) shows the difference in the proportion of CD8T cells in CD45 cells in each group. (G, I, K) are flow cytometry cell sorting
diagrams, including CD8+CD69+ T cells, CD8+INFg+ T cells, and CD8+GZMB+ T cells. (H, J, L) show the percentage of the above cells in CD8T
cells in a bar graph. (M) shows the gating diagram for flow cytometry cell sorting.
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tissue (CD69 as a T cell activation marker, INFg and GZMB as cell

cytotoxicity markers). The proportion of CD8 T cells in CD45 T

cells in the JHU083 group, Anti-PD-1 group, and JHU083+Anti-

PD-1 group was significantly higher than that in the VEH group.

The proportion of CD8 T cells in CD45 T cells in the JHU083 group

was significantly higher than that in the Anti-PD-1 group. The

proportion of CD8 T cells in CD45 T cells in the JHU083+Anti-PD-

1 group was significantly higher than that in the single drug group

(Figures 6E, F). These results indicate that both JHU083 and Anti-

PD-1 can increase the proportion of CD8 T cells in CD45 T cells in

the immune microenvironment, and single-use JHU083 is superior

to Anti-PD-1, while the combination of the two is better than single

drugs. The proportion of CD8+CD69+ T cells in CD8 T cells in the

JHU083 group, Anti-PD-1 group, and JHU083+Anti-PD-1 group

was significantly higher than that in the VEH group. The

proportion of CD8+CD69+ T cells in CD8 T cells in the JHU083

group was significantly higher than that in the Anti-PD-1 group.

The proportion of CD8+CD69+T cells in CD8 T cells in the

JHU083+Anti-PD-1 group was significantly higher than that in

the single drug group (Figures 6G, H), indicating that single-use

JHU083 and Anti-PD-1 can both stimulate CD8 T cells activation,

but single-use JHU083 is superior to Anti-PD-1, and the

combination of the two is better than single drugs.

The proportion of CD8+ INFg+ T cells in CD8 T cells was

significantly higher in the JHU083 group, Anti-PD-1 group, and

JHU083+Anti-PD-1 group than in the VEH group. The proportion

of CD8+ INFg+ T cells in the JHU083 group was significantly

higher than that in the Anti-PD-1 group. The proportion of CD8+

INFg+ T cells in the JHU083+Anti-PD-1 group was significantly

higher than that in the Anti-PD-1 group, but there was no

statistically significant difference between the JHU083 group and

the JHU083+Anti-PD-1 group. The proportion of CD8+ GZMB+ T

cells in CD8 T cells was significantly higher in the JHU083 group,

Anti-PD-1 group, and JHU083+Anti-PD-1 group than in the VEH

group. The proportion of CD8+ GZMB+ T cells in the JHU083

group was significantly higher than that in the Anti-PD-1 group.

The proportion of CD8+ GZMB+ T cells in the JHU083+Anti-PD-1

group was significantly higher than that in the single drug groups.

These results indicate that both the JHU083 group and the Anti-

PD-1 group can enhance the cytotoxicity of CD8 T cells to a certain

extent, but JHU083 alone is superior to Anti-PD-1, and the

combination of the two is better than using a single drug. In

summary, the glutaminase inhibitor JHU083 can inhibit the

apop to s i s o f immune ce l l s i n th e tumor immune

microenvironment and enhance the anti-tumor effect of CD8 T

cells. Furthermore, it can enhance the anti-tumor effect of PD-

1 inhibitors.
4 Discussion

Pancreatic cancer is known to be glutamine-dependent (41–43),

yet how tumor cell glutamine metabolism influences immune cells

in the tumor microenvironment is still unclear. In this study, based
Frontiers in Immunology 16
on the pancreatic cancer dataset in the TCGA database, we found

that the tumor glutamine metabolism of patients was negatively

correlated with patient prognosis and immune cell cytotoxicity, and

positively correlated with immune cell immaturity score. After

analyzing the pancreatic cancer single-cell dataset in the GEO

database, we found that high glutamine metabolism in tumor

cells would inhibit the anti-tumor effect of CD8 T cells. Through

in vivo experiments in mice, we observed that the glutamine

metabolism inhibitor has an anti-tumor effect and can inhibit

immune cell apoptosis in the tumor microenvironment, while

increasing the cytotoxicity of CD8 T cells and enhancing the anti-

tumor efficacy of PD-1 inhibitors.

In recent years, the incidence of pancreatic cancer has been on

the rise. It accounts for approximately 2% of all cancers and is

associated with 5% of cancer-related deaths (2, 44). The pancreatic

cancer microenvironment is considered an immune-suppressive

environment (45–51). In the pancreatic cancer microenvironment,

most T lymphocytes are CD4 T cells, with CD8 T cells accounting for

only a small proportion. The CD4 T cells in the pancreatic cancer

microenvironment are mainly Th2 cells, rather than Th1 cells. Th2

cells are associated with tumor immune tolerance, while Th1 cells can

increase the tumor-killing effect of CD8 T cells (24, 25). In addition,

Treg cells within the CD4 T cell population gradually increase in the

development of pancreatic cancer (24, 52). Interestingly, Treg cells

play an important role in immune evasion in pancreatic cancer

through various immunosuppressive mechanisms (24, 52, 53). These

may be the reasons why immune checkpoint inhibitors have not

achieved satisfactory therapeutic effects. Therefore, a thorough

investigation into the formation mechanism of the immune-

suppressive microenvironment in pancreatic cancer is an

important approach to improving the efficacy of pancreatic cancer

immunotherapy. In this study, through transcriptome sequencing of

tissue blocks, we found that the expression score of tumor glutamine

metabolism-related genes was negatively correlated with patient

prognosis, immune cell toxicity, and immune cell differentiation.

Meanwhile, single-cell sequencing data analysis results showed that

the anti-tumor activity of CD8T effector cells in the tumor immune

microenvironment of patients with high tumor glutamine

metabolism was reduced. High tumor glutamine metabolism in

tumor cells reduced the cytotoxicity and differentiation degree of

CD8-Tem subsets and increased the CD8-Temra exhaustion score.

Through GSEA analysis, we observed a negative correlation between

tumor cell glutamine metabolism and the activation and

differentiation of CD8-Tem and CD8-Temra subsets. Through the

above studies, we hypothesize that high tumor glutamine metabolism

reshapes the tumor metabolic microenvironment, causing a decrease

in the anti-tumor effect of CD8-Tef. Disrupting such abnormal

tumor metabolic microenvironments may improve the anti-tumor

activity of CD8-Tef, and the efficacy of immune checkpoint

inhibitors may also improve.

According to existing research, the tumor microenvironment

where CD8 T cells are located is closely related to their

developmental trajectory (26). This suggests that the abnormal

metabolism of tumor cell glutamine may reshape the metabolic
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microenvironment of the tumor and alter the developmental

trajectory of CD8 T cells. Gene dynamic time analysis and gene

set enrichment analysis show that the proportion of CD8 T cells in

fate 2 development in the high glutamine score group of tumor cells

is significantly lower than that in the low glutamine score group.

When CD8 T cells develop into fate 2, they mainly up-regulate

immune activation-related pathways. Based on the above data, we

speculate that CD8 T cells in the tumor microenvironment with

high glutamine metabolism are more likely to lead to weakened

anti-tumor activity. When tumor cell glutamine metabolism is

inhibited, the developmental trajectory of CD8 T cells returns to

normal, and their anti-tumor activity also recovers.

The efficacy of PD-1 inhibitors was found to depend on the

infiltration of immune cells in the tumor microenvironment (54,

55). Previous research suggests that blocking the high metabolism

of glutamine in tumor cells may increase immune infiltration and

promote the differentiation of immune cells, while also potentially

enhancing the anti-tumor effect of CD8 T cells. In a subcutaneous

pancreatic cancer mouse model, we demonstrated that a glutamine

inhibitor can increase the infiltration of CD4 T and CD8 T cells in

the tumor microenvironment, promote the differentiation of

immune cells, inhibit the rapid proliferation of tumor cells, and

enhance the inhibitory effect of PD-1 inhibitors on tumor growth.

After treatment with the glutamine inhibitor, the tumor volume

significantly decreased, and the growth rate slowed significantly. We

found that the anti-tumor effect of using only the glutamine

inhibitor was superior to using only PD-1 inhibitor, but the

combined use of the two significantly improved the anti-tumor

effect. We also observed that the glutamine inhibitor can inhibit the

apoptosis of immune cells in the tumor microenvironment, and the

combined use of the glutamine inhibitor and PD-1 inhibitor had a

stronger effect in inhibiting immune cell apoptosis. Interestingly,

the proportion of immune cell apoptosis in the spleen decreased

significantly after using only PD-1, but after the combined use of the

glutamine inhibitor, the proportion of apoptosis returned to normal

levels. Therefore, we speculate that JHU083 not only increases the

anti-tumor effect of PD-1 but may also reduce the toxic side effects

of PD-1 in normal tissues. Through flow cytometry cell sorting, we

found that the glutamine inhibitor can promote the infiltration and

activation of CD8 T cells, as well as increase their toxicity, and its

effect was significantly enhanced when combined with PD-1

inhibitors. We speculate that the excellent efficacy of JHU083

may be closely related to the increased cytotoxicity of CD8 T cells

and the inhibition of tumor cell growth. The effect of the glutamine

inhibitor on these two cell subsets has already been confirmed in

colon cancer (56). In addition, inhibiting the activity of GLS can

reduce the accumulation of intracellular alpha-ketoglutarate and

confer a high proliferative and long-lived phenotype to CD8 T cells

(56, 57). Even when the glutamine metabolism pathway is

completely inhibited, CD8 T cells can still compensate by taking

up glucose, increasing the activity of pyruvate carboxylase, and

enhancing the activity of the acetyl-CoA metabolism pathway,

leading to increased cellular metabolism (58). However, this

flexible metabolic compensation mechanism is lacking in

tumor cells.
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However, our study still has some shortcomings. Although we

have demonstrated that inhibiting glutamine metabolism in the

tumor microenvironment can increase the infiltration density of

CD4 T cells, we have not proven the subtype of CD4 T cells that

increased in the tumor microenvironment (TME). Therefore, we

cannot determine whether the increased CD4 T cell subtype

promotes the enhanced function of CD8 T cells as Th1 cells or

promotes immune evasion of pancreatic cancer as Treg cells, or other

subtypes. Furthermore, although inhibiting glutamine metabolism in

the TME can enhance the cytotoxicity of CD8 T cells, we still do not

know the specific mechanism. We have demonstrated that a

glutamine inhibitor can enhance the anti-tumor effect of PD-1

inhibitors, but we are not sure whether the enhanced ability of PD-

1 to fight tumors is related to the increased cytotoxicity of CD8 T

cells. Finally, the animal model we used only includes some

pathological and clinical features of human pancreatic cancer, so

the sensitizing effect of the glutamine inhibitor on PD-1 inhibitors

needs further validation in clinical trials.
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