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Suppressing glutamine
metabolism in the pancreatic
cancer microenvironment can
enhance the anti-tumor effect of
CD8 T cells and promote the
efficacy of immunotherapy
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Objective: This study aims to investigate the relationship between tumor cell
glutamine metabolism and CD8 T cells, with the goal of providing new insights to
improve immunotherapy for pancreatic cancer.

Methods: Using the The Cancer Genome Atlas — Pancreatic Adenocarcinoma
(TCGA-PAAD) cohort, we computed gene expression scores related to
glutamine metabolism and stratified patients into high- and low-score groups.
Prognosis and differences in immune cell anti-tumor activity were compared
between these groups. We further utilized single-cell RNA sequencing data to
quantitatively assess the expression of glutamine metabolism-related pathways
in tumor cells. Based on tumor-specific glutamine metabolism gene expression,
patients were again classified into high- and low-score groups. The immune
remodeling effects exerted by tumor cell glutamine metabolism on CD8 T cells
were subsequently investigated. To examine the impact of perturbing glutamine
metabolism within the tumor microenvironment on CD8 T cell phenotype and
the efficacy of PD-1 inhibitors, we conducted in vivo animal experiments.
Results: we analyzed the pancreatic cancer dataset in the cancer gene atlas
database. We found that tumor glutamine metabolism was negatively correlated
with patient prognosis and anti-tumor activity. Next, we defined two types of
CD8 effector T cells in single-cell RNA sequencing data, namely, effector
memory T cells (CD8-Tem) and terminally differentiated effector memory T
cells (CD8-Temra). Under the pressure of high glutamine metabolism in tumor
cells, the cytotoxicity of the CD8-Tem subset was reduced, and its immaturity
score increased, while the exhaustion score of the CD8-Temra subset increased.
Pseudotime analysis showed that CD8-Tn in the low-scoring group mainly
developed into CD8-Tem subset, and its immune activation pathway was
significantly upregulated. In addition, we found that the glutamine metabolism
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inhibitor JHUO83 promoted the infiltration of CD4 and CD8 T cells and
T lymphocyte differentiation, and increased the efficacy of PD-1 inhibitors.
Glutamine inhibitors can inhibit the apoptosis of immune cells in the tumor
microenvironment, while promoting CD8 T cells activation and
cytotoxicity increase.

Conclusion: Inhibition of glutamine metabolism within the pancreatic cancer
microenvironment results in reduced apoptosis of immune cells, heightened
activation and cytotoxicity of CD8 T cells, and a substantial enhancement in the
therapeutic efficacy of immunotherapy.

pancreatic cancer, glutamine, CD8 T cells, immunotherapy, JHU083

1 Introduction

Pancreatic cancer is highly invasive, and patients have a poor
prognosis (1-5). Currently, the efficacy of immunotherapy is
unsatisfactory (6-16). T lymphocytes are the main immune cells
infiltrating the tumor microenvironment of pancreatic cancer (17).
CD8 T cells play a critical role in eliminating malignant cells and can
provide long-term protective immunity (18-20). In tumor tissues,
high abundance of CD8 effector T cells is positively correlated with
the prognosis of pancreatic cancer patients (21, 22). However, CD8 T
cells generally exhibit low infiltration and low cytotoxicity in
pancreatic cancer (23-25). Existing studies have shown that the
tumor microenvironment in which CD8 T cells reside is correlated
with their developmental trajectory and determines their immune
response. That is, the tumor microenvironment determines the anti-
tumor ability of CD8 T cells (26). The classical theory has long held
that tumor cells mainly obtain energy by taking up glucose in the
immune microenvironment, and high glucose metabolism of tumor
cells is a core factor that reshapes the metabolic microenvironment of
tumors and prevents CD8 T cells from exerting their anti-tumor
ability (27-29). Inhibition of glucose metabolism has long been
regarded as an important strategy for treating tumors. However,
effective inhibitors of glucose metabolism for tumor treatment have
not been proven clinically so far. Recently, Professor Kimryn
Rathmell’s research found that in the tumor immune
microenvironment, tumor cells uptake more glutamine than
glucose. At the same time, they found that immune cells in the
tumor immune microenvironment are not lacking in glucose. In
contrast, the amount of glutamine uptake by a single tumor cell is
four times that of CD8 T cells (30). Therefore, it is possible that the
high metabolism of glutamine in tumor cells in the tumor immune
microenvironment leads to a change in the developmental trajectory
of CD8 T cells, resulting in a decrease in their anti-tumor effect.

Rapidly proliferating cells, such as tumor cells, exhibit unique
metabolic features to meet their high energy demands and
increasing synthesis requirements for structural materials such as
amino acids, nucleotides, and lipids, enabling sustained
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proliferation (31-34). Studies have also found increased
expression levels of the glutamine transporter in various tumors
(35), such as solute carrier family 1 member 5 (SLC1A5). The Myc
oncogene can directly promote upregulation of SLC1A5 (36). These
unique metabolic features increase the demand of tumor cells for
glutamine (Gln) to promote synthetic metabolism. These findings
suggest that tumor cells in the tumor microenvironment are
dependent on glutamine. We may have overlooked the impact of
tumor cell glutamine metabolism reshaping the tumor metabolic
microenvironment on the phenotype of CD8 T cells.

Therefore, it is hypothesized that the anti-tumor effect of CD8T
cell subpopulations may be diminished when pancreatic cancer
remodels the tumor microenvironment through high glutamine
metabolism. Disrupting such aberrant pancreatic cancer metabolic
microenvironments may potentially enhance the infiltration and
cytotoxicity of CD8 T cells, thereby increasing the efficacy of
immune checkpoint inhibitors.It is worth noting that overcoming
the immunosuppressive microenvironment often requires
combination strategies. For example, accumulated evidence has
shown that exercise can modulate a variety of cytokines, affect
transcriptional pathways, and reprogram certain metabolic
processes, ultimately promoting anti-tumor immunity and
enhancing the efficacy of immune checkpoint inhibitors in cancer
patients (37). Nonetheless, successfully targeting metabolic
pathways or integrating adjunctive therapies remains challenging
due to the highly complex and heterogeneous nature of the tumor
microenvironment, which poses obstacles for designing selective
and effective treatment strategies (38).

2 Methods

2.1 Source and data cleaning of pancreatic
cancer tissue block sequencing data

The FPKM gene expression matrix of pancreatic cancer tissue
block RNA sequencing data, as well as the corresponding clinical
follow-up information, can be downloaded from the Cancer
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Genome Atlas database (index number TCGA-PAAD) (https://
portal.gdc.cancer.gov/). All patients were diagnosed with pancreatic
cancer through pathology. After excluding patients with missing
clinical follow-up information, we obtained transcriptomic
expression matrices of 176 patients and their corresponding
clinical pathological parameters. By comparing with the genome
annotation file GRCh38, we screened 18,965 protein coding genes
and included them in the next analysis after removing
duplicate probes.

2.2 Downstream analysis of pancreatic
cancer tissue RNA sequencing data

According to the genes related to glutamine metabolism
(ALDHI18A1, GAPDH, GCLM, GLS, GOT1, MTHES, OAT,
SLC1A5, SLC38A1, SLC38A5, SLC7A5), we used the “ssGSEA”
function in the “GSVA” package to calculate the expression scores
of glutamine metabolism-related genes in tumor cells of each
patient. Similarly, as cytotoxicity-related genes (GZMK, GZMH,
GZMB, PRFI1, IFNG, EOMES, NKG7), immune cell exhaustion-
related genes (PDCDI1, TIGIT, HAVCR2, LAG3, CTLA4), and
immaturity-related genes (LEF1, SELL, TCF7, CCR7) are
specifically expressed in immune cells, tissue block sequencing
data can also be used to calculate the cytotoxicity scores of
immune cell subgroups in each patient to evaluate the immune
phenotype of immune cells in the immune microenvironment.
After setting the median score of glutamine metabolism-related
gene expression in patients’ pancreatic tissue as the grouping
intercept value, 176 patients were divided into high and low score
groups, and the relationship between the two groups and prognosis
was explored.

2.3 The origin and data cleaning of single-
cell RNA sequencing data

The single-cell RNA sequencing data used in this study were
obtained from the Gene Expression Omnibus (GEO) with
accession number GSE155698 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE155698) (39). Specifically, tumor
tissues from 12 pancreatic cancer patients were selected for
inclusion (4 patients were excluded due to fewer than 10 tumor
cells). Cells with gene counts of 50 or more were included in
downstream analysis if the same gene was expressed in at least 3
or more cells. Additionally, cells were excluded if their
mitochondrial gene ratio was greater than 4%, ribosomal gene
ratio was less than 2%, or hemoglobin gene ratio was greater than
10%. Finally, genes and cells meeting the aforementioned criteria
were used for downstream analysis.
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2.4 Clustering and biological annotation of
single-cell RNA sequencing data

The software R (version 4.1.2) was utilized for the analysis of
single-cell RNA sequencing data and tissue block sequencing data.
The gene expression matrix of all cells was normalized using the
built-in function “NormalizeData” from the Seurat package, with
the scaling factor set to 10,000. The “vst” algorithm from the
“FindVariableFeatures” function was employed to identify 3,000
highly variable genes. The expression matrix was then normalized
using the “ScalData” function, with all genes used as reference
genes. Principal component analysis was performed to identify
statistically significant principal components (P-value < 0.05). To
reduce data dimensionality, we used the t-distributed stochastic
neighbor embedding algorithm with the top 15 principal
components’ genes and performed clustering on all cells, with a
resolution of 0.1. Based on molecular markers summarized in
previous literature, we annotated the clustered cells as different
biological subgroups, including neutrophils (ITGAM, ITGAX),
epithelial cells (EPCAM, KRT18, KRT19), fibroblasts (TIMP1,
FN1, ACTA2), mast cells (FCERIA, KIT), acinar cells (CTRBI,
CELA3A, PLA2GI1B), macrophages (CD68, CD163, LYZ), B cells
(CD38, TNFRSF17), and NK and T cells (KLRB1, PRF1, CD2,
CD3E, CD3D).

Identification of malignant epithelial cells: Since both malignant
and normal epithelial cells express similar molecular markers, it is
difficult to annotate the two subgroups based solely on differential
gene expression. As malignant tumor cells originate from normal
epithelial cells, the degree of malignancy often accompanies
variations in chromosome structure and number. Therefore, in
this study, we used the R package “infercnv” (https://github.com/
broadinstitute/inferCNV) to calculate copy number variations
(CNVs) in each of the 22 chromosomes of each cell based on its
transcriptome, thereby defining malignant tumor cells and normal
epithelial cells. The CNVs of each cell were sorted and classified by
the position of the genes on the chromosome, and a moving average
was applied to the relative expression values using a sliding window
of 100 genes per chromosome. The reference cells were set as 1000
fibroblasts and 1000 T cells. Based on the obtained CNV matrix, an
unsupervised clustering algorithm was used to divide all
unidentified cells into multiple subgroups with varying copy
numbers, with the subgroup with the lowest copy number and
closest to the reference cell line defined as normal epithelial cells,
and the rest defined as malignant tumor cells.

After extracting NK cell and T cell subpopulations, we used the
‘Harmony’ package to remove batch effects and reduce any
unnecessary biological or technical factors. Next, the same
standardization and dimension reduction procedures were applied
to the T cell subpopulations. The functions ‘FindNeighbors’ and
‘FindClusters” were used to identify individual cell subpopulations,

frontiersin.org


https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155698
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155698
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://doi.org/10.3389/fimmu.2025.1599252
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Fan et al.

with a resolution set at 0.8. The biological background of each
subpopulation was annotated using known molecular markers.
CD4 T cell subpopulations included CD4Tn (TCF7, SELL, IL7R,
CCR7, LEF1, MAL), CD4Trg (FOXP3, PDCD1, CTLA4, TIGIT,
BATF), CD4Tm (S100A4, S100A10, ANXA1, IL7R, KLF2),
CD4Th17 (CCR6, IL2, DPP4, RORA, IFNGRI), and CD4Tfh
(CXCL13, GNG4, CD200, IGFL2, TOX2). CD8 T cell
subpopulations included CD8Tem (CD8 effector memory cells)
(GZMK, GZMH, DUSP2, ITM2C, CD74, EOMES, CST7),
CD8Trm (ZNF683, IL7R, ANXA1, CD55, GZMA, HOPX,
CXCR6, ITGA1l), CD8Temra (CD8 terminally differentiated
effector memory cells) (GZMA, GZMH, GZMB, ZEB2, TBX21,
NKG7, PLEK, KLRD1), CD8Tcl17 (SLC4A10, CEBPD, NCR3,
IFNGRI1, RORA, LTK), and CD8Tn (CD8 naive T cells) (CCR7,
LEF1, TCF7, SELL). The NK cell subpopulations included
NK-FCGR3A (+) cells (NCAM1, CD160, FCGR3A) and
NK-FCGR3A (-) cells (NCAM1, CD160). Some T cell
subpopulations could not be mapped to known molecular
markers after clustering (40) and were therefore not
biologically annotated.

2.5 Patient grouping and pathway
enrichment score calculation

Based on the glutamine metabolism-related genes (ALDH18A1,
GAPDH, GCLM, GLS, GOT1, MTHES, OAT, SLC1A5, SLC38A1,
SLC38A5, SLC7A5), we calculated the expression scores of
glutamine metabolism-related genes in tumor cells (GStumor)
and CD8 T cells (GSimmune) using the “ssGSEA” algorithm in
the “GSVA” package. After dividing the patients into high-score
and low-score groups based on the median of GStumor scores from
12 patients, we compared the differences in the scores of
cytotoxicity-related gene sets (GZMK, GZMH, GZMB, PRFI1,
IFNG, EOMES, NKG7), exhaustion-related gene sets (PDCDI,
TIGIT, HAVCR2, LAG3, CTLA4), and naive-related gene sets
(LEF1, SELL, TCF7, CCR7) between the different GStumor
groups in CD8T subpopulations (CD8Tem and CD8-Temra).

2.6 Gene set enrichment analysis of
tumor-infiltrating CD8 T cells

Gene Set Enrichment Analysis (GSEA) is a statistical method
used to calculate the distribution trend of genes and determine their
contribution to a specified phenotype, based on the comparison of
sorted genes related to the phenotype and predefined gene sets.
Compared to GO and KEGG enrichment analysis, GSEA can avoid
the influence of subjective bias and retain more effective
information, while also allowing for quantitative assessment of
pathway activation. In this study, we downloaded multiple gene
sets, including C2: CP: KEGG, C2: CP: REACTOME, and C5: GO
(BP, MF, and CC) from the MsigDB website (https://www.gsea-
msigdb.org/gsea/msigdb/). We selected the CD8Tem and CD8-
Temra subsets, used the “FindAllMarkers” function to select
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differentially expressed genes that were upregulated and
downregulated in the CD8Tem subset of patients in the low-score
group, and calculated the fold change corresponding to these genes.
Finally, we used the “GSEA” function in the “clusterProfiler”
package to sort the gene sets according to fold change from high
to low and perform enrichment analysis, obtaining enrichment
scores for different pathways. The same method was used to process
the CD8-Temra subset. We used the “AUCell_exploreThresholds”
function to distinguish between high and low AUC values, which
automatically defines the threshold for the bimodal distribution to
determine the “activation” or “inactivation” status of cells in the
relevant pathway gene set, respectively.

2.7 Under the influence of tumor cell
glutamine metabolism, the developmental
trajectory of tumor-infiltrating CD8
effector T cells

To investigate the differences of tumor-infiltrating CD8 effector
T cells under different tumor cell glutamine metabolism pressures,
we calculated the cytotoxic scores and cell proportions of these
three CD8 T cell subsets (CD8-Tn, CD8-Tem, and CD8-Temra)
and their changes between the two patient groups and performed
pseudo-time gene dynamic analysis on the three CD8 T cell subsets
(CD8-Tn, CD8-Tem, and CD8-Temra) using the “Monocle2”
package in R. Monocle2 can use unsupervised machine learning
and reverse graph embedding algorithms based on single-cell
transcriptome expression matrices to place cells on different
branches of the developmental trajectory to simulate the
biological process of the cell population, forming a “one-root-
two-branches” cell development tree diagram, in which cells on
the same branch have the same gene expression features and
differentiation status. This pseudo-time analysis can infer the
differentiation trajectory of cells or the evolution process of cell
subtypes during development, and identify key genes and pathway
changes that affect branch formation. We extracted three objects,
including gene expression matrix, gene information, and cell
phenotype information, and constructed them into a
“CellDataSet” object. The “estimateSizeFactors” function can
standardize the transcriptome expression matrix. Using the
“FindAllMarkers” function, we screened for upregulated genes in
CD8-Tef (CD8-Tem and CD8-Temra) under these two metabolic
modes, and then used the “DDRTree” algorithm to project all cells
onto a two-dimensional plane and arrange them in order
of branching.

2.8 Establishment, grouping, and drug
intervention of a mouse model

A cell suspension of 0.1 ml at a concentration of 1x10A6/ml
Panc02 tumor cells (i.e., 1x10A5 cells per mouse) was inoculated
into the right groin area of each mouse. On day 6 post-inoculation,
the length and width of the subcutaneous tumors in the mice were
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observed and recorded, and the volume of the subcutaneous tumors
was calculated using the formula: V (mm#3) = length (mm) x width
(mm) x width (mm) x 7/6. Twenty mice with subcutaneous tumors
of similar volumes were selected and randomly divided into four
groups (five mice per group):

1. Control group (VEH): orally administered with 100 UL of
0.9% saline solution per day and intraperitoneally injected
with 100 pL of 0.9% saline solution once every three days
for 20 consecutive days.

2. Glutamine metabolism inhibitor group (JHU083): orally
administered with 100 pL of JHUO083 solution in saline
(1 mg/kg/d) per day and intraperitoneally injected with
100 pL of 0.9% saline solution once every three days for
20 consecutive days.

3. Immune checkpoint inhibitor group (Anti-PD-1):
intraperitoneally injected with 100 puL of PD-1
monoclonal antibody solution in saline (1 mg/kg/d) once
every three days and orally administered with 100 puL of
0.9% saline solution per day for 20 consecutive days.

4. Combination of glutamine metabolism inhibitor and
immune checkpoint inhibitor group (JHU083+Anti-PD-
1): orally administered with 100 UL of JHUO083 solution in
saline (1 mg/kg/d) per day and intraperitoneally injected
with 100 uL of PD-1 monoclonal antibody solution in
saline (1 mg/kg/d) once every three days for 20
consecutive days.

The length and width of the tumors were measured every two
days, and the volume of the subcutaneous tumors was calculated
accordingly. All mice were euthanized after being fed for 27 days, and
subcutaneous tumor samples were harvested immediately after
euthanasia. To ensure humane euthanasia, mice were placed in a
CO,chamber with a flow rate set at 30% of the chamber volume per
minute, following approved welfare guidelines. The CO,concentration
was gradually increased to induce unconsciousness, followed by
respiratory and cardiac arrest.

2.9 Quantitative real-time polymerase
chain reaction

Approximately 50 mg tumor tissue was grind and crushed, add
an appropriate amount of Trizol lysis solution to it and lyse it
thoroughly on ice. The lysate was then transferred to an enzyme-
free EP tube and centrifuged at 4°C, 12,000 rpm/min for 10 min; the
supernatant obtained by centrifugation was then transferred to
another EP tube, chloroform was added, the supernatant and
chloroform were mixed and left to stand for 15 min, next
centrifuged at 4°C, 8,000 rpm/min for 15 min. Wash with 75%
ethanol solution, centrifuge for 15 min at 4°C at 12000 rpm/min,
add 20 ul DEPC water to the precipitate, wait for the precipitate to
dissolve, measure the mRNA concentration. mRNA was collected
and reverse transcribed into ¢cDNA, which were amplified in
triplicate using SYBR Green PCR Master Mix (Guangzhou
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RiboBio Co), 10 pmol of primer (Supplementary Table S1), and
20 ng of ¢cDNA per reaction with the StepOnePlus (Roche
LightCycler 96). Quantitation was performed using the
AACt method.

2.10 Immunohistochemistry

All pathological diagnoses were made independently by 2 senior
physicians in the Department of Pathology, and controversial
diagnoses were assessed by a third physician and then decided by
joint consultation. The specific steps of staining were as follows.

1. Dewaxing and hydration: The slices were placed in the oven
at a temperature of 60°C for 90 min, then placed in xylene
for 30 min for dewaxing, then the slices were immersed in
ethanol (anhydrous ethanol, 95% ethanol, 75% ethanol) in
a gradient from high to low concentration for 5 min, and
finally rinsed repeatedly with double-distilled water for
5 min.

2. Antigen repair and peroxidase removal: The treated tissue
sections were placed in a repair cassette with 200 ml of
ethylene glycol tetraacetic acid (EDTA) solution, then
placed in an autoclave with double-distilled water, first
heated to vapour, then allowed to cool, and then rinsed
with double-distilled water. The sections were then placed
in 3% hydrogen peroxide solution (H202) for 10 min
incubation protected from light, allowed to cool and then
soaked 3 times with double distilled water for 5 min each
and rinsed with PBS for 5 min.

3. Addition of antibody, colour development, re-staining and
blocking: sections were added dropwise with antibody
(KI67, CD3 and CD8) diluted at 1:200 and refrigerated
overnight at 4°C. The next day the sections were washed
three times with PBS for 5 min each time. Second day, the
sections were washed three times with PBS for 5 min each
time, shaken dry, incubated with secondary antibody for 30
min, and washed three times with PBS for 5 min each time.
The reaction was terminated by adding a drop of DAB
staining solution to the sections and observing a positive
reaction under the microscope. After washing, the sections
were fractionated with ethanol hydrochloride solution,
then washed, dehydrated, sealed and labelled.

4. After the above steps were completed, the pathological
sections were observed under an inverted fluorescent
microscope. The expression levels of KI67, CD3 and CD8
proteins were measured with Image J software.

2.11 Flow cytometry

Immune cell populations were identified via flow cytometry
from respective dissociated whole tumor cell suspensions.
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(1) After mechanically cutting the tumor tissue, it was filtered
with 300 mesh filter cloth, centrifuged with 300 g for 5 min, and the
cell concentration was adjusted to 10*6/mL with PBS. (2) 1 pg
antibody (CD8a, CD3, c¢d49b, CD45, CD4, LIVE/DEAD) were add
into 100 pL cell suspension in the sterile EP tube. Dye at 4 °C for 30
min without light after mixing. (3) Adding 1000 uL PBS to wash the
mixture, the supernatant was removed after centrifuging with 300g
for 5min. (4) Cells were resuspended by 400 uL PBS and then
detected by ZE5 flow cytometry, flow cytometry data were analyzed
using FlowJo software.

2.12 Immunocyte apoptosis detection

(1) Take 100 UL of the immunocyte suspension separated from
“Flow cytometry (1)” and centrifuge at 300g for 5 minutes. Discard
the supernatant and resuspend the cells in 100 puL of binding buffer.
(2) Add 5 pL of Annexin V-FITC staining fluorescent dye and
incubate for 10 minutes at room temperature in the dark. (3) Add
10 uL of PI staining dye and incubate for 5 minutes at room
temperature in the dark. Add 400 UL of PBS and resuspend the cells.
Immediately detect the cells using a flow cytometer. (4) Analyze the
data using Flow]Jo software and a ZE5 flow cytometer.

2.13 Statistical analysis

The statistical analysis of the experimental data was performed
using R software (version 4.1.2) in accordance with the conventions
of medical academic papers. In this study, Kaplan-Meier survival
analysis was performed to compare overall survival (OS) among
different groups. In this study, overall survival (OS) was defined as the
time interval from the date of diagnosis (the starting point) to the date
of death from any cause (the endpoint). For patients who were still
alive or lost to follow-up by the time of analysis cutoff, their OS time
was censored at the date of the last known follow-up. All OS and
follow-up data were obtained from clinical follow-up records within
the TCGA database. If the data were normally distributed, t-test was
used for comparison. If not, Wilcoxon rank sum test was used
instead. P value less than 0.05 was considered statistically
significant. 0.05 < P value < 0.10 as indicative of borderline
significance. Wilcoxon and t-tests were adjusted for using the
Benjamini-Hochberg method via the p.adjust function in R.

3 Result

3.1 The scoring of genes related to
glutamine metabolism in tumor tissue is
negatively correlated with patient
prognosis and anti-tumor immune
presentation

To distinguish between high and low metabolism of glutamine
and to clarify the relationship between glutamine metabolism levels
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and prognosis of pancreatic cancer patients, we scored the
expression of glutamine metabolism-related genes (ALDHI18A1,
GAPDH, GCLM, GLS, GOT1, MTHES, OAT, SLC1A5, SLC38A1,
SLC38A5, SLC7A5) in tumor cells of 176 patients in TCGA cohort,
and divided them into high and low scoring groups based on the
median value (Figure 1A). Hierarchical clustering results also
demonstrated the expression differences of glutamine
metabolism-related genes between these two patient groups,
indicating that unsupervised clustering algorithms can
significantly separate these 176 pancreatic cancer patients based
on glutamine metabolism-related genes (Figure 1B). Kaplan-Meier
curves showed that patients in the high scoring group had a worse
prognosis. In the high scoring group, the overall survival rates at 1,
3, and 5 years were 63.1%, 27.1%, and 22.6%, respectively. However,
in the low scoring group, the overall survival rates at 1, 3, and 5
years were 82.1%, 41.0%, and 27%, respectively, suggesting a
negative correlation between glutamine metabolism and
pancreatic cancer prognosis (Figure 1C). The baseline
characteristics of the patients are detailed in Supplementary
Table S3.

In order to investigate whether the metabolism of glutamine in
tumor cells affects the anti-tumor activity of immune cells in
pancreatic cancer, we used single-sample gene set enrichment
analysis (ssCSEA) to study the relationship between glutamine
metabolism in tumor cells and immune infiltration, cytotoxic
gene set (GZMK, GZMH, GZMB, PRF1, IFNG, EOMES, NKG7),
immune exhaustion gene set (PDCD1, TIGIT, HAVCR2, LAG3,
CTLA4), and immature-related gene set (LEF1, SELL, TCF7, CCR7)
in the pancreatic cancer microenvironment. Immune infiltration
analysis revealed a trend toward higher CD8+ T cell infiltration in
the tumor immune microenvironment of the low glutamine score
group compared to the high glutamine score group (P = 0.059)
(Figure 1D). In the low score group, the immune cell cytotoxicity-
related gene score was significantly higher than that in the high
score group (Figure 1E). By plotting the glutamine score and
immune cell cytotoxicity score of the two groups, we found that
there was a negative correlation between tumor cell glutamine
metabolism and immune cell cytotoxicity in the high score group
(Figure 1F). In terms of immune exhaustion score, we found that
the low score group was significantly higher than the high score
group (Figure 1G), which indicates a negative correlation between
tumor cell glutamine metabolism and immune cell exhaustion. To
determine whether the low immune cell exhaustion score in the
high glutamine score group is related to the level of immature
immune cells, we plotted the glutamine score and immature-related
gene set (LEF1, SELL, TCF7, CCR7) of the two groups, and found
that as the glutamine score increased in tumors with high glutamine
metabolism, the expression of immature immune cell genes
increased significantly (Figure 1I). This may suggest that the
decrease in immune cell cytotoxicity in the high glutamine
metabolism group of tumor cells is related to the level of
immature immune cells. The results of this study indicate that as
the glutamine metabolism in tumors increases, immune cells
become more immature, while the scores of immune cell
cytotoxicity and exhaustion decrease.
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FIGURE 1

The expression scores of glutamine metabolism-related genes in the tumor microenvironment of pancreatic cancer are closely correlated with

the anti-tumor activity of immune cells and the prognosis of patients. (A) The upper curve shows the distribution of glutamine metabolism-related
gene expression scores in tumor cells of all pancreatic cancer patients. The lower dot plot shows the survival status and survival time of all patients
sorted by tumor glutamine metabolism-related gene expression scores from low to high. (B) The heatmap shows the expression levels of glutamine
metabolism-related genes between two groups. Blue represents low metabolism group, and red represents high metabolism group. (C) This
Kaplan-Meier curve shows the difference in overall survival rate between different groups. (D) The box plot shows the degree of infiltration of

22 immune cells in the tumor microenvironment. (E, G) Differences in cell toxicity score and exhaustion score of CD8T cells between the two
groups. (F, H) Fitting curves of glutamine metabolism score of tumors in the two groups with cell toxicity score and exhaustion score. The
correlation coefficient and significance test were calculated and marked in the upper left corner. (1) Fitting curves of glutamine metabolism score of
tumor cells in the two groups with expression levels of immature-related genes. The correlation coefficient and significance test were calculated
and marked in the upper left corner.
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3.2 Identification of subpopulations and
patient stratification using single-cell
transcriptome sequencing data

To obtain a comprehensive single-cell gene expression atlas of
the pancreatic cancer immune microenvironment, we used the
program package ‘Seurat’ to identify differential genes and cell
types in 12 pancreatic cancer patients. A total of 39,719 qualified
cells were annotated as nine major cell subtypes and one undefined
cell subtype (Figure 2A). The major cell subtypes include
neutrophils (ITGAM, ITGAX), epithelial cells (EPCAM, KRT18,
KRT19), fibroblasts (TIMP1, FN1, ACTA2), mast cells (FCERIA,
KIT), acinar cells (CTRB1, CELA3A, PLA2GIB), macrophages
(CD68, CD163, LYZ), B cells (CD38, TNFRSF17), and NK/T cells
(KLRB1, PRF1, CD2, CD3E, CD3D) (Figure 2C). Tumor cells were
identified using the INFERCNV algorithm (https://github.com/
broadinstitute/inferCNV). As no known molecular markers were
mapped to the undefined cell subtype, it was not included in
this study.

In order to investigate the impact of tumor cell glutamine
metabolism on immune subpopulations in the immune
microenvironment of pancreatic cancer, we divided 12 patients
into a high-scoring group (P01, P6, P5, P16, P3, P11) and a low-
scoring group (P8, P2, P13, P15, P7, P8) based on the expression
scores of glutamine metabolism-related genes in tumor cell
subpopulations (Figure 2F). At the same time, we found that in
the low-scoring group of tumor cell glutamine metabolism, the
glutamine scores of T cells and NK cells were mostly higher than
those of tumor cell glutamine scores. In contrast, the opposite was
true in the high-scoring group of tumor cell glutamine metabolism
(Figures 2G, I). Interestingly, compared with the low-scoring group,
the high-scoring group had more tumor cells (24% vs 19%) and
fewer T cells and NK cells (21% vs 23%) (Figures 2H, J). This
suggests that in the immune microenvironment of pancreatic
cancer, high tumor cell glutamine metabolism will be
accompanied by low metabolism of immune cells and low
infiltration of T cells and NK cells.

3.3 In the immune microenvironment of
pancreatic cancer, the glutamine
metabolism of tumor cells can affect the
anti-tumor activity of CD8 T cells

To further investigate the effect of tumor cell glutamine
metabolism on CDS8 effector T cells, we identified 8700 T cells
and NK cells into 12 known cell subpopulations and one undefined
cell subpopulation based on known molecular markers (Figures 3A,
B). CD4 T cell subpopulations included CD4Tn (TCF7, SELL, IL7R,
CCR7, LEF1, MAL), CD4Trg (FOXP3, PDCD1, CTLA4, TIGIT,
BATF), CD4Tm (S100A4, S100A10, ANXA1, IL7R, KLF2),
CD4Th17 (CCR6, IL2, DPP4, RORA, IFNGRI1), and CD4Tth
(CXCL13, GNG4, CD200, IGFL2, TOX2). CD8 T cell
subpopulations included CD8Tem (GZMK, GZMH, DUSP2,
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ITM2C, CD74, EOMES, CST7), CD8Trm (ZNF683, IL7R,
ANXA1, CD55, GZMA, HOPX, CXCR6, ITGA1l), CD8Temra
(GZMA, GZMH, GZMB, ZEB2, TBX21, NKG7, PLEK, KLRD1),
CD8Tc17 (SLC4A10, CEBPD, NCR3, IFNGR1, RORA, LTK), and
CD8Tn (CCR7, LEF1, TCF7, SELL). NK cells included NK-
FCGR3A(+) cells (NCAM1, CD160, FCGR3A) and NK-
FCGR3A(-) cells (NCAMI1, CD160). Both CD8Tem and
CD8Temra subpopulations belonged to CD8-Tef (Figures 3A, B).
Some T cells could not be mapped to known molecular markers
after grouping, so they were not biologically annotated. The two t-
SNE plots and pie charts show the composition ratio of T cell and
NK cell subpopulations in the two populations (Figure 3I).

3.3.1 Influence of tumor cells glutamine
metabolism on CD8 effector T cells cytotoxicity

To investigate the effect of tumor cell glutamine metabolism on
CD8 effector T cell cytotoxicity, we calculated a cytotoxicity score
for each T cell based on the expression levels of immune cell
cytotoxicity-related genes (GZMK, GZMH, GZMB, PRF1, IFNG,
EOMES, and NKG7). The cytotoxicity score of T cells in the high
glutamine metabolism group of tumor cells was significantly lower
than that in the low glutamine metabolism group, and the difference
was statistically significant (Wilcoxon test, p = 2.8 x 10—6). Further
study of CD8 effector T cells (CD8T-Tem and CD8T-Temra)
revealed that the immune cell cytotoxicity score of CD8T-Tem in
the high glutamine metabolism group was significantly lower than
that in the low glutamine metabolism group, and the difference was
statistically significant (Wilcoxon test, p = 4.7 x 10-5). However,
there was no statistically significant difference in the immune cell
cytotoxicity score of CD8T-Temra between the high and low
glutamine metabolism groups (Figure 3C). These findings suggest
that high tumor cell glutamine metabolism is associated with a
decrease in cytotoxicity of the CD8T-Tem subset, while there is no
apparent correlation between the cytotoxicity of the CD8T-Temra
subset and tumor cell glutamine metabolism.

3.3.2 Influence of tumor cells glutamine
metabolism on CD8 effector T cells exhaustion

In order to investigate the impact of tumor cell glutamine
metabolism on CD8 effector T cell exhaustion, we calculated an
exhaustion score for each T cell based on the expression levels of
immune exhaustion-related genes (PDCDI1, TIGIT, HAVCR2,
LAG3, and CTLA4). In T cells, the immune exhaustion score of
the high glutamine metabolism group was significantly lower than
that of the low group, with a statistically significant difference
(Wilcoxon test, p = 2.2 x 10-16), but this difference was not
significant in CD8-Tem (Wilcoxon test, p = 0.081). In CD8-
Temra, the immune exhaustion score of the high glutamine
metabolism group was actually higher than that of the low group,
with a statistically significant difference (Wilcoxon test, p = 0.0046)
(Figure 3D). This suggests that high glutamine metabolism in
tumor cells is associated with exhaustion in the CD8-Temra
subset, but not with exhaustion in the CD8-Tem subset.
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FIGURE 2

Biological annotation of single-cell sequencing data. (A) The t-SNE plot displays all the cellular subpopulations present in the tumor
microenvironment of pancreatic cancer patients. Different colors represent different cell types. The cellular subpopulations are annotated as shown
in the figure. (B) The heatmap shows copy number variations of all genes on 22 chromosomes in normal epithelial cells and malignant epithelial
cells. All cells are classified into 7 groups using unsupervised clustering algorithm. The group with the lowest copy number variation is identified as
normal epithelial cells, while the rest are malignant epithelial cells. (C) The bubble plot shows the expression levels of molecular marker genes and
cell proportions in each cellular subpopulation. The color of the dot represents the average expression level of the gene, with red indicating high
expression and blue indicating low expression; the size of the dot represents the cell proportion. (D) This boxplot shows the difference in copy
number variation scores between the 7 epithelial cell subpopulations. (E) We demonstrate the difference in copy number variation scores between
the reference cell line, normal epithelial cells, and malignant epithelial cells (tumor cells) after biological annotation. (F) This scatterplot divides 12
pancreatic cancer patients into high- and low-metabolism groups based on the expression score of glutamine metabolism-related genes in tumor
cells. (G, H) The boxplot (G) displays the expression score of glutamine metabolism-related genes in tumor cells, T cells, and NK cells of 6 low-
metabolism group patients, while the pie chart (H) shows the composition ratio of all cell subpopulations in this group. (I, 3) The boxplot (I) displays
the expression score of glutamine metabolism-related genes in tumor cells, T cells, and NK cells of 6 high-metabolism group patients, while the pie
chart (J) shows the composition ratio of all cell subpopulations in this group.
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FIGURE 3

Immune functional differences of CD8+ T cell subsets among different populations. (A) The t-SNE plot displays T cell and NK cell subpopulations
from the tumor microenvironment of pancreatic cancer patients. Different colors represent different cell types. Subpopulation annotations are
shown in the figure. (B) The bubble plot shows the expression levels and cell proportions of molecular markers in each cell subpopulation. The color
of the dots represents the average expression level of the gene, with red indicating high expression and blue indicating low expression. The size of
the dots represents the cell proportion. (C-E) These three sets of boxplots show the differences in cell cytotoxicity score, exhaustion score, and
naive score of the entire T cell subpopulation and its CD8-Tem and CD8-Temra subpopulations between two groups. (F) We show the fitting curve
between the tumor cell glutamine metabolism-related gene expression score of the two groups and the naive score of CD8-Tem and CD8-Temra
subpopulations. (G, H) We separately display the fitting curves between the naive score and exhaustion score and cell cytotoxicity score of four
subpopulations (CD8-Tem, CD8-Temra, NK-FCGR3A(-), and NK-FCGR3A(+)) in the high and low metabolism groups. (I) Two sets of t-SNE plots and
pie charts show the composition ratio of T cell and NK cell subpopulations in two groups. (J) The bar graph displays the pathway enrichment
differences between CD8-Tem and CD8-Temra subpopulations between the two groups. (K, L) The t-SNE plots on the left show the enrichment
levels of two pathways in all T cells and NK cells, and the bar graphs on the right show the activation ratio of the two pathways between CD8-Tem
and CD8-Temra subpopulations.

Frontiers in Immunology 10 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1599252
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Fan et al.

3.3.3 Influence of tumor cells glutamine
metabolism on CD8 effector T cells maturity

In order to investigate the impact of tumor cell glutamine
metabolism on the development of CD8 effector T cells, we used
immature immune cell-related genes (LEF1, SELL, TCF7, CCR7) to
score the immaturity of each T cell. In the high glutamine
metabolism group of tumor cells, the immature scores of T cells
and CD8-Tem were significantly higher than those in the low score
group, with significant statistical differences (Wilcoxon test, p = 2.2 x
10-16, p = 6.7 x 10-5), while there was no statistical difference in
immature scores between the two groups of CD8-Temra (Figure 3E).
We analyzed the fitting curves of tumor cell glutamine metabolism
score and immature scores of CD8-Tem and CD8-Temra subsets in
the two groups and found that in the high glutamine metabolism
group of tumor cells, the immature scores increased with the increase
of tumor cell glutamine metabolism score, and the difference in
CD8-Tem subset had statistical significance (R = 0.89, p = 0.018)
(Figure 3F). This indicates that the higher the level of tumor cell
glutamine metabolism, the more immature the CD8-Tem subset,
and the immaturity level of CD8-Temra subset may not be related to
tumor cell glutamine metabolism.

3.3.4 Is there correlation between CD8 effector T
cells cytotoxicity and between immaturity scores
and exhaustion scores?

The Figure 3G shows the fitted curves between the cytotoxicity
scores and the immaturity scores of four cell subpopulations (CD8-
Tem, CD8-Temra, NK-FCGR3A(-), and NK-FCGR3A(+)) of
tumor cells with high and low glutamine scores. The immune cell
cytotoxicity of CD8-Tem (high score group: R=-0.14, p=0.022; low
score group: R=-0.12, p=0.0031), NK-FCGR3A(-) (high score
group: R=-0.26, p=6.2x10-8; low score group: R=-0.24,
p=0.00012), and NK-FCGR3A(+) (high score group: R=-0.26,
p=2x10-5; low score group: R=-0.019, p=0.72) subpopulations
decreased as the immaturity scores increased, especially in the
high glutamine score group of tumor cells. However, there was no
significant correlation between the cytotoxicity of CD8-Temra
subpopulation and the immaturity scores. The Figure 3H shows
the fitted curves between the cytotoxicity scores of four
subpopulations (CD8-Tem, CD8-Temra, NK-FCGR3A(-), and
NK-FCGR3A(+)) of tumor cells with high and low glutamine
scores and the exhaustion scores. The two t-SNE plots and pie
charts show the composition ratio of T cell and NK cell
subpopulations in the two populations (Figure 3I). The immune
cell cytotoxicity of CD8-Temra and NK-FCGR3A(-)
subpopulations increased as the exhaustion scores increased,
while there was no significant correlation between the cytotoxicity
of CD8-Tem and NK-FCGR3A(+) subpopulations and the
exhaustion scores. Through the above research, we found that the
high metabolism of glutamine in tumor cells may reduce the
cytotoxicity of CD8-Tem cells by inhibiting their development
and inducing their immaturity. Additionally, the high metabolism
of glutamine in tumor cells may promote the exhaustion of CD8-
Temra subpopulation. In general, the high metabolism of glutamine
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in tumor cells is negatively correlated with the anti-tumor activity of
CT8 effector T cells.

3.3.5 Influence of tumor cells metabolism on
immune cell activation pathways

To further elucidate the mechanism underlying the anti-tumor
activity of CD8 effector T cells through the inhibition of tumor cell
glutamine metabolism, we used gene set enrichment analysis
(GSEA) to quantitatively calculate the pathway enrichment scores
of high and low scoring groups in CD8-Tem and CD8-Temra
subsets. In the low scoring group, the immune cell activation
pathways of CD8-Tem subset were significantly upregulated, such
as o3 T cell activation, interferon-gamma pathway, tumor necrosis
factor pathway, cytokine production, lymphocyte and leukocyte
differentiation, etc. These immune cell activation pathways were
also significantly upregulated in the CD8-Temra subset in the low
scoring group (Figure 3]). In the low scoring group, the T cell
activation pathway (CD8-Tem subset) and lymphocyte
differentiation pathway (CD8-Tem and CD8-Temra subsets) were
significantly higher than those in the high scoring group
(Figures 3K, L). These studies demonstrate that when tumor cell
glutamine metabolism is reduced, the immune activation pathways
of CD8-Tem and CD8-Temra subsets are significantly upregulated.

3.3.6 Conclusions

In the microenvironment of pancreatic cancer, high glutamine
metabolism in tumor cells has different effects on different CD8Tef
subsets. High glutamine metabolism in tumor cells reduces the
cytotoxicity and differentiation of CD8-Tem subset, and increases
the CD8-Temra exhaustion score. In conclusion, high glutamine
metabolism in tumor cells ultimately reduces the anti-tumor
activity of CD8-Tef(CD8-Tem and CD8-Temra).

3.4 Under the influence of tumor cell
glutamine metabolism, CD8 effector T cells
have a distinct immune status

In order to study the developmental differences and dynamic
changes in genes and pathways of CD8-Tem and CD8-Temra
subsets in different levels of tumor cell glutamine metabolism, we
used the Monocle package to plot the developmental trajectory of
cells (CD8-Tem subset, CD8-Temra subset, and CD8Tn subset) and
observed changes in the immune status of CD8 effector T cell
subsets. Cells were sequentially arranged on the trajectory tree
according to a pseudotime of 0 to 10 (Figure 4A), with the early
part of the trajectory defined as stage 1. After stage 1, CD8 T cells
began to develop in different directions; some cells developed
towards stage 2 (fate 1), while others developed towards stages 3,
4, and 5 (fate 2) (Figure 4B). Each cell on the pseudotemporal
trajectory was scored for cytotoxicity and then mapped to the
trajectory tree according to color, showing the dynamic changes
in cytotoxicity of CD8T cell subsets between tumor cell high-
metabolism and low-metabolism groups (Figure 4C). We

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1599252
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Fan et al.

10.3389/fimmu.2025.1599252

A C E
Pseudotime memsmm——" Cytotoxicity Score - CD8-Tn
00 25 50 75 100 00 02 04 06 08
/
o~ . 3
E &
5 e y of
g e -
£ v S Zo e
o Y Y
o T
N
P -2 0 2 High Score Group Low Score Group
Component 1
B F D
b Phase 5/ ML
Phase 5 ] =zl
4 cDa-Te
Phase 4 .- = cw;“,ﬂ
B cos-m
Phase 4 Phase 3 I CD8-Tem
|
| B
Phase 2 Phase 2 O ————
Phase 1/ SR
Phase 1°
K K o & >
cell ratio (%) "
Low
G
| Type Cell fate fate1 — fate2
= =
= - ’ ! cp28 CDKN2D
~ Positive regulation of apoptotic 1.00- 1 ]
PRELID1 LILRB1 e _ signaling pathway g : !
IRF1 FAsLG | B és = ~ Intrinsic apoptotic signaling pathway 0.50- . )
CDKN2D TBX21 &= == = - === Leukocyte apoptotic process g»;i: : - : NS
PLEKHF1 LYN ;__-,‘ == — Negative regulation of immune response - .
PYCARD IL27RA = =l Negative regulation of cell cycle G2/M EOMES HAVCR2
— _ phase transition 1.00- ! !
HLA-DRB1 - Negati Jation of lymphocyt 0.75- " )
3 E i . Negative regulation of lymphocyte 0.504 = ;
HAVCR2 iz 3 proliferation 0.25- : :
~ ™ Negative regulation of T cell activation .§ 0.00- i |
—— — H IFNG LILRB1
e - 2 1.00- 1 1
E =k 2 S |
E =1 = 0.50- : :
IFNG  TNFSF9| — *'. '. =l Positive regulation of T cell activation 0.25- ' '
CcD28 CD27 & e W — = T cell differentiation 0.00- y I —_
ccLs epRiss] g T cell proliferation PRELID1 TNFSF9
—_
———— e . —— — Negative regulation of T cell 1.00- ! !
IL10  EOMES 3 T— = = ~—= apoptotic process 0.75- : :
; I — 0.50- : ;
Phase 2 Phase 1 Phase 1 ase K
ase ase ase Phase 3 Phase 4 g'éz : : /
Cluster  Cell ) v 1 ' o ' T ' '
_21 0 E ',:,Z'_’:,anch 10 5 0 5 1010 5 0 5 10
3 2 - 1 2 ICeII fate 1
s
| | Cell fate 2 Pseudotime
FIGURE 4

The association between glutamine metabolism of pancreatic cancer cells and the developmental trajectory of CD8+ T cells. (A) Pseudotime
analysis of CD8-Tem, CD8-Tn, and CD8-Temra subpopulations. Arrows indicate the direction of cell differentiation. (B) CD8T cells ordered by
pseudotime were divided into five trajectory periods and indicated by different colors. (C) Each cell on the pseudotime trajectory was assigned

a cytotoxicity score and mapped to the trajectory tree according to color, demonstrating the dynamic changes of cytotoxicity in CD8T cell
subpopulations between high metabolic and low metabolic tumor cell groups. (D, E) The trajectory tree shows the distribution of three CD8T cell

subpopulations along the developmental trajectory. CD8-Tn is indicated

by light blue, CD8-Temra by deep red, and CD8-Tem by orange-yellow.

(F) This histogram shows the cell distribution of CD8-Tn, CD8-Temra, and CD8-Tem subpopulations in five periods among different populations,
indicated by different colors for CD8T cell subpopulations. (G) The heatmap displays the dynamic changes of gene expression over pseudotime.
Representative genes of gene clusters 1 and 2 are listed on the left of the heatmap. Immune regulation-related pathways enriched are labeled on
the right of the heatmap. (H) The two-dimensional fitting curve shows the dynamic expression of immune-related genes during pseudotime in two

developmental pathways.

observed that the cytotoxicity of CD8T cell subsets in the low-
glutamine metabolism group of tumor cells was higher than that in
the high-glutamine metabolism group at all stages, especially in
stages 3, 4, and 5 (fate 2). We also visualized the distribution of
CD8-Tem, CD8-Temra, and CD8-Tn subsets on the trajectory tree
(Figures 5D, E). We calculated the cell proportions of these three T
cell subsets at five stages (Figure 4F). We observed that the
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proportion of CD8 T cells in the low-glutamine metabolism
group of tumor cells that developed towards fate 2 was
significantly higher than that in the high-glutamine metabolism
group. There was no significant relationship between the
development of CD8 T cells towards fate 1 and tumor cell
glutamine metabolism. Pseudotemporal analysis showed that the
development of CD8 T cells towards fate 2 mainly upregulated
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Glutamine metabolism inhibitors (JHU083) exhibit anti-tumor effects and enhance the anti-tumor efficacy of PD-1 inhibitors. Different colors were
used to mark the groups: red, blue, green, and purple represent VEH, JHUO083, antiPD-1, and JHUO083+antiPD-1 groups, respectively. NS indicates
no statistical significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (A, B) The relative expression levels of SLC38A1 and GLS RNA in tumor
tissue after drug treatment. (C) Images of mouse tumor specimens collected 26 days after inoculation. (D) A bar chart showing the differences in
tumor volume among groups of mice collected 26 days after inoculation. (E) Tumor growth curves showing the growth rate of tumors in different
groups. Panc02 cells were inoculated on day 1 and drug treatment was started on day 7. Tumor volume was measured every 2 days. Significance
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Frontiers in Immunology 13 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1599252
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Fan et al.

immune activation-related pathways, such as T cell activation
pathway, T cell differentiation and proliferation pathway, and T
cell apoptosis inhibition pathway, and many pro-immune-related
genes, such as CD28, EOMES, INFG, and TNFSF9, were also
upregulated. The development of CD8 T cells towards fate 1
mainly upregulated immune inhibition-related pathways, such as
immune cell apoptosis activation pathway, inhibition of immune
response, inhibition of lymphocyte proliferation, and inhibition of
T cell activation, and many genes related to proliferation and
immune inhibition, such as PRELIDI1, LILRB1, CDKN2D, and
HAVCR2, were also upregulated (Figures 4G, H). In general, the
differentiation status and immune function of CD8 T cells exhibit
significant heterogeneity between different pancreatic cancer cell
glutamine metabolism levels. When tumor cell glutamine
metabolism is weaker, CD8 T cells are more likely to acquire
stronger anti-tumor activity.

3.5 The glutamine metabolism inhibitor
JHUO83 enhances the anti-tumor effect of
immune checkpoint inhibitors (PD-1
inhibitors)

3.5.1 Glutamine metabolism inhibitor JHU083
impact on mRNA expression levels of the
glutamine metabolism genes

After treatment with JHU083, the mRNA expression levels of
the genes SLC38A1 and GLS decreased significantly, indicating
successful inhibition of glutamine metabolism in subcutaneous
pancreatic cancer tissue (Figures 5A, B).

3.5.2 Glutamine metabolism inhibitor JHU083
impact on tumor volume

To investigate the therapeutic effect of the glutamine
metabolism inhibitor JHU083 on pancreatic cancer, we compared
the efficacy of four groups of mice treated with different drugs,
including the VEH group, JHU083 group, Anti-PD-1 group, and
JHUO083+Anti-PD-1 group. Compared with the VEH group, both
the JTHU083 group and the Anti-PD-1 group showed a significant
decrease in subcutaneous tumor volume. In addition, the JHU083
group showed a more significant decrease in subcutaneous tumor
volume than the Anti-PD-1 group. The combination of JHU083
and PD-1 inhibitor not only significantly inhibited tumor growth
but also demonstrated stronger efficacy than using JHU083 or Anti-
PD-1 alone (Figures 5C-E). These results suggest that JHU083 is
effective in treating pancreatic cancer and enhances the anti-tumor
effect of immune checkpoint inhibitors (PD-1 inhibitors).

3.5.3 Glutamine metabolism inhibitor JHU083
impact on tumor immune microenvironment

In order to clarify the effect of glutamine metabolism enzyme
inhibitor JHU083 on the immune microenvironment of pancreatic
cancer, we performed immunohistochemical staining on tumor
tissues, including Ki-61, CD8, CD4 and CCR?7 (Figure 5F). We
found that the percentage of Ki-67 positive cells in the JHU083
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group, Anti-PD-1 group, and JHU083+Anti-PD-1 group was lower
than that in the VEH group, and the difference was statistically
significant. Meanwhile, the percentage of Ki-67 positive cells in the
JHUO083 group was significantly lower than that in the Anti-PD-1
group. The percentage of Ki-67 positive cells in the JHU083+Anti-
PD-1 group was significantly lower than that in the JHU083 group
and the Anti-PD-1 group, and the difference was statistically
significant, indicating that both JHU083 and PD-1 inhibitors can
effectively inhibit the proliferation of pancreatic cancer cells. The
effect of JHUO083 alone was better than that of PD-1 inhibitor alone,
and the inhibitory effect of the combination of the two drugs on
tumor cell growth was significantly enhanced compared to either
drug alone (Figure 5G). The CD8T cell density in the JHUO083
group, Anti-PD-1 group, and JHUO083+Anti-PD-1 group was
significantly higher than that in the VEH group, and the
difference was statistically significant. The CD8T cell density in
the JHUO083 group was significantly higher than that in the Anti-
PD-1 group, and the CD8T cell density in the JHU083+Anti-PD-1
group was higher than that in either single-drug group (Figure 5H).
The CD4 T cell density in the JHU083 group, Anti-PD-1 group, and
JHU083+Anti-PD-1 group was significantly higher than that in the
VEH group, and the difference was statistically significant. The
CD8T cell density in the JHUO083 group was significantly higher
than that in the Anti-PD-1 group, while the CD8T cell density in
the JHU083+Anti-PD-1 group was significantly higher than that in
the Anti-PD-1 group, with no significant difference from the
JHUO083 group (Figure 5I). This indicates that JHU083 can
enhance the immune infiltration of both CD8T and CD4 T cells
in the pancreatic cancer microenvironment, while PD-1 inhibitors
can only enhance the immune infiltration of CD8 T cells. Compared
to JHUO083 or PD-1 inhibitor alone, the combination of the two
drugs can enhance the infiltration of CD8 T cells in the pancreatic
cancer immune microenvironment. There was no statistically
significant difference in the CCR7+ cell density between the
JHUO083 group and the JHU083+Anti-PD-1 group, but it was
significantly higher than that in the VEH group and the Anti-PD-
1 group, while there was no statistically significant difference in the
CCR7+ cell density between the VEH group and the Anti-PD-1
group (Figure 5]). This indicates that JHU083 can reduce the
proportion of immature T lymphocytes in the tumor immune
microenvironment, while PD-1 inhibitors have no such effect.
Overall, JHUO083 alone has a clear anti-tumor effect on pancreatic
cancer and enhances the anti-tumor effect of PD-1 inhibitors.

3.6 The glutamine metabolism enzyme
inhibitor (JHUO83) can inhibit the
apoptosis of immune cells in the tumor
immune microenvironment and enhance
the anti-tumor effect of CD8 T cells

In order to investigate the effect of the glutamine metabolism
inhibitor JHU083 on CD8 T cells infiltration and immune
phenotype in the immune microenvironment, we used flow
cytometry to perform immune typing of CD8 T cells in tumor
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In the pancreatic cancer microenvironment, the inhibition of glutamine metabolism can suppress the apoptosis of immune cells, increase immune
cell infiltration, reshape the CD8 T-cell immune phenotype, and enhance the immune therapy response. Different colors were used to mark the
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tissue (CD69 as a T cell activation marker, INFy and GZMB as cell
cytotoxicity markers). The proportion of CD8 T cells in CD45 T
cells in the JHU083 group, Anti-PD-1 group, and JHU083+Anti-
PD-1 group was significantly higher than that in the VEH group.
The proportion of CD8 T cells in CD45 T cells in the JHU083 group
was significantly higher than that in the Anti-PD-1 group. The
proportion of CD8 T cells in CD45 T cells in the JHU083+Anti-PD-
1 group was significantly higher than that in the single drug group
(Figures 6E, F). These results indicate that both JHU083 and Anti-
PD-1 can increase the proportion of CD8 T cells in CD45 T cells in
the immune microenvironment, and single-use JHU083 is superior
to Anti-PD-1, while the combination of the two is better than single
drugs. The proportion of CD8+CD69+ T cells in CD8 T cells in the
JHUO083 group, Anti-PD-1 group, and JHU083+Anti-PD-1 group
was significantly higher than that in the VEH group. The
proportion of CD8+CD69+ T cells in CD8 T cells in the JHU083
group was significantly higher than that in the Anti-PD-1 group.
The proportion of CD8+CD69+T cells in CD8 T cells in the
JHUO083+Anti-PD-1 group was significantly higher than that in
the single drug group (Figures 6G, H), indicating that single-use
JHUO083 and Anti-PD-1 can both stimulate CD8 T cells activation,
but single-use JHUO083 is superior to Anti-PD-1, and the
combination of the two is better than single drugs.

The proportion of CD8+ INFy+ T cells in CD8 T cells was
significantly higher in the JHU083 group, Anti-PD-1 group, and
JHU083+Anti-PD-1 group than in the VEH group. The proportion
of CD8+ INFy+ T cells in the JHUO083 group was significantly
higher than that in the Anti-PD-1 group. The proportion of CD8+
INFy+ T cells in the JHU083+Anti-PD-1 group was significantly
higher than that in the Anti-PD-1 group, but there was no
statistically significant difference between the JHU083 group and
the JHU083+Anti-PD-1 group. The proportion of CD8+ GZMB+ T
cells in CD8 T cells was significantly higher in the JHU083 group,
Anti-PD-1 group, and JHU083+Anti-PD-1 group than in the VEH
group. The proportion of CD8+ GZMB+ T cells in the JHU083
group was significantly higher than that in the Anti-PD-1 group.
The proportion of CD8+ GZMB+ T cells in the JHU083+Anti-PD-1
group was significantly higher than that in the single drug groups.
These results indicate that both the JHU083 group and the Anti-
PD-1 group can enhance the cytotoxicity of CD8 T cells to a certain
extent, but JHU083 alone is superior to Anti-PD-1, and the
combination of the two is better than using a single drug. In
summary, the glutaminase inhibitor JHU083 can inhibit the
apoptosis of immune cells in the tumor immune
microenvironment and enhance the anti-tumor effect of CD8 T
cells. Furthermore, it can enhance the anti-tumor effect of PD-
1 inhibitors.

4 Discussion

Pancreatic cancer is known to be glutamine-dependent (41-43),
yet how tumor cell glutamine metabolism influences immune cells
in the tumor microenvironment is still unclear. In this study, based
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on the pancreatic cancer dataset in the TCGA database, we found
that the tumor glutamine metabolism of patients was negatively
correlated with patient prognosis and immune cell cytotoxicity, and
positively correlated with immune cell immaturity score. After
analyzing the pancreatic cancer single-cell dataset in the GEO
database, we found that high glutamine metabolism in tumor
cells would inhibit the anti-tumor effect of CD8 T cells. Through
in vivo experiments in mice, we observed that the glutamine
metabolism inhibitor has an anti-tumor effect and can inhibit
immune cell apoptosis in the tumor microenvironment, while
increasing the cytotoxicity of CD8 T cells and enhancing the anti-
tumor efficacy of PD-1 inhibitors.

In recent years, the incidence of pancreatic cancer has been on
the rise. It accounts for approximately 2% of all cancers and is
associated with 5% of cancer-related deaths (2, 44). The pancreatic
cancer microenvironment is considered an immune-suppressive
environment (45-51). In the pancreatic cancer microenvironment,
most T lymphocytes are CD4 T cells, with CD8 T cells accounting for
only a small proportion. The CD4 T cells in the pancreatic cancer
microenvironment are mainly Th2 cells, rather than Thl cells. Th2
cells are associated with tumor immune tolerance, while Th1 cells can
increase the tumor-killing effect of CD8 T cells (24, 25). In addition,
Treg cells within the CD4 T cell population gradually increase in the
development of pancreatic cancer (24, 52). Interestingly, Treg cells
play an important role in immune evasion in pancreatic cancer
through various immunosuppressive mechanisms (24, 52, 53). These
may be the reasons why immune checkpoint inhibitors have not
achieved satisfactory therapeutic effects. Therefore, a thorough
investigation into the formation mechanism of the immune-
suppressive microenvironment in pancreatic cancer is an
important approach to improving the efficacy of pancreatic cancer
immunotherapy. In this study, through transcriptome sequencing of
tissue blocks, we found that the expression score of tumor glutamine
metabolism-related genes was negatively correlated with patient
prognosis, immune cell toxicity, and immune cell differentiation.
Meanwhile, single-cell sequencing data analysis results showed that
the anti-tumor activity of CD8T effector cells in the tumor immune
microenvironment of patients with high tumor glutamine
metabolism was reduced. High tumor glutamine metabolism in
tumor cells reduced the cytotoxicity and differentiation degree of
CD8-Tem subsets and increased the CD8-Temra exhaustion score.
Through GSEA analysis, we observed a negative correlation between
tumor cell glutamine metabolism and the activation and
differentiation of CD8-Tem and CD8-Temra subsets. Through the
above studies, we hypothesize that high tumor glutamine metabolism
reshapes the tumor metabolic microenvironment, causing a decrease
in the anti-tumor effect of CD8-Tef. Disrupting such abnormal
tumor metabolic microenvironments may improve the anti-tumor
activity of CD8-Tef, and the efficacy of immune checkpoint
inhibitors may also improve.

According to existing research, the tumor microenvironment
where CD8 T cells are located is closely related to their
developmental trajectory (26). This suggests that the abnormal
metabolism of tumor cell glutamine may reshape the metabolic
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microenvironment of the tumor and alter the developmental
trajectory of CD8 T cells. Gene dynamic time analysis and gene
set enrichment analysis show that the proportion of CD8 T cells in
fate 2 development in the high glutamine score group of tumor cells
is significantly lower than that in the low glutamine score group.
When CD8 T cells develop into fate 2, they mainly up-regulate
immune activation-related pathways. Based on the above data, we
speculate that CD8 T cells in the tumor microenvironment with
high glutamine metabolism are more likely to lead to weakened
anti-tumor activity. When tumor cell glutamine metabolism is
inhibited, the developmental trajectory of CD8 T cells returns to
normal, and their anti-tumor activity also recovers.

The efficacy of PD-1 inhibitors was found to depend on the
infiltration of immune cells in the tumor microenvironment (54,
55). Previous research suggests that blocking the high metabolism
of glutamine in tumor cells may increase immune infiltration and
promote the differentiation of immune cells, while also potentially
enhancing the anti-tumor effect of CD8 T cells. In a subcutaneous
pancreatic cancer mouse model, we demonstrated that a glutamine
inhibitor can increase the infiltration of CD4 T and CD8 T cells in
the tumor microenvironment, promote the differentiation of
immune cells, inhibit the rapid proliferation of tumor cells, and
enhance the inhibitory effect of PD-1 inhibitors on tumor growth.
After treatment with the glutamine inhibitor, the tumor volume
significantly decreased, and the growth rate slowed significantly. We
found that the anti-tumor effect of using only the glutamine
inhibitor was superior to using only PD-1 inhibitor, but the
combined use of the two significantly improved the anti-tumor
effect. We also observed that the glutamine inhibitor can inhibit the
apoptosis of immune cells in the tumor microenvironment, and the
combined use of the glutamine inhibitor and PD-1 inhibitor had a
stronger effect in inhibiting immune cell apoptosis. Interestingly,
the proportion of immune cell apoptosis in the spleen decreased
significantly after using only PD-1, but after the combined use of the
glutamine inhibitor, the proportion of apoptosis returned to normal
levels. Therefore, we speculate that JHU083 not only increases the
anti-tumor effect of PD-1 but may also reduce the toxic side effects
of PD-1 in normal tissues. Through flow cytometry cell sorting, we
found that the glutamine inhibitor can promote the infiltration and
activation of CD8 T cells, as well as increase their toxicity, and its
effect was significantly enhanced when combined with PD-1
inhibitors. We speculate that the excellent efficacy of JHU083
may be closely related to the increased cytotoxicity of CD8 T cells
and the inhibition of tumor cell growth. The effect of the glutamine
inhibitor on these two cell subsets has already been confirmed in
colon cancer (56). In addition, inhibiting the activity of GLS can
reduce the accumulation of intracellular alpha-ketoglutarate and
confer a high proliferative and long-lived phenotype to CD8 T cells
(56, 57). Even when the glutamine metabolism pathway is
completely inhibited, CD8 T cells can still compensate by taking
up glucose, increasing the activity of pyruvate carboxylase, and
enhancing the activity of the acetyl-CoA metabolism pathway,
leading to increased cellular metabolism (58). However, this
flexible metabolic compensation mechanism is lacking in
tumor cells.
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However, our study still has some shortcomings. Although we
have demonstrated that inhibiting glutamine metabolism in the
tumor microenvironment can increase the infiltration density of
CD4 T cells, we have not proven the subtype of CD4 T cells that
increased in the tumor microenvironment (TME). Therefore, we
cannot determine whether the increased CD4 T cell subtype
promotes the enhanced function of CD8 T cells as Thl cells or
promotes immune evasion of pancreatic cancer as Treg cells, or other
subtypes. Furthermore, although inhibiting glutamine metabolism in
the TME can enhance the cytotoxicity of CD8 T cells, we still do not
know the specific mechanism. We have demonstrated that a
glutamine inhibitor can enhance the anti-tumor effect of PD-1
inhibitors, but we are not sure whether the enhanced ability of PD-
1 to fight tumors is related to the increased cytotoxicity of CD8 T
cells. Finally, the animal model we used only includes some
pathological and clinical features of human pancreatic cancer, so
the sensitizing effect of the glutamine inhibitor on PD-1 inhibitors
needs further validation in clinical trials.
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