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Male infertility is influenced by genetic abnormalities, hormonal imbalances,

lifestyle factors, and environmental exposures. Recently, Damage-Associated

Molecular Patterns (DAMPs) have emerged as key players in male reproductive

health, particularly in regulating inflammatory responses and tissue damage. This

review highlights the role of critical DAMPs, such as HMGB1, HSPs, ATP, eCIRP,

histones, and cfDNA, in processes like spermatogenesis, sperm maturation, and

fertilization. Released through mechanisms like necrosis, apoptosis, pyroptosis,

and exosomes, DAMPs significantly influence immune regulation, thereby

affecting male fertility. Understanding these roles offers new therapeutic

avenues targeting DAMPs to improve male reproductive health and

treat infertility.
KEYWORDS

male infertility, DAMPs, spermatogenesis, sperm maturation, fertilization,
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1 Introduction

Male infertility is a condition characterized by the inability to achieve pregnancy after a

year of unprotected intercourse (1). It is a significant cause of reproductive challenges,

affecting a man’s ability to father children naturally (2). The condition can result from

various factors, including genetic abnormalities (3), hormonal imbalances (4), lifestyle

choices (5), and environmental exposures (6). The impact of male infertility is profound,

often leading to prolonged periods of attempting conception and requiring medical

interventions such as assisted reproductive technologies.

Damage-Associated Molecular Patterns (DAMPs) are endogenous molecules released

by stressed or damaged cells (7). They play a crucial role in the body’s inflammatory

response by activating the innate immune system (8). When released, DAMPs bind to

pattern recognition receptors (PRRs) on immune cells, triggering a cascade of
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inflammatory processes (9). This response, while protective in the

context of acute injury, can become detrimental if chronic, leading

to tissue damage and impaired function (10). This review aims to

explore the role of DAMPs in the male reproductive process, from

spermatogenesis to fertilization, and discuss potential therapeutic

strategies targeting these molecular patterns. Understanding the

connection between DAMPs and the male reproductive process

could provide novel insights into the mechanisms underlying

spermatogenesis and fertilization, and pave the way for

innovative treatments.

This narrative review employed systematic literature retrieval

from PubMed and Web of Science databases using keywords:

DAMPs, male infertility, spermatogenesis, sperm maturation,

fertilization, and associated terms. Inclusion criteria prioritized:

(1) original research elucidating DAMPs’ mechanistic roles in

male reproduction; (2) clinical/animal studies linking DAMPs to

sperm parameters; (3) peer-reviewed publications in English. Final

analysis integrated 145 studies emphasizing the role of DAMPs in

male reproduction.
2 Types and release mechanisms of
DAMPs

2.1 Major types of DAMPs

The immune system’s ability to distinguish ‘self’ from ‘non-self’

is fundamental in initiating immune responses against pathogens

(11). While innate immune cells use PRRs like Toll-like receptors

(TLRs) to detect pathogen-associated molecular patterns (PAMPs),

they also recognize DAMPs released from stressed or damaged cells

(12). DAMPs activate innate immune cells, including neutrophils

(13), macrophages (14), and dendritic cells (15), leading to the

release of cytokines and chemokines that trigger adaptive immune

responses. DAMPs also stimulate non-immune cells such as

epithelial (16), endothelial (17), and fibroblast cells (18), causing

them to release inflammatory mediators. Major DAMPs include but

are not limited to HMGB1, HSPs, ATP, extracellular cold-inducible

RNA-binding protein (eCIRP), histones, extracellular RNAs

(exRNAs), cell-free DNA (cfDNA), and uric acid (19). These

molecules are detected by PRRs such as TLRs, NOD-like

receptors (NLRs), and RIG-I-like receptors (20). Upon DAMP

recognition, TLRs activate downstream signaling pathways

involving myeloid differentiation primary response 88 (MyD88)

(21) and TIR-domain-containing adapter-inducing interferon-b
(TRIF) (22), which in turn activate transcription factors like

activator protein-1 (AP-1) (23) and nuclear factor kappa B (NF-

kB) (24). Additionally, DAMPs can signal through receptors

like RAGE and P2X7 (25), further propagating inflammatory

responses. This complex network of signaling pathways

underscores the pivotal role of DAMPs in modulating immune

and inflammatory responses.
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2.2 Release mechanisms of DAMPs

Building on the descriptions of the various types of DAMPs,

their release mechanisms are diverse and complex, encompassing

necrosis/necroptosis (26), apoptosis (27), pyroptosis (28),

ferroptosis (29), extracellular traps (30), secretory lysosomes (7),

and exosomes (31). Each of these mechanisms contributes to the

release of DAMPs under different pathological and physiological

conditions. For instance, necrosis and necroptosis typically result in

the uncontrolled release of intracellular contents, including

DAMPs, due to cell membrane rupture (32). In contrast,

apoptosis generally involves a more controlled release of

apoptotic bodies containing DAMPs (33). Pyroptosis and

ferroptosis also contribute to DAMPs release through distinct

forms of regulated cell death characterized by inflammatory

responses and lipid peroxidation, respectively (34). Additionally,

DAMPs can be actively secreted through extracellular traps formed

by immune cells, as well as through secretory lysosomes and

exosomes (35), which are specialized vesicles that facilitate

intercellular communication (Figure 1). The specific release

mechanisms and the tissue types involved in these processes are

detailed in Table 1. These DAMP release pathways, though general

in cellular biology, are also active in male reproductive tissues such

as the testes and epididymis. The physiological consequences of

these mechanisms—including their effects on sperm development,

motility, and function—are discussed in detail in Section 4.
3 Roles of DAMPs in spermatogenesis,
sperm maturation and fertilization

Inflammation, along with various forms of cellular stress and

damage, can significantly impact male reproductive processes,

including spermatogenesis (100), sperm maturation (101), and

fertilization (102). The presence of these stressors in the male

reproductive tract often leads to the release of DAMPs. DAMPs

play crucial roles in spermatogenesis, sperm maturation, and

fertilization. Research has demonstrated the involvement of

various DAMPs in different regions of the male reproductive

tract, impacting these critical processes (103). Clinically, the levels

of specific DAMPs have been established as valuable biomarkers,

reflecting distinct infertility phenotypes (Table 2).
3.1 Spermatogenesis

DAMPs play a critical role in regulating spermatogenesis and

have been implicated in various mechanisms leading to male

infertility. Notably, DAMPs regulate spermatogenesis by

activating the inflammasome pathway (IP), particularly the

NLRP3 inflammasome (114). In patients with varicocele (VCL)-

associated infertility, DAMPs released by testicular cells activate the
frontiersin.org
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NLRP3 inflammasome, leading to the release of pro-inflammatory

cytokines such as IL-1a, IL-1b, and TNF-a, which are closely

associated with abnormal sperm production (115). Studies have

shown that the NLRP3 inflammasome is activated in the testes of

VCL patients, resulting in significantly increased levels of Caspase-1

and IL-1b , further highlighting the crucial role of the

inflammasome in male infertility (116). Within the testicular

microenvironment, DAMPs activate immune responses primarily

through testicular macrophages, triggering robust TLR/NF-kB
signaling and resulting in the secretion of pro-inflammatory

cytokines and ROS, which directly contribute to spermatogenic

damage (117). Moreover, HMGB1, a prototypical DAMP, also plays

a significant role in spermatogenesis. In an in vivo rat model,

linagliptin protects against cadmium-induced testicular injury by

inhibiting the HMGB1/TLR4 pathway, reducing testicular

inflammation, and improving sperm quantity and motility (118).

Linagliptin further mitigates testicular damage by suppressing the

HMGB1/TLR4/NLRP3 inflammasome axis, leading to decreased

caspase-1 activity and reduced release of pro-inflammatory

cytokines IL-1b and IL-18. This inhibition is associated with
Frontiers in Immunology 03
attenuated testicular cell apoptosis and enhanced autophagy flux

(118). Studies have shown that mice lacking Hmgb2 (which belongs

to the same HMGB family as Hmgb1) exhibit reduced fertility and

impaired spermatogenesis (119), further emphasizing the

importance of HMGB family proteins in spermatogenesis.

Although Hmgb1 is not directly mentioned in the text, its

homology suggests it may have similar effects. In experimental

autoimmune orchitis (EAO), HMGB1 translocates from testicular

cells, and its action can be blocked by ethyl pyruvate (EP), which

reduces disease progression and spermatogenic damage (120).

Excessive expression of HMGB1 in testicular cells is associated

with inflammation and impaired spermatogenic function.

Specifically, HMGB1 activates TLR4 on testicular macrophages,

driving p38 MAPK/NF-kB-dependent production of TNF-a and

IL-6, and further promoting ROS release, thereby amplifying

immune-mediated spermatogenic disruption (120). In an in vivo

rat model, high-fat diet increased testicular HMGB1 and NLRP3

levels, impairing spermatogenesis, while zinc supplementation

reduced HMGB1 expression and improved sperm quantity and

motility (121). Additionally, eugenol can alleviate torsion/
FIGURE 1

Release mechanisms of DAMPs in male reproductive health (from Figdraw, www.figdraw.com). Various forms of cellular stress, including necrosis/
necroptosis, apoptosis, pyroptosis, ferroptosis, and immune responses, contribute to the release of DAMPs such as HMGB1, HSPs, ATP, eCIRP, histones,
exRNAs, and cfDNA. Necrosis and necroptosis result in the uncontrolled release of intracellular contents due to cell membrane rupture, involving RIPK1,
RIPK3, and MLKL. Apoptosis allows for a controlled release of DAMPs through apoptotic bodies mediated by caspase activity. Pyroptosis, driven by
inflammasome activation, leads to DAMP release via gasdermin (GSDMD) pore formation. Ferroptosis, characterized by lipid peroxidation involving GPX4
and ROS, also releases DAMPs. Additionally, immune cells can release DAMPs through extracellular traps (e.g., Cit-H3) or via secretory lysosomes and
exosomes, facilitating intercellular communication.
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reperfusion injury (IRI)-induced testicular damage by inhibiting the

HMGB1/NF-kB axis and endoplasmic reticulum stress (122). HSPs

are essential for proper spermatogenesis. For example, the

conditional deletion of Hspa5 leads to spermatogenesis failure

and infertility in mice (123). Specific roles of HSP isoforms in

protecting sperm cells from stress and apoptosis have been detailed

in various studies (124). Hyperthermia-induced stress and the

expression of HSP27 are linked to disruptions in spermatogenesis

and male fertility (125). Extracellular ATP plays multiple roles in

sperm function, impacting both spermatogenesis and fertilization

processes (126). ATP signaling in peritubular cells drives testicular

sperm transport, showcasing its crucial role (127). eCIRP plays a

crucial role in spermatogenesis, particularly under heat stress

conditions, where its expression is downregulated, leading to

impaired germ cell function (128). Studies have shown that CIRP,

as a molecular chaperone, can protect germ cells from oxidative

stress and apoptosis, which is especially important during testicular

torsion/detorsion (129). Reduced CIRP expression is associated

with varicocele and heat-induced infertility (130), suggesting that

upregulating CIRP expression may be a new approach to treating

male infertility. Lastly, cfDNA holds potential as a biomarker for

reproductive health (131), further emphasizing the broad

significance of DAMPs in spermatogenesis and male fertility

(Figure 2). While rodent models consistently demonstrate

HMGB1/NLRP3-driven spermatogenic impairment in cadmium/

HFD exposure contexts, human clinical evidence remains

predominantly correlative, constrained by two critical limitations:

most human studies measure DAMP concentrations in semen

without establishing causal mechanisms, and translational gaps
Frontiers in Immunology 04
persist as murine-targeted NLRP3 inhibitors lack validation in

human male infertility trials.
3.2 Sperm maturation

Studies suggest that the role of DAMPs in sperm maturation is

still relatively underexplored, but existing research has highlighted

their critical functions in the epididymis. HSPs exhibit differential

expression in the epididymis and play a pivotal role in sperm

maturation. For instance, it has been observed that HSPs are

differentially expressed in the testis, epididymis, and vas deferens

of domestic cats (Felis catus), indicating that HSPs may have

specific regulatory functions during sperm maturation (103).

Furthermore, the seasonal variations in HSP concentrations in the

epididymides of roe deer (Capreolus capreolus) further support the

regulatory role of HSPs in the process of sperm maturation (132). In

addition, ATP also plays a significant role in sperm maturation.

Research indicates that extracellular ATP significantly affects

mammalian sperm physiology (133). The purinergic signaling

pathways are crucial for the recruitment of V-ATPase to the

apical membrane of acidifying epididymal clear cells, which is

essential for sperm maturation (134). Moreover, studies have

shown that extracellular ATP and dibutyryl cAMP can

significantly enhance the freezability of rat epididymal sperm

(135). Overall, although research on DAMPs in sperm maturation

is limited, existing evidence suggests they play crucial roles in this

process. Despite the established regulatory role of DAMPs in

epididymal sperm maturation, contradictory evidence persists for
TABLE 1 Mechanisms and associated molecules involved in the release of DAMPs.

DAMPs Mechanisms of release Pathological model

HMGB1
necrosis/necroptosis (36), apoptosis (37),
pyroptosis (38), ferroptosis (39), secretory
lysosomes (40), exosomes (41).

Arthritis (42), Cardiovascular disease (43), Kidney injury (44), Lung (45), Cutaneous
inflammation (46), Brain injury (47), Liver injury (48), Diabetes and diabetic
complications (49), Parkinson’s disease (50), Macrophage polarization and
inflammation (51), Ischemic stroke and hemorrhagic transformation (52), Colorectal
cancer (53), Breast cancer (54), Pancreatic Cancer (55).

HSPs
necrosis/necroptosis (56), apoptosis (57),
exosomes (58).

Arthritis (59), Cardiovascular disease (60), Kidney injury (61), Lung diseases (62),
Cutaneous Inflammation (63), Brain injury (64), Liver injury (65), Diabetes and
Diabetic Complications (66), Parkinson’s disease (67), Ischemic stroke and
hemorrhagic transformation (68), Colorectal cancer (69), Breast cancer (70).

ATP
necrosis/necroptosis (71), apoptosis (72),
ferroptosis (73), secretory lysosomes (74),
exosomes (75).

Liver injury (76), Pre-eclampsia (77), Pancreatitis (78), Colorectum (79).

eCIRP
necrosis/necroptosis (80), secretory lysosomes
(81), exosomes (81).

Sepsis (82).

Histones
necrosis/necroptosis, apoptosis (83), extracellular
traps (84), exosomes (85).

Arthritis (86), Cardiovascular disease (87), Liver injury (88), Lung diseases (89),
Pancreatitis (78).

exRNAs
necrosis/necroptosis (90), apoptosis (90),
exosomes (91).

Cardiovascular disease (92).

cfDNA
necrosis/necroptosis (93), apoptosis (94),
extracellular traps (95), exosomes (96).

Cardiovascular disease (97), Liver injury (98).

Uric acid N/A Liver injury (99).
N/A, The release mechanisms of Uric acid in male reproductive contexts remain uncharacterized.
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TABLE 2 Clinical evidence linking DAMPs levels in male infertility phenotypes.

DAMPs Sample type Clinical correlation Key findings Reference

HSP70 1A Sperm
Marker of immature/
abnormal sperm

Higher in abnormal sperm; may indicate failed
maturation

(104)

HSP60 Seminal plasma
Subclinical genital tract

infection
Significant association with leukocytospermia,

elevated IL-6, IL-8, and complement C3
(105)

ATP Seminal plasma and testicular Impaired sperm motility
Treatment of human sperm with ATP increases

fertilization rates in IVF procedures.
(106)

Histone H3 Sperm Impaired sperm motility
Trap spermatozoa and reduce their progressive
motility in a time- and dose-dependent manner.

(107)

exRNAs Seminal Plasma NOA Diagnosis Biomarkers for NOA (108)

cfDNA Seminal Plasma NOA Diagnosis
Significantly elevated in NOA patients vs. fertile

controls
(109)

cfDNA Seminal Plasma Sperm Fertility Parameters
As biomarkers negatively correlated with sperm

motility
(110)

cfDNA Seminal Plasma
Non-Invasive Diagnosis of

Azoospermia
Significantly elevated in NOA patients vs. fertile

controls
(111)

cfDNA Seminal Plasma
Diagnosis of abnormal

spermatozoa
As biomarkers for azoospermia, teratozoospermia

and sperm DNA fragmentation
(112)

Uric acid Seminal Plasma
Diagnosis of abnormal

spermatozoa
The uric acid level in the seminal fluid of infertile

men is low
(113)
F
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FIGURE 2

DAMPs promote testicular inflammation by regulating spermatogenesis through the activation of the inflammasome pathway (IP), particularly the
NLRP3 inflammasome (from Figdraw, www.figdraw.com). DAMPs released by testicular cells activate the NLRP3 inflammasome via the TLR/MYD88/NF-
kB signaling pathway, leading to the release of pro-inflammatory cytokines such as IL-1a, IL-1b, and TNF-a. Additionally, the NLRP3 inflammasome
enhances the expression of Caspase-1 and IL-1b. Furthermore, DAMPs induce mitochondrial damage within cells, resulting in ROS accumulation and
ATP efflux, thereby exacerbating testicular inflammation.
frontiersin.org

http://www.figdraw.com
https://doi.org/10.3389/fimmu.2025.1598451
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2025.1598451
ATP’s function: rodent models demonstrate enhanced maturation

via P2X7 receptor activation, yet human sperm exhibit reduced

motility at elevated ATP concentrations (>1mM) owing to Ca²+-

mediated toxicity. This species-specific divergence underscores an

urgent need for direct human epididymal tissue investigations.
3.3 Fertilization

DAMPs play a crucial role in the fertilization process,

influencing sperm function and the interaction between sperm

and oocyte. Studies have shown that HMGB1 is a key DAMP,

and its levels in follicular fluid are associated with outcomes in in

vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI)

cycles. Higher levels of HMGB1 in follicular fluid are correlated

with better fertilization outcomes, indicating that HMGB1 plays an

important role in the fertilization process by modulating the

inflammatory response (136). HSPs, particularly HSP70 and

HSP90, are also critical during fertilization. HSP70 helps maintain

sperm quality and function by stabilizing the sperm plasma

membrane during cryopreservation (137). Additionally, the

presence of HSPs in the female reproductive tract provides a

protective environment for sperm, aiding in improving

fertilization rates (138). Extracellular ATP significantly affects

sperm function through various mechanisms. ATP activates

purinergic receptors on sperm, increasing intracellular calcium

levels and thereby enhancing sperm motility, which is crucial for

successful fertilization (126). Treating sperm with extracellular ATP

can improve fertilization rates in IVF, especially in cases of male

factor infertility (139). ATP also promotes the acrosomal reaction in

bovine sperm through P2 receptors, enhancing fertilization

capability (140). Moreover, extracellular ATP shows a synergistic

effect on the post-thaw quality and fertilization potential of Lohi

ram sperm (141). In porcine sperm, surface ATP is essential for

fertilization, linked to sperm proteasomal function (142). In human

sperm, ATP significantly enhances sperm motility and fertilization

potential (143). Histones also have a significant impact on

fertilization. Studies have found that components of neutrophil

extracellular traps (NETs) adversely affect bovine sperm function,

indicating the importance of histones in sperm defense mechanisms

(144). Inhibiting SOCE can reduce the formation of neutrophil

extracellular traps induced by human sperm, thereby improving

sperm motility (145). In porcine sperm, NETs entangle sperm and

embryos, hindering the fertilization process (146). Additionally,

leukocytes coincubated with human sperm trigger classic

neutrophil extracellular trap formation, reducing sperm motility

(107). cfDNA has also gained attention for its role in fertilization.

Studies indicate that cfDNA levels can serve as biomarkers for

embryo quality and are associated with IVF success rates (147).

High-quality embryos usually exhibit lower cfDNA levels in

follicular fluid and embryo culture media (148). Furthermore,

cfDNA can influence maternal immune response, potentially

affecting embryo implantation and development. Elevated levels

of cfDNA are associated with lower pregnancy rates (147). Uric

acid’s role in fertilization has also been studied. Elevated serum uric
Frontiers in Immunology 06
acid levels in women with polycystic ovary syndrome (PCOS)

undergoing IVF or ICSI cycles are associated with adverse

reproductive outcomes, suggesting that uric acid levels may

impact follicular fluid metabolic characteristics, thereby affecting

fertilization and embryo development (149). A significant clinical-

translational disconnect persists: while HMGB1 levels in follicular

fluid correlate with improved IVF outcomes, no therapeutics

currently exist to modulate oviductal DAMPs due to major

barriers such as ethical constraints in manipulating human

reproductive tracts and unreplicated animal findings—exemplified

by porcine NETs severely impairing fertilization versus negligible

effects in bovine models.
4 The impact of DAMPs-mediated
inflammatory responses on sperm
function

Studies have shown that DAMPs-mediated inflammatory

responses, including necrosis, necroptosis, apoptosis, pyroptosis,

and ferroptosis, have significant impacts on sperm function. During

necrosis and necroptosis, the release of DAMPs such as HMGB1

triggers inflammatory responses that negatively affect sperm

viability. In particular, necroptosis involves the release of DAMPs

like HMGB1, which exacerbates inflammation through the TLR4

and RAGE pathways, compromising the integrity and function of

sperm cells (118). On the other hand, studies have shown that

reducing ATP levels can induce apoptosis or necrosis of

spermatogonia (150). Apoptotic or necrotic cells can release

cfDNA fragments, which negatively regulate the quality of

embryos after ICSI (151). A study on normozoospermic and non-

normozoospermic human samples indicated that HSP-70

expression is lower under normal conditions compared to

abnormal conditions, suggesting that HSP-70 may respond to any

stressor in non-normozoospermic patients. It can be inferred that

HSP has anti-apoptotic effects, inhibiting the clearance of abnormal

sperm cells and impairing sperm parameters (152). Additionally, in

an in vivo rat model, Hany H. Arab et al. demonstrated that

linagliptin inhibits the testicular HMGB1/TLR4/NLRP3 pro-

inflammatory axis and apoptosis, thereby attenuating cadmium-

induced testicular damage (118). Pyroptosis, an inflammatory form

of cell death, is also a major pathway for DAMPs production. A

study on semen samples from infertile patients with bilateral

varicocele revealed that ROS exposure affects pathways related to

pyroptosis and ferroptosis in human sperm, leading to decreased

semen quality. Elevated levels of HSP90 in semen suggest a possible

association with DAMPs release (153). Ferroptosis-induced ROS

accumulation is related to sperm DNA damage. Increased cfDNA

resulting from sperm DNA damage significantly reduces sperm

fertilization ability (154). Finally, a study on a rat testicular torsion/

detorsion (T/D) model found that T/D caused significant weight

gain, distortion of the overall anatomical and cellular structure of

the testes, poor sperm quality, redox imbalance, and inflammation

in both ipsilateral and contralateral testes. This was accompanied by

upregulation of xanthine oxidase/uric acid signaling and increased
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DNA fragmentation in the testes (155), which could be due to

inflammation induced by urea and DNA release, ultimately leading

to male infertility. In summary, these DAMPs-induced

inflammatory responses can disrupt the environment of the testes

and epididymis, negatively affecting sperm development and

function. Collectively, the ‘DAMP-inflammation-sperm damage’

paradigm is predominantly established through toxin-induced

rodent models. However, critical knowledge gaps persist

regarding physiological DAMP functions and human disease

heterogeneity . Unresolved quest ions include whether

physiological DAMP concentrations contribute to sperm

homeostasis maintenance, and why NLRP3 activation exhibits

inconsistency among human varicocele patients. Resolution of

these issues necessitates single-cell transcriptomic profiling of

human testicular immune cells to delineate species-specific

inflammatory cascades.
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5 Conclusion

In this review, we have comprehensively discussed the role of

damage-associated molecular patterns (DAMPs) in male infertility,

highlighting their critical involvement in the pathogenesis of this

condition. Our analysis reveals that DAMPs, through their diverse

interactions with cellular and molecular pathways, significantly

impact spermatogenesis and sperm function. Specifically, we have

elucidated how DAMPs contribute to the disruption of normal

sperm development and functionality, thereby exacerbating male

infertility (Figure 3).

Our discussion illustrates the critical role of DAMPs in male

infertility, emphasizing their potential as both biomarkers and

therapeutic targets. The accumulation of DAMPs in the male

reproductive tract and their effects on sperm quality and function

present substantial implications for understanding the
FIGURE 3

Strategies for improving spermatogenesis, sperm maturation, and fertilization through DAMPs modulation (from Figdraw, www.figdraw.com). This figure
illustrates three main approaches to enhance male reproductive processes by targeting DAMPs: Diagnostic & Prognostic Biomarkers: DAMPs, such as
HMGB1 and HSPs, are explored as potential diagnostic and prognostic markers for male infertility. The correlation between the accumulation of specific
DAMPs and decreased sperm quality highlights their diagnostic value, particularly for DAMPs like HMGB1 and HSP70. Therapeutics: Targeting the NLRP3
inflammasome represents a therapeutic approach to improve sperm production and function. By inhibiting DAMPs-mediated inflammatory responses, it
is possible to mitigate the negative effects of inflammation onmale fertility. Drug Delivery: Exosomes carrying DAMPs or their inhibitors are depicted as a
novel drug delivery system aimed at enhancing reproductive function. This targeted approach leverages the natural intercellular communication
properties of exosomes to deliver therapeutic agents directly to the site of action, improving the efficacy of treatments for male infertility.
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pathophysiology of male infertility. Targeting specific DAMPs or

their signaling pathways could provide novel therapeutic avenues

for managing and potentially reversing infertility conditions. Future

research should focus on elucidating the precise molecular

interactions between DAMPs and reproductive cells, as well as

identifying specific DAMPs that could serve as reliable diagnostic

markers or therapeutic targets. Investigations into how these

molecules contribute to immune responses and cellular stress in

the context of male infertility are crucial. Additionally, the

development of targeted therapies aimed at modulating DAMPs

could offer new strategies for improving treatment outcomes. In

summary, the role of DAMPs in male infertility represents a

promising field of research with significant clinical potential.

Advancing our understanding of these mechanisms and their

implications for male reproductive health will be instrumental in

developing effective diagnostic and therapeutic strategies.
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110. Costa F, Barbisan F, Assmann CE, Araújo NKF, de Oliveira AR, Signori JP, et al.
Seminal cell-free DNA levels measured by PicoGreen fluorochrome are associated with
sperm fertility criteria. Zygote. (2017) 25:111–9. doi: 10.1017/S0967199416000307

111. Li HM, Wan XY, Zhao JY, Liang XM, Dai Y, Li HG. Promising novel
biomarkers and therapy targets: The application of cell-free seminal nucleotides in
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1289788
https://doi.org/10.3389/fimmu.2023.1289788
https://doi.org/10.1002/ddr.22130
https://doi.org/10.1016/j.intimp.2023.111254
https://doi.org/10.1016/j.jdiacomp.2023.108564
https://doi.org/10.1007/s11033-022-07900-5
https://doi.org/10.18388/abp.2012_2083
https://doi.org/10.1002/jcb.v123.11
https://doi.org/10.1007/978-1-0716-1170-8_15
https://doi.org/10.1158/1078-0432.CCR-22-1591
https://doi.org/10.1158/1078-0432.CCR-22-1591
https://doi.org/10.1038/s41467-023-36861-x
https://doi.org/10.1038/s41467-023-36861-x
https://doi.org/10.3389/fonc.2022.1025067
https://doi.org/10.1016/j.bbrc.2012.12.009
https://doi.org/10.3390/cancers14071698
https://doi.org/10.3390/cells11142222
https://doi.org/10.1111/micc.12585
https://doi.org/10.2119/molmed.2014.00117
https://doi.org/10.3390/ijms24043862
https://doi.org/10.2147/JIR.S370615
https://doi.org/10.2147/JIR.S370615
https://doi.org/10.3389/fimmu.2023.1066721
https://doi.org/10.1089/ars.2021.0008
https://doi.org/10.1089/ars.2021.0008
https://doi.org/10.1074/jbc.M109219200
https://doi.org/10.1074/jbc.M109219200
https://doi.org/10.1016/j.kint.2018.08.035
https://doi.org/10.1186/s12964-024-01512-1
https://doi.org/10.1186/s12964-024-01512-1
https://doi.org/10.3389/fimmu.2022.961197
https://doi.org/10.1093/cvr/cvab139
https://doi.org/10.1007/s12072-018-9911-9
https://doi.org/10.1016/j.omtn.2023.02.021
https://doi.org/10.3389/fnmol.2019.00254
https://doi.org/10.3389/fnmol.2019.00254
https://doi.org/10.1371/journal.pone.0122991
https://doi.org/10.1074/jbc.M115.661835
https://doi.org/10.1016/j.critrevonc.2020.103166
https://doi.org/10.1016/j.celrep.2020.107830
https://doi.org/10.1161/ATVBAHA.114.304114
https://doi.org/10.18632/oncotarget.17858
https://doi.org/10.1007/s10557-020-06946-6
https://doi.org/10.3390/jcm9051543
https://doi.org/10.1189/jlb.3AB1214-590R
https://doi.org/10.1016/j.bbrc.2023.03.050
https://doi.org/10.1016/j.fertnstert.2014.10.020
https://doi.org/10.1016/j.fertnstert.2014.10.020
https://doi.org/10.3390/ijms232113442
https://doi.org/10.1093/micmic/ozac054
https://doi.org/10.4103/1008-682X.164924
https://doi.org/10.1093/humrep/17.3.726
https://doi.org/10.2174/138161207782341277
https://doi.org/10.1016/j.fertnstert.2016.06.005
https://doi.org/10.1016/j.fertnstert.2016.06.005
https://doi.org/10.1093/humrep/dey072
https://doi.org/10.3389/fendo.2024.1349000
https://doi.org/10.1017/S0967199416000307
https://doi.org/10.3389/fimmu.2025.1598451
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2025.1598451
male reproduction research. Transl Res. (2023) 256:73–86. doi: 10.1016/
j.trsl.2022.12.006

112. Di Pizio P, Celton N, Menoud PA, Belloc S, Cohen Bacrie M, Belhadri-
Mansouri N, et al. Seminal cell-free DNA and sperm characteristic's: An added
biomarker for male infertility investigation. Andrologia. (2021) 53:e13822.
doi: 10.1111/and.13822

113. Xu K, Shang X, Chen Y, Zhao F, Zhu P, Huang Y. Measurement of uric acid of
seminal plasma in fertile and infertile males. Zhonghua Nan Ke Xue. (2004) 10:900–1, 6.

114. Tavalaee M, Rahmani M, Drevet JR, Nasr-Esfahani MH. The NLRP3
inflammasome: molecular activation and regulation in spermatogenesis and male
infertility; a systematic review. Basic Clin Androl. (2022) 32:8. doi: 10.1186/s12610-
022-00157-9

115. Sahin Z, Celik-Ozenci C, Akkoyunlu G, Korgun ET, Acar N, Erdogru T, et al.
Increased expression of interleukin-1alpha and interleukin-1beta is associated with
experimental varicocele. Fertil Steril. (2006) 85 Suppl 1:1265–75. doi: 10.1016/
j.fertnstert.2005.10.025

116. Baazm M, Ghafarizadeh AA, Noshad Kamran AR, Beyer C, Zendedel A.
Presence of the NLRP3 inflammasome components in semen of varicocele patients.
Int J Fertil Steril. (2020) 14:46–50. doi: 10.22074/ijfs.2020.5734

117. Fomichova O, Oliveira PF, Bernardino RL. Exploring the interplay between
inflammation and male fertility. FEBS J. (2025) 292:3321–49. doi: 10.1111/febs.v292.13

118. Arab HH, Elhemiely AA, El-Sheikh AAK, Khabbaz HJA, Arafa EA, Ashour
AM, et al. Repositioning linagliptin for the mitigation of cadmium-induced testicular
dysfunction in rats: targeting HMGB1/TLR4/NLRP3 axis and autophagy. Pharm
(Basel). (2022) 15:852. doi: 10.3390/ph15070852

119. Ronfani L, Ferraguti M, Croci L, Ovitt CE, Schöler HR, Consalez GG, et al.
Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein
Hmgb2. Development. (2001) 128:1265–73. doi: 10.1242/dev.128.8.1265

120. Aslani F, Schuppe HC, Guazzone VA, Bhushan S, Wahle E, Lochnit G, et al.
Targeting high mobility group box protein 1 ameliorates testicular inflammation in
experimental autoimmune orchitis. Hum Reprod. (2015) 30:417–31. doi: 10.1093/
humrep/deu320

121. Elmorsy EH, Aly RG, Badae NM, Aboghazala MM, Omar SS. Zinc alleviates high fat
diet-induced spermatogenic dysfunction in Wistar rats: role of oxidative stress, HMGB1 and
inflammasome. Rev Int Androl. (2024) 22:44–52. doi: 10.22514/j.androl.2024.007

122. Demir EA, Demir S, Kazaz IO, Kucuk H, Alemdar NT, Gecici OF, et al. Syringic
acid ameliorates ischemia/reperfusion-induced testicular injury in rats via suppressing
of HMGB1/NF-kB axis and endoplasmic reticulum stress. Eur J Trauma Emerg Surg.
(2023) 49:1595–602. doi: 10.1007/s00068-023-02227-7

123. Wen Z, Zhu H, Wang J, Wu B, Zhang A, Zhao H, et al. Conditional deletion of
Hspa5 leads to spermatogenesis failure and male infertility in mice. Life Sci. (2023)
314:121319. doi: 10.1016/j.lfs.2022.121319

124. Purandhar K, Jena PK, Prajapati B, Rajput P, Seshadri S. Understanding the
role of heat shock protein isoforms in male fertility, aging and apoptosis.World J Mens
Health. (2014) 32:123–32. doi: 10.5534/wjmh.2014.32.3.123

125. Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ. Effects of
hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult
male mice. Biol Reprod. (2001) 65:229–39. doi: 10.1095/biolreprod65.1.229

126. Cao H, Li L, Liu S, Wang Y, Liu X, Yang F, et al. The multifaceted role of
extracellular ATP in sperm function: From spermatogenesis to fertilization.
Theriogenology. (2024) 214:98–106. doi: 10.1016/j.theriogenology.2023.10.019

127. Fleck D, Kenzler L, Mundt N, Strauch M, Uesaka N, Moosmann R, et al. ATP
activation of peritubular cells drives testicular sperm transport. Elife. (2021) 10:e62885.
doi: 10.7554/eLife.62885

128. Liu J, Wei Q, Jin Y, Jin Y, Jiang Y. Cold-induced RNA-binding protein and
RNA-binding motif protein 3: two RNA molecular chaperones closely related to
reproductive development and reproductive system diseases. Protein Pept Lett.
(2023) 30:2–12. doi: 10.2174/0929866530666221124122507

129. Xia Z, Jiang K, Liu T, Zheng H, Liu X, Zheng X. The protective effect of Cold-
inducible RNA-binding protein (CIRP) on testicular torsion/detorsion: an experimental
study in mice. J Pediatr Surg. (2013) 48:2140–7. doi: 10.1016/j.jpedsurg.2013.02.065

130. Nishiyama H, Danno S, Kaneko Y, Itoh K, Yokoi H, Fukumoto M, et al.
Decreased expression of cold-inducible RNA-binding protein (CIRP) in male germ
cells at elevated temperature. Am J Pathol. (1998) 152:289–96.

131. Scalici E, Mullet T, Ferrières Hoa A, Gala A, Loup V, Anahory T, et al.
Circulating nucleic acids and infertility. Gynecol Obstet Fertil. (2015) 43:593–8.
doi: 10.1016/j.gyobfe.2015.07.016

132. Majewska AM, Kordan W, Koziorowska-Gilun M, Wysocki P. Identification
and changes in the seasonal concentrations of heat shock proteins in roe deer
(Capreolus capreolus) epididymides. Reprod Domest Anim. (2017) 52:107–14.
doi: 10.1111/rda.2017.52.issue-1
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