
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Anudishi Tyagi,
University of Texas MD Anderson Cancer
Center, United States

REVIEWED BY

Cristian Sandoval,
University of La Frontera, Chile
Kumar Sandeep,
All India Institute of Medical Sciences, India

*CORRESPONDENCE

Ziyuan Lu

2023622703@gzhmu.edu.cn

RECEIVED 21 March 2025
ACCEPTED 13 October 2025

PUBLISHED 23 October 2025

CITATION

Chen X, Ling W, Yang Z, Chen X and Lu Z
(2025) Integrated bioinformatic analysis and
machine learning developed a prognostic
model based on mitochondrial function for
acute myeloid leukemia.
Front. Immunol. 16:1597633.
doi: 10.3389/fimmu.2025.1597633

COPYRIGHT

© 2025 Chen, Ling, Yang, Chen and Lu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 23 October 2025

DOI 10.3389/fimmu.2025.1597633
Integrated bioinformatic analysis
and machine learning developed
a prognostic model based on
mitochondrial function for
acute myeloid leukemia
Xingbiao Chen1,2, Weijun Ling3, Zhehan Yang1,2,
Xinyi Chen4 and Ziyuan Lu1*

1Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases,
Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated
Hospital, Guangzhou Medical University, Guangzhou, China, 2Department of Clinical Medicine,
Guangzhou Medical University, Guangzhou, China, 3Dongguan University of Technology -
Conservatoire National des Arts et Métiers (DGUT-CNAM) Institute, Dongguan University of
Technology, Dongguan, China, 4Department of Biomedical Engineering, Guangzhou Medical
University, Guangzhou, China
Background: The disease burden of acute myeloid leukemia (AML) continues to

pose a significant public health challenge globally. Mitochondria play a critical

role in tumor development and progression by influencing bioenergetics,

biosynthesis, and signaling pathways. However, the prognostic significance and

therapeutic implications of mitochondrial function in AML warrant

further investigation.

Methods: We integrated mitochondrial gene expression data with bulk RNA

sequencing to identify key mitochondrial genes associated with AML. A total of

fourteen machine learning algorithms were employed, yielding 148 unique

combinations. The best-performing model was utilized to develop a

MitoScore, which was then combined with clinical variables to establish a

MitoScore-based nomogram. Additionally, single-cell sequencing data were

analyzed to assess the impact of key mitochondrial genes on immune cells.

Samples were classified into low-risk and high-risk groups based on MitoScore,

allowing for a comparative analysis of clinical features, biological mechanisms,

copy number variations, tumor burden, immune infiltration, immune function,

and drug sensitivity between the two groups.

Results: Specific expression patterns of mitochondrial genes were observed in T

cell subsets and at various developmental stages of AML. Samples were classified

into low-risk and high-risk groups based on MitoScore. The high-risk MitoScore

group exhibited a worse prognosis, with enriched biological processes and

molecular pathways associated with immune response, a higher frequency of

gene mutations linked to poor outcomes, increased immune cell infiltration,
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enhanced immune function, upregulated immune checkpoint gene expression,

and greater sensitivity to cyclophosphamide and venetoclax.

Conclusions: This robust machine learning framework underscores the potential

of MitoScore as a tool for stratified prognostic assessment and personalized

treatment planning in AML patients.
KEYWORDS

mitochondrial-related molecular signature, acute myeloid leukemia, single-cell
RNAsequencing, machine learning model, immune function
1 Introduction

Over the last three terms, the worldwide Burden of acute

myeloid leukemia (AML)—the most substantial subtype of

leukemia in adults—has escalated, impacting morbidity and

mortality, remarkably, a few of the elderly and male populations,

as mentioned through using the Global Burden of disease test

(GBD) 2021 (1). This style highlights that the modern-day

Burden of AML poses a significant public health challenge

worldwide, necessitating collaboration among professionals,

community physicians, and policymakers to develop customized

healthcare approaches in the areas of diagnosis, treatment, and

patient care. To optimize results for patients with AML, treatment

regimens need to be meticulously tailored based on various factors,

including age, genetic predisposition to leukemia, risk stratification,

prior medical history, transplant eligibility, expected toxicity, and

the patient’s medical profile and preferences (2). Similarly to age

and comorbidities, the biology of the disease—in conjunction with

cytogenetic and molecular changes—plays a crucial role in

determining treatment regimens, responses, and survival

prognoses (3). For example, the implementation of targeted

chemotherapy has markedly improved survival outcomes for

younger patients and those with adverse-hazard cytogenetics.

Fur thermore , a l logene ic hematopoie t ic s t em mobi le

transplantation remains a powerful restoration choice for patients

with slight to horrible prognostic cytogenetics, but many old, frail,

and significantly comorbid people are ineligible for transplantation

(4). For this specific patient population, low-dose induction

chemotherapy incorporating demethylating agents and venetoclax

has been examined for efficacy in increasing the rate of complete

response and extending median survival (5).

Additionally, several targeted therapies have recently gained

acclaim for the treatment of AML, including ivosidenib and

olutasidenib for IDH1 mutations (6, 7), enasidenib for IDH2

mutations (8), and gilteritinib and midostaurin for FLT3

mutations (9). Irrespective of these significant advances in drug

development, some sufferers continue to experience refractory

relapse, often due to the emergence of the latest clones or the

activation of bypass signaling pathways following treatment,

resulting in familiar healing outcomes that live suboptimal (10).
02
Therefore, there may be a pressing need to understand potential

healing dreams, optimize risk stratification structures, and refine

custom-designed treatment techniques for AML.

A deeper understanding of the pathophysiological mechanisms

underlying leukemia reveals that treatment failures can be attributed

to the metabolic reprogramming and mitochondrial dysfunction of

leukemia cells (11, 12). In 1924, Otto Warburg first defined that, in

the presence of oxygen, tumor cells in fashionable depend on

glycolysis for energy production, resulting in the accumulation of

lactic acid. This metabolic method enables tumor cells to maintain

their growth even as they acidify the surrounding microenvironment.

Metabolic reprogramming serves as an adaptive mechanism for

tumor cells inside the challenging conditions of hypoxia, nutrient

deficiency, and immune surveillance, constituting the natural basis

for tumor cell proliferation and the malignant phenotype (13). To

satisfy their metabolic necessities, mitochondria perform several

essential capabilities: 1) bioenergetics, which involves adjustments

in ATP and NADPH production; 2) biosynthesis, encompassing the

conversion of diverse vitamins from the microenvironment into vital

additives for tumor cellular growth; and three) modulation of organic

signaling pathways, thereby enhancing communication amongst

tumor cells and other cells inside the microenvironment (14, 15).

Furthermore, extensive studies on the differentiation stages of

leukemic cells have identified an unprecedented population of

leukemic stem cells (LSCs) that act as the primary drivers of

leukemia initiation and progression, contributing substantially to

treatment resistance and relapse (16). LSCs exhibit remarkable

mitochondrial morphology, energy metabolism, and regulatory

mechanisms in contrast to hematopoietic stem cells and bulk

cells. This particular mitochondrial profile underscores their

reliance on mitochondrial oxidative phosphorylation (OXPHOS)

(17). The mitochondrial dependence of LSCs additionally highlights

their susceptibility to mitochondrial inhibitors, which can also serve

as promising targets for novel drug development. Given the

essential role of mitochondrial dependence in AML, the U.S.

Food and Drug Administration (FDA) has approved several

therapies for AML treatment, including the isocitrate

dehydrogenase one inhibitor ivosidenib (6), the isocitrate

dehydrogenase two inhibitor enasidenib (8), and the BH3

mimetic venetoclax (18). Furthermore, various mitochondrial
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inhibitors, including CPI-613, CB-839, IACS-010759, and ibrutinib,

are currently under evaluation in clinical trials (19).

We examine the application of the Mitocarta 3.0 database, along

with bulk RNA sequencing data, to identify key mitochondrial

genes. We employed 14 tool-studying strategies across 148

combinations to select the simplest version, ultimately developing

a Mitochondrial-related score (MitoScore). Moreover, we analyzed

single-cell RNA sequencing (scRNA-seq) data to investigate the

relationship between MitoScore and immune cellular populations,

aiming to clarify the mitochondrial functional importance of

immune cells within the leukemic microenvironment. Ultimately,

we evaluated medical parameters, organic abilities, somatic

variations, immune characteristics, and drug sensitivities across

both high and low MitoScore groups. This comprehensive

analysis aims to provide a theoretical resource for the prognostic

rate of the MitoScore nomogram and to inform the development of

custom-designed treatment strategies for AML.
2 Methods

2.1 Data collection

RNA sequencing data and clinical information for AML patients

were obtained from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov) and the Gene Expression Omnibus

(GEO) datasets. The analysis included a total of 706 samples:

153 patient samples from TCGA-AML with associated survival

data and 553 samples with survival data from the GEO dataset

GSE37642. The GSE37642 dataset includes samples from both the

GPL96 and GPL570 platforms. Additionally, we combined 116

AML patient samples and 69 standard bone marrow samples

from the GSE30029 and GSE9476 datasets for differential

expression gene (DEG) analysis using the limma package. Genes

were considered significantly differentially expressed if the adjusted

P value (adjP) was less than 0.05 and the fold change (FC) was

greater than 1. In our analysis, we defined FC as the ratio of gene

expression between two groups (e.g., disease vs. control) and logFC

as the log-transformed value of FC, using a base two logarithm.

Therefore, when FC > 1, it implies upregulation, and the

corresponding log2FC is greater than 0. Conversely, when 0 <

FC < 1, it represents downregulation, and log2FC is less than 0. This

direct mathematical relationship is consistent with standard

practices in gene expression analysis.

To focus on mitochondrial-related genes, we curated a list of 1,136

genes from MitoCarta 3.0, a comprehensive database of mitochondrial

genes (https://www.broadinstitute.org/mitocarta). Genes not present

in either the TCGA or GEO databases were excluded from our

analysis. The final gene list is provided in Supplementary Table S1.

We integrated the mRNA datasets from these sources and

conducted a thorough screening process to identify differentially

expressed genes (DEGs) associated with mitochondrial function. To

visually represent the overlap between differentially expressed genes

(DEGs) related to mitochondrial function and genes correlated with

AML prognosis, we utilized the Venn diagram tool.
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2.2 Construction of MitoScore signature

To construct the MitoScore signature, we employed Non-

negative Matrix Factorization (NMF) using the NMF package to

analyze the expression levels of 31 key mitochondrial genes across

tumor samples. We integrated 14 distinct machine learning

algorithms and evaluated 148 algorithm combinations (20, 21),

including Random Survival Forests (RSF), Least Absolute Shrinkage

and Selection Operator (LASSO), Elastic Net (Enet), Stepwise Cox

Regression (StepCox), CoxBoost, Partial Least Squares Regression

with Cox Proportional Hazards (PLSR-Cox), SuperPCA, Gradient

Boosting Machine (GBM), Support Vector Machines for Survival

Data (survivalism), Ridge Regression, Oblique Random Survival

Forests (obliqueRSF), XGBoost, Conditional Inference Forests

(CForest), and Conditional Inference Trees (CTree). A sequential

approach was developed to identify the optimal prognostic variables

through univariate Cox regression modeling.

The algorithms were applied to the overall AML cohort, which was

divided into training and testing sub-cohorts in a 3:7 ratio. The best-

performing model was constructed based on this split and further

validated using both internal and external datasets. A MitoScore was

calculated for each patient, and they were dichotomized into high- and

low-score groups based on the median score. The prognostic

significance of the MitoScore signature was assessed using Kaplan-

Meier (KM) survival analysis. To confirm its predictive capability, we

applied the MitoScore to the GSE37642 dataset, which contains

survival information from an external AML cohort. Principal

Component Analysis (PCA) and t-distributed Stochastic Neighbor

Embedding (t-SNE) were employed to assess the predictive capability

of the MitoScore. This methodological approach ensures a robust

evaluation of the MitoScore as a prognostic tool for AML, providing a

comprehensive assessment of its utility in predicting patient outcomes.
2.3 Construct a predictive nomogram

To enhance the predictive capability of the MitoScore signature,

we developed a nomogram that integrates key clinical features with

the MitoScore. These clinical features include age, sex, cytogenetic

risk (cyto_risk; stratifying patients into favorable/intermediate/

adverse groups based on ELN-defined chromosomal

abnormalities), French-American-British classification (fab_code;

classifying AML into M0-M7 subtypes by blast morphology and

cytochemistry), and the MitoScore itself. The nomogram allows for

the summation of scores from these variables for each patient,

ultimately establishing a comprehensive survival prediction model.

To validate the accuracy of the predicted survival rates at 1, 3, and 5

years, we generated calibration plots and time-dependent receiver

operating characteristic (ROC) curves using the ggDCA and

timeROC packages. Calibration plots were used to assess the

agreement between observed and predicted survival probabilities,

while time-dependent ROC analysis specifically evaluated the

dynamic discrimination performance of the nomogram for 1-, 3-,

and 5-year overall survival endpoints. The nomogram provides a

robust tool for predicting patient outcomes by integrating both
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clinical and molecular characteristics, thereby improving prognostic

precision. This approach ensures a thorough evaluation of the

nomogram’s performance in predicting survival, facilitating more

personalized and accurate prognosis for patients with AML.
2.4 ScRNA-seq data processing

We retrieved a scRNA-seq dataset (GSE235857) from the Gene

Expression Omnibus (GEO) database, which includes samples from

six patients with acute myeloid leukemia (AML) and six healthy

controls. To integrate these samples, we employed the anchor-based

integration approach provided by the Seurat R package (22).

Following integration, we filtered the cells to retain only high-

quality core cells for downstream analyses. Cells were excluded if

they expressed genes detected in three or fewer cells or if fewer than

200 genes were detected per cell, as these criteria indicate low-

quality data. For the retained core cells, gene expression levels were

normalized using a linear regression model. We then identified the

top 2,000 highly variable features through analysis of variance

(ANOVA). PCA was performed on the single-cell samples, and

the top 20 principal components (PCs) were selected for further

study based on their contribution to the variance. To visualize and

analyze the overall structure of the data, we applied the Uniform

Manifold Approximation and Projection (UMAP) algorithm (23)

for dimensionality reduction, using the top 20 principal

components (PCs) as input. Cell type annotation was conducted

using the SingleR R package (24), referencing the Human Primary

Cell Atlas Data, Blueprint Encode Data, and Immune Cell

Expression Data. Additionally, we utilized the CellMarker

database (25) and previous studies to identify marker genes,

thereby enabling manual annotation of distinct clusters. This

comprehensive approach facilitated the accurate characterization

of cell types within the scRNA-seq dataset, providing insights into

the cellular heterogeneity associated with AML and its comparison

to healthy states.
2.5 Identification of active subgroups

To evaluate which cellular subpopulations exhibit active

mitochondrial function based on a gene set comprising 31 key

mitochondrial genes, we utilized the R package “AUCell” to

calculate an activity score for each cell. Specifically, we employed

the AUCell_exploreThresholds function to determine the optimal

threshold for identifying cells with significant mitochondrial

activity. To visualize and identify subsets of cells specifically

active in the context of these 31 mitochondrial genes, we colored

UMAP embeddings of the cell clusters according to the Area Under

the Curve (AUC) score obtained from each cell. This approach

enabled us to pinpoint subpopulations with distinct mitochondrial

activity patterns, thereby providing insights into the functional

heterogeneity of mitochondria across different cell types within

the scRNA-seq dataset.
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2.6 Further analysis of T cell subgroups

Based on the active subpopulations identified through the

AUCell analysis, we extracted the T cell subpopulations and

performed re-dimensionality reduction and reclustering. This

process resulted in the annotation of five distinct T cell

subpopulations. To elucidate the molecular mechanisms

underlying the progression of AML, we applied the Monocle 2

algorithm to conduct pseudotime trajectory analysis on these five T

cell subpopulations. This analysis allowed us to infer the temporal

ordering of cellular states and identify key transcriptional changes

associated with AML progression. Additionally, we utilized

CellPhoneDB v2.0 to investigate potential intercellular

interactions among the five T cell subpopulations. By analyzing

ligand-receptor pairs, we identified putative communication

networks that may play a role in the dynamic changes observed

within the T cell landscape during AML progression. This

comprehensive approach provides insights into the dynamic

changes and intercellular communication within the T cell

environment, offering a deeper understanding of the

immunological processes involved in AML progression.
2.7 Biological function and pathway
enrichment analysis

To investigate the biological functions and pathway processes

associated with the MitoScore, we conducted a series of enrichment

analyses using the Kyoto Encyclopedia of Genes and Genomes

(KEGG), Gene Set Variation Analysis (GSVA), and Gene Set

Enrichment Analysis (GSEA). These analyses were performed

using the R packages clusterProfiler, GSVA, and GSEABase.

GSVA was employed to transform gene expression data from

single-gene measurements into gene set enrichment scores,

thereby assessing the extent of enrichment for each gene set

within individual samples. This approach allows us to evaluate

how pathways related to the MitoScore are represented across the

dataset, providing insights into the functional implications of

mitochondrial gene expression patterns. KEGG pathway analysis

was used to identify significantly enriched pathways, while GSEA

was applied to further explore the overrepresentation of specific

gene sets in high- versus low-MitoScore groups. Together, these

analyses provide a comprehensive understanding of the biological

processes and pathways that are differentially regulated in

association with the MitoScore, thereby elucidating the molecular

mechanisms underlying its prognostic significance.
2.8 Mutation landscape analysis

To investigate the genomic landscape of AML patients, we

obtained copy number variation (CNV) profiles using the TCGA

Bioconductor package. Patients were categorized into subgroups

based on the MitoScore model’s threshold, allowing for a stratified
frontiersin.org
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analysis of CNVs. We employed GISTIC2.0 to identify genomic

regions exhibiting significant amplifications or deletions across the

samples, thereby pinpointing specific somatic copy-number

alterations associated with the MitoScore (26). Furthermore, we

utilized the dplyr package to compare the frequency of common

somatic mutations between patients with high and low MitoScores.

To assess the tumor mutation burden (TMB), we calculated the

total count of non-synonymous somatic mutations per megabase

across the entire genome.
2.9 Assessment of immune
microenvironment

To comprehensively evaluate the levels of immune infiltration

and molecular characteristics, we employed a suite of

bioinformatics algorithms, including ssGSEA (27), CIBERSORT

(28), CIBERSORT-ABS (29), QUANTISEQ (30), MCPcounter (31),

Xcell (32), and EPIC (33). These algorithms utilize distinct

strategies to estimate the abundance of various immune cell

subpopulations, providing a multi-faceted view of the tumor

microenvironment. We further analyzed immune activity across

six immune subtypes: the wound healing subtype (C1), IFN-gamma

dominant subtype (C2), inflammatory subtype (C3), lymphocyte-

depleted subtype (C4), immunologically quiet subtype (C5), and

TGF-beta dominant subtype (C6) (34). The ssGSEA R package was

used to calculate enrichment scores or relative abundances for

various immune features by evaluating signature genes. This

approach allowed us to quantify the presence and activity of

different immune cell types within each sample. Additionally, we

examined the expression patterns of 60 immune-related factors,

including genes involved in antigen presentation, cell adhesion, co-

inhibitory molecules, co-stimulatory molecules, ligands, and

receptors. This analysis provided insights into the functional

states of immune cells and their interactions within the tumor

microenvironment. Moreover, we conducted an in-depth analysis

of the relationship between immune checkpoint genes and the

MitoScore. This investigation aimed to elucidate how

mitochondrial activity correlates with immune checkpoint

expression, potentially uncovering novel therapeutic targets for

modulating the immune response in AML.
2.10 Investigating the importance of the
MitoScore in the drug sensitivity analysis

To investigate the impact of MitoScore on treatment outcomes

in AML, we calculated the IC50 values for commonly used

chemotherapeutic agents using a custom algorithm and the

pRRophetic R package. The pRRophetic package leverages gene

expression and drug sensitivity data from cancer cell lines obtained

through the Cancer Genome Project to develop statistical models.

These models predict chemotherapeutic responses based on
Frontiers in Immunology 05
baseline tumor gene expression profiles, enabling the estimation

of drug sensitivity in patient samples. We applied this approach to a

melanoma dataset to calculate IC50 values for a panel of anti-tumor

drugs. To evaluate differences in chemotherapeutic outcomes

between patient groups, we compared the IC50 values between

high-risk and low-risk groups using the Wilcoxon signed-rank test.

The results were visualized using box plots, providing a clear

comparison of drug sensitivities across the two groups.
2.11 Statistical analyses

For bulk RNA-seq data from the TCGA and GEO databases, we

downloaded raw expression matrices in FPKM or count format

where applicable. GEO datasets with Affymetrix platforms (e.g.,

GPL96, GPL570) were processed from CEL files using the RMA

algorithm via the Affy package. Gene expression data were log2-

transformed using log2(x + 1) to reduce skewness and stabilize

variance. To enable cross-dataset comparisons and integration, we

employed quantile normalization across all samples and utilized the

ComBat algorithm from the Sva package to mitigate batch effects

between different platforms. Genes with low expression (average

counts <1 in over 50% of samples) were excluded before differential

expression analysis. For single-cell RNA-seq data, we applied

standard Seurat workflows, including log-normalization, feature

selection, and scaling, before proceeding with downstream

dimensionality reduction and clustering.

Prognostic modeling integrated multiple machine learning

algorithms selected for their complementary capabilities: LASSO-

Cox regression implemented feature selection through L1-penalized

dimensionality reduction; Random Survival Forests captured non-

linear interactions and complex dependencies; while XGBoost

enhanced predictive accuracy in structured clinical data

[CitationX]. Hyperparameter optimization employed systematic

grid search within stratified 5-fold cross-validation (70% training

subsample), evaluated by Harrell’s C-index. Overfitting mitigation

was incorporated through survival-stratified cross-validation,

temporal test set evaluation (30% cohort), and regularization,

including L1-penalization (l = 0.02) with early stopping (50-

iteration patience).

All statistical analyses were conducted using R (version 4.3.3;

https://www.r-project.org/). For comparisons between two groups,

we employed the Wilcoxon rank-sum test, whereas for multiple-

group comparisons, the Kruskal-Wallis test was used. Spearman’s

rank correlation analysis was applied to calculate correlation

coefficients. Fisher’s exact test or chi-squared test was utilized for

comparing contingency tables and categorical variables. Kaplan-

Meier survival analysis, accompanied by the log-rank test, was

performed to compare prognostic outcomes between subgroups.

Univariate and multivariate Cox proportional hazards regression

analyses were used to estimate hazard ratios (HR) for various

factors. Statistical significance was denoted as follows: *p < 0.05,

**p < 0.01, ***p < 0.001, and ns for not significant.
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3 Results

3.1 Preliminary screening of key
mitochondrial genes

In this study, we acquired gene expression profiles and

corresponding clinical data from TCGA and GEO databases.

From the MitoCarta3.0 database, we compiled a comprehensive

list of 1,136 genes known to be associated with mitochondrial

function. We performed differential expression analysis to identify

differentially expressed genes (DEGs) between normal tissue and

AML samples (Figures 1A, B). Following this, we performed

univariate Cox regression analyses on AML prognosis for genes

associated with mitochondrial function. Using a Venn diagram

approach, we identified a subset of differentially expressed genes

(DEGs) that concurrently influence both mitochondrial processes

and AML prognosis (Figure 1C). The first gene set represents

differentially expressed genes (DEGs) identified by comparing

AML samples to standard bone marrow controls using the limma

package, with thresholds of an adjusted P-value < 0.05 and a fold

change > 1. The second gene set comprises prognosis-related genes,

which were screened using univariate Cox regression analysis in the

TCGA-AML cohort (P < 0.05). The third gene set comprises

mitochondrial-related genes curated from the MitoCarta 3.0

database, a comprehensive resource of genes with strong evidence

for mitochondrial localization and function. The intersection of

these three sets yielded 31 key genes that are (1) mitochondria-

associated, (2) differentially expressed between AML and normal

samples, and (3) significantly associated with patient survival. These

genes formed the basis for constructing the downstream model.

This rigorous selection process culminated in the identification of

31 key mitochondrial genes: SPATA20, ELAC2, AKR7A2, IDI1,

FH, PICK1, NME3, BCKDK, COA1, NDUFC1, CPT1A, DGUOK,

HTRA2, CISD1, OPA3, UQCR11, MRPS12, TACO1, METTL5,

HIGD2A, GLUD1, TIMM8B, SLC25A28, FDPS, FTH1, AHCYL1,

CA5B, TMEM70, BNIP3, UQCR10, and NFS1. A forest plot was

constructed to illustrate the results of the univariate Cox regression

analys i s for these 31 genes within the TCGA_AML

cohort (Figure 1D).

Additionally, we explored the interrelationships among these

genes using a Pearson correlation heatmap (Figure 1E), where red

and blue circles denote significant positive and negative

correlations, respectively. The size and depth of color reflect the

strength of the correlation. This analysis revealed strong co-

expression patterns among multiple genes, suggesting coordinated

regulatory mechanisms. To provide a comprehensive visualization,

we employed the STRING database to generate a gene co-

expression network, which was enhanced in Cytoscape

(Figure 1F). In this network, node size and color intensity scale

with connectivity degree (number of edges), identifying FH,

MRPS12, CISD1, and NFS1 as core genes (highest connectivity)

potentially central to mitochondrial regulation in AML. To refine

our prognostic model for AML, we applied clustering analysis to the

activity levels of the 31 characteristic genes, which revealed K = 2 as

the most robust cluster (Figure 1G). The expression patterns of
Frontiers in Immunology 06
these genes were depicted through box plots and ridge plots

(Supplementary Figures S1A, B). Moreover, we conducted a pan-

cancer analysis to examine the expression levels and prognostic

significance of these genes across various malignancies. This

analysis offered insights into the broader expression landscape

(Supplementary Figure S2A) and potential implications for

patient outcomes across different cancer types (Supplementary

Figure S2B).
3.2 Establishment of the MitoScore
signature

To construct and evaluate a robust prognostic model, we

employed a suite of 14 machine learning algorithms, including

RSF, Lasso, Enet, stepcox, CoxBoost, plsRcox, SuperPCA, GBM,

survivalism, Ridge Regression, obliqueRSF, XGBoost, CForest, and

CTree. We also explored combinations of these methods to enhance

predictive performance. The average C-index was calculated for 148

algorithmic configurations across the entire dataset, as well as

separate training and validation sets, to determine the optimal

model configuration (Figure 2A). The MitoScore model, which

emerged as the most effective, integrates the Lasso and RSF

algorithms (Figure 2B). To validate the model’s performance, we

applied it to external datasets, including TCGA_AML,

GSE37642_GPL96, and GSE37642_GPL570. Patients were

stratified into high-risk and low-risk groups based on the median

MitoScore within each cohort. K-M survival analysis revealed that

patients in the high-risk group exhibited significantly worse

prognoses compared to those in the low-risk group (Figures 2C–

E). A higher MitoScore was consistently associated with a poorer

prognosis, demonstrating the model’s excellent predictive accuracy.

Dimensionality reduction techniques, such as PCA and t-SNE,

highlighted distinct clusters corresponding to the high-risk and

low-risk patient groups, further supporting the model’s ability to

distinguish between different risk profiles (Figures 2C–E). These

findings underscore the clinical utility and prognostic significance

of the MitoScore, positioning it as a valuable tool for personalized

medicine in AML.
3.3 Construction of a prognostic
nomogram based on MitoScore

A prognostic nomogram was developed based on the MitoScore

to evaluate its predictive utility in patients with AML. Univariate and

multivariate Cox regression analyses were performed to assess the

independent and combined predictive power of the MitoScore. The

nomogram integrates the MitoScore with clinically relevant features,

including age, sex, cyto_risk, and fab_code, thereby providing a

quantitative tool for predicting AML patient outcomes and

supporting clinical decision-making (Supplementary Figure S3A).

To estimate overall survival probabilities, the nomogram for TCGA

AML patients incorporates these key variables. Calibration curves

were used to validate the accuracy of the prediction model,
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demonstrating a strong concordance between predicted and

observed survival probabilities at 1-year, 3-year, and 5-year

intervals (Supplementary Figure S3B). The AUC values for both

the MitoScore alone and the integrated nomogram at these time

points exceeded 0.75, as determined by time-dependent ROC

analysis, indicating high diagnostic performance (Supplementary

Figures S3C–G). DCA further revealed that the nomogram model
Frontiers in Immunology 07
provides substantial net benefit across a wide range of

threshold probabilities, enhancing its clinical applicability

(Supplementary Figures S3H, I). These findings collectively

demonstrate that the nomogram, which leverages MitoScore

characteristics, exhibits excellent performance in predicting the

prognosis of AML patients, thereby offering a valuable resource

for personalized medicine.
FIGURE 1

Preliminary screening of key mitochondrial genes. (A) Volcano plot of the differential expressed genes analysis in the AML and adjacent normal
tissues. Mitochondria-related genes with prognostic value marked out. (B) Heatmap displaying the top fifty DEGs. (C) Venn plot of DEGs, prognostic
genes, and mitochondria-associated genes. (D) Univariate Cox regression analysis of OS based on 31 key mitochondrial DEGs. (E) Correlation
analysis results among 31 key Mitochondrial DEGs. (F) PPI Network Analysis Results of 31 key Mitochondrial DEGs. (G) Distinguishing two different
subtypes using the NMF algorithm.
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3.4 Single-cell sequencing of the
MitoScore model

Initially, we filtered out unqualified cells, obtaining 39,783

core cells for subsequent analysis. We performed ANOVA on the

genes within these core cells and identified 2,000 highly variable

genes (Figure 3A). PCA was conducted on 12 single-cell samples,

revealing a reasonable distribution of the samples (Figure 3B). In
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the PCA, we selected 20 principal components for further

analysis, all of which had p-values < 0.05 (Figures 3C, D).

Subsequently, we used the UMAP algorithm to classify the core

cells into 24 cell clusters (Figure 3E). We further presented the

results of cell clustering at different resolution levels using

UMAP plots and dendrograms (Figures 3F–H). The signature

genes for each cell cluster were displayed using bubble

plots (Figure 3I).
FIGURE 2

Establishment of the MitoScore signature. (A) Using 148 different combinations of 14 machine learning algorithms for MitoScore research, with
C-index calculated for each model. (B) Survival curve of the total cohort. (C) Survival curve of the TCGA cohort. (D) Survival curve of the
GSE37642_GPL96 cohort. (E) Survival curve of the GSE37642_GPL570 cohort. Survival status, density distribution, PCA analysis, and tSNE analysis
between two different subgroups.
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Using the “single” package, the CellMarker database, and

reference (25), we identified marker genes to annotate different

cell clusters. This process resulted in the identification of seven cell

clusters: B Cell, Erythrocyte, Granulocyte, Macrophage,

Megakaryocyte, Natural Killer Cell, and T Cell. A small fraction

of cells that could not be recognized were annotated as

unrecognizable. Since leukemia cells do not contain neurons, they

were not considered core cell populations for subsequent analysis
Frontiers in Immunology 09
(Figure 4A). We further compared the annotation results and the

proportions of these seven cell types between the healthy group and

the AML group (Figures 4B, C). Box plots were used to illustrate the

differences in the proportions of these seven cell types between the

healthy and AML groups. The analysis revealed that the numbers of

NK cells and T cells were significantly higher in the healthy group

compared to the AML group (Figure 4D). The expression of 31 key

mitochondrial genes in each cell type was visualized using bubble
FIGURE 3

Based on single-cell RNA sequencing data, cell clusters with different annotations were identified, revealing high cellular heterogeneity in AML.
(A) The variance diagram shows the variation of gene expression in all cells of AML. The red dots represent highly variable genes and the black dots
represent non-variable genes. (B) PCA showed a clear separation of cells in AML. (C, D) PCA identified the top 20 PCs at P < 0.05. (E) The UMAP
algorithm was applied to the top 20 PCs for dimensionality reduction, and 24 cell clusters were successfully classified. (F–H) Present the clustering
outcomes of cell clusters at varying resolution levels. (I) Expression levels of marker genes for each cell cluster.
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FIGURE 4

An overview of the single-cell atlas for normal and tumor samples from AML patients. (A) 8 cell types identified based on marker gene expression.
(B) Compare the annotation results between normal and tumor tissues. (C) Show the proportions of eight cell types in AML patients and healthy
controls. (D) Display whether there are differences in the proportions of 8 cell types between AML patients and healthy controls using box plots.
(E) Show the expression of each MitoScore signature gene in the 8 cell types using a bubble chart. (F) Use the AUCell algorithm to score the activity
of MitoScore signature genes in each cell type. (G) Display the scoring results using a UMAP plot. (H) Display whether there are differences in the
activity scores of MitoScore signature genes between AML patients and healthy controls for the 8 cell types using box plots.
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plots, which showed that DGUOK, FDPS, FTH1, HIGD2A,

NDUFC1, NME3, UQCR10, and UQCR11 had higher expression

levels in T cells (Figure 4E). Additionally, based on the gene set

composed of these 31 key mitochondrial genes, we used the AUCell

algorithm to identify subpopulations with active mitochondrial

function. The identified active subpopulations were utilized to

study the expression patterns of mitochondrial response genes at

the single-cell level. The results indicated that T cells were among

the active cell populations, and there was a difference in the activity

scores of T cells between the healthy and AML groups (Figures 4F–

H). Based on a comprehensive consideration of both quantity and

mitochondrial scores, we will continue to perform further analysis

on T cells.
3.5 Further pseudotime and cell
communication analysis of T cell subsets

To further characterize T cells, we isolated all T cells from the

entire cell population. We performed dimensionality reduction and

clustering analysis using the UniformManifold Approximation and

Projection (UMAP) algorithm. This analysis classified the T cells

into eight distinct clusters (Figure 5A). Based on the expression

patterns of marker genes, we annotated these clusters into five T cell

subpopulations: CD4+ T cells, central memory CD4+ T cells (CD4+

Tcm), central memory CD8+ T cells (CD8+ Tcm), effector memory

CD8+ T cells (CD8+ Tem), and regulatory T cells (Tregs)

(Figure 5B). We then compared the distribution and proportions

of these subpopulations between healthy individuals and AML

patients (Figure 5C).

To explore the differentiation trajectories of the annotated T cell

subpopulations, we conducted pseudotime analysis using the

Monocle 2 algorithm. This analysis revealed nine distinct

differentiation states during T cell development (Figure 5D). The

differentiation sequence was as follows: CD4+ T cells differentiate

into Tregs and CD4+ Tcm, which subsequently give rise to CD8+

Tcm and CD8+ Tem. This indicates that CD4+ T cells, CD4+ Tcm,

and Tregs represent early stages of cellular development, while CD8+

Tcm and CD8+ Tem correspond to terminal differentiation stages

(Figures 5E–G). To visualize the expression dynamics of

mitochondrial key genes during this process, we used violin plots

to display the expression levels of eight highly expressed

mitochondrial genes across the nine differentiation states

(Figure 5H). Heatmaps were also generated to present clustering

results based on pseudotime-associated genes, identifying

differentially expressed genes (DEGs) along the pseudotime

trajectory. These DEGs were categorized into three distinct

subgroups (Supplementary Figures S4A, B). Collectively, these

findings simplify the complex process of T cell differentiation,

delineating key stages and molecular changes that define the

transition from early to terminal stages of T cell development.

Furthermore, we inferred a cell-cell communication network to

predict intercellular communications based on specific pathways

and ligand-receptor interactions. A chord diagram illustrating the

number of ligand-receptor pairs revealed that cellular
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communication was more frequent among CD4+ Tcm, CD4+ T

cells, Tregs, and CD8+ Tem (Figure 5I). Notably, the interaction

frequency and strength were higher between CD4+ Tcm and CD8+

Tem, CD4+ Tcm and Tregs, as well as CD4+ Tcm and CD4+ T

cells, whereas CD8+ Tcm had relatively fewer interactions with

other cell types (Figure 5J). We also detailed the communication

scenarios of these five T cell subpopulations within the MIF

signaling pathway, the CCL signaling pathway, and the IL-16

signaling pathway (Supplementary Figure S5). These results

highlight the significant intercellular communication among T

cell subpopulations, particularly between CD4+ Tcm and other

types, which is crucial for immune coordination. This information

could be essential for developing therapeutic strategies that target

immune responses in AML.
3.6 Annotation of clinical characteristics
for the MitoScore

To further investigate the relationship between MitoScore and

clinical-pathological parameters and to validate its prognostic

capability in AML, we conducted stratified analyses based on

MitoScore about age, sex, cytogenetic risk, and FAB code. Our

study revealed no significant differences in MitoScore between sexes

(Supplementary Figure S6B). However, we observed significant

associations between MitoScore and several other clinical

parameters, including age, cyto_risk classification, and fab_code

classification (Supplementary Figures S6A, C, D). To evaluate the

impact of MitoScore on overall survival across different clinical

characteristics, we performed a K-M survival analysis for patients

stratified by age (<65 years or ≥65 years), sex, cytoreduction risk

classification, and FAB classification. In each subgroup, patients

with a high MitoScore exhibited significantly worse overall survival

compared to those with a low MitoScore (Supplementary Figures

S6E–M). These findings underscore the robust predictive power of

the MitoScore for prognosis across multiple AML subgroups

independent of traditional clinical factors.
3.7 Analysis of potential biological
mechanisms of MitoScore signature

To gain deeper insights into the biological processes associated

with the MitoScore signature, we performed comprehensive

enrichment analyses. GSVA revealed that the MitoScore is

significantly associated with cellular metabolism, particularly

pathways related to carbohydrate metabolism, amino acid

metabolism, and lipid metabolism (Figures 6A, B). Subsequently,

we conducted an in-depth analysis of the 31 key mitochondrial

genes using both Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses. GO analysis

identified significant enrichment in biological processes, including

mitochondrial transport, oxidative phosphorylation, the respiratory

electron transport chain, mitochondrial ATP synthesis, and other

pathways integral to mitochondrial and cellular respiration
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FIGURE 5

The single-cell transcriptional atlas of T cells and pseudo-time analysis and cell communication analysis of its five subtypes. (A) UMAP plot of T cells
in scRNA-seq, clustered into 8 distinct clusters. (B) 5 cell types identified based on marker gene expression. (C) Compare the annotation results
between normal and tumor tissues. (D) Trajectory plot showcasing the different stages of T cell differentiation along a pseudo-time axis.
(E) Independent visualization of T cell subtypes at different stages along the pseudotime axis and trajectory plots depicting the developmental time
course of T cells. (F) Trajectory plot of T cell subtypes indicating their differentiation patterns along a pseudo-time axis. (G) Independent visualization
of T cell subtypes at different stages based on a dendrogram. (H) Violin plots of the expression levels of 8 MitoScore signature genes that are highly
expressed in T cells, indicating their expression patterns along the pseudotime axis. (I) Number of interactions between 5 T cell subtypes.
(J) Strength of interactions between 5 T cell subtypes.
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(Figures 6C, E). KEGG analysis highlighted enriched pathways,

including terpenoid backbone biosynthesis, nitrogen metabolism,

oxidative phosphorylation, thermogenesis, and various metabolic

processes and disease mechanisms (Figures 6D, F).

To further elucidate the potential pathways associated with

MitoScore, we employed Gene Set Enrichment Analysis (GSEA). In

patients with lower MitoScores, we observed enrichment in
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biological processes and molecular functions related to anterior/

posterior pattern specification, myeloid leukocyte activation,

leukocyte-mediated immune regulation, immune receptor activity,

and molecular transduction activity (Figure 6G). Conversely,

patients with higher MitoScores showed enrichment in pathways

associated with adaptive immune response, B-cell-mediated

immunity, immunoglobulin production, immunoglobulin
FIGURE 6

Functional enrichment analysis of MitoScore signature. (A, B) GSVA enriched pathways in the high- and low-MitoScore subgroup. (C, E) The GO
enrichment analysis of the 31 key MitoScore signature genes. (D, F) The KEGG enrichment analysis of the 31 key MitoScore signature genes. (G) The
top 5 GSEA enriched pathways in the low- MitoScore subgroup. (F) The top 5 GSEA enriched pathways in the low- MitoScore subgroup.
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complexes, and antigen-binding (Figure 6H). These findings

indicate that the MitoScore model is primarily enriched in

pathways related to cellular metabolism, signal transduction, and

immune responses. The comprehensive investigation of these

pathways provides valuable insights into the specific biological

mechanisms underlying the observed differences between

MitoScore subgroups. This analysis highlights the potential

significance of the 31 key mitochondrial genes in various KEGG

pathways, underscoring their role in AML pathogenesis

and prognosis.
3.8 Mutation landscape analysis of
MitoScore signature

To elucidate the genetic landscape associated with different

MitoScore profiles, we utilized the Maftools software package to

investigate the distribution of somatic variants in AML patients. We

observed distinct driver mutation patterns between the two MitoScore

subgroups. Additionally, using GISTIC2.0, we identified the frequency

of recurrent copy number alterations (CNAs) in both the high and low

MitoScore groups. The study found that the low MitoScore group

exhibited a higher frequency of recurrent copy number alterations

(CNAs) compared to the high MitoScore group (Figures 7A, B).

Specifically, in the low MitoScore group, the genes with higher

mutation frequencies were BCORL1, IDH2, MUC16, and RUNX1.

In contrast, in the high MitoScore group, DNMT3A, NPM1, IDH2,

and TP53 exhibited higher mutation frequencies (Figure 7C).

Furthermore, we illustrated the chromosomal locations of the 31

key mitochondrial genes (Figure 7D). Copy number variations

(CNVs) play a crucial role in the development and progression of

cancer. In our model, the genes with the highest CNV frequencies

included TIMM8B, BCKDK, UQCR11, HIGD2A, and NFS1

(Figure 7E). Considering the significant role of TMB in determining

individual responses to immunotherapy, we examined its relationship

with MitoScore. The results indicated that TMB levels were generally

consistent between the high and lowMitoScore subgroups (Figures 7F,

G). Notably, although tumor mutation burden (TMB) itself was not

significantly associated with prognosis in our cohort, patients in the

high MitoScore subgroup had considerably worse prognoses

compared to those in the low MitoScore subgroup independently of

TMB levels (Figure 7H). This suggests that mitochondrial gene

dysregulation may drive poor outcomes through mechanisms

distinct from global mutational load. Our study consistently

emphasizes the importance of the 31 key MitoScore genes in AML.

We comprehensively evaluated the diverse roles and characteristics of

these genes across various cancers (Supplementary Figures S7, S8, S9).
3.9 MitoScore was associated with immune
characterization in AML

Using ssGSEA clustering, we classified AML samples into two

immune phenotypes: C2 (IFN-gamma dominant) and C4

(lymphocyte depletion), and illustrated the proportions of these
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immune phenotypes within the high and low MitoScore subgroups

(Figure 7I). However, no significant differences in MitoScore were

observed between the two immune phenotypes (Figure 7J). Notably,

while our analysis revealed no statistically significant difference in

survival across molecular and immune subtypes, these subtypes

exhibited marked immunological heterogeneity in terms of immune

cell infiltration and pathway activation. Importantly, patients in the

high MitoScore subgroup had significantly worse prognoses

compared to those in the low MitoScore subgroup across all

immune phenotypes (Figure 7K). This suggests that

mitochondrial dysfunction drives adverse outcomes through

mechanisms independent of tumor immune microenvironment

characteristics. Additionally, we analyzed the expression levels of

the 31 key MitoScore genes in these two immune phenotypes.

Remarkably, the expression levels of AKR7A2, CISD1, GLUD1,

HTRA2, MRPS12, NME3, and UQCR11 showed significant

differences between the two immune phenotypes (Supplementary

Figure S10).

Considering the critical role of immune infiltration in

tumorigenesis, we first evaluated the differences in immune cell

subpopulations between the high MitoScore and low MitoScore

subgroups. Specifically, the high MitoScore subgroup exhibited

higher proportions of macrophages, monocytes, and plasmacytoid

dendritic cells compared to the low MitoScore subgroup

(Figures 8A–C). Next, we investigated the differences in immune

function between the high MitoScore and lowMitoScore subgroups.

Our analysis revealed that the high MitoScore subgroup

demonstrated stronger immune functions. Specifically, the high

MitoScore subgroup showed higher scores for antigen-presenting

cell (APC) co-stimulation, parainflammation, and Type II

interferon (IFN) response compared to the low MitoScore

subgroup (Figures 8E, F).

Subsequently, we investigated the relationship between the high

MitoScore and low MitoScore subgroups and their association with

immune regulators. Specifically, the high MitoScore subgroup

exhibited higher expression levels of immune regulators,

including TGFB1 ligand, TNFSF9 ligand, and PDCD1 receptor,

compared to the low MitoScore subgroup (Figures 8H, I). We also

examined the relationship between the high MitoScore and low

MitoScore subgroups and immune checkpoint genes. The high

MitoScore subgroup showed higher expression levels of immune

checkpoint genes, including TNFSF9, TNFSF15, and PDCD1,

compared to the low MitoScore subgroup (Figures 8K, L).

Furthermore, we used heatmaps to provide a detailed

visualization of the distribution of the 31 key mitochondrial genes

across immune cells, immune functions, immune regulators, and

immune checkpoint genes, offering valuable insights for future

research (Figures 8D, G, J, M).
3.10 Drug sensitivity analysis for MitoScore
signature

From the Genomics of Drug Sensitivity in Cancer (GDSC)

database, we identified significant differences in drug sensitivity
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FIGURE 7

Mutation landscape analysis of MitoScore signature genes. (A, B) Recurrent regions of copy number amplification and deletion in the low and high-
MitoScore subgroup. (C) Top 30 mutated genes were illustrated in the low- (left)and high- (right) MitoScore signature. (D) The chromosomal
location of each MitoScore signature genes. (E) The CNV frequency of each MitoScore signature genes. (F) TMB/MB (log10) Demonstration for Each
Sample. (G) Proportions of High TMB and Low TMB in the high- and low-MitoScore subgroup. (H) MitoScore and TMB-categorized OS KM curves.
(I) Proportions of Two Cancer Immune Subtypes in the high- and low-MitoScore subgroup. (J) Box Plot Demonstrates the Differences in MitoScore
Between Two Cancer Immune Subtypes. (K) OS KM Curves Based on MitoScore and Two Cancer Immune Subtypes.
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FIGURE 8

MitoScore and Immune-Related Analyses. (A, B) Display the differences in immune infiltration cells between high- and low-MitoScore subgroups
using ssGSEA and xCell algorithms in a box plot. (C) Evaluate the correlation between immune infiltration cells and MitoScore. (D) Revealed a
heatmap revealing the correlation between each MitoScore signature gene expression and immune infiltration cells. (E) Display the differences in
immune function between high- and low-MitoScore subgroups. (F) Evaluating the correlation between immune function and MitoScore.
(G) Revealed a heatmap showing the correlation between the expression of each MitoScore signature gene and immune function. (H) Display the
differences in immunomodulators between high- and low- MitoScore subgroups. (I) Evaluate the correlation between immunomodulators and
MitoScore. (J) Revealed a heatmap showing the correlation between the expression of each MitoScore signature gene and immunomodulators.
(K) Display the differences in immune checkpoint genes between high- and low-MitoScore subgroups. (L) Evaluate the correlation between immune
checkpoint genes and MitoScore. (M) Revealed a heatmap showing the correlation between the expression of each MitoScore signature gene and
immune checkpoint genes. *, **, *** represent p < 0.05, p < 0.01, and p < 0.001, respectively. "ns" means not significant (p >= 0.05).
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between the high MitoScore and low MitoScore subgroups. We

specifically examined eight drugs commonly used in the clinical

treatment of AML patients and found that 5-fluorouracil,

Gemcitabine, and Epirubicin were more sensitive in the low

MitoScore subgroup. In contrast, Cyclophosphamide and

Venetoclax were more sensitive in the high MitoScore subgroup

(Figure 9A). Furthermore, we highlighted 15 drugs from the GDSC

database that exhibited highly significant differences in sensitivity

between the high MitoScore and low MitoScore subgroups. Drugs

such as SB216763, NU7441, Doramapimod, RO-3306, and ABT737

showed greater sensitivity in the high MitoScore subgroup. At the

same time, Dactolisib, Pictilisib, Alpelisib, LGK974, Buparlisib,

Afuresertib, AZD5363, Ipatasertib, and GNE-317 were more

sensitive in the low MitoScore subgroup (Figure 9B). In

summary, these findings suggest that these drugs may represent
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promising therapeutic options for AML, with their effectiveness

potentially guided by MitoScore status.
4 Discussion

To date, extensive research has elucidated the role of

mitochondria in tumorigenesis, proliferation, and metastasis,

primarily through their involvement in bioenergetics, signaling

pathways, and biosynthesis (14, 15). The activation of oncogenes,

inactivation of tumor suppressor genes, and accumulation of

tumor-induced mutations in tricarboxylate circulating enzymes

contribute to the production of excessive mitochondrial reactive

oxygen species (ROS), which promote the development of tumor

cells within the hypoxic microenvironment (35). Tumor cells
FIGURE 9

Drug sensitivity analysis of two MitoScore subgroups. (A) Display the drug sensitivity of current clinical AML treatments in high- and low-MitoScore
subgroups. (B) Display the drug sensitivity of drugs not yet widely used in high- and low-MitoScore subgroups. *, **, *** represent p < 0.05, p < 0.01,
and p < 0.001, respectively. "ns" means not significant (p >= 0.05).
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exhibit elevated levels of antioxidant proteins that mitigate cell

death induced by ROS-mediated alterations in mitochondrial

permeability (36). Furthermore, the sustained accumulation of

metabolites produced by mutant mitochondrial enzymes supports

tumor cell proliferation (37). Changes in mitochondrial metabolic

status influence various signaling pathways, enhance metabolic

reprogramming, and facilitate tumor metastasis. Consequently,

numerous anti-tumor agents have been developed to target

specific vulnerabilities in mitochondrial metabolism. However,

due to the adaptive and compensatory mechanisms of tumor cells

and the off-target effects of mitochondrial-targeted drugs, the

efficacy of single-target therapies is often limited (38). This raises

the question of whether a gene set comprising multiple

mitochondrial functional genes can be utilized to develop an

AML risk model that predicts treatment outcomes and informs

the selection of therapeutic regimens.

To our knowledge, this study represents the first comprehensive

investigation of mitochondrial function in AML, identifying 31 key

mitochondrial genes and constructing a MitoScore signature

utilizing a combination of 148 algorithms derived from 14

machine-learning methods. In contrast to existing models, our

signature was developed by integrating multiple datasets and

machine learning approaches, and its robustness was validated

using external datasets. Furthermore, we established a MitoScore-

based nomogram designed to enhance the accuracy of clinical

prognosis predictions in AML patients. This nomogram

incorporates additional variables, including age, sex, cytogenetic

risk, and French-American-British (FAB) classification. The

nomogram demonstrated an AUC exceeding 0.8 for predicting

outcomes at 1, 3, and 5 years, indicating strong predictive power

and stability.

In addition, we obtained 39,783 cells in the scRNA-seq map and

identified seven types of core cells: granulocytes, erythrocytes,

megakaryocytes, macrophages, B cells, natural killer cells, and T

cells. Compared with healthy controls, the number and

mitochondrial function scores of T cells were reduced in AML

patients, suggesting that AML may inhibit mitochondrial function

by affecting mitochondrial nucleotide synthesis, enzyme activity and

respiratory chain complex of T cells. To further understand the

influence of mitochondrial function on T cells, we divided T cells into

five subgroups and nine differentiation stages, analyzed the

expression of key mitochondrial genes at different differentiation

stages of various subgroups of cells, and found that different

differentiation stages of T cells had specific expressions of key

mitochondrial genes, which provided a possible method for

simplifying the identification of T cell differentiation stages. In the

communication network of T cell subsets in AML, CD4+ Tcm serves

as a pivotal hub, facilitating interactions among various T cell subsets.

Previous research has demonstrated that AML patients harboring

DNMT3A mutations exhibit a reduction in naive CD8+ T cells and

CD4+ effector memory T cells compared to controls without such

mutations while concurrently showing an increase in CD4+ Tcm cells

(39). Notably, an elevated level of CD4+ Tcm cells has been

associated with poor prognosis in chronic lymphocytic leukemia (40).
Frontiers in Immunology 18
Furthermore, the sustained proliferative capacity and robust

effector function of CD4+ Tcm cells render them critical parameters

for assessing the persistence and efficacy of chimeric antigen

receptor (CAR) T cell therapy (41). Despite the remarkable

success of CAR T therapies in treating B-cell lymphoblastic

leukemia, B-cell lymphoma, and multiple myeloma, significant

challenges remain in addressing acute myeloid leukemia (AML),

primarily due to the absence of stable target antigens (42). The

extent to which the findings of this study can serve as predictors of

CAR T therapy efficacy in AML patients, or whether mitochondrial

functional genes expressed explicitly by CD4+ Tcm cells may

represent viable targets for CAR T therapy, necessitates further

investigation supported by subsequent experiments and

clinical data.

We categorized all samples into low-risk and high-risk groups

based on the MitoScore signature. We then evaluated these two

groups in terms of clinical features, biological mechanisms, copy

number alterations, tumor mutational burden, immune infiltration,

immune functions, and immune checkpoint gene expression. Our

findings indicated that, compared to the low-risk group, the high-

risk group exhibited a poorer survival prognosis, greater

enrichment in immune response-related biological processes and

molecular functional pathways, a higher frequency of mutations

with adverse outcomes, increased infiltration of immune cells and

immune function, and heightened expression of genes at

immune checkpoints.

Finally, we screened effective drugs and potential compounds

for patients with AML from the GDSC database, guided by the

MitoScore signature. Among the commonly used therapies for

AML, the high-risk group demonstrated greater sensitivity to

cyclophosphamide and venetoclax, whereas the low-risk group

responded more favorably to 5-fluorouracil, gemcitabine, and

epirubicin. Furthermore, we identified 15 compounds with

therapeutic efficacy against AML, which exhibited significant

differences in sensitivity between the low-risk and high-risk groups.

This study lays a foundation for the stratified and precise

treatment of patients with AML; however, it is not without

limitations. First, the establishment of our model primarily relies

on bulk RNA-seq data, which is relatively limited in scope. Future

research should incorporate scRNA-seq data and conduct internal

data analyses to enhance the predictive efficiency of the model.

Additionally, the scarcity of data may contribute to inconsistencies

observed between the analysis of CNVs in different groups and the

findings of previous studies. Third, immune infiltration analyses

may be confounded by technical batch effects and tumor

heterogeneity—despite employing batch correction algorithms

(e.g., ComBat) and using uniformly processed TCGA data.

Inherent limitations of bulk RNA-seq deconvolution methods

(CIBERSORT/ssGSEA) constrain the interpretation of the

microenvironment. Finally, the regulatory mechanisms of the key

mitochondrial genes that comprise the MitoScore signatures in

AML remain unclear, and there is a lack of corresponding literature

to support this understanding. These aspects warrant further

verification and investigation through subsequent experiments
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utilizing three-dimensional models: cellular, animal, and

clinical specimens.

Moreover, our study has three critical limitations: (1) the

absence of external validation using independent clinical cohorts

for the prognostic model; (2) insufficient experimental interrogation

of key genes’ biological functions in AML progression; and (3) lack

of qPCR validation for mitochondrial gene expression patterns,

restricting confirmation to transcriptomic-level observations

without multilevel biological corroboration. We acknowledge that

future work must address the clinical applicability and biological

relevance of our findings through validation with independent

prospective clinical cohorts to confirm model generalizability,

mechanistic experiments (e.g., knockdown/overexpression of hub

genes in AML models) to elucidate regulatory roles, and integrated

molecular validation combining qPCR, protein analysis, and

functional assays to establish translational relevance.
5 Conclusion

By integrating mitochondrial genes with bulk RNA-seq data

from AML and employing various machine-learning methods, we

developed a novel prognostic model that effectively predicts patient

survival outcomes. Moreover, the MitoScore facilitates the

stratification of patients into low-risk and high-risk groups, with

distinct gene mutation profiles, immune characteristics, and drug

sensitivities observed between these groups. This study presents a

reliable prognostic model for AML, opening new avenues for

personalized treatment strategies in the future.
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SUPPLEMENTARY FIGURE 1

The expression pattern of MitoScore signature genes in tumor and normal. A

The box plot depicts the differences of each MitoScore signature gene

between tumor and normal tissues. B The ridge plot illustrates the
expression patterns of each MitoScore signature gene.

SUPPLEMENTARY FIGURE 2

The expression pattern and survival analysis of MitoScore signature genes in
pan-cancer analysis. (A) Summarizes the expression difference between

normal and cancer groups. (B) Summarizes the survival difference between
high- and low-gene expression groups.
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SUPPLEMENTARY FIGURE 3

The nomogram model was constructed based on Univariate and multivariate
cox regression analyses. (A) Nomogram to predict 1-, 3-, and 5-year AML

patient survival. (B) Nomogram calibration curves for 1-, 3-, and 5-year OS.
(C) The ROC curves for the MitoScore signature are displayed. (D) The ROC

curves of the MitoScore signature for 1, 3, and 5 years. (E) AUC analysis of

each variable included in the nomogrammodel for 1 years. (F) AUC analysis of
each variable included in the nomogram model for 3 years. (G) AUC analysis

of each variable included in the nomogrammodel for 5 years. (H) DCA curves
were compared over a period for patients with AML. (I) DCA curves were

compared over a period of 1 year, 3 years, and 5 years for patients with AML.

SUPPLEMENTARY FIGURE 4

(A) Cluster heatmap based on pseudo-time series related genes. (B) DEGs
identified along the pseudo-temporal trajectory are categorized into three

distinct subgroups

SUPPLEMENTARY FIGURE 5

Cell-cell communication analysis. (A–C) Intercellular communication

network diagram within the MIF signaling pathway. (D) Heatmap displaying

the interaction patterns of ligand-receptor interactions in the MIF signaling
pathway across different cell types. (E) Expression profiles of representative

genes in the MIF signaling pathway across different cell types. (F–H)
Intercellular communication network diagram within the CCL signaling

pathway. (I) Heatmap displaying the interaction patterns of ligand-receptor
interactions in the CCL signaling pathway across different cell types. (J)
Expression profiles of representative genes in the CCL signaling pathway

across different cell types. (K–M) Intercellular communication network
diagram within the IL16 signaling pathway. (N) Heatmap displaying the

interaction patterns of ligand-receptor interactions in the IL16 signaling
pathway across different cell types. (O) Expression profiles of representative

genes in the IL16 signaling pathway across different cell types.
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SUPPLEMENTARY FIGURE 6

Annotation of clinical characteristics for the MitoScore. (A–D) The expression
of MitoScore signature in different clinical subgroups. (E–M) Kaplan-Meier

survival analyses of MitoScore signature in different strata of
clinical characteristics.

SUPPLEMENTARY FIGURE 7

The CNV landscape of MitoScore signature genes in pan-cancer analysis. (A)
Correlations between CNV and mRNA expression of each MitoScore
signature gene in the pan cancers. (B) CNV percentage of each MitoScore

signature gene in each cancer. (C) Summarizes the survival difference
between CNV groups.

SUPPLEMENTARY FIGURE 8

The methylation landscape of MitoScore signature genes in pan-cancer

analysis. (A) The methylation difference between tumor and normal samples
in the pan cancers. (B)Correlations betweenmethylation andmRNA expression

of each MitoScore signature gene in the pan cancers. (C) Summarizes the
survival difference between high and low methylation groups.

SUPPLEMENTARY FIGURE 9

Themutation landscape of MitoScore signature genes in pan-cancer analysis.

(A) Copilot of the signature gene mutation frequency in pan cancers. (B, C)
Copilot of the single-nucleotide variant in pan cancers. (D) Summarizes the

survival difference between mutant and WT.

SUPPLEMENTARY FIGURE 10

Box plot portrays the dissimilarities in the cancer immunity subgroup
between MitoScore signature genes.

SUPPLEMENTARY TABLE 1

All of the included Mitochondria-related genes.
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