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Background: The disease burden of acute myeloid leukemia (AML) continues to
pose a significant public health challenge globally. Mitochondria play a critical
role in tumor development and progression by influencing bioenergetics,
biosynthesis, and signaling pathways. However, the prognostic significance and
therapeutic implications of mitochondrial function in AML warrant
further investigation.

Methods: We integrated mitochondrial gene expression data with bulk RNA
sequencing to identify key mitochondrial genes associated with AML. A total of
fourteen machine learning algorithms were employed, yielding 148 unique
combinations. The best-performing model was utilized to develop a
MitoScore, which was then combined with clinical variables to establish a
MitoScore-based nomogram. Additionally, single-cell sequencing data were
analyzed to assess the impact of key mitochondrial genes on immune cells.
Samples were classified into low-risk and high-risk groups based on MitoScore,
allowing for a comparative analysis of clinical features, biological mechanisms,
copy number variations, tumor burden, immune infiltration, immune function,
and drug sensitivity between the two groups.

Results: Specific expression patterns of mitochondrial genes were observed in T
cell subsets and at various developmental stages of AML. Samples were classified
into low-risk and high-risk groups based on MitoScore. The high-risk MitoScore
group exhibited a worse prognosis, with enriched biological processes and
molecular pathways associated with immune response, a higher frequency of
gene mutations linked to poor outcomes, increased immune cell infiltration,
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enhanced immune function, upregulated immune checkpoint gene expression,
and greater sensitivity to cyclophosphamide and venetoclax.

Conclusions: This robust machine learning framework underscores the potential
of MitoScore as a tool for stratified prognostic assessment and personalized
treatment planning in AML patients.

mitochondrial-related molecular signature, acute myeloid leukemia, single-cell
RNAsequencing, machine learning model, immune function

1 Introduction

Over the last three terms, the worldwide Burden of acute
myeloid leukemia (AML)—the most substantial subtype of
leukemia in adults—has escalated, impacting morbidity and
mortality, remarkably, a few of the elderly and male populations,
as mentioned through using the Global Burden of disease test
(GBD) 2021 (1). This style highlights that the modern-day
Burden of AML poses a significant public health challenge
worldwide, necessitating collaboration among professionals,
community physicians, and policymakers to develop customized
healthcare approaches in the areas of diagnosis, treatment, and
patient care. To optimize results for patients with AML, treatment
regimens need to be meticulously tailored based on various factors,
including age, genetic predisposition to leukemia, risk stratification,
prior medical history, transplant eligibility, expected toxicity, and
the patient’s medical profile and preferences (2). Similarly to age
and comorbidities, the biology of the disease—in conjunction with
cytogenetic and molecular changes—plays a crucial role in
determining treatment regimens, responses, and survival
prognoses (3). For example, the implementation of targeted
chemotherapy has markedly improved survival outcomes for
younger patients and those with adverse-hazard cytogenetics.
Furthermore, allogeneic hematopoietic stem mobile
transplantation remains a powerful restoration choice for patients
with slight to horrible prognostic cytogenetics, but many old, frail,
and significantly comorbid people are ineligible for transplantation
(4). For this specific patient population, low-dose induction
chemotherapy incorporating demethylating agents and venetoclax
has been examined for efficacy in increasing the rate of complete
response and extending median survival (5).

Additionally, several targeted therapies have recently gained
acclaim for the treatment of AML, including ivosidenib and
olutasidenib for IDH1 mutations (6, 7), enasidenib for IDH2
mutations (8), and gilteritinib and midostaurin for FLT3
mutations (9). Irrespective of these significant advances in drug
development, some sufferers continue to experience refractory
relapse, often due to the emergence of the latest clones or the
activation of bypass signaling pathways following treatment,
resulting in familiar healing outcomes that live suboptimal (10).
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Therefore, there may be a pressing need to understand potential
healing dreams, optimize risk stratification structures, and refine
custom-designed treatment techniques for AML.

A deeper understanding of the pathophysiological mechanisms
underlying leukemia reveals that treatment failures can be attributed
to the metabolic reprogramming and mitochondrial dysfunction of
leukemia cells (11, 12). In 1924, Otto Warburg first defined that, in
the presence of oxygen, tumor cells in fashionable depend on
glycolysis for energy production, resulting in the accumulation of
lactic acid. This metabolic method enables tumor cells to maintain
their growth even as they acidify the surrounding microenvironment.
Metabolic reprogramming serves as an adaptive mechanism for
tumor cells inside the challenging conditions of hypoxia, nutrient
deficiency, and immune surveillance, constituting the natural basis
for tumor cell proliferation and the malignant phenotype (13). To
satisty their metabolic necessities, mitochondria perform several
essential capabilities: 1) bioenergetics, which involves adjustments
in ATP and NADPH production; 2) biosynthesis, encompassing the
conversion of diverse vitamins from the microenvironment into vital
additives for tumor cellular growth; and three) modulation of organic
signaling pathways, thereby enhancing communication amongst
tumor cells and other cells inside the microenvironment (14, 15).

Furthermore, extensive studies on the differentiation stages of
leukemic cells have identified an unprecedented population of
leukemic stem cells (LSCs) that act as the primary drivers of
leukemia initiation and progression, contributing substantially to
treatment resistance and relapse (16). LSCs exhibit remarkable
mitochondrial morphology, energy metabolism, and regulatory
mechanisms in contrast to hematopoietic stem cells and bulk
cells. This particular mitochondrial profile underscores their
reliance on mitochondrial oxidative phosphorylation (OXPHOS)
(17). The mitochondrial dependence of LSCs additionally highlights
their susceptibility to mitochondrial inhibitors, which can also serve
as promising targets for novel drug development. Given the
essential role of mitochondrial dependence in AML, the U.S.
Food and Drug Administration (FDA) has approved several
therapies for AML treatment, including the isocitrate
dehydrogenase one inhibitor ivosidenib (6), the isocitrate
dehydrogenase two inhibitor enasidenib (8), and the BH3
mimetic venetoclax (18). Furthermore, various mitochondrial
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inhibitors, including CPI-613, CB-839, IACS-010759, and ibrutinib,
are currently under evaluation in clinical trials (19).

We examine the application of the Mitocarta 3.0 database, along
with bulk RNA sequencing data, to identify key mitochondrial
genes. We employed 14 tool-studying strategies across 148
combinations to select the simplest version, ultimately developing
a Mitochondrial-related score (MitoScore). Moreover, we analyzed
single-cell RNA sequencing (scRNA-seq) data to investigate the
relationship between MitoScore and immune cellular populations,
aiming to clarify the mitochondrial functional importance of
immune cells within the leukemic microenvironment. Ultimately,
we evaluated medical parameters, organic abilities, somatic
variations, immune characteristics, and drug sensitivities across
both high and low MitoScore groups. This comprehensive
analysis aims to provide a theoretical resource for the prognostic
rate of the MitoScore nomogram and to inform the development of
custom-designed treatment strategies for AML.

2 Methods
2.1 Data collection

RNA sequencing data and clinical information for AML patients
were obtained from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov) and the Gene Expression Omnibus
(GEO) datasets. The analysis included a total of 706 samples:
153 patient samples from TCGA-AML with associated survival
data and 553 samples with survival data from the GEO dataset
GSE37642. The GSE37642 dataset includes samples from both the
GPL96 and GPL570 platforms. Additionally, we combined 116
AML patient samples and 69 standard bone marrow samples
from the GSE30029 and GSE9476 datasets for differential
expression gene (DEG) analysis using the limma package. Genes
were considered significantly differentially expressed if the adjusted
P value (adjP) was less than 0.05 and the fold change (FC) was
greater than 1. In our analysis, we defined FC as the ratio of gene
expression between two groups (e.g., disease vs. control) and logFC
as the log-transformed value of FC, using a base two logarithm.
Therefore, when FC > 1, it implies upregulation, and the
corresponding log2FC is greater than 0. Conversely, when 0 <
FC < 1, it represents downregulation, and log2FC is less than 0. This
direct mathematical relationship is consistent with standard
practices in gene expression analysis.

To focus on mitochondrial-related genes, we curated a list of 1,136
genes from MitoCarta 3.0, a comprehensive database of mitochondrial
genes (https://www.broadinstitute.org/mitocarta). Genes not present
in either the TCGA or GEO databases were excluded from our
analysis. The final gene list is provided in Supplementary Table S1.
We integrated the mRNA datasets from these sources and
conducted a thorough screening process to identify differentially
expressed genes (DEGs) associated with mitochondrial function. To
visually represent the overlap between differentially expressed genes
(DEGs) related to mitochondrial function and genes correlated with
AML prognosis, we utilized the Venn diagram tool.
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2.2 Construction of MitoScore signature

To construct the MitoScore signature, we employed Non-
negative Matrix Factorization (NMF) using the NMF package to
analyze the expression levels of 31 key mitochondrial genes across
tumor samples. We integrated 14 distinct machine learning
algorithms and evaluated 148 algorithm combinations (20, 21),
including Random Survival Forests (RSF), Least Absolute Shrinkage
and Selection Operator (LASSO), Elastic Net (Enet), Stepwise Cox
Regression (StepCox), CoxBoost, Partial Least Squares Regression
with Cox Proportional Hazards (PLSR-Cox), SuperPCA, Gradient
Boosting Machine (GBM), Support Vector Machines for Survival
Data (survivalism), Ridge Regression, Oblique Random Survival
Forests (obliqueRSF), XGBoost, Conditional Inference Forests
(CForest), and Conditional Inference Trees (CTree). A sequential
approach was developed to identify the optimal prognostic variables
through univariate Cox regression modeling.

The algorithms were applied to the overall AML cohort, which was
divided into training and testing sub-cohorts in a 3:7 ratio. The best-
performing model was constructed based on this split and further
validated using both internal and external datasets. A MitoScore was
calculated for each patient, and they were dichotomized into high- and
low-score groups based on the median score. The prognostic
significance of the MitoScore signature was assessed using Kaplan-
Meier (KM) survival analysis. To confirm its predictive capability, we
applied the MitoScore to the GSE37642 dataset, which contains
survival information from an external AML cohort. Principal
Component Analysis (PCA) and t-distributed Stochastic Neighbor
Embedding (t-SNE) were employed to assess the predictive capability
of the MitoScore. This methodological approach ensures a robust
evaluation of the MitoScore as a prognostic tool for AML, providing a
comprehensive assessment of its utility in predicting patient outcomes.

2.3 Construct a predictive nomogram

To enhance the predictive capability of the MitoScore signature,
we developed a nomogram that integrates key clinical features with
the MitoScore. These clinical features include age, sex, cytogenetic
risk (cyto_risk; stratifying patients into favorable/intermediate/
adverse groups based on ELN-defined chromosomal
abnormalities), French-American-British classification (fab_code;
classifying AML into M0-M7 subtypes by blast morphology and
cytochemistry), and the MitoScore itself. The nomogram allows for
the summation of scores from these variables for each patient,
ultimately establishing a comprehensive survival prediction model.
To validate the accuracy of the predicted survival rates at 1, 3, and 5
years, we generated calibration plots and time-dependent receiver
operating characteristic (ROC) curves using the ggDCA and
timeROC packages. Calibration plots were used to assess the
agreement between observed and predicted survival probabilities,
while time-dependent ROC analysis specifically evaluated the
dynamic discrimination performance of the nomogram for 1-, 3-,
and 5-year overall survival endpoints. The nomogram provides a
robust tool for predicting patient outcomes by integrating both
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clinical and molecular characteristics, thereby improving prognostic
precision. This approach ensures a thorough evaluation of the
nomogram’s performance in predicting survival, facilitating more
personalized and accurate prognosis for patients with AML.

2.4 ScRNA-seq data processing

We retrieved a scRNA-seq dataset (GSE235857) from the Gene
Expression Omnibus (GEO) database, which includes samples from
six patients with acute myeloid leukemia (AML) and six healthy
controls. To integrate these samples, we employed the anchor-based
integration approach provided by the Seurat R package (22).
Following integration, we filtered the cells to retain only high-
quality core cells for downstream analyses. Cells were excluded if
they expressed genes detected in three or fewer cells or if fewer than
200 genes were detected per cell, as these criteria indicate low-
quality data. For the retained core cells, gene expression levels were
normalized using a linear regression model. We then identified the
top 2,000 highly variable features through analysis of variance
(ANOVA). PCA was performed on the single-cell samples, and
the top 20 principal components (PCs) were selected for further
study based on their contribution to the variance. To visualize and
analyze the overall structure of the data, we applied the Uniform
Manifold Approximation and Projection (UMAP) algorithm (23)
for dimensionality reduction, using the top 20 principal
components (PCs) as input. Cell type annotation was conducted
using the SingleR R package (24), referencing the Human Primary
Cell Atlas Data, Blueprint Encode Data, and Immune Cell
Expression Data. Additionally, we utilized the CellMarker
database (25) and previous studies to identify marker genes,
thereby enabling manual annotation of distinct clusters. This
comprehensive approach facilitated the accurate characterization
of cell types within the scRNA-seq dataset, providing insights into
the cellular heterogeneity associated with AML and its comparison
to healthy states.

2.5 Identification of active subgroups

To evaluate which cellular subpopulations exhibit active
mitochondrial function based on a gene set comprising 31 key
mitochondrial genes, we utilized the R package “AUCell” to
calculate an activity score for each cell. Specifically, we employed
the AUCell_exploreThresholds function to determine the optimal
threshold for identifying cells with significant mitochondrial
activity. To visualize and identify subsets of cells specifically
active in the context of these 31 mitochondrial genes, we colored
UMAP embeddings of the cell clusters according to the Area Under
the Curve (AUC) score obtained from each cell. This approach
enabled us to pinpoint subpopulations with distinct mitochondrial
activity patterns, thereby providing insights into the functional
heterogeneity of mitochondria across different cell types within
the scRNA-seq dataset.
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2.6 Further analysis of T cell subgroups

Based on the active subpopulations identified through the
AUCell analysis, we extracted the T cell subpopulations and
performed re-dimensionality reduction and reclustering. This
process resulted in the annotation of five distinct T cell
subpopulations. To elucidate the molecular mechanisms
underlying the progression of AML, we applied the Monocle 2
algorithm to conduct pseudotime trajectory analysis on these five T
cell subpopulations. This analysis allowed us to infer the temporal
ordering of cellular states and identify key transcriptional changes
associated with AML progression. Additionally, we utilized
CellPhoneDB v2.0 to investigate potential intercellular
interactions among the five T cell subpopulations. By analyzing
ligand-receptor pairs, we identified putative communication
networks that may play a role in the dynamic changes observed
within the T cell landscape during AML progression. This
comprehensive approach provides insights into the dynamic
changes and intercellular communication within the T cell
environment, offering a deeper understanding of the
immunological processes involved in AML progression.

2.7 Biological function and pathway
enrichment analysis

To investigate the biological functions and pathway processes
associated with the MitoScore, we conducted a series of enrichment
analyses using the Kyoto Encyclopedia of Genes and Genomes
(KEGG), Gene Set Variation Analysis (GSVA), and Gene Set
Enrichment Analysis (GSEA). These analyses were performed
using the R packages clusterProfiler, GSVA, and GSEABase.
GSVA was employed to transform gene expression data from
single-gene measurements into gene set enrichment scores,
thereby assessing the extent of enrichment for each gene set
within individual samples. This approach allows us to evaluate
how pathways related to the MitoScore are represented across the
dataset, providing insights into the functional implications of
mitochondrial gene expression patterns. KEGG pathway analysis
was used to identify significantly enriched pathways, while GSEA
was applied to further explore the overrepresentation of specific
gene sets in high- versus low-MitoScore groups. Together, these
analyses provide a comprehensive understanding of the biological
processes and pathways that are differentially regulated in
association with the MitoScore, thereby elucidating the molecular
mechanisms underlying its prognostic significance.

2.8 Mutation landscape analysis

To investigate the genomic landscape of AML patients, we
obtained copy number variation (CNV) profiles using the TCGA
Bioconductor package. Patients were categorized into subgroups
based on the MitoScore model’s threshold, allowing for a stratified
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analysis of CNVs. We employed GISTIC2.0 to identify genomic
regions exhibiting significant amplifications or deletions across the
samples, thereby pinpointing specific somatic copy-number
alterations associated with the MitoScore (26). Furthermore, we
utilized the dplyr package to compare the frequency of common
somatic mutations between patients with high and low MitoScores.
To assess the tumor mutation burden (TMB), we calculated the
total count of non-synonymous somatic mutations per megabase
across the entire genome.

2.9 Assessment of immune
microenvironment

To comprehensively evaluate the levels of immune infiltration
and molecular characteristics, we employed a suite of
bioinformatics algorithms, including ssGSEA (27), CIBERSORT
(28), CIBERSORT-ABS (29), QUANTISEQ (30), MCPcounter (31),
Xcell (32), and EPIC (33). These algorithms utilize distinct
strategies to estimate the abundance of various immune cell
subpopulations, providing a multi-faceted view of the tumor
microenvironment. We further analyzed immune activity across
six immune subtypes: the wound healing subtype (C1), IFN-gamma
dominant subtype (C2), inflammatory subtype (C3), lymphocyte-
depleted subtype (C4), immunologically quiet subtype (C5), and
TGF-beta dominant subtype (C6) (34). The ssGSEA R package was
used to calculate enrichment scores or relative abundances for
various immune features by evaluating signature genes. This
approach allowed us to quantify the presence and activity of
different immune cell types within each sample. Additionally, we
examined the expression patterns of 60 immune-related factors,
including genes involved in antigen presentation, cell adhesion, co-
inhibitory molecules, co-stimulatory molecules, ligands, and
receptors. This analysis provided insights into the functional
states of immune cells and their interactions within the tumor
microenvironment. Moreover, we conducted an in-depth analysis
of the relationship between immune checkpoint genes and the
MitoScore. This investigation aimed to elucidate how
mitochondrial activity correlates with immune checkpoint
expression, potentially uncovering novel therapeutic targets for
modulating the immune response in AML.

2.10 Investigating the importance of the
MitoScore in the drug sensitivity analysis

To investigate the impact of MitoScore on treatment outcomes
in AML, we calculated the IC50 values for commonly used
chemotherapeutic agents using a custom algorithm and the
pRRophetic R package. The pRRophetic package leverages gene
expression and drug sensitivity data from cancer cell lines obtained
through the Cancer Genome Project to develop statistical models.
These models predict chemotherapeutic responses based on
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baseline tumor gene expression profiles, enabling the estimation
of drug sensitivity in patient samples. We applied this approach to a
melanoma dataset to calculate IC50 values for a panel of anti-tumor
drugs. To evaluate differences in chemotherapeutic outcomes
between patient groups, we compared the IC50 values between
high-risk and low-risk groups using the Wilcoxon signed-rank test.
The results were visualized using box plots, providing a clear
comparison of drug sensitivities across the two groups.

2.11 Statistical analyses

For bulk RNA-seq data from the TCGA and GEO databases, we
downloaded raw expression matrices in FPKM or count format
where applicable. GEO datasets with Affymetrix platforms (e.g.,
GPL96, GPL570) were processed from CEL files using the RMA
algorithm via the Affy package. Gene expression data were log2-
transformed using log2(x + 1) to reduce skewness and stabilize
variance. To enable cross-dataset comparisons and integration, we
employed quantile normalization across all samples and utilized the
ComBat algorithm from the Sva package to mitigate batch effects
between different platforms. Genes with low expression (average
counts <1 in over 50% of samples) were excluded before differential
expression analysis. For single-cell RNA-seq data, we applied
standard Seurat workflows, including log-normalization, feature
selection, and scaling, before proceeding with downstream
dimensionality reduction and clustering.

Prognostic modeling integrated multiple machine learning
algorithms selected for their complementary capabilities: LASSO-
Cox regression implemented feature selection through L1-penalized
dimensionality reduction; Random Survival Forests captured non-
linear interactions and complex dependencies; while XGBoost
enhanced predictive accuracy in structured clinical data
[CitationX]. Hyperparameter optimization employed systematic
grid search within stratified 5-fold cross-validation (70% training
subsample), evaluated by Harrell’s C-index. Overfitting mitigation
was incorporated through survival-stratified cross-validation,
temporal test set evaluation (30% cohort), and regularization,
including L1-penalization (A = 0.02) with early stopping (50-
iteration patience).

All statistical analyses were conducted using R (version 4.3.3;
https://www.r-project.org/). For comparisons between two groups,
we employed the Wilcoxon rank-sum test, whereas for multiple-
group comparisons, the Kruskal-Wallis test was used. Spearman’s
rank correlation analysis was applied to calculate correlation
coefficients. Fisher’s exact test or chi-squared test was utilized for
comparing contingency tables and categorical variables. Kaplan-
Meier survival analysis, accompanied by the log-rank test, was
performed to compare prognostic outcomes between subgroups.
Univariate and multivariate Cox proportional hazards regression
analyses were used to estimate hazard ratios (HR) for various
factors. Statistical significance was denoted as follows: *p < 0.05,
**p < 0.01, ***p < 0.001, and ns for not significant.
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3 Results

3.1 Preliminary screening of key
mitochondrial genes

In this study, we acquired gene expression profiles and
corresponding clinical data from TCGA and GEO databases.
From the MitoCarta3.0 database, we compiled a comprehensive
list of 1,136 genes known to be associated with mitochondrial
function. We performed differential expression analysis to identify
differentially expressed genes (DEGs) between normal tissue and
AML samples (Figures 1A, B). Following this, we performed
univariate Cox regression analyses on AML prognosis for genes
associated with mitochondrial function. Using a Venn diagram
approach, we identified a subset of differentially expressed genes
(DEGs) that concurrently influence both mitochondrial processes
and AML prognosis (Figure 1C). The first gene set represents
differentially expressed genes (DEGs) identified by comparing
AML samples to standard bone marrow controls using the limma
package, with thresholds of an adjusted P-value < 0.05 and a fold
change > 1. The second gene set comprises prognosis-related genes,
which were screened using univariate Cox regression analysis in the
TCGA-AML cohort (P < 0.05). The third gene set comprises
mitochondrial-related genes curated from the MitoCarta 3.0
database, a comprehensive resource of genes with strong evidence
for mitochondrial localization and function. The intersection of
these three sets yielded 31 key genes that are (1) mitochondria-
associated, (2) differentially expressed between AML and normal
samples, and (3) significantly associated with patient survival. These
genes formed the basis for constructing the downstream model.
This rigorous selection process culminated in the identification of
31 key mitochondrial genes: SPATA20, ELAC2, AKR7A2, IDII,
FH, PICK1, NME3, BCKDK, COA1, NDUFCI, CPT1A, DGUOK,
HTRA2, CISD1, OPA3, UQCRI11, MRPS12, TACO1, METTLS5,
HIGD2A, GLUD1, TIMMS8B, SLC25A28, FDPS, FTH1, AHCYLI,
CA5B, TMEM?70, BNIP3, UQCRI10, and NFS1. A forest plot was
constructed to illustrate the results of the univariate Cox regression
analysis for these 31 genes within the TCGA_AML
cohort (Figure 1D).

Additionally, we explored the interrelationships among these
genes using a Pearson correlation heatmap (Figure 1E), where red
and blue circles denote significant positive and negative
correlations, respectively. The size and depth of color reflect the
strength of the correlation. This analysis revealed strong co-
expression patterns among multiple genes, suggesting coordinated
regulatory mechanisms. To provide a comprehensive visualization,
we employed the STRING database to generate a gene co-
expression network, which was enhanced in Cytoscape
(Figure 1F). In this network, node size and color intensity scale
with connectivity degree (number of edges), identifying FH,
MRPS12, CISD1, and NFS1 as core genes (highest connectivity)
potentially central to mitochondrial regulation in AML. To refine
our prognostic model for AML, we applied clustering analysis to the
activity levels of the 31 characteristic genes, which revealed K = 2 as
the most robust cluster (Figure 1G). The expression patterns of
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these genes were depicted through box plots and ridge plots
(Supplementary Figures S1A, B). Moreover, we conducted a pan-
cancer analysis to examine the expression levels and prognostic
significance of these genes across various malignancies. This
analysis offered insights into the broader expression landscape
(Supplementary Figure S2A) and potential implications for
patient outcomes across different cancer types (Supplementary
Figure S2B).

3.2 Establishment of the MitoScore
signature

To construct and evaluate a robust prognostic model, we
employed a suite of 14 machine learning algorithms, including
RSF, Lasso, Enet, stepcox, CoxBoost, plsRcox, SuperPCA, GBM,
survivalism, Ridge Regression, obliqueRSF, XGBoost, CForest, and
CTree. We also explored combinations of these methods to enhance
predictive performance. The average C-index was calculated for 148
algorithmic configurations across the entire dataset, as well as
separate training and validation sets, to determine the optimal
model configuration (Figure 2A). The MitoScore model, which
emerged as the most effective, integrates the Lasso and RSF
algorithms (Figure 2B). To validate the model’s performance, we
applied it to external datasets, including TCGA_AML,
GSE37642_GPL96, and GSE37642_GPL570. Patients were
stratified into high-risk and low-risk groups based on the median
MitoScore within each cohort. K-M survival analysis revealed that
patients in the high-risk group exhibited significantly worse
prognoses compared to those in the low-risk group (Figures 2C-
E). A higher MitoScore was consistently associated with a poorer
prognosis, demonstrating the model’s excellent predictive accuracy.
Dimensionality reduction techniques, such as PCA and t-SNE,
highlighted distinct clusters corresponding to the high-risk and
low-risk patient groups, further supporting the model’s ability to
distinguish between different risk profiles (Figures 2C-E). These
findings underscore the clinical utility and prognostic significance
of the MitoScore, positioning it as a valuable tool for personalized
medicine in AML.

3.3 Construction of a prognostic
nomogram based on MitoScore

A prognostic nomogram was developed based on the MitoScore
to evaluate its predictive utility in patients with AML. Univariate and
multivariate Cox regression analyses were performed to assess the
independent and combined predictive power of the MitoScore. The
nomogram integrates the MitoScore with clinically relevant features,
including age, sex, cyto_risk, and fab_code, thereby providing a
quantitative tool for predicting AML patient outcomes and
supporting clinical decision-making (Supplementary Figure S3A).
To estimate overall survival probabilities, the nomogram for TCGA
AML patients incorporates these key variables. Calibration curves
were used to validate the accuracy of the prediction model,
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Preliminary screening of key mitochondrial genes. (A) Volcano plot of the differential expressed genes analysis in the AML and adjacent normal
tissues. Mitochondria-related genes with prognostic value marked out. (B) Heatmap displaying the top fifty DEGs. (C) Venn plot of DEGs, prognostic
genes, and mitochondria-associated genes. (D) Univariate Cox regression analysis of OS based on 31 key mitochondrial DEGs. (E) Correlation
analysis results among 31 key Mitochondrial DEGs. (F) PPl Network Analysis Results of 31 key Mitochondrial DEGs. (G) Distinguishing two different

subtypes using the NMF algorithm.

demonstrating a strong concordance between predicted and
observed survival probabilities at 1-year, 3-year, and 5-year
intervals (Supplementary Figure S3B). The AUC values for both
the MitoScore alone and the integrated nomogram at these time
points exceeded 0.75, as determined by time-dependent ROC
analysis, indicating high diagnostic performance (Supplementary
Figures S3C-G). DCA further revealed that the nomogram model
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provides substantial net benefit across a wide range of
threshold probabilities, enhancing its clinical applicability
(Supplementary Figures S3H, I). These findings collectively
demonstrate that the nomogram, which leverages MitoScore
characteristics, exhibits excellent performance in predicting the
prognosis of AML patients, thereby offering a valuable resource
for personalized medicine.
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FIGURE 2

Establishment of the MitoScore signature. (A) Using 148 different combinations of 14 machine learning algorithms for MitoScore research, with
C-index calculated for each model. (B) Survival curve of the total cohort. (C) Survival curve of the TCGA cohort. (D) Survival curve of the
GSE37642_GPL96 cohort. (E) Survival curve of the GSE37642_GPL570 cohort. Survival status, density distribution, PCA analysis, and tSNE analysis

between two different subgroups.

3.4 Single-cell sequencing of the
MitoScore model

Initially, we filtered out unqualified cells, obtaining 39,783
core cells for subsequent analysis. We performed ANOVA on the
genes within these core cells and identified 2,000 highly variable
genes (Figure 3A). PCA was conducted on 12 single-cell samples,
revealing a reasonable distribution of the samples (Figure 3B). In
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the PCA, we selected 20 principal components for further
analysis, all of which had p-values < 0.05 (Figures 3C, D).
Subsequently, we used the UMAP algorithm to classify the core
cells into 24 cell clusters (Figure 3E). We further presented the
results of cell clustering at different resolution levels using
UMAP plots and dendrograms (Figures 3F-H). The signature
genes for each cell cluster were displayed using bubble
plots (Figure 3I).
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FIGURE 3

Based on single-cell RNA sequencing data, cell clusters with different annotations were identified, revealing high cellular heterogeneity in AML.

(A) The variance diagram shows the variation of gene expression in all cells of AML. The red dots represent highly variable genes and the black dots
represent non-variable genes. (B) PCA showed a clear separation of cells in AML. (C, D) PCA identified the top 20 PCs at P < 0.05. (E) The UMAP
algorithm was applied to the top 20 PCs for dimensionality reduction, and 24 cell clusters were successfully classified. (F=H) Present the clustering
outcomes of cell clusters at varying resolution levels. (I) Expression levels of marker genes for each cell cluster.

Using the “single” package, the CellMarker database, and
reference (25), we identified marker genes to annotate different
cell clusters. This process resulted in the identification of seven cell
clusters: B Cell, Erythrocyte, Granulocyte, Macrophage,
Megakaryocyte, Natural Killer Cell, and T Cell. A small fraction
of cells that could not be recognized were annotated as
unrecognizable. Since leukemia cells do not contain neurons, they
were not considered core cell populations for subsequent analysis
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(Figure 4A). We further compared the annotation results and the
proportions of these seven cell types between the healthy group and
the AML group (Figures 4B, C). Box plots were used to illustrate the
differences in the proportions of these seven cell types between the
healthy and AML groups. The analysis revealed that the numbers of
NK cells and T cells were significantly higher in the healthy group
compared to the AML group (Figure 4D). The expression of 31 key
mitochondrial genes in each cell type was visualized using bubble

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1597633
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al. 10.3389/fimmu.2025.1597633
AmL Health
N
ol oo
— % i
izable @ BCel 10
_ @ Enythrocyte
3“9 @ Granulocyte Unrecaqgieatle H :;;Lcym
\ Macrophage o ol T Dby
; © Macrophage
IR { l".. @ Megakaryocyte g skt Hegsance
p © Natural kler cell
| Pactophate @ Natural kiler cell 50 . o Newon
o e, o7 ® Neuron Nessapocpeilsage  * IO
p . 4 - ® Tcel nrecognizatle
N @ Unrecognizable -
N ]
g 4 -0
3
UMAP1
-5 0 10 -5 0 5 10
umap_1
c D B Cell Erythrocyte 0 Granulocyte
015{ o076 '+ |06] o0z °* 0a] 08
06 0101 . 04 03
£ 005{ *Jo 02 g-f .
. goup 0.00 * vt g0l e BB | Gy
=04 . AL Macrophage Megakaryocyte
1 [ ey 08 034® 0547 10020
. 08 02 0015 group
02 £ 04 o1l . | 0010 B8 Healty
02 - 0.005 B A
004 ssess mawm | o) H*% 0.000
00 | B . - [ l. -l Neuron T Cell Unrecognizable
’ 06 o6 * |95 0038 0057
I T R R T S S 04 o075 !
¢ & & @ KA g 04 03] vy * * |o00s0
? & R & {’0 A A & s . 02 ol .
o * o H D § 02 B - 0025
S & F ' SR | ey
¥ ‘@ N \)Q@ oL R e
< N N N
S S S
E 8% - e .00 e F
Ot I S AUCell
TMEMZRY ¢ Tl
AHCYL1{ -« - - . . . . o
mijleceeecees 020 | [
SLC25A28 1 - S . - Average Expression : rythrocyte
TiMmss | - <. s s o . > Granulocyte
meEEMe s it ie e e W 015 Macrophage
wmeberz] - - . o o & = -1 8 Megakaryocyte
UacRi1{e® © © ® * © ® ® © -2 20.10 Natural killer cell
st N . . . .  Percent Expression Neuron
bGUOK] « - - . c o o = o 20 0.05 ITCeII
CPTIA Tt e
NsURSRY oL L De . . @75 ] unrecognizable
COA1q{ = e o o o @ 100 0.00
BCKDK - . . -
ME3 . . - L - .
. . . D @ @ 9 @ EISP S
PICK1 @ Q4
FHY - . [©) & F .Q'bo" oc;{‘ PN ,\(1 .3‘6
D] e « o ® . . . VYN L EEE &
A S
sPATAZOY .. - - - - <@ §/‘> & \0@ ‘\@
N @ @ £ @ > & D 5% G N)
oL N e e DT
S g 5 &
< =
G H B Cell Erythrocyte Granlocyte
020 goooze | 016 041 020  52e-08
=015 012 0.15
So10 0.08 0.10
10 0.05 0.04 0.05
0.00 0.00
AUCell Macrophage Megakaryocyte Natural killer cell
020{ 572001 000047
o o _ois oss] P Jois . group
3 015 2 .
g oo S010] — 0.10 0.10 B Healthy
S0 <005 0.05 0.05: B AuL
2:: - 0.00 0.00
Neuron T Cell Unrecognizable
020] 46e-09 g'gg p<2226-16 015 0045
5015 015 :
3 g 0.10
= 010 0.10
° = ' 0.05
005 0.05 -
ool =2 0.00 000t~
& W SR SR
= 0 5 10 > » » N
umap_1 & S & & & °
FIGURE 4

An overview of the single-cell atlas for normal and tumor samples from AML patients. (A) 8 cell types identified based on marker gene expression.
(B) Compare the annotation results between normal and tumor tissues. (C) Show the proportions of eight cell types in AML patients and healthy
controls. (D) Display whether there are differences in the proportions of 8 cell types between AML patients and healthy controls using box plots.

(E) Show the expression of each MitoScore signature gene in the 8 cell types using a bubble chart. (F) Use the AUCell algorithm to score the activity
of MitoScore signature genes in each cell type. (G) Display the scoring results using a UMAP plot. (H) Display whether there are differences in the
activity scores of MitoScore signature genes between AML patients and healthy controls for the 8 cell types using box plots.
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plots, which showed that DGUOK, FDPS, FTHI1, HIGD2A,
NDUEFCI1, NME3, UQCR10, and UQCRI11 had higher expression
levels in T cells (Figure 4E). Additionally, based on the gene set
composed of these 31 key mitochondrial genes, we used the AUCell
algorithm to identify subpopulations with active mitochondrial
function. The identified active subpopulations were utilized to
study the expression patterns of mitochondrial response genes at
the single-cell level. The results indicated that T cells were among
the active cell populations, and there was a difference in the activity
scores of T cells between the healthy and AML groups (Figures 4F-
H). Based on a comprehensive consideration of both quantity and
mitochondrial scores, we will continue to perform further analysis
on T cells.

3.5 Further pseudotime and cell
communication analysis of T cell subsets

To further characterize T cells, we isolated all T cells from the
entire cell population. We performed dimensionality reduction and
clustering analysis using the Uniform Manifold Approximation and
Projection (UMAP) algorithm. This analysis classified the T cells
into eight distinct clusters (Figure 5A). Based on the expression
patterns of marker genes, we annotated these clusters into five T cell
subpopulations: CD4+ T cells, central memory CD4+ T cells (CD4+
Tcm), central memory CD8+ T cells (CD8+ Tcm), effector memory
CD8+ T cells (CD8+ Tem), and regulatory T cells (Tregs)
(Figure 5B). We then compared the distribution and proportions
of these subpopulations between healthy individuals and AML
patients (Figure 5C).

To explore the differentiation trajectories of the annotated T cell
subpopulations, we conducted pseudotime analysis using the
Monocle 2 algorithm. This analysis revealed nine distinct
differentiation states during T cell development (Figure 5D). The
differentiation sequence was as follows: CD4+ T cells differentiate
into Tregs and CD4+ Tcm, which subsequently give rise to CD8+
Tcm and CD8+ Tem. This indicates that CD4+ T cells, CD4+ Tcm,
and Tregs represent early stages of cellular development, while CD8+
Tem and CD8+ Tem correspond to terminal differentiation stages
(Figures 5E-G). To visualize the expression dynamics of
mitochondrial key genes during this process, we used violin plots
to display the expression levels of eight highly expressed
mitochondrial genes across the nine differentiation states
(Figure 5H). Heatmaps were also generated to present clustering
results based on pseudotime-associated genes, identifying
differentially expressed genes (DEGs) along the pseudotime
trajectory. These DEGs were categorized into three distinct
subgroups (Supplementary Figures S4A, B). Collectively, these
findings simplify the complex process of T cell differentiation,
delineating key stages and molecular changes that define the
transition from early to terminal stages of T cell development.

Furthermore, we inferred a cell-cell communication network to
predict intercellular communications based on specific pathways
and ligand-receptor interactions. A chord diagram illustrating the
number of ligand-receptor pairs revealed that cellular
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communication was more frequent among CD4+ Tcm, CD4+ T
cells, Tregs, and CD8+ Tem (Figure 5I). Notably, the interaction
frequency and strength were higher between CD4+ Tcm and CD8+
Tem, CD4+ Tcm and Tregs, as well as CD4+ Tcm and CD4+ T
cells, whereas CD8+ Tcm had relatively fewer interactions with
other cell types (Figure 5]). We also detailed the communication
scenarios of these five T cell subpopulations within the MIF
signaling pathway, the CCL signaling pathway, and the IL-16
signaling pathway (Supplementary Figure S5). These results
highlight the significant intercellular communication among T
cell subpopulations, particularly between CD4+ Tcm and other
types, which is crucial for immune coordination. This information
could be essential for developing therapeutic strategies that target
immune responses in AML.

3.6 Annotation of clinical characteristics
for the MitoScore

To further investigate the relationship between MitoScore and
clinical-pathological parameters and to validate its prognostic
capability in AML, we conducted stratified analyses based on
MitoScore about age, sex, cytogenetic risk, and FAB code. Our
study revealed no significant differences in MitoScore between sexes
(Supplementary Figure S6B). However, we observed significant
associations between MitoScore and several other clinical
parameters, including age, cyto_risk classification, and fab_code
classification (Supplementary Figures S6A, C, D). To evaluate the
impact of MitoScore on overall survival across different clinical
characteristics, we performed a K-M survival analysis for patients
stratified by age (<65 years or 265 years), sex, cytoreduction risk
classification, and FAB classification. In each subgroup, patients
with a high MitoScore exhibited significantly worse overall survival
compared to those with a low MitoScore (Supplementary Figures
S6E-M). These findings underscore the robust predictive power of
the MitoScore for prognosis across multiple AML subgroups
independent of traditional clinical factors.

3.7 Analysis of potential biological
mechanisms of MitoScore signature

To gain deeper insights into the biological processes associated
with the MitoScore signature, we performed comprehensive
enrichment analyses. GSVA revealed that the MitoScore is
significantly associated with cellular metabolism, particularly
pathways related to carbohydrate metabolism, amino acid
metabolism, and lipid metabolism (Figures 6A, B). Subsequently,
we conducted an in-depth analysis of the 31 key mitochondrial
genes using both Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses. GO analysis
identified significant enrichment in biological processes, including
mitochondrial transport, oxidative phosphorylation, the respiratory
electron transport chain, mitochondrial ATP synthesis, and other
pathways integral to mitochondrial and cellular respiration

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1597633
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

10.3389/fimmu.2025.1597633

AmL Hoalth

I
© CD4+ T-cells
® CD4+Tem

@ Do+ T-cells
® coreren W
® coee Tem g0

DB+ Tem £
@ Tegs

© CD8+ Tem
© CD8+Tem
© Tregs

ececesse

]
umap_t

State © COMTols o COftTam o COBTem o COBVTem o Tisgs Pseudotime|

Component 2

Component 2

H T £

5 H [ J B
PR Companent 1 Component 1

F o Tl o DWTn o CRTn o COWTer o s G © COMT-cols o CD#+Tom o CDBTam o CDB+Tem o Tegs

T e T e Togs

Gomponant 2

R EEEEEE R ER R
Component 1

BGUGK

T4p e bee b ;

FoPs Number of interactions

S S B S S R NN}
TETTTTTYTTY

HIGD2ZA

RIIXIIIIZN |

1
B
a
a
NDUFCH 5
s
7
B
°

Interaction weights/strength

Expression

S S EEEEE N

NMES

SN

vacr1o

S S L L XL 34

vacr11

r2eeeeeed

State

FIGURE 5

The single-cell transcriptional atlas of T cells and pseudo-time analysis and cell communication analysis of its five subtypes. (A) UMAP plot of T cells
in scRNA-seq, clustered into 8 distinct clusters. (B) 5 cell types identified based on marker gene expression. (C) Compare the annotation results

between normal and tumor tissues. (D) Trajectory plot showcasing the different stages of T cell differentiation along a pseudo-time axis.

(E) Independent visualization of T cell subtypes at different stages along the pseudotime axis and trajectory plots depicting the developmental time
course of T cells. (F) Trajectory plot of T cell subtypes indicating their differentiation patterns along a pseudo-time axis. (G) Independent visualization
of T cell subtypes at different stages based on a dendrogram. (H) Violin plots of the expression levels of 8 MitoScore signature genes that are highly

expressed in T cells, indicating their expression patterns along the pseudotime axis. (I) Number of interactions between 5 T cell subtypes.
(J) Strength of interactions between 5 T cell subtypes.
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Functional enrichment analysis of MitoScore signature. (A, B) GSVA enriched pathways in the high- and low-MitoScore subgroup. (C, E) The GO
enrichment analysis of the 31 key MitoScore signature genes. (D, F) The KEGG enrichment analysis of the 31 key MitoScore signature genes. (G) The
top 5 GSEA enriched pathways in the low- MitoScore subgroup. (F) The top 5 GSEA enriched pathways in the low- MitoScore subgroup.

(Figures 6C, E). KEGG analysis highlighted enriched pathways,
including terpenoid backbone biosynthesis, nitrogen metabolism,
oxidative phosphorylation, thermogenesis, and various metabolic
processes and disease mechanisms (Figures 6D, F).

To further elucidate the potential pathways associated with
MitoScore, we employed Gene Set Enrichment Analysis (GSEA). In
patients with lower MitoScores, we observed enrichment in
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biological processes and molecular functions related to anterior/
posterior pattern specification, myeloid leukocyte activation,
leukocyte-mediated immune regulation, immune receptor activity,
and molecular transduction activity (Figure 6G). Conversely,
patients with higher MitoScores showed enrichment in pathways
associated with adaptive immune response, B-cell-mediated
immunity, immunoglobulin production, immunoglobulin

13 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1597633
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

complexes, and antigen-binding (Figure 6H). These findings
indicate that the MitoScore model is primarily enriched in
pathways related to cellular metabolism, signal transduction, and
immune responses. The comprehensive investigation of these
pathways provides valuable insights into the specific biological
mechanisms underlying the observed differences between
MitoScore subgroups. This analysis highlights the potential
significance of the 31 key mitochondrial genes in various KEGG
pathways, underscoring their role in AML pathogenesis
and prognosis.

3.8 Mutation landscape analysis of
MitoScore signature

To elucidate the genetic landscape associated with different
MitoScore profiles, we utilized the Maftools software package to
investigate the distribution of somatic variants in AML patients. We
observed distinct driver mutation patterns between the two MitoScore
subgroups. Additionally, using GISTIC2.0, we identified the frequency
of recurrent copy number alterations (CNAs) in both the high and low
MitoScore groups. The study found that the low MitoScore group
exhibited a higher frequency of recurrent copy number alterations
(CNAs) compared to the high MitoScore group (Figures 7A, B).
Specifically, in the low MitoScore group, the genes with higher
mutation frequencies were BCORL1, IDH2, MUCI6, and RUNXI.
In contrast, in the high MitoScore group, DNMT3A, NPM1, IDH2,
and TP53 exhibited higher mutation frequencies (Figure 7C).
Furthermore, we illustrated the chromosomal locations of the 31
key mitochondrial genes (Figure 7D). Copy number variations
(CNVs) play a crucial role in the development and progression of
cancer. In our model, the genes with the highest CNV frequencies
included TIMMS8B, BCKDK, UQCRI11, HIGD2A, and NFSI
(Figure 7E). Considering the significant role of TMB in determining
individual responses to immunotherapy, we examined its relationship
with MitoScore. The results indicated that TMB levels were generally
consistent between the high and low MitoScore subgroups (Figures 7F,
G). Notably, although tumor mutation burden (TMB) itself was not
significantly associated with prognosis in our cohort, patients in the
high MitoScore subgroup had considerably worse prognoses
compared to those in the low MitoScore subgroup independently of
TMB levels (Figure 7H). This suggests that mitochondrial gene
dysregulation may drive poor outcomes through mechanisms
distinct from global mutational load. Our study consistently
emphasizes the importance of the 31 key MitoScore genes in AML.
We comprehensively evaluated the diverse roles and characteristics of
these genes across various cancers (Supplementary Figures S7, S8, S9).

3.9 MitoScore was associated with immune
characterization in AML

Using ssGSEA clustering, we classified AML samples into two

immune phenotypes: C2 (IFN-gamma dominant) and C4
(lymphocyte depletion), and illustrated the proportions of these
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immune phenotypes within the high and low MitoScore subgroups
(Figure 7I). However, no significant differences in MitoScore were
observed between the two immune phenotypes (Figure 7]). Notably,
while our analysis revealed no statistically significant difference in
survival across molecular and immune subtypes, these subtypes
exhibited marked immunological heterogeneity in terms of immune
cell infiltration and pathway activation. Importantly, patients in the
high MitoScore subgroup had significantly worse prognoses
compared to those in the low MitoScore subgroup across all
immune phenotypes (Figure 7K). This suggests that
mitochondrial dysfunction drives adverse outcomes through
mechanisms independent of tumor immune microenvironment
characteristics. Additionally, we analyzed the expression levels of
the 31 key MitoScore genes in these two immune phenotypes.
Remarkably, the expression levels of AKR7A2, CISD1, GLUDI,
HTRA2, MRPS12, NME3, and UQCRI11 showed significant
differences between the two immune phenotypes (Supplementary
Figure S10).

Considering the critical role of immune infiltration in
tumorigenesis, we first evaluated the differences in immune cell
subpopulations between the high MitoScore and low MitoScore
subgroups. Specifically, the high MitoScore subgroup exhibited
higher proportions of macrophages, monocytes, and plasmacytoid
dendritic cells compared to the low MitoScore subgroup
(Figures 8A-C). Next, we investigated the differences in immune
function between the high MitoScore and low MitoScore subgroups.
Our analysis revealed that the high MitoScore subgroup
demonstrated stronger immune functions. Specifically, the high
MitoScore subgroup showed higher scores for antigen-presenting
cell (APC) co-stimulation, parainflammation, and Type II
interferon (IFN) response compared to the low MitoScore
subgroup (Figures 8E, F).

Subsequently, we investigated the relationship between the high
MitoScore and low MitoScore subgroups and their association with
immune regulators. Specifically, the high MitoScore subgroup
exhibited higher expression levels of immune regulators,
including TGFB1 ligand, TNESF9 ligand, and PDCDI1 receptor,
compared to the low MitoScore subgroup (Figures 8H, I). We also
examined the relationship between the high MitoScore and low
MitoScore subgroups and immune checkpoint genes. The high
MitoScore subgroup showed higher expression levels of immune
checkpoint genes, including TNFSF9, TNFSF15, and PDCDI,
compared to the low MitoScore subgroup (Figures 8K, L).
Furthermore, we used heatmaps to provide a detailed
visualization of the distribution of the 31 key mitochondrial genes
across immune cells, immune functions, immune regulators, and
immune checkpoint genes, offering valuable insights for future
research (Figures 8D, G, J, M).

3.10 Drug sensitivity analysis for MitoScore
signature

From the Genomics of Drug Sensitivity in Cancer (GDSC)
database, we identified significant differences in drug sensitivity
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FIGURE 8

MitoScore and Immune-Related Analyses. (A, B) Display the differences in immune infiltration cells between high- and low-MitoScore subgroups
using ssGSEA and xCell algorithms in a box plot. (C) Evaluate the correlation between immune infiltration cells and MitoScore. (D) Revealed a
heatmap revealing the correlation between each MitoScore signature gene expression and immune infiltration cells. (E) Display the differences in
immune function between high- and low-MitoScore subgroups. (F) Evaluating the correlation between immune function and MitoScore.

(G) Revealed a heatmap showing the correlation between the expression of each MitoScore signature gene and immune function. (H) Display the
differences in immunomodulators between high- and low- MitoScore subgroups. () Evaluate the correlation between immunomodulators and
MitoScore. (J) Revealed a heatmap showing the correlation between the expression of each MitoScore signature gene and immunomodulators.
(K) Display the differences in immune checkpoint genes between high- and low-MitoScore subgroups. (L) Evaluate the correlation between immune
checkpoint genes and MitoScore. (M) Revealed a heatmap showing the correlation between the expression of each MitoScore signature gene and
immune checkpoint genes. *, **, *** represent p < 0.05, p < 0.01, and p < 0.001, respectively. "ns" means not significant (p >= 0.05).
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between the high MitoScore and low MitoScore subgroups. We
specifically examined eight drugs commonly used in the clinical
treatment of AML patients and found that 5-fluorouracil,
Gemcitabine, and Epirubicin were more sensitive in the low
MitoScore subgroup. In contrast, Cyclophosphamide and
Venetoclax were more sensitive in the high MitoScore subgroup
(Figure 9A). Furthermore, we highlighted 15 drugs from the GDSC
database that exhibited highly significant differences in sensitivity
between the high MitoScore and low MitoScore subgroups. Drugs
such as SB216763, NU7441, Doramapimod, RO-3306, and ABT737
showed greater sensitivity in the high MitoScore subgroup. At the
same time, Dactolisib, Pictilisib, Alpelisib, LGK974, Buparlisib,
Afuresertib, AZD5363, Ipatasertib, and GNE-317 were more
sensitive in the low MitoScore subgroup (Figure 9B). In
summary, these findings suggest that these drugs may represent

10.3389/fimmu.2025.1597633

promising therapeutic options for AML, with their effectiveness
potentially guided by MitoScore status.

4 Discussion

To date, extensive research has elucidated the role of
mitochondria in tumorigenesis, proliferation, and metastasis,
primarily through their involvement in bioenergetics, signaling
pathways, and biosynthesis (14, 15). The activation of oncogenes,
inactivation of tumor suppressor genes, and accumulation of
tumor-induced mutations in tricarboxylate circulating enzymes
contribute to the production of excessive mitochondrial reactive
oxygen species (ROS), which promote the development of tumor
cells within the hypoxic microenvironment (35). Tumor cells

A Risk B8 Low BE High
ns o G ns ns
10 .
-]
3
£ .
I~
ﬂ)
7] B
>
5° ’ .
.
s * .
. .
s .
. s 4
[ “ H .
3 KN 3 & @ ] 3 +
- o o o3 .
y ’p\o & g ?\Q o“o 0&\6 . éoo { \é\o @(}o
@ © & N N > S @
& Q\oo 00@ K K o K\ ¥
£ N N\
s *
&
B Risk B8 Low BE High
10
4 -
& s .
>
g 5 o U
e ’ =
| . .- e s
» ==t
© &S E S E Y s R
R T LA e R R O SR S ]
@ 3 N N v N N >
%0 p & g Q g \oo s & ‘?\o s \Q° )
& o

FIGURE 9

Drug sensitivity analysis of two MitoScore subgroups. (A) Display the drug sensitivity of current clinical AML treatments in high- and low-MitoScore
subgroups. (B) Display the drug sensitivity of drugs not yet widely used in high- and low-MitoScore subgroups. *, **, *** represent p < 0.05, p < 0.01,

and p < 0.001, respectively. "ns" means not significant (p >= 0.05).
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exhibit elevated levels of antioxidant proteins that mitigate cell
death induced by ROS-mediated alterations in mitochondrial
permeability (36). Furthermore, the sustained accumulation of
metabolites produced by mutant mitochondrial enzymes supports
tumor cell proliferation (37). Changes in mitochondrial metabolic
status influence various signaling pathways, enhance metabolic
reprogramming, and facilitate tumor metastasis. Consequently,
numerous anti-tumor agents have been developed to target
specific vulnerabilities in mitochondrial metabolism. However,
due to the adaptive and compensatory mechanisms of tumor cells
and the off-target effects of mitochondrial-targeted drugs, the
efficacy of single-target therapies is often limited (38). This raises
the question of whether a gene set comprising multiple
mitochondrial functional genes can be utilized to develop an
AML risk model that predicts treatment outcomes and informs
the selection of therapeutic regimens.

To our knowledge, this study represents the first comprehensive
investigation of mitochondrial function in AML, identifying 31 key
mitochondrial genes and constructing a MitoScore signature
utilizing a combination of 148 algorithms derived from 14
machine-learning methods. In contrast to existing models, our
signature was developed by integrating multiple datasets and
machine learning approaches, and its robustness was validated
using external datasets. Furthermore, we established a MitoScore-
based nomogram designed to enhance the accuracy of clinical
prognosis predictions in AML patients. This nomogram
incorporates additional variables, including age, sex, cytogenetic
risk, and French-American-British (FAB) classification. The
nomogram demonstrated an AUC exceeding 0.8 for predicting
outcomes at 1, 3, and 5 years, indicating strong predictive power
and stability.

In addition, we obtained 39,783 cells in the scRNA-seq map and
identified seven types of core cells: granulocytes, erythrocytes,
megakaryocytes, macrophages, B cells, natural killer cells, and T
cells. Compared with healthy controls, the number and
mitochondrial function scores of T cells were reduced in AML
patients, suggesting that AML may inhibit mitochondrial function
by affecting mitochondrial nucleotide synthesis, enzyme activity and
respiratory chain complex of T cells. To further understand the
influence of mitochondrial function on T cells, we divided T cells into
five subgroups and nine differentiation stages, analyzed the
expression of key mitochondrial genes at different differentiation
stages of various subgroups of cells, and found that different
differentiation stages of T cells had specific expressions of key
mitochondrial genes, which provided a possible method for
simplifying the identification of T cell differentiation stages. In the
communication network of T cell subsets in AML, CD4+ Tcm serves
as a pivotal hub, facilitating interactions among various T cell subsets.
Previous research has demonstrated that AML patients harboring
DNMT3A mutations exhibit a reduction in naive CD8+ T cells and
CD4+ effector memory T cells compared to controls without such
mutations while concurrently showing an increase in CD4+ Tcm cells
(39). Notably, an elevated level of CD4+ Tcm cells has been
associated with poor prognosis in chronic lymphocytic leukemia (40).
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Furthermore, the sustained proliferative capacity and robust
effector function of CD4+ Tcm cells render them critical parameters
for assessing the persistence and efficacy of chimeric antigen
receptor (CAR) T cell therapy (41). Despite the remarkable
success of CAR T therapies in treating B-cell lymphoblastic
leukemia, B-cell lymphoma, and multiple myeloma, significant
challenges remain in addressing acute myeloid leukemia (AML),
primarily due to the absence of stable target antigens (42). The
extent to which the findings of this study can serve as predictors of
CAR T therapy efficacy in AML patients, or whether mitochondrial
functional genes expressed explicitly by CD4+ Tcm cells may
represent viable targets for CAR T therapy, necessitates further
investigation supported by subsequent experiments and
clinical data.

We categorized all samples into low-risk and high-risk groups
based on the MitoScore signature. We then evaluated these two
groups in terms of clinical features, biological mechanisms, copy
number alterations, tumor mutational burden, immune infiltration,
immune functions, and immune checkpoint gene expression. Our
findings indicated that, compared to the low-risk group, the high-
risk group exhibited a poorer survival prognosis, greater
enrichment in immune response-related biological processes and
molecular functional pathways, a higher frequency of mutations
with adverse outcomes, increased infiltration of immune cells and
immune function, and heightened expression of genes at
immune checkpoints.

Finally, we screened effective drugs and potential compounds
for patients with AML from the GDSC database, guided by the
MitoScore signature. Among the commonly used therapies for
AML, the high-risk group demonstrated greater sensitivity to
cyclophosphamide and venetoclax, whereas the low-risk group
responded more favorably to 5-fluorouracil, gemcitabine, and
epirubicin. Furthermore, we identified 15 compounds with
therapeutic efficacy against AML, which exhibited significant
differences in sensitivity between the low-risk and high-risk groups.

This study lays a foundation for the stratified and precise
treatment of patients with AML; however, it is not without
limitations. First, the establishment of our model primarily relies
on bulk RNA-seq data, which is relatively limited in scope. Future
research should incorporate scRNA-seq data and conduct internal
data analyses to enhance the predictive efficiency of the model.
Additionally, the scarcity of data may contribute to inconsistencies
observed between the analysis of CNVs in different groups and the
findings of previous studies. Third, immune infiltration analyses
may be confounded by technical batch effects and tumor
heterogeneity—despite employing batch correction algorithms
(e.g., ComBat) and using uniformly processed TCGA data.
Inherent limitations of bulk RNA-seq deconvolution methods
(CIBERSORT/ssGSEA) constrain the interpretation of the
microenvironment. Finally, the regulatory mechanisms of the key
mitochondrial genes that comprise the MitoScore signatures in
AML remain unclear, and there is a lack of corresponding literature
to support this understanding. These aspects warrant further
verification and investigation through subsequent experiments
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utilizing three-dimensional models: cellular, animal, and
clinical specimens.

Moreover, our study has three critical limitations: (1) the
absence of external validation using independent clinical cohorts
for the prognostic model; (2) insufficient experimental interrogation
of key genes’ biological functions in AML progression; and (3) lack
of qPCR validation for mitochondrial gene expression patterns,
restricting confirmation to transcriptomic-level observations
without multilevel biological corroboration. We acknowledge that
future work must address the clinical applicability and biological
relevance of our findings through validation with independent
prospective clinical cohorts to confirm model generalizability,
mechanistic experiments (e.g., knockdown/overexpression of hub
genes in AML models) to elucidate regulatory roles, and integrated
molecular validation combining qPCR, protein analysis, and
functional assays to establish translational relevance.

5 Conclusion

By integrating mitochondrial genes with bulk RNA-seq data
from AML and employing various machine-learning methods, we
developed a novel prognostic model that effectively predicts patient
survival outcomes. Moreover, the MitoScore facilitates the
stratification of patients into low-risk and high-risk groups, with
distinct gene mutation profiles, immune characteristics, and drug
sensitivities observed between these groups. This study presents a
reliable prognostic model for AML, opening new avenues for
personalized treatment strategies in the future.
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SUPPLEMENTARY FIGURE 1

The expression pattern of MitoScore signature genes in tumor and normal. A
The box plot depicts the differences of each MitoScore signature gene
between tumor and normal tissues. B The ridge plot illustrates the
expression patterns of each MitoScore signature gene.

SUPPLEMENTARY FIGURE 2

The expression pattern and survival analysis of MitoScore signature genes in
pan-cancer analysis. (A) Summarizes the expression difference between
normal and cancer groups. (B) Summarizes the survival difference between
high- and low-gene expression groups.
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SUPPLEMENTARY FIGURE 3

The nomogram model was constructed based on Univariate and multivariate
cox regression analyses. (A) Nomogram to predict 1-, 3-, and 5-year AML
patient survival. (B) Nomogram calibration curves for 1-, 3-, and 5-year OS.
(C) The ROC curves for the MitoScore signature are displayed. (D) The ROC
curves of the MitoScore signature for 1, 3, and 5 years. (E) AUC analysis of
each variable included in the nomogram model for 1 years. (F) AUC analysis of
each variable included in the nomogram model for 3 years. (G) AUC analysis
of each variable included in the nomogram model for 5 years. (H) DCA curves
were compared over a period for patients with AML. (I) DCA curves were
compared over a period of 1 year, 3 years, and 5 years for patients with AML.

SUPPLEMENTARY FIGURE 4

(A) Cluster heatmap based on pseudo-time series related genes. (B) DEGs
identified along the pseudo-temporal trajectory are categorized into three
distinct subgroups

SUPPLEMENTARY FIGURE 5

Cell-cell communication analysis. (A-=C) Intercellular communication
network diagram within the MIF signaling pathway. (D) Heatmap displaying
the interaction patterns of ligand-receptor interactions in the MIF signaling
pathway across different cell types. (E) Expression profiles of representative
genes in the MIF signaling pathway across different cell types. (F—H)
Intercellular communication network diagram within the CCL signaling
pathway. (I) Heatmap displaying the interaction patterns of ligand-receptor
interactions in the CCL signaling pathway across different cell types. (J)
Expression profiles of representative genes in the CCL signaling pathway
across different cell types. (K=M) Intercellular communication network
diagram within the IL16 signaling pathway. (N) Heatmap displaying the
interaction patterns of ligand-receptor interactions in the IL16 signaling
pathway across different cell types. (O) Expression profiles of representative
genes in the IL16 signaling pathway across different cell types.
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