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Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of
the most significant global health challenges exacerbated by latent tuberculosis
infection (LTBI). Heparin-binding hemagglutinin (HBHA), a virulence factor of
Mtb, plays a critical role in LTBI by inhibiting autophagy in macrophages, though
the underlying molecular mechanism has remained unclear. In this study, we
identified the evolutionarily conserved signaling intermediate in Toll pathways
(ECSIT) as a direct target of HBHA. Our experiments demonstrated that HBHA
binds to ECSIT, disrupting the ECSIT-TRAF6 complex and inhibiting ECSIT
ubiquitination in BCG-infected macrophages. Through genetic ablation studies
in RAW264.7 macrophages, we found that ECSIT is indispensable for HBHA-
mediated autophagy suppression, as evidenced by unchanged LC3-1l conversion
and Beclin-1 expression in ECSIT-knockdown RAW264.7 following HBHA
treatment. Additionally, HBHA significantly enhanced intracellular
mycobacterial survival in wild-type but not ECSIT-deficient macrophages,
establishing ECSIT as an essential molecular nexus for HBHA-mediated
bacterial persistence. Our findings reveal a novel mechanism by which Mtb
exploits host ECSIT through HBHA to evade autophagic clearance, thereby
promoting bacterial persistence. This study identifies the HBHA-ECSIT axis as a
potential therapeutic target for host-directed interventions against tuberculosis.

HBHA, ECSIT, macrophage autophagy, tuberculosis, host-pathogen interaction

1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a chronic
infectious disease that remains one of the most significant global health challenges (1, 2).
According to the World Health Organization’s Global Tuberculosis Report 2024, there
were approximately 8.2 million new TB cases and 1.25 million deaths in 2023 (3). Notably,
nearly 25% of the global population harbor latent tuberculosis infection (LTBI), forming a
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vast reservoir of asymptomatic carriers, and 5-10% of LTBI carriers
will progress to active TB during their lifetime (4-6). Furthermore,
LTBI serves as a reservoir contributing to drug-resistant
tuberculosis emergence (7, 8) and the annual number of people
who developed multidrug-resistant TB (MDR-TB) and rifampicin-
resistant TB (RR-TB) between 2020-2023 was consistently
estimated at approximately 400,000 (2, 3, 9). Elucidating the
molecular mechanisms underlying Mtb persistence in hosts and
identifying critical host-pathogen interaction nodes are therefore
essential for preventing latent reactivation and curbing
drug resistance.

The pathogenesis of tuberculosis is intricately related to
macrophage autophagy (10). Mtb is an intracellular pathogen
mainly transmitted to the lungs through inhalation of aerosolized
droplets harboring TB bacteria (11). As the primary host cells
targeted by Mtb, macrophages employ autophagy, a conserved self-
degradation mechanism in eukaryotic cells for eliminating
misfolded proteins, damaged organelles, and pathogenic
organisms, as a crucial defense mechanism against intracellular
pathogens (12-15). However, autophagy in macrophages infected
with Mtb is significantly inhibited. Mtb proteins CpsA and PPE2
would block NADPH oxidase on mycobacterial phagosomes to
impair LC3-associated phagocytosis (16, 17). Our previous research
identified that the heparin-binding hemagglutinin (HBHA),
encoded by the Mtb gene Rv0475, is a dormancy-associated Mtb
virulence factor, potently inhibits macrophage autophagy to
facilitate bacterial survival (18-20). This autophagy suppression
correlates strongly with LTBI establishment, yet its molecular
mechanisms remain elusive.

Through HuProt' " human proteome microarray screening, we
identified an interaction between HBHA and the evolutionarily
conserved signaling intermediate in Toll pathways (ECSIT), a
crucial component of innate immunity. ECSIT orchestrates TLR/
NEF-xB signaling via TRAF6 (TNF receptor-associated factor 6)
coupling and serves as a substrate for Parkin-mediated mitophagy,
positioning it as a molecular nexus linking immune activation to
autophagy regulation (21-23).

Based on these findings, we hypothesize that HBHA disrupts
ECSIT ubiquitination networks to inhibit autophagy and promote
Mtb latency. To prove this, we utilized ECSIT-knockdown
macrophages to systematically elucidate how HBHA-ECSIT
interaction modulates autophagic flux. This study reveals a novel
mechanism of pathogen-mediated host protein hijacking during
LTBI, providing a mechanistic foundation for developing targeted
therapies against persistent Mtb infections.

2 Materials and methods
2.1 Reagents and antibodies

Bacterial culture media including 7H9 Middlebrook broth and
7H10 Middlebrook agar supplemented with oleic acid-albumin-

dextrose-catalase (OADC) were purchased from BD Biosciences
(San Diego, CA, USA). Tween 80 and glycerol were obtained from
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Sigma-Aldrich (St. Louis, MO, USA). RPMI1640 medium, fetal
bovine serum (FBS) and Penicillin-Streptomycin Liquid were
purchased from Gibco (Waltham, MA, USA). Primary antibodies
against LC3, beclinl and GAPDH were purchased from
Abcam (Cambridge, MA, USA). FITC-conjugated goat anti-rabbit
IgG (H+L) secondary antibody and 180kd protein molecular
weight markers were obtained from Beyotime Biotechnology
(Shanghai, China).

2.2 Bacteria strains and cell lines

The recombinant HBHA-expressing Mycobacterium
smegmatis (MS) strain mc®155(rHBHA-MS) was constructed in
our previous study (18). Mycobacterium bovis bacillus Calmette-
Gueérin (BCG) was obtained from ATCC (No.35734). rHBHA-MS
and BCG were grown in 7H9 Middlebrook broth supplemented
with 10% oleic acid-albumin-dextrose-catalase (OADC), 0.05%
Tween 80 and 0.2% glycerol, or on 7H10 Middlebrook agar
supplemented with 10% OADC. The murine macrophage cell line
RAW264.7 was purchased from Procell Life Science & Technology
Co., Ltd. (Wuhan, China). ECSIT knockdown RAW264.7
(ECSITXP RAW?264.7) was generated by transduction of sShRNA
in our previous research. RAW264.7 and ECSITX® RAW264.7 were
cultured in RPMI1640 medium containing 10% fetal bovine serum,
100 units/mL penicillin, and 100 pug/mL streptomycin.

2.3 HBHA protein treatments

The recombinant HBHA protein was expressed and purified as
previously described (18). RAW264.7 and ECSIT®” RAW264.7,
either subjected to starvation induction or infected with BCG
(MOI = 10:1), were treated with HBHA at final concentrations of
5 ug/mL and 10 pg/mL. Autophagic activity was subsequently
assessed to evaluate the inhibitory effects of HBHA-ECSIT
interaction on macrophage autophagy.

2.4 Co-immunoprecipitation assay

RAW264.7 were infected or non-infected with BCG (MOI =
10:1) in the presence of varying concentrations (0-10 ug/mL) of
HBHA for 48 hours. Cells were washed once with ice-cold 1x PBS
and lysed with RIPA lysis buffer (containing 1 mM PMSF). After 10
min incubation on ice, complete cell disruption was achieved
through repetitive pipetting. Lysates were centrifuged at 14,000 x
g for 10 min at 4 °C, and supernatants were collected for following
steps. Protein A magnetic beads were resuspended in lysis buffer,
vortexed, and subjected to magnetic separation (15 sec) until clear
supernatant was achieved. Cleared lysates (200 UL per sample) were
incubated with anti-ECSIT polyclonal antibody (1:100 dilution)
under continuous rotation at 4 °C overnight. Antigen-antibody
complexes were then captured by adding 20 pL pre-washed
magnetic beads, followed by 20 min rotary incubation at room
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temperature. Bead-bound complexes underwent five stringent
washes with 500 pL ice-cold lysis buffer. Immunoprecipitates
were eluted in 20-40 puL 4xLoading buffer through 10 min boiling
at 95-100 °C. After magnetic separation, eluates were collected for
subsequent western blot analysis.

2.5 Western blot analysis

Protein lysates were quantified via BCA assay and equal amounts
were resolved on 12% SDS-PAGE gels. Electrophoretically separated
proteins were transferred onto 0.45 um PVDF membranes (Merck
Millipore, USA). Membranes were blocked with 5% (w/v) non-fat dry
milk (BD Biosciences, USA) in TBST buffer for 1 hour at room
temperature (RT), followed by incubation with primary antibodies
overnight at 4 °C. Subsequently, membranes were probed with HRP-
conjugated secondary antibodies for 2 hours at RT. Detection was
performed using an ECL method.

2.6 Immunofluorescence assay

Cells were seeded onto sterile glass coverslips placed in 12-well
plates and cultured until reaching 80% confluence. Following
experimental treatments, cells were washed three times with PBS
to remove residual medium. Cells were fixed with 4%
paraformaldehyde (PFA) for 10 min at RT, followed by three PBS
washes. Permeabilization was performed using 0.2% Triton X-100
in PBS for 10 min at RT, with subsequent PBS rinses. Non-specific
binding was blocked with 1% bovine serum albumin (BSA) in PBS
for 1 hour at RT. After three PBS washes, cells were incubated
overnight at 4 °C with primary anti-LC3 antibody. Following three
PBS washes, FITC-conjugated secondary antibodies were applied
for 1-2 hour at RT under light-protected conditions. After final PBS
washes, nuclei were counterstained with DAPI in PBS for 15 min at
RT. Coverslips were mounted onto glass slides using 20 UL anti-fade
mounting medium and imaged using a laser scanning confocal
microscope (Olympus FV4000) with 63x oil immersion objective.

2.7 Survival of BCG in macrophages

RAW?264.7 and ECSITX” RAW264.7 maintained in RPMI-1640
medium supplemented with 10% FBS were infected with BCG at
MOI = 10:1 in the presence of varying concentrations of HBHA.
Following different hours bacterial internalization, extracellular
BCG was eliminated by 50 pg/mL gentamicin treatment for 1 h.
Before lysis, the monolayer cells were gently washed twice with PBS
to remove detached dead cells and residual extracellular debris.
Washed monolayer cells were lysed with 0.02% SDS for 15 min at
37°C. Lysates were centrifuged at 12,000 x g for 30 min. Pelleted
bacilli were resuspended in PBS, serially diluted (10 to 10™%),
and plated on Middlebrook 7H10 agar supplemented with
OADC enrichment. Colonies were counted after 3 weeks
incubation at 37 °C.
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2.8 Statistical analysis

All values were expressed as mean + SD. Data were analyzed by
one-way ANOVA with Bonferroni correction for multiple
comparisons. The follow-up least significant difference test was
used for post hoc comparison with assess differences between
groups. Differences with p values <0.05 considered to be
statistically significant.

3 Results

3.1 HBHA disrupts ECSIT-TRAF6 interaction
and inhibits ECSIT ubiquitination

Previous studies have established that the assembly of the
TRAF6-ECSIT complex, which facilitates ECSIT ubiquitination,
plays a critical role in TLR4-mediated NF-xB activation required
for intracellular bacterial clearance in macrophages (22, 24).
Building on our initial discovery of direct HBHA-ECSIT
interaction through HuProt' ™ human proteome microarray
screening, we performed co-IP assays in RAW264.7 to investigate
whether HBHA binding modulates ECSIT-TRAF6 complex
formation. RAW264.7 cells were infected with BCG (MOI = 10:1)
in the presence of varying concentrations of HBHA for 48 hours.
Subsequent immunoprecipitation with anti-ECSIT antibody
revealed dose-dependent HBHA co-precipitation with ECSIT,
particularly enhanced in BCG-infected groups (Figure 1).
Conversely, TRAF6 interaction with ECSIT showed progressive
reduction with increasing HBHA concentrations, demonstrating
effective disruption of the TRAF6-ECSIT complex by HBHA
binding. This disruption of interaction directly correlated with
diminished ECSIT ubiquitination levels in macrophages (Figure 1).

Our findings establish a novel mechanism whereby mycobacterial
HBHA subverts host defenses through direct interaction with ECSIT.
This pathogen-host protein interaction effectively inhibits both
ECSIT ubiquitination and subsequent downstream signaling
pathways, representing the evidence of mycobacterial HBHA
directly targeting the ECSIT complex during macrophage invasion.

3.2 HBHA inhibits autophagy in RAW264.7
through interaction with ECSIT

Macrophages play a pivotal role in host defense against Mtb
infection (13). According to our prior discovery that HBHA inhibits
macrophage autophagy (18), we investigated whether ECSIT
mediates this suppression. RAW264.7 and ECSITX® RAW264.7
were exposed to varying concentrations of HBHA, and autophagic
activity was assessed by monitoring LC3-II conversion (a hallmark
of autophagosome formation) and Beclin-1 expression (a key
regulator of autophagosome nucleation).

In RAW264.7, starvation significantly increased LC3-II levels
compared to untreated controls (p < 0.005), while the autophagy
inhibitor 3-MA reduced LC3-II accumulation (p < 0.01). Strikingly,
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FIGURE 1

Heparin-binding hemagglutinin (HBHA) disrupts ECSIT-TRAF6 interaction and inhibits ECSIT ubiquitination. RAW264.7 cells were infected with BCG
(MOI = 10:1) in the presence of varying concentrations (0, 5 or 10 ug/mL) of HBHA for 48 hours. Cell lysates were immunoprecipitated with anti-
ECSIT antibody followed by immunoblotting with anti-TRAF6, anti-HBHA, anti-ECSIT or anti-Ubiquitin antibody.

HBHA treatment significantly attenuated starvation-induced LC3-
IT elevation (Figures 2A, B). Moreover, starvation upregulated
Beclin-1 expression, which was suppressed by both 3-MA and
HBHA (Figures 2A, C). Intriguingly, genetic ablation of ECSIT
abolished the autophagy-inhibitory effects of HBHA. In ECSITP
RAW264.7, starvation-induced LC3-II levels remained unchanged
upon HBHA treatment, converse results observed with 3-MA
(Figures 2D, E). Similarly, Beclin-1 expression in ECSITXP
RAW264.7 exhibited no significant differences between starvation
and HBHA-treated groups, whereas 3-MA retained its inhibitory
effect (p < 0.01, Figures 2D, F).

Frontiers in Immunology

To further validate the role of HBHA-ECSIT interaction in
autophagy suppression, we observed autophagosome formation
through immunofluorescence staining of LC3 in RAW264.7 and
ECSIT*P RAW264.7 (Figure 3). In RAW264.7, nutrient deprivation
significantly elevated LC3 puncta formation compared to untreated
controls (p < 0.005), which was attenuated by 3-MA treatment (p <
0.01), and HBHA dose-dependently suppressed starvation-induced
autophagosome formation (Figures 3A, B). Remarkably, while
3-MA further reduced LC3 puncta in ECSITXP® RAW264.7 (p <
0.005), HBHA treatment showed no inhibitory effect
(Figures 3C, D).
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FIGURE 2

HBHA suppresses starvation-induced autophagy markers via ECSIT. RAW264.7 (A) and ECSIT® RAW264.7 (D) were starved for 4 hours, then treated with
100 uM 3-MA (autophagy inhibitor), 5 ng/mL HBHA or 10 ug/mL HBHA for 6 hours. Total cellular proteins were collected for detection of LC3 and
Beclinl expression. (A) Expression of LC3 and Beclinl in RAW264.7 were detected by western blot. (B, C) The intensity of LC3-Il and Beclinl bands was
normalized to the intensity of GAPDH. (D) Expression of LC3 and Beclinl in ECSIT'P RAW264.7 were detected by western blot. (E, F) Quantification of
LC3-1I/GAPDH and Beclin1/GAPDH ratios from the western blot analysis. Data shown are from a single representative experiment. Each value indicates
mean + SD of results obtained from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.

Therefore, all these findings demonstrate that Mtb virulence
factor HBHA specifically targets ECSIT to impair autophagic flux,
revealing a molecular pathway that could be exploited for
developing autophagy-modulating therapies against LTBI.

3.3 HBHA-ECSIT interaction subverts
mycobacterial infection-induced
autophagy in macrophages

To elucidate how HBHA-ECSIT interaction modulates
macrophage autophagy during mycobacterial infection, we
established a time-course infection model using M. bovis BCG
(MOI = 10) in RAW264.7. Western blot analysis revealed time-
dependent modulation of autophagy marker LC3-II in RAW264.7:
Significant elevation compared to uninfected controls (p<0.01) at 6 h
post-infection, peaking at 12 h (p<0.005), followed by gradual
decline at 18/24 h while remaining above baseline (Figures 4A, B).
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This kinetic profile identified 12 h as the optimal infection duration
for subsequent experiments. Following mechanistic investigations
demonstrated that HBHA treatment significantly attenuated
BCG-induced LC3-II and Beclin-1 expression compared to
infection alone (Figures 4C-E). Strikingly, LC3-II/Beclin-1
expression in ECSITX® RAW264.7 were not significantly different
(p>0.05) among uninfected, BCG-infected, or HBHA-treated groups
(Figures 4F-H), suggesting that ECSIT deficiency may constitutively
activate autophagic pathways and HBHA specifically inhibits BCG-
triggered macrophage autophagy through ECSIT targeting.

Based on these observations, we performed immunofluorescence
microscopy to visualize LC3 puncta formation in BCG-infected
macrophages. In RAW264.7, co-localization analysis of DAPI-
stained nuclei (blue) and FITC-labeled LC3 (green) revealed that
BCG infection (MOI = 10, 12 h) significantly increased LC3-positive
puncta compared to uninfected controls (p<0.005), whereas HBHA
treatment reduced puncta density substantially versus infection alone
(Figures 5A, B). Notably, there was no statistically significant
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FIGURE 3

HBHA attenuates LC3 puncta formation in an ECSIT-dependent manner. RAW264.7 (A) and ECSIT*® RAW264.7 (C) were starved for 4 hours and
subsequently treated with 3-MA (100 uM) or HBHA (5 ug/mL/10 pg/mL) for 6 hours. Cells were then stained for nuclei (DAPI, blue) and LC3 (green)

(A) Immunofluorescence of LC3 (green) in RAW264.7 was detected by confocal microscopy. Scale bars: 20 um. (B) Quantification of LC3 puncta per cell
in RAW264.7. (C) Immunofluorescence of LC3 (green) in ECSIT'P RAW264.7 was detected by confocal microscopy. Scale bars: 20 um. (D) Quantification
of LC3 puncta per cell from the immunofluorescence analysis shown in (C). Data shown are from a single representative experiment. Each value in

(B, D) indicates mean + SD of results obtained from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
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FIGURE 4

ECSIT is required for HBHA-mediated inhibition of BCG-induced autophagy. (A) RAW264.7 were infected with BCG at MOI = 10:1 for different times
(6 hours, 12 hours, 18 hours or 24 hours). Cells were extracted and expression of LC3 was detected by western blot. (B) The intensity of LC3-I
bands was normalized to the intensity of GAPDH. (C-H) RAW264.7 and ECSITX® RAW264.7 were infected with BCG at MOI = 10:1 and treated with
HBHA (0, 5 or 10 pg/mL) for 12 hours. Cells were extracted and total cellular proteins were collected respectively. (C) Expression of LC3 and Beclinl
in RAW264.7 were detected by western blot. (D, E) Quantification of LC3-1I/GAPDH and Beclinl/GAPDH ratios from the western blot analysis shown
in (C, F) Expression of LC3 and Beclinl in ECSIT® RAW264.7 were detected by western blot. (G, H) The intensity of LC3-1l and Beclinl bands was

normalized to the intensity of GAPDH. Data shown are from a single representative experiment. Each value indicates mean + SD of results obtained
from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
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HBHA requires ECSIT to diminish LC3 aggregation during BCG infection. RAW264.7 and ECSIT*® RAW264.7 were infected with BCG at MOl = 10:1in
the presence of HBHA (0, 5 or 10 ug/mL) for 12 hours. Cells were then stained for nuclei (DAPI, blue) and LC3 (green). (A) Immunofluorescence of
LC3 (green) in RAW264.7 was detected by confocal microscopy. Scale bars: 20 um. (B) Quantification of LC3 puncta per cell in RAW264.7.

(C) Immunofluorescence analysis of LC3 puncta formation in ECSIT® RAW264.7. Scale bars: 20 um. (D) Quantification of LC3 puncta per cell from
the immunofluorescence analysis shown in (C). Data shown are from a single representative experiment. Each value in (B, D) indicates mean + SD of
results obtained from three independent experiments. **p < 0.01, ***p < 0.001, ns, not significant

difference (p>0.05) in LC3 fluorescence intensity among uninfected,
BCG-infected, or HBHA-treated groups in ECSITxp, RAW264.7
(Figures 5C, D), which consistent with western blot results.

Collectively, these findings provide conclusive evidence that
HBHA exploits ECSIT to subvert mycobacterial infection-induced
autophagy, and this regulatory axis strictly dependent on intact
ECSIT expression, which reveals a novel immune evasion strategy
employed by mycobacteria.

3.4 Inhibition of autophagy by HBHA-
ECSIT interaction promotes
Mycobacterium survival in macrophages

To investigate the functional consequences of autophagy
suppression by HBHA-ECSIT interaction on mycobacterial
persistence, we performed intracellular bacterial survival assays in
RAW264.7 and ECSIT®” RAW264.7. Cells were infected with BCG
at a MOI of 10 in the presence of varying concentrations (0-10 pg/
mL) of HBHA. CFU enumeration was performed at 6, 24, and 48 h
post-treatment through serial dilution plating on 7H10
Middlebrook agar.

As shown in Figures 6A, B, initial infection efficiency analysis
revealed comparable intracellular BCG loads across all groups at 6 h
post-infection, confirming that HBHA does not influence bacterial
adherence or invasion into macrophages. By 24 h, while overall CFU
counts decreased in all groups due to experimental clearance of non-
viable cells, HBHA-treated macrophages retained significantly higher
bacterial loads compared to untreated controls. This survival
advantage still was pronounced at 48 h, with HBHA-treated
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macrophages sustaining higher CFUs than untreated controls.
However, genetic ablation of ECSIT completely abrogated HBHA’s
pro-survival effects (Figures 6C, D). No significant differences in CFU
counts were observed between HBHA-treated and untreated groups
at any timepoint, demonstrating absolute ECSIT-dependence of
HBHA-mediated bacterial persistence through autophagy
suppression. The loss of HBHA-mediated bacterial persistence in
ECSIT*P macrophages directly correlates with our earlier findings of
restored autophagic flux, confirming that ECSIT is indispensable for
HBHA’s autophagy-subverting activity.

4 Discussion

Mtb is a highly adapted intracellular pathogen that causes
tuberculosis (1, 11). Macrophage autophagy appears to play
critical roles in defending against Mtb infection, by preventing
pathogens from exploiting host cells for growth and multiplication.
Once Mtb are internalized, macrophages would initiate the
autophagy process for intracellular Mtb clearance, confirming the
protective role of autophagy in host defense against Mtb. However,
Mtb employs multiple mechanisms to evade autophagic clearance
(12-15). Our previous research identified that Mtb virulence factor
HBHA potently inhibits macrophage autophagy to facilitate
bacterial survival (18), yet its molecular mechanisms remain elusive.

As a critical virulence factor of Mtb, HBHA not only mediates
bacterial adhesion to epithelial cells and extrapulmonary
dissemination but also plays specific roles in latent infection (19,
25, 26). Previous studies have established that HBHA, highly
expressed during Mtb dormancy, selectively stimulates IFN-y
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FIGURE 6

Inhibition of autophagy by HBHA-ECSIT interaction promotes BCG persistence in macrophages. RAW264.7 and ECSIT*® RAW264.7 were infected
with BCG at MOI = 10:1 and treated with HBHA (0, 5 or 10 pg/mL) for 6, 24 or 48 hours. Cells were lysed with 0.02% SDS for 15 min at 37 °C. The
lysates were diluted and plated on 7H10 agar plates to count the number of intracellular bacteria. (A) The lysates of BCG-infected RAW264.7 were
plated on 7H10 agar plates. (B) Colonies was counted to obtain the number of intracellular bacteria in RAW264.7. (C) The lysates of BCG-infected
ECSITKP RAW264.7 were plated on 7H10 agar plates. (D) Quantification of Colony-forming unit (CFU) from the analysis shown in (C). Data shown are
from a single representative experiment. Each value in (B, D) indicates mean + SD of results obtained from three independent experiments.

*p < 0.05, **p < 0.01, ns, not significant.

secretion in CD4" T cells from individuals with LTBI, making it a
diagnostic biomarker for LTBI (26-28). Our prior work further
demonstrated that HBHA suppresses autophagosome formation in
A549 epithelial cells while activating caspase-3-dependent apoptosis
(29). Notably, its autophagy-inhibitory effects in macrophages
strongly implicate HBHA as a central player in tuberculosis latency
(18), though the underlying mechanisms remained elusive.
Through HuProt' " human proteome microarray screening, we
identified a novel interaction between HBHA and ECSIT, a
multifunctional protein in innate immunity. ECSIT orchestrates
TLR/NF-xB signaling via TRAF6-mediated ubiquitination and
serves as a Parkin substrate during mitophagy (21, 22). Co-IP
assays confirmed that HBHA directly binds ECSIT during Mtb
infection, disrupting the ECSIT-TRAF6 complex and inhibiting
ECSIT ubiquitination (Figure 1). This represents the first direct
evidence of interaction between mycobacterial HBHA and host
ECSIT during macrophages invaded by Mtb. Notably, this binding
was maximal in BCG-infected macrophages, likely due to synergy
between endogenous HBHA expressed by BCG and exogenous
recombinant HBHA, combined with BCG infection-induced ECSIT
upregulation or relocalization via innate immune pathways (30-32).
To delineate ECSIT’s central role in HBHA-mediated
autophagy suppression, we exploited ECSIT-knockdown
RAW?264.7 macrophages. Western blot and immunofluorescence
analyses revealed that HBHA dose-dependently inhibited LC3-II
conversion and Beclin-1 expression in RAW264.7, effects
completely abolished in ECSIT*® RAW264.7 (Figures 2-4, 6).

Frontiers in Immunology

Intriguingly, ECSITX® RAW264.7 exhibited elevated basal
autophagy, with neither starvation nor BCG infection further
augmenting autophagic flux (Figures 2D, 3C, 4F, 5C). This
suggested dual regulatory roles of ECSIT, as evidenced by prior
work (21-23): 1) maintaining basal autophagy homeostasis via
Parkin-dependent mitophagy, and 2) mediating infection-induced
autophagy through TRAF6 ubiquitination. ECSIT ablation likely
disrupts mitochondrial quality control, leading to constitutive
autophagy activation. Importantly, in ECSIT® RAW264.7, 3-MA
retained its inhibitory effects by targeting PI3K in a manner
independent of ECSIT, whereas HBHA lost efficacy due to the
absence of its molecular target.

Using a BCG infection model, we further demonstrated that
HBHA significantly enhanced intracellular BCG survival in
RAW264.7 (Figures 6A, B), an effect entirely abrogated in
ECSITXP RAW264.7 (Figures 6C, D). These findings established
ECSIT as the essential molecular nexus through which HBHA
subverts autophagy to promote bacterial persistence, indicating
that HBHA-ECSIT interaction exerted pathogenic effects of
blocking autophagolysosomal clearance.

While our study utilized BCG infection with exogenously added
recombinant HBHA to investigate the HBHA-ECSIT interaction
under controlled conditions, we recognize that this model may not
fully recapitulate HBHA dynamics during natural Mtb infection,
especially as BCG lacks the ESX-1 system, which enables Mtb
phagosomal permeabilization and effector release (e.g., HBHA) into
the cytosol for ECSIT interaction (33-35). Our exogenous HBHA
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approach thus simulates this access. The recombinant HBHA
concentrations were chosen based on our and other previous
studies showing biological activity in similar experimental systems
(18, 29), though their physiological relevance in infected
macrophages requires confirmation. Nonetheless, translational
potential is supported by HBHA’s conservation across Mtb isolates
and ECSIT’s evolutionary preservation, implying similar axis
function in Mtb where ESX-1 exposes ECSIT to secreted HBHA
(30, 33, 34). Future work with HBHA-deficient H37Rv strains in
primary macrophages and in vivo models will validate
pathophysiological roles and guide therapies for persistent infections.

This study provides the first mechanistic evidence that HBHA,
an LTBI-associated antigen, inhibits macrophage autophagy via
ECSIT targeting, offering critical insights into early immune evasion
during latent infection and highlighting HBHA-ECSIT axis as a
potential host-directed therapeutic target.
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